Computers & Security 118 (2022) 102728

= Computers

Contents lists available at ScienceDirect NS

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Anomalous distributed traffic: Detecting cyber security attacks N
amongst microservices using graph convolutional networks

Stephen Jacob*, Yuansong Qiao, Yuhang Ye, Brian Lee

Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, Co. Westmeath, Ireland

ARTICLE INFO ABSTRACT

Article history:

Received 5 November 2021
Revised 10 April 2022
Accepted 15 April 2022
Available online 22 April 2022

Currently, microservices are trending as the most popular software application design architecture. Soft-
ware organisations are also being targeted by more cyber-attacks every day and newer security measures
are in high demand. One available measure is the application of anomaly detection, which is defined
as the discovery of irregular or unusual activity that occurs to a greater or lesser degree than normal
occurrences in a data series. In this paper, we continue existing work where various real-world cyber-
attacks are executed against a running microservices application, and the application traffic is logged
and returned in the form of distributed traces. A Diffusion Convolutional Recurrent Neural Network is
used to model the set of distributed traces and learn the spatial and temporal dependencies of the ap-
plication traffic. Subsequently, the model is used to make predictions for ongoing microservice activity
and threshold-based anomaly detection is applied to detect irregular microservice activity indicating the
presence of seeded cyber security attacks, or anomalies. The cyber-attacks used to evaluate this approach
include a brute force attack, a batch registration of bot accounts and a distributed denial of service attack.

Keywords:

Cyber security

Microservices

Distributed tracing

Anomaly detection

Graph convolutional network
Traffic forecasting

© 2022 The Author(s). Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Cyber security is currently one of the more significant problems
across the world. Every day, hackers are targeting more software
organizations with a variety of well-defined cyber-attacks. In re-
cent years, the microservices software architecture has been im-
plemented by many popular software application brands, includ-
ing Twitter, Amazon, Netflix and PayPal (Gan et al., 2019b). Con-
sequently, cyber security personnel overseeing these applications
require more up-to-date means of detecting the cyber assaults in-
jected into their application model.

In our previous work Jacob et al. (2021), we investigated cyber-
attacks targeting a microservices application by monitoring the
overall behaviour of the application using distributed tracing and
detected the anomalous activity of a cyber-attack by calculating
the frequency distribution of unique traces. Such distributed traces
capture and record the sequence of API calls between the com-
ponents of a distributed application as a microservice call graph
where the nodes of the graph are the actual microservices and
the edges represent calls to microservices. A sequence of such
call graphs over time captures the spatio-temporal characteristics
from the API call traffic of a microservice application. Graph based

* Corresponding author.
E-mail address: s.jacob@research.ait.ie (S. Jacob).

https://doi.org/10.1016/j.cose.2022.102728

anomaly detection is then used to look for variations in the appli-
cation call traffic that indicates unusual or abnormal behaviour.

In this work, we propose to build on our earlier efforts using
anomaly detection to detect cyber-attacks in microservice traffic
by exploring the application of graph based anomaly detection to
API call traffic graphs produced by the microservices application.
Specifically, we use the microservice call graph and data to train a
graph convolutional neural network (GCNN) to capture the exist-
ing spatial and temporal dynamics within the tracing data. By us-
ing a GCNN to model the application topology and predict ongoing
traffic, the irregular microservice traffic caused by various seeded
cyber-attacks is detected.

In this paper, we use a distributed tracing tool to monitor a mi-
croservices application with the goal of detecting cyber security at-
tacks targeting the application. We also define a Diffusion Convolu-
tional Recurrent Neural Network (DCRNN), a state-of-the-art GCNN
designed to learn the directional behaviour of the traffic modelled
on a directed graph and subsequently perform traffic forecasting
for future time steps. In our experiment, we run a microservice
application and simulate different cyber security attacks. We de-
tect these attacks by leveraging the DCRNN model to discover the
irregular microservice traffic caused as a result of said attacks.

A user’s request to an application produces a sequence of re-
lated microservice calls. This sequence of remote procedure calls
(RPC)s is logged using distributed tracing. Regular user calls made

0167-4048/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.cose.2022.102728
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.102728&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:s.jacob@research.ait.ie
https://doi.org/10.1016/j.cose.2022.102728
http://creativecommons.org/licenses/by/4.0/

S. Jacob, Y. Qiao, Y. Ye et al.

to the application results in a set of distributed traces comprised
of these RPCs. The DCRNN model is trained to learn from this RPC
traffic and discover the spatial relations and temporal dynamics.
This approach is used to determine the presence of RPC dynamics
in a fixed time window that do not conform to the regular be-
haviour of normal microservice application traffic. The aim of this
work is to detect anomalies by comparing the computed RPC traf-
fic related to a cyber security attack against the RPC traffic from a
normal data set.

It should be noted that our work to perform graph-based
anomaly detection is loosely similar to the approach used by the
authors of Chen et al. (2019). The novelty of our approach is to
provide a more simplified process of training a GCNN model and
learning the spatio-temporal dynamics of RPC traffic. In our ap-
proach, we train only a single model to learn the entire microser-
vice application as opposed to Chen et al. (2019) in which multiple
models are trained to each learn a different subsystem of the ap-
plication.

Our main contributions in this paper are summarized as fol-
lows:

» We use a directed graph to model the entire polylithic architec-
ture of a microservices application and the inter-relations be-
tween the individual services. Using this graph, the application
traffic from one microservice node to its neighbouring nodes
can be related to a diffusion process.

We propose the Diffusion Convolution Recurrent Neural Net-
work to learn the spatial and temporal dependencies of the ap-
plication traffic over a time series using a diffusion convolution
operation.

We study the traffic forecasting problem to predict microservice
traffic at a future time step given previously learned traffic.
We apply anomaly detection to discover cyber security attacks
injected into microservice traffic by measuring the irregularity
of the RPCs made as a result of the cyber security attacks.

This paper is structured as follows: Section 2 outlines the re-
lated literature works. Section 3 presents background information
on the microservices architecture, the fields of distributed trac-
ing and anomaly detection. Section 4 presents an overview of our
proposal and present a high-level description of our approach.
Section 5 describes the microservices application we selected for
our experiment, the different cyber security attacks investigated
and simulated against the application, and outlines the applica-
tion of anomaly detection to detect the cyber security attacks
seeded amongst the application’s traffic flow. In Section 6, we dis-
cuss the advantages and limitations of our proposed approach and
Section 7 provides a conclusion to our proposal and possible future
work.

2. Related works

This section presents a literature review of related works, in-
cluding a number of machine learning-based approaches to per-
form graph-based anomaly detection on network traffic.

Deep neural networks (DNN) have been used to model data and
discover the underlying behaviour in the data. A particular class
of neural networks, a recurrent neural network (RNN) is used to
model sequential data. Such a data series is usually represented as
a case, a sequence of process events. Tax et al. (2017) used a par-
ticular type of RNN, the Long Short Term Memory (LSTM) neural
network Hochreiter and Schmidhuber (1997) which detects long or
short term dependencies in cases. This LSTM-based framework was
used to learn the typical form of cases and subsequently predict
future events and the timestamp of said events. The performance
of this framework was evaluated by training and learning the be-
haviour of logged cases from two available data sets, and the re-

Computers & Security 118 (2022) 102728

sults were shown to outperform a previous methodology by Polato
et al. (2018).

Deep learning models have also been used to model the traffic
flow of a network domain. A Convolutional Neural Networks (CNN)
is a DNN suited for modeling and analyzing graphs constructs and
imagery. The CNN model would observe and learn the spatial re-
lations of the traffic flow. The authors for Ma et al. (2017) pro-
posed a CNN model to learn the network traffic as images to cap-
ture the spatial and temporal dynamics of the data and predict the
network traffic speed. This CNN algorithm was tested using two
data sets composed of real-world transportation traffic. The CNN-
based framework’s performance was evaluated against four pre-
vailing statistical algorithms and three deep learning-based mod-
els and was shown to outperform these models with an improved
accuracy of 42.91%.

Wu and Tan (2016) proposed a deep model with a CNN and
LSTM combined architecture (CLTFP) where the CNN component
was used to capture and learn the spatial features of the traffic
flow while the LSTM component was used to learn the tempo-
ral dependencies. Afterwards, the trained model was used to per-
form short term traffic forecasting. The predictions returned by the
CLTFP model were then compared with those of other models in-
cluding an LSTM, a shallow neural network and a stacked auto-
encoder model Lv et al. (2014), and the CLTFP model was shown to
outperform the other models in terms of prediction accuracy and
spatial distribution.

In recent works, graph neural networks (GNNs) have become
popular for modelling nodes and dependencies found in vari-
ous domains including life science and social networks Kung-
Hsiang (2019). A variant of GNNs called Spatial-Temporal GNNs
(STGNN)s aim to capture the spatial and temporal features within
correlated data graphs simultaneously to predict future activity
in a wide range of applications Wu et al. (2020). The work by
Yu et al. (2017) highlights that timely traffic forecasting is essen-
tial for safe traffic control and that traditional mathematical ap-
proaches like linear regression are not suited for future long-term
traffic prediction. A STGNN was proposed to model the time-series
based prediction problem of a traffic domain. The network of road
segments were modelled on graphs using convolution structures
to enable fast training with the STGNN and extract the spatial and
temporal features. This approach was evaluated in a series of ex-
periments using various real-world traffic data sets as examples
and results show that the model converges easily and outperforms
state-of-the-art baseline models.

A recent GCNN, known as the Diffusion Convolutional Recurrent
Neural Network (DCRNN) is a state-of-the-art model designed for
learning the complex spatial and temporal features in traffic flow.
The authors for Li et al. (2017) outlined the application of spatio-
temporal traffic forecasting in the domain of road networks. They
proposed that the traffic be modelled as an active diffusion process
on a directed graph. After learning the ground truth observations,
predictions of future traffic activity are generated. This methodol-
ogy was tested using two different databases containing real-world
road network traffic. The first data set contains traffic data derived
from 207 sensors throughout Los Angeles County over a period of
four months. This framework was tested, and was proven to out-
perform baseline state-of-the-art frameworks by a margin of 12%
to 15%.

The work for this paper is similar to that of Chen et al. (2019) to
use a GCNN to detect irregular real-world RPC traffic. The lat-
ter aimed to discover cyber security issues within the thousands
of RPCs resulting from numerous microservices. In this work, a
two-step process was performed to trace and log the RPC traf-
fic and detect anomalies. First, the logged RPC traffic from active
microservice functionality was analyzed and correlating RPC chain
patterns in the data were identified using a density-clustering al-

S. Jacob, Y. Qiao, Y. Ye et al.

gorithm. These chain patterns represent a subsystem of the over-
all microservice functionality. A GCNN is then used to model each
subsystem of the RPC traffic and learn the spatio-temporal depen-
dencies of the traffic to solve the irregular RPC prediction prob-
lem. Using these GCNNSs, a series of individual predictions can be
made for each pre-existing subsystems. This approach was evalu-
ated using two case studies composed of real-world malicious traf-
fic threat models including a batch registration of bot accounts and
account cracking.

2.1. Comparable works

The authors for Le et al. (2011) use a traffic dispersion graph
methodology to model network traffic over time. This approach is
composed of two parts: one that learns the static properties of the
graph and a dynamic aspect that models the dependencies of the
temporal dynamics of the TDGs as a function of time. Anomalous
traffic is defined as the traffic caused by different forms of illegal
computing behaviour, including DDoS attacks, scanning and Inter-
net worms. This TDG model was used to detect anomalies via ir-
regular network traffic occurring over time, as well as to determine
the causes of such anomalies. This TDG method was evaluated us-
ing two data sets of traffic traces and was able to detect a cyber-
attack with 100% accuracy.

Yao et al. (2019) proposes a high-level attack detection
framework for network communication data by using a hybrid
CNN/LSTM deep learning model called STDeepGraph to learn high-
level representations of network flow traffic. This work uses a tem-
poral communication graph to model the network communication
structure and a distance graph kernel to map the communication
into a high-dimensional space. The CNN component was used for
extracting the spatial features of the network flow and the LSTM
for the temporal features. Finally, the model uses a softmax clas-
sification function to classify the network traffic as benign or ma-
licious. Two experiments were performed to evaluate the STDeep-
Graph using real-world network attack data sets with various at-
tacks seeded amongst the traffic flow. The model’s performance
was evaluated using various metrics including accuracy. The results
show that this method outperforms baseline methods in terms of
accuracy and loss.

The work by Lee et al. (2020) proposes a deep learning model
that takes a graph representation of traffic-based data transforms
over time, and learns the spatio-temporal dynamics of the data.
The model was used to predict the dynamic anomalies by measur-
ing the non-Euclidean distance between the actual values and the
output predictions. This was done by computing the affinity score
of an existing data entity. Subsequently, a threshold value is es-
tablished to detect anomalous behaviour. This approach was eval-
uated the using two available traffic-related data sets of network
traffic and public transport traffic. The metrics used to evaluate the
model were the sum of absolute differences for the affinity score
prediction and accuracy for the prediction of existing connections.
The model was shown to have competitive results that were com-
parable to state-of-the art techniques.

3. Background information

This section describes background information on the microser-
vices architecture, the process of distributed tracing and the field
of anomaly detection.
3.1. Microservices

The microservice architecture (MSA), or microservices, is a

service-oriented software architectural design where the applica-
tion is decoupled into several smaller inter-connected services.

Computers & Security 118 (2022) 102728

Each microservice handles one specific business function of the ap-
plication’s overall functionality such as a new user registering or a
database query. In a microservices application, a single microser-
vice is a well-defined interface that operates alongside other mi-
croservices but can be developed, tested, scaled and deployed in-
dependently due to the application’s polylithic design. This inter-
face can be called in response to a user’s RESTful API call or an
RPC Sun et al. (2015).

3.2. Distributed tracing

The process of distributed tracing is defined as the capability
to log and monitor the process workflow propagating throughout
a cloud-native distributed system at run-time. In a microservices
application, a user’s HTTP request typically requires multiple mi-
croservices resulting in a sequence of operations. This set of mi-
croservices is then recorded as a distributed trace, a detailed log
of the execution path throughout the application. A single trace
is composed of units known as spans which share a tracelD. A
recorded span represents a single microservice operation executed
in response to a user’s HTTP request and sports a unique spanlD.
Characteristics recorded in the span include the name, timestamp
and the duration of the microservice operation being called.

3.3. Anomaly detection

Anomaly detection is defined as the discovery of irregular
behaviour or instances within a data set Anodot (2020). These
anomalous instances, or outliers, either do not conform to the ma-
jority of the instances in the data set or appear at a greater or
lesser frequency. Real-world examples of anomalies include enemy
activity detected by military surveillance, ailments displayed by
medical imaging and the presence of cyber-attacks within a com-
puter system. Traditional anomaly detection is described as the
discovery of individual anomalous instances within a data series,
also known as pointwise anomaly detection. Anomaly detection can
also be classified as group anomaly detection (GAD), which refers
to a set of grouped data points whose general collective behav-
ior differs from normal data patterns Chalapathy et al. (2018) and
Yu et al. (2015).

4. Methodology

In this section, we present the novelty of our approach for
training a DCRNN model, and subsequently using graph-based
anomaly detection to discover cyber-attacks in a microservices ap-
plication.

4.1. Overview

Graph-based anomaly detection has been applied to many dif-
ferent fields including finance, health care and law-enforcement in
the past, even network level IT security Akoglu et al. (2015). As far
as we know, the authors for Chen et al. (2019) are the only ones
who have previously applied this form of anomaly detection to a
microservices application.

As mentioned in Section 1, our approach is loosely similar to
Chen et al. (2019). The latter carries out their methodology in a
two-stage process. In their first stage, they identify clusters of RPCs
related to each other in terms of application functionality, which
are subsystems of the application as a whole. In their second stage,
a DCRNN was trained for each existing RPC subsystem before mak-
ing predictions and performing anomaly detection. By contrast, we
train a single DCRNN model with a more general unified RPC traf-
fic data set to learn the regular behaviour of the entire application.
This eliminates the need to identify subsystems and train a model

S. Jacob, Y. Qiao, Y. Ye et al.

for every subsystem. Using a single model to detect anomalous
traffic with a more unified data set rather than multiple subsystem
models as proposed by the RPC clustering approach promotes sim-
plicity and makes the single model more robust. The novelty of our
methodology is that we provide a more simplified and generalized
method for training a DCRNN to learn the spatial and temporal dy-
namics of microservices traffic and apply graph-based anomaly de-
tection.

The remainder of Section 4 outlines our anomaly detection ap-
proach. First we outline the process of generating synthetic mi-
croservice traffic. Then we describe how a microservices applica-
tion is modelled as a weighted directed graph. We present how the
execution of microservices calls is represented as a traffic matrix.
We also define the traffic forecasting problem based on this traf-
fic matrix. We then outline how diffusion convolution is used to
model existing spatial dependency structures in graphs and how
the DCRNN model captures the spatio-temporal dependencies. The
DCRNN model is then used to predict future traffic and finally we
outline how anomalous traffic is detected by the divergence of the
predicted and the actual traffic.

4.2. RPC traffic generation

In the first step of our approach we used an available microser-
vices application. We created synthetic data sets consisting of mi-
croservice RPC traffic data by sending HTTP API requests to said
application and recording the resulting traces using a distributed
tracing tool. These synthetic data sets can be found in Lee and
Jacob (2019). The microservices application we ran is part of an
open-source benchmark tool called DeathStarBench developed at
Cornell University Architecture and group (0000). This benchmark
suite is open-source and its individual applications have been used
several times in various works, Gan et al. (2020); Hou et al. (2020);
Lazarev et al. (2020); Somu et al. (2020) generally for performance
management and root cause analysis of microservices.

4.3. Directed graph representation

In microservices traffic, RPCs are initiated between two differ-
ent services providing collaborative functionality where one service
makes a call to the other. We represent calls from one RPC to an-
other RPC as nodes on a directed graph. In other words, a node on
a graph represents a source-destination pair of RPCs. A weighted
edge between two nodes exists in the graph when the nodes share
either a source or destination RPC. This approach promotes scal-
ability, and highlights the architecture of the microservices appli-
cation and the different inter-relations between the microservices.
The directed graph is, in turn, represented as a weighted adjacency
matrix.

More formally, we represent the topology of the application ser-
vices as a weighted directed graph. This graph, known as G is rep-
resented mathematically as shown in Eq. (1):

G=(N,E A (1)

where N is the set of all unique RPC source-destination pair nodes
discovered in the traffic, E is the set of all edges formed between
RPCs when nodes share either a source or destination value, and
A € R¥N js a weighted adjacency matrix that represents level of
adjacency of each node to each other. When a single relation be-
tween two source-destination RPC nodes exists, that relation is
assigned a weighted value. Each relation between two differing
nodes a and b is assigned the respective weighted values as fol-
lows: when a and b share the same RPC source or destination
there is both an edge from a to b and from b to a with a weight
of 0.5. When one node’s source is another node’s destination, there
is a dependency edge from a to b (or from b to a) with a weight

Computers & Security 118 (2022) 102728

of 1.0. The procedure for constructing this adjacency matrix is dis-
played in Algorithm 1.

Algorithm 1: Build an Adjacency Matrix.
Input: An RPC Node Set: N
Output: The adjacency matrix: A
A < empty matrix(shape = len(N) * len(N));
for i <0 to len(N) do

for j <0 to len(N) do
if N[i].src == N[j].src or
NJi].dst == N[j].dst then
V[j,i] < 0.5;
VIi, j] < 0.5;
end
if N[i].src == N[j].dst then
| VIl <1
end
if N[i].dst == N[j].src then
| VIi.jl<1;
end
end
end

4.4. Traffic matrix representation

As a microservices application executes, a set of attributes for
each node is represented as an N x M matrix where N is the num-
ber of vertices in the directed graph and M is the number of at-
tributes for each node. For our work, we are concerned with the
particular case where a single attribute representing the applica-
tion traffic is stored. This value is simply the number of times the
RPC pair executes. This traffic matrix is obtained from a log of all
RPC calls as follows.

We define a series of T’ historical time steps. For the simplic-
ity of our experiment, let each time step be of equal duration. We
iterate through the logged RPC calls and for each time step, we
compute the traffic on each node, that is the number of times the
corresponding source-destination RPC call is executed. Given the
directed graph G, we are returned a series of traffic matrices at
every time step from X,_r,,; to X;, where X; denotes the traffic
matrix X at time step t.

4.5. Traffic forecasting

In the field of mathematics, the definition of traffic forecasting
is to predict future traffic activity given previously learned traffic
derived from a network domain Li et al. (2017). Given the directed
graph G defined in Section 4.3 and the time series of T’ traffic ma-
trices from Section 4.4, our goal for the traffic forecasting problem
is to define a function that maps T’ RPC graph signals at time step
t to T future time steps as outlined in Eq. (2):

[X(t—Turl)’ ”.’X(t); G] m [X(Hl)’ . ,X(HT)] (2)

4.6. Diffusion convolution

GCNNs are designed to learn complex data representations from
graphs. One means of defining such representations is to model
the spatial dependency structures of directed graphs. This mod-
elling allows us to capture the stochastic features of the traffic
Mallick et al. (2020). In our experiment, we use the DCRNN model
to train the RPC traffic modelled on G using a diffusion convolu-
tion methodology by relating the traffic flow to a diffusion process

S. Jacob, Y. Qiao, Y. Ye et al.

Computers & Security 118 (2022) 102728

Encoder

DCGRU DCGRU
Layers Layers

Input Graph
Matrices

ReLu

Initialization

—.—>

Mapping States

Decoder

DCGRU DCGRU
Layers Layers

Output
Predictions

ReLu

Fig. 1. System Architecture of the Diffusion Convolutional Recurrent Neural Network. The encoder and decoder components are recurrent neural networks composed of
DCGRU layers with the ReLu activation function. The time series of RPC graph matrices input data is entered into the encoder, trained iteratively using backpropagation and
the final state is used to initialize the decoder. The decoder then outputs RPC predictions based on ground-truth values at testing time.

Atwood and Towsley (2016). This process can described as a sim-
ple random walk on G from one node to its neighbor. Furthermore,
active traffic flow from a single node to neighbouring nodes can
be modelled as a weighted distribution of infinite random walks
throughout G. We also include the diffusion process in the reverse
direction so that model can learn from both upstream and down-
stream traffic Li et al. (2017). Given G, the resulting diffusion con-
volution operation over traffic attribute matrix X is defined as:

K-1
W.cX =) (Wo(Dy'A)! + W (D 'A))X 3)
d=0

where K represents the maximum number of diffusion steps
allowed; A represents the adjacency matrix for G defined in
Section 4.3; D,'A and D;'A are the transition matrices for the dif-
fusion process and the reverse diffusion respectively; Wy and W,
are the learnable filters applied to the bidirectional diffusion pro-
cess, and D; and Dy represent the in-degree and out-degree diag-
onal matrices which provide the capability to learn from both the
upstream and downstream traffic.

4.7. Temporal dependency modelling

To leverage the DCRNN model to capture the temporal depen-
dencies of the microservices trafficc we implement an encoder-
decoder architecture of an RNN. The encoder component takes the
RPC traffic matrices along the time series as input and the data is
encoded into a vector representation. The decoder then reads from
this vector and predicts the expected traffic output of future time
steps given previously learned ground truth observations.

The Gated Recurrent Unit (GRU) Chung et al. (2014) is a sim-
ple, but well-defined variant of an RNN used for designing this
encoder-decoder architecture. For our work, both the spatial and
temporal dependency modelling are combined by replacing the
matrix multiplication functionality of the GRU with the diffusion
convolution operation defined in Eq. (3). This leads to the pro-
duction of the Diffusion Convolutional Gated Recurrent Unit (DC-
GRU). These cells are stacked together to form a series of lay-
ers in a sequence-to-sequence fashion to finalize the DCRNN
Chan et al. (2020). The architecture of the DCRNN, including the
encoder-decoder framework, is displayed in Fig. 1. The functional-

ity defined in Eq. (4) constitutes the DCGRU cell:
r' = 0 Wig[X:. he—1] + br)
" = 0 W[Xe, he—1] + bu)
¢ = tanh(We,g[X; (re © he_1] + be)
ht = ut(Dht,] +(1 7ut)®Ct (4)

where X; and h; represent the input traffic graph matrix and the
final state at time step t respectively; rf, u’ and ¢! represent the
reset gate, update gate and cell state at time step t; G represents
the diffusion convolution operation defined in Eq. (3) and W;, W,
and W, are the corresponding filters applied to each equation. This
DCGRU cell is used to build the RNN layers. These layers allow the
DCRNN model to train with sequential data and capture long-term
dependencies Li et al. (2017) and Mallick et al. (2021).

[
Il

4.8. Training the DCRNN model

By implementing both the spatial and temporal data modelling
described above, the DCRNN is trained to learn both the spatial dy-
namics of the adjacency matrix A defined in Section 4.3 and the
temporal dependencies within the time series from Section 4.4 si-
multaneously Li et al. (2017).

During the training phase, the adjacency matrix A and the time
series of traffic matrices are fed into the DCRNN’s encoder compo-
nent as input and the final state at the time step t is used to ini-
tialize the decoder component as illustrated in Fig. 1. To discover
the temporal dependencies and predict the future time series, the
RNN layers, composed of DCGRU cells, are trained using backprop-
agation through time, where the states and input data are trained
by the model iteratively over a number of epochs. Finally, the de-
coder predicts the output for T future time steps. In the testing
phase, the ground truth observations are replaced by output pre-
dictions generated by the trained model. The DCRNN model is then
evaluated by learning the weight matrices in Eq. (3) by minimizing
the mean absolute error (MAE) loss function:

1< .
MAE = ;ZU/:'—M (5)
i=1
where s represents the number of data samples, y; is the observed

ground truth value and y; is the prediction returned by the model
for the ith training data sample.

S. Jacob, Y. Qiao, Y. Ye et al.
4.9. Anomalous RPC detection

After the DCRNN model returns RPC traffic predictions for test-
ing data, similar to Chen et al. (2019), we perform anomaly detec-
tion in order to detect irregular RPC node traffic. The most suitable
way to do this is to define a threshold value on the prediction error
which is the absolute difference between the ground truth values
and the output predictions. Given that X! is the value of RPC node
i at time step t, the respective prediction error is calculated where
Ef = X! — X{. These thresholds are defined as follows where H; is
an upper and lower threshold for node i:

« calculate both the mean u; = %Z{‘:ix,- and standard deviation

0j =4/ W for E;
- set the upper and lower limits for the distribution of each RPC
node entry in E; using the following formula H; = ; + (2 x 07)

5. Experiment

In this section, we outline the microservices application se-
lected for our work, DeathStarBench and its individual microser-
vices, we describe the software environment and tools used for
the instrumentation of our application, present the results of our
experiment and finally we outline the software libraries and hard-
ware used to carry out the experiment. We present our main work,
in which three cyber-attacks are simulated against the application
in a series of experiments using penetration testing. For each ex-
periment, the microservices traffic flow was monitored and logged
using distributed tracing and the data sets of microservice appli-
cation activity were generated using the distributed traces. Subse-
quently, the DCRNN model was trained and evaluated using the
data as described in Section 4.8 and the threshold-based anomaly
detection methodology defined in Section 4.9 was applied to de-
tect the cyber-attacks. We observe that because each attack is com-
prised of a large number of concurrent API requests, we can detect
a group anomaly by calculating the computed traffic within a spec-
ified time window.

5.1. DeathStarBench

The microservices application used for our experiment was
DeathStarBench, an open-source benchmark suite comprised of
several microservice-based applications. Available end-to-end ap-
plications include a social networking app, a banking system ser-
vice, a media service where a user can post movie reviews and a
hotel reservation service Gan et al. (2019a). For this experiment,
we selected the social networking application, known as SocialNet-
work. The DeathStarBench suite itself was written in several dif-
ferent programming languages including Python 3.7, node.js, Java,
JavaScript, PHP, C and C++.

The social networking app emulates a broadcast-style network
comprised of registered users and the follow relationships from
one user to another. This social networking application supports
the following actions: a registered user logging in with their cre-
dentials, uploading posts embedded with text, hyper-links or other
content, broadcasting said posts to other users, a user reading
their fellow users’ activity and receiving recommendations on what
user(s) to follow (Gan et al., 2020). The overall architecture of the
application is displayed in Fig. 2.

When the social network application is running, a client user
sends a HTTP URL request which is received by a load balancer
and web browser component implemented by Nginx. The following
are API requests that can be sent to the app’s logic over the load
balancer:

« wrk2-api/user/register

Computers & Security 118 (2022) 102728

« api/user/login

» wrk2-api/post/compose

« wrk2-api/user-timeline/read
» wrk2-api/home-timeline/read

The web server delegates these requests to the appropriate
microservice to perform requested functionality. Additional ser-
vices for other operations can also be subsequently called such as
database storage, search queries and other functionality. The ap-
plication’s backend server uses MongoDB for persistent storage of
user profiles, posts, media content and user recommendations, and
the data structure stores Memcached and Redis for caching.

5.2. Software environment & tools

Here, we outline the software environment in which the mi-
croservices application was executed for our experiment, especially
the software tools used to instrument the application.

5.2.1. Docker

Docker is a set of Platform-as-a-Service (PaaS) tools used for
developing, executing and deploying containerized software appli-
cations to a virtual software environment (IBM, 2021). Docker is
primarily used to combine and store an individual’s source code
along with their required tools, libraries and settings in stan-
dardized executable packages called containers. These isolated
containers are used to deliver reusable light-weight functional-
ity, which is suitable for implementing the microservices architec-
ture (Jaramillo et al., 2016). In our experiment, each individual mi-
croservice for the application is run as a Docker container instance.

5.2.2. Thrift

Thrift is a binary communication protocol developed by the
Apache Software Foundation that is used for creating and defining
services including user-defined operations and objects (Slee et al.,
2007). Thrift functions as an interface definition language which
allows the defined services to operate and interface with other ser-
vices developed across several different programming languages.
The Thrift language also provides a scalable framework for client-
server RPCs, which is suitable for RPCs sent to microservices
(Gan and Delimitrou, 2018). For our experiments, the interfaces
that represent each microservice in the application are defined us-
ing a .thrift written in the Thrift language and the different services
communicate with each other using Thrift RPCs.

5.2.3. Jaeger

Jaeger is an open-source software tool used for tracing the
execution path of microservices calls propagating throughout a
distributed application in response to a user's HTTP request
(Authors, 2021). In our experiment, the application is configured
to use the Jaeger tool in the form of three separate components
each with its own functionality. The jaeger-agent is a network dae-
mon that listens for microservice calls, or spans, over a User Data
Protocol (UDP) connection; the jaeger-collector collects and stores
the span data and the jaeger-query functions as a query for the
jaeger-collector and a Ul for accessing and observing the returned
traces. We also configured the jaeger-collector to use the multi-
tenant ElasticSearch API as a storage backend for the returned
traces as JSON documents.

5.3. Data generation

Once the social networking application was operationalized, we
performed initial work to construct the topology of the social net-
work. We registered 960 users, established 18,800 follow relation-
ships between various users, and constructed a directed graph

S. Jacob, Y. Qiao, Y. Ye et al. Computers & Security 118 (2022) 102728

Application l l

Logic Unique Social User
ID Graph Mention

Read Home Compose
Timeline Posts

T T
2

v v v)
i Backend & [Memcached] [Memcached] [Memcached] [Memcached]‘
Storage v v K2
[MongoDB] [MongoDB] [MongoDB] [MongoDB] [MongoDB]‘
Home Timeline Social Graph User User Timeline Post Media

Fig. 2. The Microservices Architecture for the Social Networking Application. On the client side, a user’s HTTP request is be forwarded to the application’s Nginx web
browser. Application requests are then delegated to the various microservice interfaces in the application logic. On the server side, persistent storage of data is handled by
MongoDb and data caching is handled by Redis or Memcached. In this application, microservice calls recorded using the Jaeger daemon, the data is stored in the Jaeger
Collector and the Jaeger Query sends queries to the collector component. The Jaeger instrumentation also uses the ElasticSearch API and the Kibana interface for storing

and viewing the data as JSON documents respectively.

where the nodes represent the users, and the edges represent the
user-follow relationships. Subsequently, we ran microservices calls
using API requests and HTTP workload traffic generators to gener-
ate both regular application traffic and simulate real world cyber-
attacks against the application.

For our work, the social networking application was executed
in three separate experiments each with a different cyber-attack.
For each experiment, both the regular application traffic and the
anomalous traffic caused by the seeded cyber-attacks were gener-
ated. The regular application traffic was generally composed of RPC
traffic returned in response to API requests to upload users’ posts
to the application using the API request call wrk2-api/post/compose.
The RPC nodes for the post composition functionality are listed in
Table A.4. Other RPC calls contained in the traffic include calls to
register new users, for users to log into the app and read up on
fellow users’ timelines.

In each experiment, we generated synthetic data sets of times-
tamped, distributed traces resulting from the microservice RPC
traffic sampled over 2 minutes. The resulting data sets contained
approximately 18,500 microservice calls. From these data sets, we
extracted a total of 63 unique microservice source-destination pair
nodes. Section Appendix A Using this set of nodes, we produced a
directed graph representation of the application’s architecture G as
outlined in Section 4.3 and from there, an adjacency matrix using
Algorithm 1. Subsequently, as outlined in Section 4.4, we extracted
a series of time windows from the traffic data and computed the
traffic for each RPC node in every designated time window. We set
aside 85% of the data as a training set and the remainder was used
for testing. To detect the cyber-attacks, we analyzed the RPC traf-
fic within the time window from the testing data set where the
cyber-attacks were seeded.

5.4. DCRNN model

For our experiment, the DCRNN model used was composed of 2
recurring DCGRU layers, defined in Section 4.7. These layers were
composed of 150 units each and configured with the bidirectional
diffusion convolution operation presented in Eq. (3). The maximum
diffusion step K = 2, and using the traffic forecasting approach
outlined in Section 4.5, the model predicts the RPC traffic matrix

—— training_loss
—— validating loss

0.9

epochs

Fig. 3. Learning curves for Training and Validation loss. These loss values were
calculated using the mean absolute error metric. The loss values were shown to
converge nicely over a period of 50 epochs with a divergence smaller than 0.1 in
measurement.

for a single future time step. To implement the bidirectional dif-
fusion process defined in Section 4.6, we used the filter type dual-
random walk to model the time-series parameters. To load the spa-
tial graph data and build the model, the adjacency matrix defined
above was included as a hyper-parameter. For the training process,
the hyper-parameters for the DCRNN model that produced the op-
timal performance are listed as follows: the base learning rate =
0.01, the learning rate decay ratio = 0.1, the Adam optimizer was
used and the DCRNN model was trained over 50 epochs with an
early stopping mechanism set after 15 epochs.

To investigate the effect of spatial and temporal modelling by
the DCRNN, we evaluate the model’s performance by computing
its MAE metric defined in Eq. (5) as a measure of the model’s out-
put prediction error. To perform this evaluation, given the training
data set defined above, we set aside 70% of the data set to calcu-
late the training loss, and the remainder was used to calculate the
validation loss. The learning curves for the metric is displayed in
Fig. 3 which shows that the loss values starts out as moderately
high, gradually lowering until both curves flatten. Because the gap
between the training loss and the validation loss is small, and both

S. Jacob, Y. Qiao, Y. Ye et al.

values converge to a point of stability, we observe that the DCRNN
model proves to be a reasonably good fit for the data.

5.5. Cyber attacks

We describe the cyber-attacks investigated and executed using
penetration testing, and the effect each attack has on the social
networking application. To seed these attacks within the microser-
vice RPC traffic in each experiment, scripts were defined to send
user HTTP requests to simulate each attack as they would occur in
real-life.

5.5.1. Brute force password attack

As we outlined in our earlier work (Jacob et al., 2021), a pass-
word guessing, or brute force attack, is an attempt to gain unau-
thorized access to an online system by systematically guessing
passwords until a correct one is found (Dhanabal and Shanthara-
jah, 2015). This results in an abnormally large quantity of incor-
rect login traffic over a short period of time. This type of cyber-
intrusion is detected by monitoring the incorrect login application
logs. A viable countermeasure for this cyber-attack is that many
applications will have an account lockout policy where a speci-
fied number of incorrect login attempts to a single account over
a short period of time will result in the account being locked out
(Conrad et al., 2016).

The microservice functionality of the application to log into a
user’s account is called via the api/user/login API call which is del-
egated to the microservice user-service. The following lists the steps
and sequence of microservice operations called in response to the
API api/user/login:

Login: the user-service calls this operation in response to a API
call

MmcGetLogin: the application checks if user’s credentials are
cached in Memcached

MongoFindUser: user is logging in for the first time and
searches for credentials in MongoDB

MmcSetLogin: the application has found user in MongoDb and
caches the user in Memcached

If a user logs into the social network application correctly for
the first time, the API request sequence ends with the operation
MmcSetLogin and the application caches their verified login cre-
dentials. For a subsequent login, the API sequence ends with the
operation MmcGetLogin function. An incorrect login request con-
cludes with either the operation MmcGetLogin if the user had cor-
rectly logged in before or MongoFindUser if they were logging in
for the first time.

A brute force attack can be used to a crack a password using
any possible combination of keyboard characters including letters,
numbers, and special characters. This approach results in hundreds
of login requests per second (Varonis, 0000). In this experiment, a
brute force attack was injected into the testing data set at a single
observed time window t. This malicious form of computing will
enter every existing keyboard character as an attempt at a pass-
word and will be composed of ninety-two incorrect login requests.
The resulting prediction error for a set of eight randomly selected
RPC pair nodes at t is displayed in Fig. 4, including the random RPC
nodes and their irregular traffic which represent the brute force
attack and a number of select nodes from the regular application
functionality to compose and upload user’s posts.

In Fig. 4, we observe the traffic for the prediction error val-
ues for a subset of RPC nodes at time step t and the threshold
h; for each node. We see that for a select number of these dis-
played nodes, their returned traffic exceeds their defined thresh-
olds. These anomalous nodes represent the login functionality

Computers & Security 118 (2022) 102728

30
25
20
Prediction
Error 15
10
5
— — —
0 — — — —

0000 0029 0004 0030 0005 0001 0035 0034
Nodes

— traffic
— threshold

Fig. 4. Brute Force Password Guessing Attack. The application traffic for the RPC
nodes that represent the login RPC functionality are shown to exceed their defined
thresholds while the RPC traffic for composing a user’s posts do not meet their
defined threshold.

called during the attack and are referenced in Table A.1 and their
respective functionality is outlined as follows:

« 0000: a client user makes a request to the application with the
api/user/login API call

- 0001: the application directs the user’s request to the nginx
load balancer

» 0004: the application accepts a request by a user that previ-
ously logged in and calls operation Login

» 0005: the app checks if a user’s credentials are cached in the
Memcached and calls operation MmcGetLogin

As indicated above, the RPC traffic prediction error traffic for
these four RPC nodes exceed their defined thresholds compared to
the random nodes from the regular RPC data listed in Table A.4.
Therefore, the conclusion of this experiment was that the injected
brute force attack was successfully detected.

5.5.2. Batch registration of bot accounts

A batch registration attack is a form of illegal computing be-
haviour where a hacker creates multiple fake user accounts, or
bot accounts, in large quantities (Chen et al., 2019). These fake ac-
counts are used for a variety of purposes, usually innocuous ac-
tions such as the falsely increasing the number of ’likes’ on a Face-
book page, or more malicious ones like spreading malware on a
system application for hacking services and for fraudulent online
activity to sway political opinion. Sciences (0000) stated that a
means of protecting one’s social media application from bot ac-
count creation is to establish a baseline of regular application ac-
tivity and then observe abnormal requests that indicate bot attacks
i.e.,, mass user account creation originating from the same IP ad-
dress (Pathak, 2014).

In the social networking app, the APl request wrk-
apifuser/register creates a new user profile. Therefore, by calling
a multitude of these API requests within a short time span, a
batch registration attack can be seeded amongst the microservices
traffic. The related RPC node IDs that comprise the functionality
to register a new account are listed in Table A.2. Like the login
API request, the request to register a new user is delegated to the
app’s user-service and the operation RegisterUserWithld is called.

Typically, bot accounts are created in tens or hundreds
(Pathak, 2014). In this experiment, we seeded a set of wrk2-
api/user-timeline/read API requests at time step t to create 100
new accounts. The resulting prediction error values for a subset
of eight random RPC nodes at time step t were set aside for eval-
uation. These nodes were comprised of traffic data resulting from
the batch registration attack and regular app functionality and are
displayed in Fig. 5 as well as their respective defined thresholds.

S. Jacob, Y. Qiao, Y. Ye et al.

30

25
20
Prediction 15
Error
10
5
—_— — [~——1} —
0 . | |

0008 0010 0027 0029 0011 0031 0012 0037
Nodes

— traffic
— threshold

Fig. 5. Batch Registration of Bot Accounts. The traffic values for the RPC nodes
that represent the account creation are shown to exceed their thresholds while the
nodes for composing a user’s posts do not meet their defined threshold.

As illustrated in Fig. 5, the prediction error for the nodes that
represent the batch registration attack exceed their set thresholds,
in contrast to the normal microservices data. These anomalous
nodes are listed in Table A.2 and outlined as follows:

+ 0008: a client user makes a request to the app with the wrk2-
api/user/register API call

+ 0010: the nginx load balancer calls the operation RegisterUser

« 0011: app delegates the request to the user-service and calls the
operation RegisterUserWithld

+ 0012: the user-service calls an operation MongolnsertUser to
register the new user with MongoDb

We determine that these anomalous prediction error values for
the nodes in the Fig. 5 are the result of the simulated batch regis-
tration, showing that the batch registration was detected.

5.5.3. Distributed denial of service

A third cyber-attack explored in our work is a distributed denial
of service (DDoS) attack. The attacker aims to overwhelm a sys-
tem’s resources with multiple executions of requests that leaves a
service unavailable to legitimate users. A DDoS attack can be cate-
gorized as one of three types: volumetric, protocol or application-
layer. The application-layer variety supports requests sent to web
servers over HTTP and the magnitude of such attacks are mea-
sured in requests per second (Revuelto et al., 2017). The DDoS
attack we performed in our project was a HTTP Flooding attack
which targets both web servers and application-level features. This
form of cyber intrusion can be comprised of multiple HTTP GET
or POST requests which can collectively cause a denial-of-service
effect (Radware, 2021).

In the social network application, an available GET request,
wrk2-api/user-timeline/read, can be called to return a timeline of a
user’s application activity including the composition of uploaded
text posts to the application by said user. The web-server dele-
gates this API request to the microservice user-timeline-service. The
resulting RPC then calls the operation ReadUserTimeLine in re-
sponse to this API request.

The magnitude of application-layer attacks are between 50 and
100 requests per second (Imperva, 2021). For this experiment, we
injected a HTTP Flood attack into the microservices RPC traffic
composed of 100 GET requests for users’ application timelines to
simulate a Denial-of-Service intrusion on the application. In a real-
life scenario, this attack causes a disruption to the app’s user-
timeline-service microservice and hinder the service operations to
store and cache said user timelines in the MongoDB and Redis ser-
vices respectively.

After the prediction error was returned by the trained model,
values for a number of random RPC nodes that comprise the DDoS

Computers & Security 118 (2022) 102728

40
35
30
Prediction 25
Error 20
15
10
5
0 =

0015 0017 0018 0021 0027 0029 0032 0038

' traffic
= threshold

Nodes

Fig. 6. Distributed denial of service HTTP Flood Attack. The traffic for the RPC
nodes to return a users activity timeline exceed their set threshold values while
the nodes for composing a user’s posts do not meet their threshold values.

attack were compared against random nodes from the regular mi-
croservices traffic. These RPC nodes that comprise the DDoS attack
are outlined in Table A.3. The prediction error values for these se-
lected nodes and their set thresholds for time step t are displayed
in Fig. 6.

In Fig. 6, we observe the prediction error for a number of se-
lected nodes resulting from the DDoS attack at time step t exceed
their node’s set thresholds and are described as follows:

0014: the client user sends the wrk2-api/user-timeline/read API
call to the app’s web server and produces its child node de-
noted as 0015

0015: the web server calls the ReadUserTimeline operation and
delegates the API call to the user-timeline-service microservice
0016: the API request calls the ReadUserTimeline from the ac-
tual user-timeline-service

0018: the microservice calls an operation MongoFindUser-
Timeline to find a user’s timeline activity in MongoDb

From these observations, it was determined that the anomalous
RPC node traffic to read a user’s timeline as part of the simulated
HTTP Flooding Attack was detected.

5.6. Software & hardware environment

The microservices application was operationalized using an In-
tel Core i3-2370 CPU processor. The real-world cyber security at-
tacks were injected into the microservices traffic, and the RPC data
was generated also using this device. The actual coding for the ex-
periment was executed using scripts written in Python 3.7+ and
included various software libraries including Tensorflow 1.13 and
Numpy 0.19.0. The DCRNN model was trained using an NVIDIA
GPU server with a four-card Tesla SXM2.

6. Limitations

For our experiment, we train a single DCRNN model to learn
the behaviour of the entire microservices application. It is normally
necessary to model the entire application as it is difficult to deter-
mine where an attacker will target the application.

However, one drawback to our approach is that it is diffi-
cult to maintain a large and unified model of general microser-
vice call traffic. Microservices are updated and old functionality
is deprecated regularly, so there is a need to retrain the entire
model which costs time and resources. As mentioned in Section 1,
Chen et al. (2019) uses multiple DCRNN models to learn a different
subsystem of the application’s functionality which takes less time
to train. A limit to this is that their approach would not be able to

S. Jacob, Y. Qiao, Y. Ye et al.

detect cyber-attacks which would span multiple subsystems of the
application. This is not a limitation of our approach.

In our approach, we monitor the traffic flow of the application
to detect cyber-attacks simulated using the microservice HTTP API
calls which are sent over the application layer of the system. A
cyber-attack that does not take place over the application layer is
a Man-in-the-Middle (MITM) attack. A MITM involves an attacker
intercepting the traffic between a legitimate user and the applica-
tion by placing malicious WiFi hotspots on the network layer. Our
distributed tracing tool would not be able to monitor the resulting
activity caused by the attacker. This cyber-attack can be mitigated
by running the application on a Virtual Private Network (VPN) that
provides cyber security by encrypting the networking traffic, in-
cluding the internet connection.

A means of performing a DoS attack against the application is
to carry out a TCP-SYN flooding attack which establishes multi-
ple client-server connections. In the case of our application, the
attacker creates multiple TCP connections with the application’s
Nginx web server to deny legitimate users access. Our approach
would not be able to detect this attack because it takes place at the
transport layer. This attack can be mitigated by implementing SYN
cookies, a form of cryptographic hashing that verifies the client as
legitimate (Imperva, 0000).

Our ML approach proposes a group-based anomaly detection
method that detects attacks that generate a high volume of the
same RPC in a small time window. An attack our approach would
not be able to detect is a cross-site scripting (XSS) attack. In the
DeathStarBench application, a malicious user could upload a post
containing a malicious web link that a legitimate user clicks result-
ing in that user’s privileged information being stolen. Our method
would not be able to detect this form of intrusion since it requires
only a single composePost APl request. A countermeasure used
against this cyber-attack is to use appropriate HTTP response head-
ers to prevent HTTP responses that contain any HTML or JavaScript
(PortSwigger, 0000).

Our anomaly detection method is data-driven and relies on ma-
chine learning. If the ML-based model or the data are not pro-
tected, the security of the model is at risk of becoming a soft
spot. Poisoning Apruzzese et al. (2019), as an example, is a type
of adversarial machine learning method that perturbates training
data in order to poison the model, therefore affecting the decision-
making at run-time by altering the threshold value for the anomaly
detection model. The corresponding defences can be realized by
protecting both data and/or the model. For data, sanitization de-
tects and removes anomalous samples based on predefined rules.
In addition, sanitization works on trained models by continuously
training the model on new data, thereby mitigating the impact of
poisoned samples. For our application, both data and model saniti-
zation are not feasible as it is difficult to define rules and no new
training data is available. Another promising countermeasure is to
train the model using data from randomized sources which make
it difficult for the hacker to devise an effective adversarial attack
(Joseph et al., 2013).

In our approach, the anomaly detection threshold value is de-
rived by minimising the prediction error for every node at run-
time. A second form of adversarial machine learning attack that
violates the model’s integrity can be planted at testing time when
the trained DCRNN model is operational. The anomaly detector has
been deployed, so the attacker aims to subvert its behaviour by
modifying malicious ground truth values to not meet the threshold
setting and would not be detected as an anomaly. A viable counter-

10

Computers & Security 118 (2022) 102728

measure is to smooth the decision boundaries of the model, thus
reducing the effects caused by adversarial attacks (Xu et al., 2009).

7. Conclusion

This work established that the polylithic behaviour of a
microservices-based application can be modelled as a microservice
call graph and a distributed tracing tool can be used to monitor
users’ API requests to the application. We proposed that a state-
of-the-art graph convolution network, the Diffusion Convolutional
Recurrent Neural Network, can be trained to learn the microservice
traffic and discover the spatial and temporal dependencies within
the data. Our aim was to perform traffic forecasting to predict fu-
ture microservice traffic for future time steps. We evaluated the
performance of the DCRNN by applying threshold-based anomaly
detection to detect abnormal microservices activity that indicated
the presence of cyber security attacks. This paper is a continua-
tion of our previous paper where distributed tracing can be used
to detect cyber security attacks in microservices.

Using this approach, we detected three different forms of cyber-
attack against our application: a brute force attack, a batch reg-
istration of bot accounts and a DDoS HTTP Flooding attack. An
anomaly detection method was applied by calculating the mean
and standard deviation. The microservice traffic resulting from
each attack was compared to the normal application traffic for reg-
ular application requests at run-time. The difference in RPC traf-
fic volume was proven to be greater than two standard deviations
outside the mean which satisfies the empirical rule. Because these
attacks can be identified by calculating the greater, irregular vol-
ume of the microservice call traffic, our anomaly detection method
can be classified as a group anomaly detector.

For this work, the DCRNN model was used to carry out RPC
traffic prediction. The model predicted the number of times an RPC
is called in a specific time period. Distributed tracing can also be
used to capture the duration of the microservice calls. Therefore,
future work could include the detection of irregular microservice
activity based on their execution time.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

CRediT authorship contribution statement

Stephen Jacob: Writing - original draft, Methodology, Software,
Data curation, Formal analysis, Visualization, Investigation, Re-
sources. Yuansong Qiao: Validation, Software, Resources. Yuhang
Ye: Writing - review & editing, Validation. Brian Lee: Conceptual-
ization, Writing - review & editing.

Acknowledgments

This publication has emanated from research conducted with
the financial support of Athlone Institute of Technology under its
Presidents Seed Fund (2021) and Science Foundation Ireland (SFI)
under Grant Number SFI 16/RC/3918, co-funded by the European
Regional Development Fund.

https://doi.org/10.13039/501100008530

S. Jacob, Y. Qiao, Y. Ye et al.

Appendix A

Computers & Security 118 (2022) 102728

Table A1
RPCs for Brute Force Attack.
ID Source Destination
0000 - nginx-web-server + [api/user/login

0001 nginx-web-server + [api/user/login
0002 nginx-web-server + /api/user/login
0003 nginx-web-server + Login

0004 -

0005 user-service + Login

0006 user-service + Login

0007 user-service + Login

nginx-web-server + [api/user/login
nginx-web-server + Login
user-service + Login

user-service + Login

user-service + MmcGetLogin
user-service + MongoFindUser
user-service + MmcSetLogin

Table A2
RPCs for Batch Registration Attack.
ID Source Destination
0008 - nginx-web-server + [wrk2-api/user/register
0009 nginx-web-server + /wrk2-api/user/register nginx-web-server + [wrk2-api/user/register
0010 nginx-web-server + /wrk2-api/user/register =~ nginx-web-server + RegisterUser
0011 nginx-web-server + RegisterUser user-service + RegisterUserWithld
0012 user-service + RegisterUserWithld user-service + MongolnsertUser
0013 user-service + RegisterUserWithld social-graph-service + InsertUser
0014 social-graph-service + InsertUser social-graph-service + MongolnsertUser

Table A3
RPCs for Distributed DoS Attack.
ID Source Destination
0015 - nginx-web-server + [wrk2-api/user-timeline/read
0016 nginx-web-server + [wrk2-api/user-timeline/read nginx-web-server + [wrk2-api/user-timeline/read
0017 nginx-web-server + [wrk2-api [user-timeline [read nginx-web-server + ReadUserTimeline
0018 nginx-web-server + ReadUserTimeline user-timeline-service + ReadUserTimeline
0019 - user-timeline-service + ReadUserTimeline
0020 user-timeline-service + ReadUserTimeline user-timeline-service + RedisFind
0021 user-timeline-service + ReadUserTimeline user-timeline-service + MongoFindUserTimeline
0022 user-timeline-service + ReadUserTimeline user-timeline-service + RedisUpdate
0023 user-timeline-service + ReadUserTimeline post-storage-service + ReadPosts
0024 post-storage-service + ReadPosts post-storage-service + MemcachedMget
0025 post-storage-service + ReadPosts post-storage-service + MongoFindPosts
0026 post-storage-service + ReadPosts post-storage-service + MmcSetPost

Table A4
RPCs for Regular Traffic.
ID Source Destination
0027 - nginx-web-server + [wrk2-api/post/compose

0028 nginx-web-server + [wrk2-api/post/compose
0029 nginx-web-server + /wrk2-api/post/compose

0030 nginx-web-server + ComposePost
0031 nginx-web-server + ComposePost
0032 nginx-web-server + ComposePost
0033 nginx-web-server + ComposePost
0034 text-service + UploadText

0035 text-service + UploadText

0036 text-service + UploadText

0037 media-service + UploadMedia

0038 user-service + UploadUserWithUserld
0039 compose-post-service + UploadMedia

nginx-web-server + /wrk2-api/post/compose
nginx-web-server + ComposePost
text-service + UploadText

media-service + UploadMedia

user-service + UploadUserWithUserld
unique-id-service + UploadUniqueld
user-mention-service + UploadUserMentions
url-shorten-service + UploadUrls
compose-post-service + UploadText
compose-post-service + UploadMedia
compose-post-service + UploadCreator
compose-post-service + RedisHashSet

(continued on next page)

S. Jacob, Y. Qiao, Y. Ye et al.

Table A4 (continued)

Computers & Security 118 (2022) 102728

ID Source Destination

0040 compose-post-service + UploadCreator compose-post-service + RedisHashSet

0041 user-mention-service + UploadUserMentions compose-post-service + UploadUserMentions
0042 url-shorten-service + UploadUrls compose-post-service + UploadUrls

0043 compose-post-service + UploadUrls compose-post-service + RedisHashSet

0044 compose-post-service + UploadUserMentions compose-post-service + RedisHashSet

0045 compose-post-service + UploadUserMentions post-storage-service + StorePost

0046 compose-post-service + UploadUserMentions user-timeline-service + WriteUserTimeline
0047 compose-post-service + UploadUserMentions write-home-timeline-service + FanoutHomeTimelines
0048 unique-id-service + UploadUniqueld compose-post-service + UploadUniqueld
0049 compose-post-service + UploadUniqueld compose-post-service + RedisHashSet

0050 compose-post-service + UploadText compose-post-service + RedisHashSet

0051 compose-post-service + UploadText write-home-timeline-service + FanoutHomeTimelines
0052 compose-post-service + UploadText post-storage-service + StorePost

0053 compose-post-service + UploadText user-timeline-service + WriteUserTimeline
0054 write-home-timeline-service + FanoutHomeTimelines social-graph-service + GetFollowers

0055 write-home-timeline-service + FanoutHomeTimelines write-home-timeline-service + RedisUpdate
0056 post-storage-service + StorePost post-storage-service + MongolnsertPost
0057 social-graph-service + GetFollowers social-graph-service + RedisGet

0058 social-graph-service + GetFollowers social-graph-service + MongoFindUser

0059 social-graph-service + GetFollowers social-graph-service + RedisInsert

0060 user-timeline-service + WriteUserTimeline user-timeline-service + MongoFindUser

0061 user-timeline-service + WriteUserTimeline user-timeline-service + Mongolnsert

0062 user-timeline-service + WriteUserTimeline user-timeline-service + RedisUpdate

References

Akoglu, L., Tong, H., Koutra, D., 2015. Graph based anomaly detection and descrip-
tion: a survey. Data Min. Knowl. Discov. 29 (3), 626-688.

Anodot. What is anomaly detection?(Accessed on 10/27/.2021), https://www.anodot.
com/blog/what-is-anomaly-detection/2020.

Apruzzese, G., Colajanni, M., Ferretti, L., Marchetti, M., 2019. Addressing adversar-
ial attacks against security systems based on machine learning. In: 2019 11th
International Conference on Cyber Conflict (CyCon), volume 900. IEEE, pp. 1-18.

Architecture S., group) LLS.. Github - delimitrou/deathstarbench: Open-source
benchmark suite for cloud microservices. https://github.com/delimitrou/
DeathStarBench, (Accessed on 01/27/2022).

Atwood,]J., Towsley, D., 2016. Diffusion-convolutional neural networks. In: Advances
in neural information processing systems, pp. 1993-2001.

Authors TJ.. Jaeger: open source, end-to-end distributed tracing. (Accessed on
10/27/2021), https://www.jaegertracing.io/; 2021.

Chalapathy, R., Toth, E., Chawla, S., 2018. Group anomaly detection using deep gen-
erative models. In: Joint European Conference on Machine Learning and Knowl-
edge Discovery in Databases. Springer, pp. 173-189.

Chan, V., Gan, Q., Bayen, A., 2020. A graph convolutional network with signal phas-
ing information for arterial traffic prediction. arXiv preprint arXiv:201213479.

Chen, ., Huang, H., Chen, H., 2019. Informer: irregular traffic detection for container-
ized microservices RPC in the real world. In: Proceedings of the 4th ACM/IEEE
Symposium on Edge Computing, pp. 389-394.

Chung, J., Gulcehre, C., Cho, K., Bengio, Y., 2014. Empirical evaluation of gated recur-
rent neural networks on sequence modeling. arXiv preprint arXiv:14123555.
Conrad, E., Misenar, S., Feldman, J., 2016. Eleventh Hour CISSP®: Study Guide. Syn-

gress.

Dhanabal, L., Shantharajah, S.P,, 2015. A study on NSL-KDD dataset for intrusion de-
tection system based on classification algorithms. International journal of ad-
vanced research in computer and communication engineering 4 (6), 446-452.

Gan, Y., Delimitrou, C., 2018. The architectural implications of cloud microservices.
IEEE Comput. Archit. Lett. 17 (2), 155-158.

Gan, Y., Zhang, Y., Cheng, D., Shetty, A., Rathi, P, Katarki, N., Bruno, A., Hu,],
Ritchken, B., Jackson, B., et al., 2019. An open-source benchmark suite for mi-
croservices and their hardware-software implications for cloud & edge systems.
In: Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 3-18.

Gan, Y., Zhang, Y., Cheng, D., Shetty, A., Rathi, P, Katarki, N., Bruno, A., Hu,],
Ritchken, B., Jackson, B., et al., 2020. Unveiling the hardware and software im-
plications of microservices in cloud and edge systems. IEEE Micro 40 (3), 10-19.

Gan, Y., Zhang, Y., Hu, K., Cheng, D., He, Y., Pancholi, M., Delimitrou, C., 2019b. Lever-
aging deep learning to improve performance predictability in cloud microser-
vices with seer. ACM SIGOPS Oper. Syst. Rev. 53 (1), 34-39.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9
(8), 1735-1780.

Hou, X, Li, C, Liy, J,, Zhang, L., Hu, Y., Guo, M., 2020. Ant-man: towards agile power
management in the microservice era. In: SC20: International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, pp. 1-14.

IBM L.. What is docker?(Accessed on 10/27/2021),https://www.ibm.com/in-en/cloud/
learn/docker; 2021.

Imperva. (1) new messages!https://www.imperva.com/learn/ddos/syn-flood/ (Ac-
cessed on 01/31/2022).

12

Jacob, S., Qiao, Y., Lee, B.A.,, 2021. Detecting cyber security attacks against a mi-
croservices application using distributed tracing. In: ICISSP, pp. 588-595.

Jaramillo, D., Nguyen, D.V., Smart, R., 2016. Leveraging microservices architecture by
using docker technology. In: SoutheastCon 2016. IEEE, pp. 1-5.

Joseph, A.D., Laskov, P, Roli, F, Tygar,]J.D., Nelson, B. 2013. Machine learning
methods for computer security (dagstuhl perspectives workshop 12371). In:
Dagstuhl Manifestos, volume 3. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, pp. 1-30.

Imperva. What does DDoS mean? | distributed denial of service explained
| imperva. (Accessed on 09/30/2021), https://www.imperva.com/learn/ddos/
denial-of-service/?utm_campaign=Incapsula-moved; 2021.

Kung-Hsiang H.T.D.S. A gentle introduction to graph neural net-
works (basics, deepwalk, and graphsage). (Accessed on 09/17/2021),
https://towardsdatascience.com/a-gentle-introduction- to-graph-
neural-network-basics-deepwalk-and-graphsage-db5d540d50b3; 2019.

Lazarev, N., Adit, N., Xiang, S., Zhang, Z., Delimitrou, C., 2020. Dagger: towards ef-
ficient rpcs in cloud microservices with near-memory reconfigurable nics. IEEE
Comput. Archit. Lett. 19 (2), 134-138.

Le, D.Q, Jeong, T, Roman, H.E., Hong, JW.K, 2011. Traffic dispersion graph based
anomaly detection. In: Proceedings of the Second Symposium on Information
and Communication Technology, pp. 36-41.

Lee B., Jacob S.. [dataset] | gitlab | stephenj - repository. (Accessed on
02/04/2022),https://gitlab.com/sri-ait-ie/phd- projects/stephenj/- /tree/
journal_Branch; 2019.

Lee,]., Bae, H., Yoon, S. 2020. Anomaly detection by learning dynamics from a
graph. IEEE Access 8, 64356-64365.

Li, Y, Yu, R, Shahabi, C, Liu, Y., 2017. Diffusion convolutional recurrent neural net-
work: data-driven traffic forecasting. arXiv preprint arXiv:170701926.

Lv, Y., Duan, Y., Kang, W., Li, Z, Wang, EY., 2014. Traffic flow prediction with big
data: a deep learning approach. IEEE Trans. Intell. Transp. Syst. 16 (2), 865-873.

Ma, X., Dai, Z., He, Z., Ma,]., Wang, Y., Wang, Y., 2017. Learning traffic as images: a
deep convolutional neural network for large-scale transportation network speed
prediction. Sensors 17 (4), 818.

Mallick, T., Balaprakash, P, Rask, E., Macfarlane, J., 2020. Graph-partitioning-based
diffusion convolutional recurrent neural network for large-scale traffic forecast-
ing. Transp. Res. Rec. 2674 (9), 473-488.

Mallick, T., Balaprakash, P, Rask, E., Macfarlane,]., 2021. Transfer learning with
graph neural networks for short-term highway traffic forecasting. In: 2020 25th
International Conference on Pattern Recognition (ICPR). IEEE, pp. 10367-10374.

Pathak, A., 2014. An analysis of various tools, methods and systems to generate fake
accounts for social media. Northeastern University Boston, Massachusetts De-
cember.

Polato, M., Sperduti, A., Burattin, A., de Leoni, M., 2018. Time and activity sequence
prediction of business process instances. Computing 100 (9), 1005-1031.

PortSwigger. What is cross-site scripting (XSS) and how to prevent it? | web se-
curity academy. https://portswigger.net/web-security/cross-site-scripting, (Ac-
cessed on 01/31/2022).

Radware. Http flood (http ddos attack). (Accessed on 09/13/2021), https://www.
radware.com/security/ddos-knowledge-center/ddospedia/http-flood/; 2021.

http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0001
https://www.anodot.com/blog/what-is-anomaly-detection/
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0003
https://github.com/delimitrou/DeathStarBench
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0005
https://www.jaegertracing.io/
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0018
https://www.ibm.com/in-en/cloud/learn/docker
https://www.imperva.com/learn/ddos/syn-flood/
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0024
https://www.imperva.com/learn/ddos/denial-of-service/?utm_campaign=Incapsula-moved
https://towardsdatascience.com/a-gentle-introduction-to-graph-neural-network-basics-deepwalk-and-graphsage-db5d540d50b3
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0027
https://gitlab.com/sri-ait-ie/phd-projects/stephenj/-/tree/journal_Branch
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0036
https://portswigger.net/web-security/cross-site-scripting
https://www.radware.com/security/ddos-knowledge-center/ddospedia/http-flood/

S. Jacob, Y. Qiao, Y. Ye et al.

Revuelto S, Socha K., Meintanis S, 2017. DDoS overview and response
guide. https://cert.europa.eu/static/WhitePapers/CERT-EU_Security_Whitepaper_
DDoS_17-003.pdf, (Accessed on 09/13/2021).

Sciences S.. What are bot attacks? Bot mitigation for web apps & APIs. https://www.
signalsciences.com/glossary/bot-attack-protection/, (Accessed on 09/16/2021).

Slee, M., Agarwal, A., Kwiatkowski, M., 2007. Thrift: scalable cross-language services
implementation. Facebook white paper 5 (8), 127.

Somu, N., Daw, N., Bellur, U., Kulkarni, P., 2020. Panopticon: A comprehensive bench-
marking tool for serverless applications. In: 2020 International Conference on
COMmunication Systems & NETworkS (COMSNETS). IEEE, pp. 144-151.

Sun, Y., Nanda, S., Jaeger, T., 2015. Security-as-a-service for microservices-based
cloud applications. In: 2015 IEEE 7th International Conference on Cloud Com-
puting Technology and Science (CloudCom). IEEE, pp. 50-57.

Tax, N., Verenich, I., La Rosa, M., Dumas, M., 2017. Predictive business process mon-
itoring with LSTM neural networks. In: International Conference on Advanced
Information Systems Engineering. Springer, pp. 477-492.

Varonis. What is a brute force attack?https://www.varonis.com/blog/
brute-force-attack, (Accessed on 01/21/2022).

Wau, Y., Tan, H., 2016. Short-term traffic flow forecasting with spatial-temporal cor-
relation in a hybrid deep learning framework. arXiv preprint arXiv:161201022.

Wu, Z, Pan, S, Chen, F, Long, G., Zhang, C., Philip, S.Y., 2020. A comprehensive
survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32 (1),
4-24.

Xu, H., Caramanis, C., Mannor, S., 2009. Robustness and regularization of support
vector machines. J. Mach. Learn. Res. 10 (7).

Yao, Y., Su, L, Lu, Z, Liu, B., 2019. Stdeepgraph: Spatial-temporal deep learning on
communication graphs for long-term network attack detection. In: 2019 18th
IEEE International Conference On Trust, Security And Privacy In Computing And
Communications/13th [EEE International Conference On Big Data Science And
Engineering (TrustCom/BigDataSE). IEEE, pp. 120-127.

Yu, B., Yin, H., Zhu, Z., 2017. Spatio-temporal graph convolutional networks: a deep
learning framework for traffic forecasting. arXiv preprint arXiv:170904875.

Yu, R, He, X,, Liu, Y., 2015. Glad: group anomaly detection in social media analysis.
ACM Trans. Knowl. Discov. Data (TKDD) 10 (2), 1-22.

Stephen Jacob is a Ph.D. candidate with the Software Re-
search Institute (SRI) at the Technological University of
the Shannon: Midlands Midwest working in the field of
Cyber Security. He received his BsC in Computer Science
at University of Limerick in 2015 and his MSc in Software
Engineering at Athlone Institute of Technology in 2016.

13

Computers & Security 118 (2022) 102728

Dr. Yuansong Qiao is a Senior Research Fellow in the
Software Research Institute (SRI) at Technological Uni-
versity of the Shannon: Midlands Midwest, Ireland. He
is a Science Foundation Ireland (SFI) Funded Investiga-
tor in the SFI CONFIRM Smart Manufacturing Centre. He
received his Ph.D. in Computer Applied Technology from
the Institute of Software, Chinese Academy of Sciences,
Beijing, China, in 2008. He is a member of IEEE (Com-
munications, Computer and Robotics and Automation so-
cieties and Blockchain Community) and ACM (SIGCOMM
and SIGMM). His research interests include Future Inter-
net Architecture, Blockchain Systems, Robotics and Edge
Intelligence and Computing.

Dr. Brian Lee is the director of the Software Research
Institute (SRI) at Technological University of the Shan-
non: Midlands Midwest, Ireland. He is a Science Foun-
dation Ireland (SFI) Funded Investigator in the SFI CON-
FIRM Smart Manufacturing Centre. He received his Ph.D.
in Computer Science from Trinity College Dublin in
2004. He is a member of IEEE (Communications, Com-
puter and Robotics and Automation societies) and ACM).
His research interests include Computer Security (Access
Control, Network Security, Security Analytics) and Pro-
grammable Networking and Edge Computing.

Yuhang Ye received the B.Eng. and M.EngSc. degrees in
Electronic Engineering from the National University of
Ireland, Maynooth, Ireland, and the PhD degree from the
Athlone Institute of Technology, Ireland. He is currently a
Post-Doctoral Researcher with the Software Research In-
stitute, Technological University of the Shannon. His cur-
rent research interests include IloT security, adversarial
machine learning and multimedia communication.

https://cert.europa.eu/static/WhitePapers/CERT-EU_Security_Whitepaper_DDoS_17-003.pdf
https://www.signalsciences.com/glossary/bot-attack-protection/
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0041
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0042
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0043
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0044
https://www.varonis.com/blog/brute-force-attack
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0046
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0047
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0048
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0049
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0050
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0051

	Anomalous distributed traffic: Detecting cyber security attacks amongst microservices using graph convolutional networks
	1 Introduction
	2 Related works
	2.1 Comparable works

	3 Background information
	3.1 Microservices
	3.2 Distributed tracing
	3.3 Anomaly detection

	4 Methodology
	4.1 Overview
	4.2 RPC traffic generation
	4.3 Directed graph representation
	4.4 Traffic matrix representation
	4.5 Traffic forecasting
	4.6 Diffusion convolution
	4.7 Temporal dependency modelling
	4.8 Training the DCRNN model
	4.9 Anomalous RPC detection

	5 Experiment
	5.1 DeathStarBench
	5.2 Software environment & tools
	5.2.1 Docker
	5.2.2 Thrift
	5.2.3 Jaeger

	5.3 Data generation
	5.4 DCRNN model
	5.5 Cyber attacks
	5.5.1 Brute force password attack
	5.5.2 Batch registration of bot accounts
	5.5.3 Distributed denial of service

	5.6 Software & hardware environment

	6 Limitations
	7 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A
	References

