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a b s t r a c t 

Currently, microservices are trending as the most popular software application design architecture. Soft- 

ware organisations are also being targeted by more cyber-attacks every day and newer security measures 

are in high demand. One available measure is the application of anomaly detection, which is defined 

as the discovery of irregular or unusual activity that occurs to a greater or lesser degree than normal 

occurrences in a data series. In this paper, we continue existing work where various real-world cyber- 

attacks are executed against a running microservices application, and the application traffic is logged 

and returned in the form of distributed traces. A Diffusion Convolutional Recurrent Neural Network is 

used to model the set of distributed traces and learn the spatial and temporal dependencies of the ap- 

plication traffic. Subsequently, the model is used to make predictions for ongoing microservice activity 

and threshold-based anomaly detection is applied to detect irregular microservice activity indicating the 

presence of seeded cyber security attacks, or anomalies. The cyber-attacks used to evaluate this approach 

include a brute force attack, a batch registration of bot accounts and a distributed denial of service attack. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Cyber security is currently one of the more significant problems 

cross the world. Every day, hackers are targeting more software 

rganizations with a variety of well-defined cyber-attacks. In re- 

ent years, the microservices software architecture has been im- 

lemented by many popular software application brands, includ- 

ng Twitter, Amazon, Netflix and PayPal ( Gan et al., 2019b ). Con- 

equently, cyber security personnel overseeing these applications 

equire more up-to-date means of detecting the cyber assaults in- 

ected into their application model. 

In our previous work Jacob et al. (2021) , we investigated cyber- 

ttacks targeting a microservices application by monitoring the 

verall behaviour of the application using distributed tracing and 

etected the anomalous activity of a cyber-attack by calculating 

he frequency distribution of unique traces. Such distributed traces 

apture and record the sequence of API calls between the com- 

onents of a distributed application as a microservice call graph 

here the nodes of the graph are the actual microservices and 

he edges represent calls to microservices. A sequence of such 

all graphs over time captures the spatio-temporal characteristics 

rom the API call traffic of a microservice application. Graph based 
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nomaly detection is then used to look for variations in the appli- 

ation call traffic that indicates unusual or abnormal behaviour. 

In this work, we propose to build on our earlier effort s using 

nomaly detection to detect cyber-attacks in microservice traffic 

y exploring the application of graph based anomaly detection to 

PI call traffic graphs produced by the microservices application. 

pecifically, we use the microservice call graph and data to train a 

raph convolutional neural network (GCNN) to capture the exist- 

ng spatial and temporal dynamics within the tracing data. By us- 

ng a GCNN to model the application topology and predict ongoing 

raffic, the irregular microservice traffic caused by various seeded 

yber-attacks is detected. 

In this paper, we use a distributed tracing tool to monitor a mi- 

roservices application with the goal of detecting cyber security at- 

acks targeting the application. We also define a Diffusion Convolu- 

ional Recurrent Neural Network (DCRNN), a state-of-the-art GCNN 

esigned to learn the directional behaviour of the traffic modelled 

n a directed graph and subsequently perform traffic forecasting 

or future time steps. In our experiment, we run a microservice 

pplication and simulate different cyber security attacks. We de- 

ect these attacks by leveraging the DCRNN model to discover the 

rregular microservice traffic caused as a result of said attacks. 

A user’s request to an application produces a sequence of re- 

ated microservice calls. This sequence of remote procedure calls 

RPC)s is logged using distributed tracing. Regular user calls made 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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o the application results in a set of distributed traces comprised 

f these RPCs. The DCRNN model is trained to learn from this RPC 

raffic and discover the spatial relations and temporal dynamics. 

his approach is used to determine the presence of RPC dynamics 

n a fixed time window that do not conform to the regular be- 

aviour of normal microservice application traffic. The aim of this 

ork is to detect anomalies by comparing the computed RPC traf- 

c related to a cyber security attack against the RPC traffic from a 

ormal data set. 

It should be noted that our work to perform graph-based 

nomaly detection is loosely similar to the approach used by the 

uthors of Chen et al. (2019) . The novelty of our approach is to

rovide a more simplified process of training a GCNN model and 

earning the spatio-temporal dynamics of RPC traffic. In our ap- 

roach, we train only a single model to learn the entire microser- 

ice application as opposed to Chen et al. (2019) in which multiple 

odels are trained to each learn a different subsystem of the ap- 

lication. 

Our main contributions in this paper are summarized as fol- 

ows: 

• We use a directed graph to model the entire polylithic architec- 

ture of a microservices application and the inter-relations be- 

tween the individual services. Using this graph, the application 

traffic from one microservice node to its neighbouring nodes 

can be related to a diffusion process . 

• We propose the Diffusion Convolution Recurrent Neural Net- 

work to learn the spatial and temporal dependencies of the ap- 

plication traffic over a time series using a diffusion convolution 

operation. 

• We study the traffic forecasting problem to predict microservice 

traffic at a future time step given previously learned traffic. 

• We apply anomaly detection to discover cyber security attacks 

injected into microservice traffic by measuring the irregularity 

of the RPCs made as a result of the cyber security attacks. 

This paper is structured as follows: Section 2 outlines the re- 

ated literature works. Section 3 presents background information 

n the microservices architecture, the fields of distributed trac- 

ng and anomaly detection. Section 4 presents an overview of our 

roposal and present a high-level description of our approach. 

ection 5 describes the microservices application we selected for 

ur experiment, the different cyber security attacks investigated 

nd simulated against the application, and outlines the applica- 

ion of anomaly detection to detect the cyber security attacks 

eeded amongst the application’s traffic flow. In Section 6 , we dis- 

uss the advantages and limitations of our proposed approach and 

ection 7 provides a conclusion to our proposal and possible future 

ork. 

. Related works 

This section presents a literature review of related works, in- 

luding a number of machine learning-based approaches to per- 

orm graph-based anomaly detection on network traffic. 

Deep neural networks (DNN) have been used to model data and 

iscover the underlying behaviour in the data. A particular class 

f neural networks, a recurrent neural network (RNN) is used to 

odel sequential data. Such a data series is usually represented as 

 case, a sequence of process events. Tax et al. (2017) used a par-

icular type of RNN, the Long Short Term Memory (LSTM) neural 

etwork Hochreiter and Schmidhuber (1997) which detects long or 

hort term dependencies in cases. This LSTM-based framework was 

sed to learn the typical form of cases and subsequently predict 

uture events and the timestamp of said events. The performance 

f this framework was evaluated by training and learning the be- 

aviour of logged cases from two available data sets, and the re- 
2 
ults were shown to outperform a previous methodology by Polato 

t al. (2018) . 

Deep learning models have also been used to model the traffic 

ow of a network domain. A Convolutional Neural Networks (CNN) 

s a DNN suited for modeling and analyzing graphs constructs and 

magery. The CNN model would observe and learn the spatial re- 

ations of the traffic flow. The authors for Ma et al. (2017) pro- 

osed a CNN model to learn the network traffic as images to cap- 

ure the spatial and temporal dynamics of the data and predict the 

etwork traffic speed. This CNN algorithm was tested using two 

ata sets composed of real-world transportation traffic. The CNN- 

ased framework’s performance was evaluated against four pre- 

ailing statistical algorithms and three deep learning-based mod- 

ls and was shown to outperform these models with an improved 

ccuracy of 42.91%. 

Wu and Tan (2016) proposed a deep model with a CNN and 

STM combined architecture (CLTFP) where the CNN component 

as used to capture and learn the spatial features of the traffic 

ow while the LSTM component was used to learn the tempo- 

al dependencies. Afterwards, the trained model was used to per- 

orm short term traffic forecasting. The predictions returned by the 

LTFP model were then compared with those of other models in- 

luding an LSTM, a shallow neural network and a stacked auto- 

ncoder model Lv et al. (2014) , and the CLTFP model was shown to 

utperform the other models in terms of prediction accuracy and 

patial distribution. 

In recent works, graph neural networks (GNNs) have become 

opular for modelling nodes and dependencies found in vari- 

us domains including life science and social networks Kung- 

siang (2019) . A variant of GNNs called Spatial-Temporal GNNs 

STGNN)s aim to capture the spatial and temporal features within 

orrelated data graphs simultaneously to predict future activity 

n a wide range of applications Wu et al. (2020) . The work by 

u et al. (2017) highlights that timely traffic forecasting is essen- 

ial for safe traffic control and that traditional mathematical ap- 

roaches like linear regression are not suited for future long-term 

raffic prediction. A STGNN was proposed to model the time-series 

ased prediction problem of a traffic domain. The network of road 

egments were modelled on graphs using convolution structures 

o enable fast training with the STGNN and extract the spatial and 

emporal features. This approach was evaluated in a series of ex- 

eriments using various real-world traffic data sets as examples 

nd results show that the model converges easily and outperforms 

tate-of-the-art baseline models. 

A recent GCNN, known as the Diffusion Convolutional Recurrent 

eural Network (DCRNN) is a state-of-the-art model designed for 

earning the complex spatial and temporal features in traffic flow. 

he authors for Li et al. (2017) outlined the application of spatio- 

emporal traffic forecasting in the domain of road networks. They 

roposed that the traffic be modelled as an active diffusion process 

n a directed graph. After learning the ground truth observations, 

redictions of future traffic activity are generated. This methodol- 

gy was tested using two different databases containing real-world 

oad network traffic. The first data set contains traffic data derived 

rom 207 sensors throughout Los Angeles County over a period of 

our months. This framework was tested, and was proven to out- 

erform baseline state-of-the-art frameworks by a margin of 12% 

o 15%. 

The work for this paper is similar to that of Chen et al. (2019) to

se a GCNN to detect irregular real-world RPC traffic. The lat- 

er aimed to discover cyber security issues within the thousands 

f RPCs resulting from numerous microservices. In this work, a 

wo-step process was performed to trace and log the RPC traf- 

c and detect anomalies. First, the logged RPC traffic from active 

icroservice functionality was analyzed and correlating RPC chain 

atterns in the data were identified using a density-clustering al- 
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orithm. These chain patterns represent a subsystem of the over- 

ll microservice functionality. A GCNN is then used to model each 

ubsystem of the RPC traffic and learn the spatio-temporal depen- 

encies of the traffic to solve the irregular RPC prediction prob- 

em. Using these GCNNs, a series of individual predictions can be 

ade for each pre-existing subsystems. This approach was evalu- 

ted using two case studies composed of real-world malicious traf- 

c threat models including a batch registration of bot accounts and 

ccount cracking. 

.1. Comparable works 

The authors for Le et al. (2011) use a traffic dispersion graph 

ethodology to model network traffic over time. This approach is 

omposed of two parts: one that learns the static properties of the 

raph and a dynamic aspect that models the dependencies of the 

emporal dynamics of the TDGs as a function of time. Anomalous 

raffic is defined as the traffic caused by different forms of illegal 

omputing behaviour, including DDoS attacks, scanning and Inter- 

et worms. This TDG model was used to detect anomalies via ir- 

egular network traffic occurring over time, as well as to determine 

he causes of such anomalies. This TDG method was evaluated us- 

ng two data sets of traffic traces and was able to detect a cyber- 

ttack with 100% accuracy. 

Yao et al. (2019) proposes a high-level attack detection 

ramework for network communication data by using a hybrid 

NN/LSTM deep learning model called STDeepGraph to learn high- 

evel representations of network flow traffic. This work uses a tem- 

oral communication graph to model the network communication 

tructure and a distance graph kernel to map the communication 

nto a high-dimensional space. The CNN component was used for 

xtracting the spatial features of the network flow and the LSTM 

or the temporal features. Finally, the model uses a softmax clas- 

ification function to classify the network traffic as benign or ma- 

icious. Two experiments were performed to evaluate the STDeep- 

raph using real-world network attack data sets with various at- 

acks seeded amongst the traffic flow. The model’s performance 

as evaluated using various metrics including accuracy. The results 

how that this method outperforms baseline methods in terms of 

ccuracy and loss. 

The work by Lee et al. (2020) proposes a deep learning model 

hat takes a graph representation of traffic-based data transforms 

ver time, and learns the spatio-temporal dynamics of the data. 

he model was used to predict the dynamic anomalies by measur- 

ng the non-Euclidean distance between the actual values and the 

utput predictions. This was done by computing the affinity score 

f an existing data entity. Subsequently, a threshold value is es- 

ablished to detect anomalous behaviour. This approach was eval- 

ated the using two available traffic-related data sets of network 

raffic and public transport traffic. The metrics used to evaluate the 

odel were the sum of absolute differences for the affinity score 

rediction and accuracy for the prediction of existing connections. 

he model was shown to have competitive results that were com- 

arable to state-of-the art techniques. 

. Background information 

This section describes background information on the microser- 

ices architecture, the process of distributed tracing and the field 

f anomaly detection. 

.1. Microservices 

The microservice architecture (MSA), or microservices, is a 

ervice-oriented software architectural design where the applica- 

ion is decoupled into several smaller inter-connected services. 
3 
ach micro service handles one specific business function of the ap- 

lication’s overall functionality such as a new user registering or a 

atabase query. In a microservices application, a single microser- 

ice is a well-defined interface that operates alongside other mi- 

roservices but can be developed, tested, scaled and deployed in- 

ependently due to the application’s polylithic design. This inter- 

ace can be called in response to a user’s RESTful API call or an 

PC Sun et al. (2015) . 

.2. Distributed tracing 

The process of distributed tracing is defined as the capability 

o log and monitor the process workflow propagating throughout 

 cloud-native distributed system at run-time. In a microservices 

pplication, a user’s HTTP request typically requires multiple mi- 

roservices resulting in a sequence of operations. This set of mi- 

roservices is then recorded as a distributed trace , a detailed log 

f the execution path throughout the application. A single trace 

s composed of units known as spans which share a traceID . A 

ecorded span represents a single microservice operation executed 

n response to a user’s HTTP request and sports a unique spanID . 

haracteristics recorded in the span include the name, timestamp 

nd the duration of the microservice operation being called. 

.3. Anomaly detection 

Anomaly detection is defined as the discovery of irregular 

ehaviour or instances within a data set Anodot (2020) . These 

nomalous instances, or outliers, either do not conform to the ma- 

ority of the instances in the data set or appear at a greater or 

esser frequency. Real-world examples of anomalies include enemy 

ctivity detected by military surveillance, ailments displayed by 

edical imaging and the presence of cyber-attacks within a com- 

uter system. Traditional anomaly detection is described as the 

iscovery of individual anomalous instances within a data series, 

lso known as pointwise anomaly detection . Anomaly detection can 

lso be classified as group anomaly detection (GAD), which refers 

o a set of grouped data points whose general collective behav- 

or differs from normal data patterns Chalapathy et al. (2018) and 

u et al. (2015) . 

. Methodology 

In this section, we present the novelty of our approach for 

raining a DCRNN model, and subsequently using graph-based 

nomaly detection to discover cyber-attacks in a microservices ap- 

lication. 

.1. Overview 

Graph-based anomaly detection has been applied to many dif- 

erent fields including finance, health care and law-enforcement in 

he past, even network level IT security Akoglu et al. (2015) . As far

s we know, the authors for Chen et al. (2019) are the only ones 

ho have previously applied this form of anomaly detection to a 

icroservices application. 

As mentioned in Section 1 , our approach is loosely similar to 

hen et al. (2019) . The latter carries out their methodology in a 

wo-stage process. In their first stage, they identify clusters of RPCs 

elated to each other in terms of application functionality, which 

re subsystems of the application as a whole. In their second stage, 

 DCRNN was trained for each existing RPC subsystem before mak- 

ng predictions and performing anomaly detection. By contrast, we 

rain a single DCRNN model with a more general unified RPC traf- 

c data set to learn the regular behaviour of the entire application. 

his eliminates the need to identify subsystems and train a model 
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or every subsystem. Using a single model to detect anomalous 

raffic with a more unified data set rather than multiple subsystem 

odels as proposed by the RPC clustering approach promotes sim- 

licity and makes the single model more robust. The novelty of our 

ethodology is that we provide a more simplified and generalized 

ethod for training a DCRNN to learn the spatial and temporal dy- 

amics of microservices traffic and apply graph-based anomaly de- 

ection. 

The remainder of Section 4 outlines our anomaly detection ap- 

roach. First we outline the process of generating synthetic mi- 

roservice traffic. Then we describe how a microservices applica- 

ion is modelled as a weighted directed graph. We present how the 

xecution of microservices calls is represented as a traffic matrix. 

e also define the traffic forecasting problem based on this traf- 

c matrix. We then outline how diffusion convolution is used to 

odel existing spatial dependency structures in graphs and how 

he DCRNN model captures the spatio-temporal dependencies. The 

CRNN model is then used to predict future traffic and finally we 

utline how anomalous traffic is detected by the divergence of the 

redicted and the actual traffic. 

.2. RPC traffic generation 

In the first step of our approach we used an available microser- 

ices application. We created synthetic data sets consisting of mi- 

roservice RPC traffic data by sending HTTP API requests to said 

pplication and recording the resulting traces using a distributed 

racing tool. These synthetic data sets can be found in Lee and 

acob (2019) . The microservices application we ran is part of an 

pen-source benchmark tool called DeathStarBench developed at 

ornell University Architecture and group (0 0 0 0) . This benchmark 

uite is open-source and its individual applications have been used 

everal times in various works, Gan et al. (2020) ; Hou et al. (2020) ;

azarev et al. (2020) ; Somu et al. (2020) generally for performance 

anagement and root cause analysis of microservices. 

.3. Directed graph representation 

In microservices traffic, RPCs are initiated between two differ- 

nt services providing collaborative functionality where one service 

akes a call to the other. We represent calls from one RPC to an-

ther RPC as nodes on a directed graph. In other words, a node on 

 graph represents a source-destination pair of RPCs. A weighted 

dge between two nodes exists in the graph when the nodes share 

ither a source or destination RPC. This approach promotes scal- 

bility, and highlights the architecture of the microservices appli- 

ation and the different inter-relations between the microservices. 

he directed graph is, in turn, represented as a weighted adjacency 

atrix. 

More formally, we represent the topology of the application ser- 

ices as a weighted directed graph. This graph, known as G is rep- 

esented mathematically as shown in Eq. (1) : 

 = ( N , E , A ) (1) 

here N is the set of all unique RPC source-destination pair nodes 

iscovered in the traffic, E is the set of all edges formed between 

PCs when nodes share either a source or destination value, and 

 ∈ R NxN is a weighted adjacency matrix that represents level of 

djacency of each node to each other. When a single relation be- 

ween two source-destination RPC nodes exists, that relation is 

ssigned a weighted value. Each relation between two differing 

odes a and b is assigned the respective weighted values as fol- 

ows: when a and b share the same RPC source or destination 

here is both an edge from a to b and from b to a with a weight

f 0.5. When one node’s source is another node’s destination, there 

s a dependency edge from a to b (or from b to a ) with a weight
4 
f 1.0. The procedure for constructing this adjacency matrix is dis- 

layed in Algorithm 1 . 

Algorithm 1: Build an Adjacency Matrix. 

Input : An RPC Node Set: N 

Output : The adjacency matrix: A 

A ← empty matrix(shape = len(N) * len(N)); 

for i ← 0 to len(N) do 

for j ← 0 to len(N) do 

if N[i].src == N[j].src or 

N[i].dst == N[j].dst then 

V [ j, i ] ← 0 . 5 ; 

V [ i, j] ← 0 . 5 ; 

end 

if N[i].src == N[j].dst then 

V [ j, i ] ← 1 ; 

end 

if N[i].dst == N[j].src then 

V [ i, j] ← 1 ; 

end 

end 

end 

.4. Traffic matrix representation 

As a microservices application executes, a set of attributes for 

ach node is represented as an N x M matrix where N is the num- 

er of vertices in the directed graph and M is the number of at- 

ributes for each node. For our work, we are concerned with the 

articular case where a single attribute representing the applica- 

ion traffic is stored. This value is simply the number of times the 

PC pair executes. This traffic matrix is obtained from a log of all 

PC calls as follows. 

We define a series of T ′ historical time steps. For the simplic- 

ty of our experiment, let each time step be of equal duration. We 

terate through the logged RPC calls and for each time step, we 

ompute the traffic on each node, that is the number of times the 

orresponding source-destination RPC call is executed. Given the 

irected graph G , we are returned a series of traffic matrices at 

very time step from X t−T ′ +1 to X t , where X t denotes the traffic 

atrix X at time step t . 

.5. Traffic forecasting 

In the field of mathematics, the definition of traffic forecasting 

s to predict future traffic activity given previously learned traffic 

erived from a network domain Li et al. (2017) . Given the directed 

raph G defined in Section 4.3 and the time series of T ′ traffic ma-

rices from Section 4.4 , our goal for the traffic forecasting problem 

s to define a function that maps T ′ RPC graph signals at time step 

 to T future time steps as outlined in Eq. (2) : 

 X 

(t−T ′ +1) , . . . , X 

(t) ; G ] h (. ) −−→ 

[ X 

(t+1) , . . . , X 

(t+ T ) ] (2) 

.6. Diffusion convolution 

GCNNs are designed to learn complex data representations from 

raphs. One means of defining such representations is to model 

he spatial dependency structures of directed graphs. This mod- 

lling allows us to capture the stochastic features of the traffic 

allick et al. (2020) . In our experiment, we use the DCRNN model 

o train the RPC traffic modelled on G using a diffusion convolu- 

ion methodology by relating the traffic flow to a diffusion process 
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Fig. 1. System Architecture of the Diffusion Convolutional Recurrent Neural Network. The encoder and decoder components are recurrent neural networks composed of 

DCGRU layers with the ReLu activation function. The time series of RPC graph matrices input data is entered into the encoder, trained iteratively using backpropagation and 

the final state is used to initialize the decoder. The decoder then outputs RPC predictions based on ground-truth values at testing time. 
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twood and Towsley (2016) . This process can described as a sim- 

le random walk on G from one node to its neighbor. Furthermore, 

ctive traffic flow from a single node to neighbouring nodes can 

e modelled as a weighted distribution of infinite random walks 

hroughout G . We also include the diffusion process in the reverse 

irection so that model can learn from both upstream and down- 

tream traffic Li et al. (2017) . Given G , the resulting diffusion con-

olution operation over traffic attribute matrix X is defined as: 

 �G X = 

K−1 ∑ 

d=0 

(W O (D 

−1 
O A ) d + W I (D 

−1 
I A ) d ) X (3) 

here K represents the maximum number of diffusion steps 

llowed; A represents the adjacency matrix for G defined in 

ection 4.3 ; D 

−1 
O 

A and D 

−1 
I 

A are the transition matrices for the dif-

usion process and the reverse diffusion respectively; W O and W I 

re the learnable filters applied to the bidirectional diffusion pro- 

ess, and D I and D O represent the in-degree and out-degree diag- 

nal matrices which provide the capability to learn from both the 

pstream and downstream traffic. 

.7. Temporal dependency modelling 

To leverage the DCRNN model to capture the temporal depen- 

encies of the microservices traffic, we implement an encoder- 

ecoder architecture of an RNN. The encoder component takes the 

PC traffic matrices along the time series as input and the data is 

ncoded into a vector representation. The decoder then reads from 

his vector and predicts the expected traffic output of future time 

teps given previously learned ground truth observations. 

The Gated Recurrent Unit (GRU) Chung et al. (2014) is a sim- 

le, but well-defined variant of an RNN used for designing this 

ncoder-decoder architecture. For our work, both the spatial and 

emporal dependency modelling are combined by replacing the 

atrix multiplication functionality of the GRU with the diffusion 

onvolution operation defined in Eq. (3) . This leads to the pro- 

uction of the Diffusion Convolutional Gated Recurrent Unit (DC- 

RU). These cells are stacked together to form a series of lay- 

rs in a sequence-to-sequence fashion to finalize the DCRNN 

han et al. (2020) . The architecture of the DCRNN, including the 

ncoder-decoder framework, is displayed in Fig. 1 . The functional- 
5 
ty defined in Eq. (4) constitutes the DCGRU cell: 

r t = σ (W r�G [ X t , h t−1 ] + b r ) 

 

t = σ (W u�G [ X t , h t−1 ] + b u ) 

c t = tanh (W c�G [ X t (r t � h t−1 ] + b c ) 

 t = u 

t 
� h t−1 + (1 − u 

t ) � c t (4) 

here X t and h t represent the input traffic graph matrix and the 

nal state at time step t respectively; r t , u t and c t represent the 

eset gate, update gate and cell state at time step t ; �G represents

he diffusion convolution operation defined in Eq. (3) and W r , W u 

nd W c are the corresponding filters applied to each equation. This 

CGRU cell is used to build the RNN layers. These layers allow the 

CRNN model to train with sequential data and capture long-term 

ependencies Li et al. (2017) and Mallick et al. (2021) . 

.8. Training the DCRNN model 

By implementing both the spatial and temporal data modelling 

escribed above, the DCRNN is trained to learn both the spatial dy- 

amics of the adjacency matrix A defined in Section 4.3 and the 

emporal dependencies within the time series from Section 4.4 si- 

ultaneously Li et al. (2017) . 

During the training phase, the adjacency matrix A and the time 

eries of traffic matrices are fed into the DCRNN’s encoder compo- 

ent as input and the final state at the time step t is used to ini-

ialize the decoder component as illustrated in Fig. 1 . To discover 

he temporal dependencies and predict the future time series, the 

NN layers, composed of DCGRU cells, are trained using backprop- 

gation through time, where the states and input data are trained 

y the model iteratively over a number of epochs. Finally, the de- 

oder predicts the output for T future time steps. In the testing 

hase, the ground truth observations are replaced by output pre- 

ictions generated by the trained model. The DCRNN model is then 

valuated by learning the weight matrices in Eq. (3) by minimizing 

he mean absolute error (MAE) loss function: 

AE = 

1 

s 

s ∑ 

i =1 

| y i − ˆ y i | (5) 

here s represents the number of data samples, y i is the observed 

round truth value and ˆ y i is the prediction returned by the model 

or the i th training data sample. 
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.9. Anomalous RPC detection 

After the DCRNN model returns RPC traffic predictions for test- 

ng data, similar to Chen et al. (2019) , we perform anomaly detec- 

ion in order to detect irregular RPC node traffic. The most suitable 

ay to do this is to define a threshold value on the prediction error 

hich is the absolute difference between the ground truth values 

nd the output predictions. Given that X t 
i 

is the value of RPC node 

 at time step t , the respective prediction error is calculated where 

 

t 
i 

= X t 
i 

− ˜ X t 
i 
. These thresholds are defined as follows where H i is 

n upper and lower threshold for node i : 

• calculate both the mean μi = 

1 
n 

∑ n 
t= i x i and standard deviation 

σi = 

√ 

(x i −μi ) 
2 

n for E t 

• set the upper and lower limits for the distribution of each RPC 

node entry in E t using the following formula H i = μi ± (2 ∗ σi ) 

. Experiment 

In this section, we outline the microservices application se- 

ected for our work, DeathStarBench and its individual microser- 

ices, we describe the software environment and tools used for 

he instrumentation of our application, present the results of our 

xperiment and finally we outline the software libraries and hard- 

are used to carry out the experiment. We present our main work, 

n which three cyber-attacks are simulated against the application 

n a series of experiments using penetration testing. For each ex- 

eriment, the microservices traffic flow was monitored and logged 

sing distributed tracing and the data sets of microservice appli- 

ation activity were generated using the distributed traces. Subse- 

uently, the DCRNN model was trained and evaluated using the 

ata as described in Section 4.8 and the threshold-based anomaly 

etection methodology defined in Section 4.9 was applied to de- 

ect the cyber-attacks. We observe that because each attack is com- 

rised of a large number of concurrent API requests, we can detect 

 group anomaly by calculating the computed traffic within a spec- 

fied time window. 

.1. DeathStarBench 

The microservices application used for our experiment was 

eathStarBench, an open-source benchmark suite comprised of 

everal microservice-based applications. Available end-to-end ap- 

lications include a social networking app, a banking system ser- 

ice, a media service where a user can post movie reviews and a 

otel reservation service Gan et al. (2019a) . For this experiment, 

e selected the social networking application, known as SocialNet- 

ork . The DeathStarBench suite itself was written in several dif- 

erent programming languages including Python 3.7, node.js, Java, 

avaScript, PHP, C and C++. 

The social networking app emulates a broadcast-style network 

omprised of registered users and the follow relationships from 

ne user to another. This social networking application supports 

he following actions: a registered user logging in with their cre- 

entials, uploading posts embedded with text, hyper-links or other 

ontent, broadcasting said posts to other users, a user reading 

heir fellow users’ activity and receiving recommendations on what 

ser(s) to follow ( Gan et al., 2020 ). The overall architecture of the

pplication is displayed in Fig. 2 . 

When the social network application is running, a client user 

ends a HTTP URL request which is received by a load balancer 

nd web browser component implemented by Nginx . The following 

re API requests that can be sent to the app’s logic over the load 

alancer: 

• wrk2-api/user/register 
6 
• api/user/login 

• wrk2-api/post/compose 

• wrk2-api/user-timeline/read 

• wrk2-api/home-timeline/read 

The web server delegates these requests to the appropriate 

icroservice to perform requested functionality. Additional ser- 

ices for other operations can also be subsequently called such as 

atabase storage, search queries and other functionality. The ap- 

lication’s backend server uses MongoDB for persistent storage of 

ser profiles, posts, media content and user recommendations, and 

he data structure stores Memcached and Redis for caching. 

.2. Software environment & tools 

Here, we outline the software environment in which the mi- 

roservices application was executed for our experiment, especially 

he software tools used to instrument the application. 

.2.1. Docker 

Docker is a set of Platform-as-a-Service (PaaS) tools used for 

eveloping, executing and deploying containerized software appli- 

ations to a virtual software environment ( IBM, 2021 ). Docker is 

rimarily used to combine and store an individual’s source code 

long with their required tools, libraries and settings in stan- 

ardized executable packages called containers . These isolated 

ontainers are used to deliver reusable light-weight functional- 

ty, which is suitable for implementing the microservices architec- 

ure ( Jaramillo et al., 2016 ). In our experiment, each individual mi- 

roservice for the application is run as a Docker container instance. 

.2.2. Thrift 

Thrift is a binary communication protocol developed by the 

pache Software Foundation that is used for creating and defining 

ervices including user-defined operations and objects ( Slee et al., 

007 ). Thrift functions as an interface definition language which 

llows the defined services to operate and interface with other ser- 

ices developed across several different programming languages. 

he Thrift language also provides a scalable framework for client- 

erver RPCs, which is suitable for RPCs sent to microservices 

 Gan and Delimitrou, 2018 ). For our experiments, the interfaces 

hat represent each microservice in the application are defined us- 

ng a .thrift written in the Thrift language and the different services 

ommunicate with each other using Thrift RPCs. 

.2.3. Jaeger 

Jaeger is an open-source software tool used for tracing the 

xecution path of microservices calls propagating throughout a 

istributed application in response to a user’s HTTP request 

 Authors, 2021 ). In our experiment, the application is configured 

o use the Jaeger tool in the form of three separate components 

ach with its own functionality. The jaeger-agent is a network dae- 

on that listens for microservice calls, or spans, over a User Data 

rotocol (UDP) connection; the jaeger-collector collects and stores 

he span data and the jaeger-query functions as a query for the 

aeger-collector and a UI for accessing and observing the returned 

races. We also configured the jaeger-collector to use the multi- 

enant ElasticSearch API as a storage backend for the returned 

races as JSON documents. 

.3. Data generation 

Once the social networking application was operationalized, we 

erformed initial work to construct the topology of the social net- 

ork. We registered 960 users, established 18,800 follow relation- 

hips between various users, and constructed a directed graph 
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Fig. 2. The Microservices Architecture for the Social Networking Application. On the client side, a user’s HTTP request is be forwarded to the application’s Nginx web 

browser. Application requests are then delegated to the various microservice interfaces in the application logic. On the server side, persistent storage of data is handled by 

MongoDb and data caching is handled by Redis or Memcached . In this application, microservice calls recorded using the Jaeger daemon, the data is stored in the Jaeger 

Collector and the Jaeger Query sends queries to the collector component. The Jaeger instrumentation also uses the ElasticSearch API and the Kibana interface for storing 

and viewing the data as JSON documents respectively. 
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Fig. 3. Learning curves for Training and Validation loss. These loss values were 

calculated using the mean absolute error metric. The loss values were shown to 

converge nicely over a period of 50 epochs with a divergence smaller than 0.1 in 

measurement. 
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here the nodes represent the users, and the edges represent the 

ser-follow relationships. Subsequently, we ran microservices calls 

sing API requests and HTTP workload traffic generators to gener- 

te both regular application traffic and simulate real world cyber- 

ttacks against the application. 

For our work, the social networking application was executed 

n three separate experiments each with a different cyber-attack. 

or each experiment, both the regular application traffic and the 

nomalous traffic caused by the seeded cyber-attacks were gener- 

ted. The regular application traffic was generally composed of RPC 

raffic returned in response to API requests to upload users’ posts 

o the application using the API request call wrk2-api/post/compose . 

he RPC nodes for the post composition functionality are listed in 

able A.4 . Other RPC calls contained in the traffic include calls to 

egister new users, for users to log into the app and read up on 

ellow users’ timelines. 

In each experiment, we generated synthetic data sets of times- 

amped, distributed traces resulting from the microservice RPC 

raffic sampled over 2 minutes. The resulting data sets contained 

pproximately 18,500 microservice calls. From these data sets, we 

xtracted a total of 63 unique microservice source-destination pair 

odes. Section Appendix A Using this set of nodes, we produced a 

irected graph representation of the application’s architecture G as 

utlined in Section 4.3 and from there, an adjacency matrix using 

lgorithm 1 . Subsequently, as outlined in Section 4.4 , we extracted 

 series of time windows from the traffic data and computed the 

raffic for each RPC node in every designated time window. We set 

side 85% of the data as a training set and the remainder was used 

or testing. To detect the cyber-attacks, we analyzed the RPC traf- 

c within the time window from the testing data set where the 

yber-attacks were seeded. 

.4. DCRNN model 

For our experiment, the DCRNN model used was composed of 2 

ecurring DCGRU layers, defined in Section 4.7 . These layers were 

omposed of 150 units each and configured with the bidirectional 

iffusion convolution operation presented in Eq. (3) . The maximum 

iffusion step K = 2, and using the traffic forecasting approach 

utlined in Section 4.5 , the model predicts the RPC traffic matrix 
7 
or a single future time step. To implement the bidirectional dif- 

usion process defined in Section 4.6 , we used the filter type dual- 

andom walk to model the time-series parameters. To load the spa- 

ial graph data and build the model, the adjacency matrix defined 

bove was included as a hyper-parameter. For the training process, 

he hyper-parameters for the DCRNN model that produced the op- 

imal performance are listed as follows: the base learning rate = 

.01, the learning rate decay ratio = 0.1, the Adam optimizer was 

sed and the DCRNN model was trained over 50 epochs with an 

arly stopping mechanism set after 15 epochs. 

To investigate the effect of spatial and temporal modelling by 

he DCRNN, we evaluate the model’s performance by computing 

ts MAE metric defined in Eq. (5) as a measure of the model’s out- 

ut prediction error. To perform this evaluation, given the training 

ata set defined above, we set aside 70% of the data set to calcu- 

ate the training loss, and the remainder was used to calculate the 

alidation loss. The learning curves for the metric is displayed in 

ig. 3 which shows that the loss values starts out as moderately 

igh, gradually lowering until both curves flatten. Because the gap 

etween the training loss and the validation loss is small, and both 
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Fig. 4. Brute Force Password Guessing Attack. The application traffic for the RPC 

nodes that represent the login RPC functionality are shown to exceed their defined 

thresholds while the RPC traffic for composing a user’s posts do not meet their 

defined threshold. 

c

r

 

 

t

t

T

b

5

h

b

c

t

b

s

a

m

c

t

i

d

a

a

b

t

t  

A

a

(

a

n

o

u

t

d

alues converge to a point of stability, we observe that the DCRNN 

odel proves to be a reasonably good fit for the data. 

.5. Cyber attacks 

We describe the cyber-attacks investigated and executed using 

enetration testing, and the effect each attack has on the social 

etworking application. To seed these attacks within the microser- 

ice RPC traffic in each experiment, scripts were defined to send 

ser HTTP requests to simulate each attack as they would occur in 

eal-life. 

.5.1. Brute force password attack 

As we outlined in our earlier work ( Jacob et al., 2021 ), a pass-

ord guessing, or brute force attack, is an attempt to gain unau- 

horized access to an online system by systematically guessing 

asswords until a correct one is found ( Dhanabal and Shanthara- 

ah, 2015 ). This results in an abnormally large quantity of incor- 

ect login traffic over a short period of time. This type of cyber- 

ntrusion is detected by monitoring the incorrect login application 

ogs. A viable countermeasure for this cyber-attack is that many 

pplications will have an account lockout policy where a speci- 

ed number of incorrect login attempts to a single account over 

 short period of time will result in the account being locked out 

 Conrad et al., 2016 ). 

The microservice functionality of the application to log into a 

ser’s account is called via the api/user/login API call which is del- 

gated to the microservice user-service . The following lists the steps 

nd sequence of microservice operations called in response to the 

PI api/user/login : 

• Login : the user-service calls this operation in response to a API 

call 

• MmcGetLogin : the application checks if user’s credentials are 

cached in Memcached 

• MongoFindUser : user is logging in for the first time and 

searches for credentials in MongoDB 

• MmcSetLogin : the application has found user in MongoDb and 

caches the user in Memcached 

If a user logs into the social network application correctly for 

he first time, the API request sequence ends with the operation 

mcSetLogin and the application caches their verified login cre- 

entials. For a subsequent login, the API sequence ends with the 

peration MmcGetLogin function. An incorrect login request con- 

ludes with either the operation MmcGetLogin if the user had cor- 

ectly logged in before or MongoFindUser if they were logging in 

or the first time. 

A brute force attack can be used to a crack a password using 

ny possible combination of keyboard characters including letters, 

umbers, and special characters. This approach results in hundreds 

f login requests per second ( Varonis, 0 0 0 0 ). In this experiment, a

rute force attack was injected into the testing data set at a single 

bserved time window t . This malicious form of computing will 

nter every existing keyboard character as an attempt at a pass- 

ord and will be composed of ninety-two incorrect login requests. 

he resulting prediction error for a set of eight randomly selected 

PC pair nodes at t is displayed in Fig. 4 , including the random RPC

odes and their irregular traffic which represent the brute force 

ttack and a number of select nodes from the regular application 

unctionality to compose and upload user’s posts. 

In Fig. 4 , we observe the traffic for the prediction error val- 

es for a subset of RPC nodes at time step t and the threshold

 i for each node. We see that for a select number of these dis- 

layed nodes, their returned traffic exceeds their defined thresh- 

lds. These anomalous nodes represent the login functionality 
8 
alled during the attack and are referenced in Table A.1 and their 

espective functionality is outlined as follows: 

• 0 0 0 0 : a client user makes a request to the application with the

api/user/login API call 

• 0 0 01 : the application directs the user’s request to the nginx 

load balancer 

• 0 0 04 : the application accepts a request by a user that previ- 

ously logged in and calls operation Login 

• 0 0 05 : the app checks if a user’s credentials are cached in the

Memcached and calls operation MmcGetLogin 

As indicated above, the RPC traffic prediction error traffic for 

hese four RPC nodes exceed their defined thresholds compared to 

he random nodes from the regular RPC data listed in Table A.4 . 

herefore, the conclusion of this experiment was that the injected 

rute force attack was successfully detected. 

.5.2. Batch registration of bot accounts 

A batch registration attack is a form of illegal computing be- 

aviour where a hacker creates multiple fake user accounts, or 

ot accounts, in large quantities ( Chen et al., 2019 ). These fake ac- 

ounts are used for a variety of purposes, usually innocuous ac- 

ions such as the falsely increasing the number of ’likes’ on a Face- 

ook page, or more malicious ones like spreading malware on a 

ystem application for hacking services and for fraudulent online 

ctivity to sway political opinion. Sciences (0 0 0 0) stated that a 

eans of protecting one’s social media application from bot ac- 

ount creation is to establish a baseline of regular application ac- 

ivity and then observe abnormal requests that indicate bot attacks 

.e., mass user account creation originating from the same IP ad- 

ress ( Pathak, 2014 ). 

In the social networking app, the API request wrk- 

pi/user/register creates a new user profile. Therefore, by calling 

 multitude of these API requests within a short time span, a 

atch registration attack can be seeded amongst the microservices 

raffic. The related RPC node IDs that comprise the functionality 

o register a new account are listed in Table A.2 . Like the login

PI request, the request to register a new user is delegated to the 

pp’s user-service and the operation RegisterUserWithId is called. 

Typically, bot accounts are created in tens or hundreds 

 Pathak, 2014 ). In this experiment, we seeded a set of wrk2- 

pi/user-timeline/read API requests at time step t to create 100 

ew accounts. The resulting prediction error values for a subset 

f eight random RPC nodes at time step t were set aside for eval- 

ation. These nodes were comprised of traffic data resulting from 

he batch registration attack and regular app functionality and are 

isplayed in Fig. 5 as well as their respective defined thresholds. 
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Fig. 5. Batch Registration of Bot Accounts. The traffic values for the RPC nodes 

that represent the account creation are shown to exceed their thresholds while the 

nodes for composing a user’s posts do not meet their defined threshold. 
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Fig. 6. Distributed denial of service HTTP Flood Attack. The traffic for the RPC 

nodes to return a users activity timeline exceed their set threshold values while 

the nodes for composing a user’s posts do not meet their threshold values. 
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As illustrated in Fig. 5 , the prediction error for the nodes that 

epresent the batch registration attack exceed their set thresholds, 

n contrast to the normal microservices data. These anomalous 

odes are listed in Table A.2 and outlined as follows: 

• 0 0 08 : a client user makes a request to the app with the wrk2-

api/user/register API call 

• 0010 : the nginx load balancer calls the operation RegisterUser 

• 0011 : app delegates the request to the user-service and calls the 

operation RegisterUserWithId 

• 0012 : the user-service calls an operation MongoInsertUser to 

register the new user with MongoDb 

We determine that these anomalous prediction error values for 

he nodes in the Fig. 5 are the result of the simulated batch regis-

ration, showing that the batch registration was detected. 

.5.3. Distributed denial of service 

A third cyber-attack explored in our work is a distributed denial 

f service (DDoS) attack. The attacker aims to overwhelm a sys- 

em’s resources with multiple executions of requests that leaves a 

ervice unavailable to legitimate users. A DDoS attack can be cate- 

orized as one of three types: volumetric, protocol or application- 

ayer. The application-layer variety supports requests sent to web 

ervers over HTTP and the magnitude of such attacks are mea- 

ured in requests per second ( Revuelto et al., 2017 ). The DDoS 

ttack we performed in our project was a HTTP Flooding attack 

hich targets both web servers and application-level features. This 

orm of cyber intrusion can be comprised of multiple HTTP GET 

r POST requests which can collectively cause a denial-of-service 

ffect ( Radware, 2021 ). 

In the social network application, an available GET request, 

rk2-api/user-timeline/read , can be called to return a timeline of a 

ser’s application activity including the composition of uploaded 

ext posts to the application by said user. The web-server dele- 

ates this API request to the microservice user-timeline-service . The 

esulting RPC then calls the operation ReadUserTimeLine in re- 

ponse to this API request. 

The magnitude of application-layer attacks are between 50 and 

00 requests per second ( Imperva, 2021 ). For this experiment, we 

njected a HTTP Flood attack into the microservices RPC traffic 

omposed of 100 GET requests for users’ application timelines to 

imulate a Denial-of-Service intrusion on the application. In a real- 

ife scenario, this attack causes a disruption to the app’s user- 

imeline-service microservice and hinder the service operations to 

tore and cache said user timelines in the MongoDB and Redis ser- 

ices respectively. 

After the prediction error was returned by the trained model, 

alues for a number of random RPC nodes that comprise the DDoS 
9 
ttack were compared against random nodes from the regular mi- 

roservices traffic. These RPC nodes that comprise the DDoS attack 

re outlined in Table A.3 . The prediction error values for these se- 

ected nodes and their set thresholds for time step t are displayed 

n Fig. 6 . 

In Fig. 6 , we observe the prediction error for a number of se- 

ected nodes resulting from the DDoS attack at time step t exceed 

heir node’s set thresholds and are described as follows: 

• 0014 : the client user sends the wrk2-api/user-timeline/read API 

call to the app’s web server and produces its child node de- 

noted as 0015 

• 0015 : the web server calls the ReadUserTimeline operation and 

delegates the API call to the user-timeline-service microservice 

• 0016 : the API request calls the ReadUserTimeline from the ac- 

tual user-timeline-service 

• 0018 : the microservice calls an operation MongoFindUser- 

Timeline to find a user’s timeline activity in MongoDb 

From these observations, it was determined that the anomalous 

PC node traffic to read a user’s timeline as part of the simulated 

TTP Flooding Attack was detected. 

.6. Software & hardware environment 

The microservices application was operationalized using an In- 

el Core i3-2370 CPU processor. The real-world cyber security at- 

acks were injected into the microservices traffic, and the RPC data 

as generated also using this device. The actual coding for the ex- 

eriment was executed using scripts written in Python 3.7+ and 

ncluded various software libraries including Tensorflow 1.13 and 

umpy 0.19.0. The DCRNN model was trained using an NVIDIA 

PU server with a four-card Tesla SXM2. 

. Limitations 

For our experiment, we train a single DCRNN model to learn 

he behaviour of the entire microservices application. It is normally 

ecessary to model the entire application as it is difficult to deter- 

ine where an attacker will target the application. 

However, one drawback to our approach is that it is diffi- 

ult to maintain a large and unified model of general microser- 

ice call traffic. Microservices are updated and old functionality 

s deprecated regularly, so there is a need to retrain the entire 

odel which costs time and resources. As mentioned in Section 1 , 

hen et al. (2019) uses multiple DCRNN models to learn a different 

ubsystem of the application’s functionality which takes less time 

o train. A limit to this is that their approach would not be able to
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etect cyber-attacks which would span multiple subsystems of the 

pplication. This is not a limitation of our approach. 

In our approach, we monitor the traffic flow of the application 

o detect cyber-attacks simulated using the microservice HTTP API 

alls which are sent over the application layer of the system. A 

yber-attack that does not take place over the application layer is 

 Man-in-the-Middle (MITM) attack. A MITM involves an attacker 

ntercepting the traffic between a legitimate user and the applica- 

ion by placing malicious WiFi hotspots on the network layer. Our 

istributed tracing tool would not be able to monitor the resulting 

ctivity caused by the attacker. This cyber-attack can be mitigated 

y running the application on a Virtual Private Network (VPN) that 

rovides cyber security by encrypting the networking traffic, in- 

luding the internet connection. 

A means of performing a DoS attack against the application is 

o carry out a TCP-SYN flooding attack which establishes multi- 

le client-server connections. In the case of our application, the 

ttacker creates multiple TCP connections with the application’s 

ginx web server to deny legitimate users access. Our approach 

ould not be able to detect this attack because it takes place at the 

ransport layer. This attack can be mitigated by implementing SYN 

ookies, a form of cryptographic hashing that verifies the client as 

egitimate ( Imperva, 0 0 0 0 ). 

Our ML approach proposes a group-based anomaly detection 

ethod that detects attacks that generate a high volume of the 

ame RPC in a small time window. An attack our approach would 

ot be able to detect is a cross-site scripting (XSS) attack. In the 

eathStarBench application, a malicious user could upload a post 

ontaining a malicious web link that a legitimate user clicks result- 

ng in that user’s privileged information being stolen. Our method 

ould not be able to detect this form of intrusion since it requires 

nly a single composePost API request. A countermeasure used 

gainst this cyber-attack is to use appropriate HTTP response head- 

rs to prevent HTTP responses that contain any HTML or JavaScript 

 PortSwigger, 0 0 0 0 ). 

Our anomaly detection method is data-driven and relies on ma- 

hine learning. If the ML-based model or the data are not pro- 

ected, the security of the model is at risk of becoming a soft 

pot. Poisoning Apruzzese et al. (2019) , as an example, is a type 

f adversarial machine learning method that perturbates training 

ata in order to poison the model, therefore affecting the decision- 

aking at run-time by altering the threshold value for the anomaly 

etection model. The corresponding defences can be realized by 

rotecting both data and/or the model. For data, sanitization de- 

ects and removes anomalous samples based on predefined rules. 

n addition, sanitization works on trained models by continuously 

raining the model on new data, thereby mitigating the impact of 

oisoned samples. For our application, both data and model saniti- 

ation are not feasible as it is difficult to define rules and no new

raining data is available. Another promising countermeasure is to 

rain the model using data from randomized sources which make 

t difficult for the hacker to devise an effective adversarial attack 

 Joseph et al., 2013 ). 

In our approach, the anomaly detection threshold value is de- 

ived by minimising the prediction error for every node at run- 

ime. A second form of adversarial machine learning attack that 

iolates the model’s integrity can be planted at testing time when 

he trained DCRNN model is operational. The anomaly detector has 

een deployed, so the attacker aims to subvert its behaviour by 

odifying malicious ground truth values to not meet the threshold 

etting and would not be detected as an anomaly. A viable counter- 
10 
easure is to smooth the decision boundaries of the model, thus 

educing the effects caused by adversarial attacks ( Xu et al., 2009 ). 

. Conclusion 

This work established that the polylithic behaviour of a 

icroservices-based application can be modelled as a microservice 

all graph and a distributed tracing tool can be used to monitor 

sers’ API requests to the application. We proposed that a state- 

f-the-art graph convolution network, the Diffusion Convolutional 

ecurrent Neural Network, can be trained to learn the microservice 

raffic and discover the spatial and temporal dependencies within 

he data. Our aim was to perform traffic forecasting to predict fu- 

ure microservice traffic for future time steps. We evaluated the 

erformance of the DCRNN by applying threshold-based anomaly 

etection to detect abnormal microservices activity that indicated 

he presence of cyber security attacks. This paper is a continua- 

ion of our previous paper where distributed tracing can be used 

o detect cyber security attacks in microservices. 

Using this approach, we detected three different forms of cyber- 

ttack against our application: a brute force attack, a batch reg- 

stration of bot accounts and a DDoS HTTP Flooding attack. An 

nomaly detection method was applied by calculating the mean 

nd standard deviation. The microservice traffic resulting from 

ach attack was compared to the normal application traffic for reg- 

lar application requests at run-time. The difference in RPC traf- 

c volume was proven to be greater than two standard deviations 

utside the mean which satisfies the empirical rule. Because these 

ttacks can be identified by calculating the greater, irregular vol- 

me of the microservice call traffic, our anomaly detection method 

an be classified as a group anomaly detector. 

For this work, the DCRNN model was used to carry out RPC 

raffic prediction. The model predicted the number of times an RPC 

s called in a specific time period. Distributed tracing can also be 

sed to capture the duration of the microservice calls. Therefore, 

uture work could include the detection of irregular microservice 

ctivity based on their execution time. 
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A

Destination 

nginx-web-server + /api/user/login 

login nginx-web-server + /api/user/login 

login nginx-web-server + Login 

user-service + Login 

user-service + Login 

user-service + MmcGetLogin 

user-service + MongoFindUser 

user-service + MmcSetLogin 

Destination 

nginx-web-server + /wrk2-api/user/register 

ister nginx-web-server + /wrk2-api/user/register 

ister nginx-web-server + RegisterUser 

user-service + RegisterUserWithId 

user-service + MongoInsertUser 

social-graph-service + InsertUser 

social-graph-service + MongoInsertUser 

Destination 

nginx-web-server + /wrk2-api/user-timeline/read 

read nginx-web-server + /wrk2-api/user-timeline/read 

 /read nginx-web-server + ReadUserTimeline 

user-timeline-service + ReadUserTimeline 

user-timeline-service + ReadUserTimeline 

user-timeline-service + RedisFind 

user-timeline-service + MongoFindUserTimeline 

user-timeline-service + RedisUpdate 

post-storage-service + ReadPosts 

post-storage-service + MemcachedMget 

post-storage-service + MongoFindPosts 

post-storage-service + MmcSetPost 
ppendix A 

Table A1 

RPCs for Brute Force Attack. 

ID Source 

0000 - 

0001 nginx-web-server + /api/user/

0002 nginx-web-server + /api/user/

0003 nginx-web-server + Login 

0004 - 

0005 user-service + Login 

0006 user-service + Login 

0007 user-service + Login 

Table A2 

RPCs for Batch Registration Attack. 

ID Source 

0008 - 

0009 nginx-web-server + /wrk2-api/user/reg

0010 nginx-web-server + /wrk2-api/user/reg

0011 nginx-web-server + RegisterUser 

0012 user-service + RegisterUserWithId 

0013 user-service + RegisterUserWithId 

0014 social-graph-service + InsertUser 

Table A3 

RPCs for Distributed DoS Attack. 

ID Source 

0015 - 

0016 nginx-web-server + /wrk2-api/user-timeline/

0017 nginx-web-server + /wrk2-api /user-timeline

0018 nginx-web-server + ReadUserTimeline 

0019 - 

0020 user-timeline-service + ReadUserTimeline 

0021 user-timeline-service + ReadUserTimeline 

0022 user-timeline-service + ReadUserTimeline 

0023 user-timeline-service + ReadUserTimeline 

0024 post-storage-service + ReadPosts 

0025 post-storage-service + ReadPosts 

0026 post-storage-service + ReadPosts 
Table A4 

RPCs for Regular Traffic. 

ID Source Destination 

0027 - nginx-web-server + /wrk2-api/post/compose 

0028 nginx-web-server + /wrk2-api/post/compose nginx-web-server + /wrk2-api/post/compose 

0029 nginx-web-server + /wrk2-api/post/compose nginx-web-server + ComposePost 

0030 nginx-web-server + ComposePost text-service + UploadText 

0031 nginx-web-server + ComposePost media-service + UploadMedia 

0032 nginx-web-server + ComposePost user-service + UploadUserWithUserId 

0033 nginx-web-server + ComposePost unique-id-service + UploadUniqueId 

0034 text-service + UploadText user-mention-service + UploadUserMentions 

0035 text-service + UploadText url-shorten-service + UploadUrls 

0036 text-service + UploadText compose-post-service + UploadText 

0037 media-service + UploadMedia compose-post-service + UploadMedia 

0038 user-service + UploadUserWithUserId compose-post-service + UploadCreator 

0039 compose-post-service + UploadMedia compose-post-service + RedisHashSet 

( continued on next page ) 
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