
Computers & Security 118 (2022) 102728

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Anomalous distributed traffic: Detecting cyber security attacks

amongst microservices using graph convolutional networks

Stephen Jacob

∗, Yuansong Qiao , Yuhang Ye , Brian Lee

Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, Co. Westmeath, Ireland

a r t i c l e i n f o

Article history:

Received 5 November 2021

Revised 10 April 2022

Accepted 15 April 2022

Available online 22 April 2022

Keywords:

Cyber security

Microservices

Distributed tracing

Anomaly detection

Graph convolutional network

Traffic forecasting

a b s t r a c t

Currently, microservices are trending as the most popular software application design architecture. Soft-

ware organisations are also being targeted by more cyber-attacks every day and newer security measures

are in high demand. One available measure is the application of anomaly detection, which is defined

as the discovery of irregular or unusual activity that occurs to a greater or lesser degree than normal

occurrences in a data series. In this paper, we continue existing work where various real-world cyber-

attacks are executed against a running microservices application, and the application traffic is logged

and returned in the form of distributed traces. A Diffusion Convolutional Recurrent Neural Network is

used to model the set of distributed traces and learn the spatial and temporal dependencies of the ap-

plication traffic. Subsequently, the model is used to make predictions for ongoing microservice activity

and threshold-based anomaly detection is applied to detect irregular microservice activity indicating the

presence of seeded cyber security attacks, or anomalies. The cyber-attacks used to evaluate this approach

include a brute force attack, a batch registration of bot accounts and a distributed denial of service attack.

© 2022 The Author(s). Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1

a

o

c

p

i

s

r

j

a

o

d

t

c

p

w

t

c

f

a

c

a

b

A

S

g

i

i

t

c

c

t

t

d

o

f

a

t

i

h

0

. Introduction

Cyber security is currently one of the more significant problems

cross the world. Every day, hackers are targeting more software

rganizations with a variety of well-defined cyber-attacks. In re-

ent years, the microservices software architecture has been im-

lemented by many popular software application brands, includ-

ng Twitter, Amazon, Netflix and PayPal (Gan et al., 2019b). Con-

equently, cyber security personnel overseeing these applications

equire more up-to-date means of detecting the cyber assaults in-

ected into their application model.

In our previous work Jacob et al. (2021) , we investigated cyber-

ttacks targeting a microservices application by monitoring the

verall behaviour of the application using distributed tracing and

etected the anomalous activity of a cyber-attack by calculating

he frequency distribution of unique traces. Such distributed traces

apture and record the sequence of API calls between the com-

onents of a distributed application as a microservice call graph

here the nodes of the graph are the actual microservices and

he edges represent calls to microservices. A sequence of such

all graphs over time captures the spatio-temporal characteristics

rom the API call traffic of a microservice application. Graph based
∗ Corresponding author.

E-mail address: s.jacob@research.ait.ie (S. Jacob) .

l

(

ttps://doi.org/10.1016/j.cose.2022.102728

167-4048/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article
nomaly detection is then used to look for variations in the appli-

ation call traffic that indicates unusual or abnormal behaviour.

In this work, we propose to build on our earlier effort s using

nomaly detection to detect cyber-attacks in microservice traffic

y exploring the application of graph based anomaly detection to

PI call traffic graphs produced by the microservices application.

pecifically, we use the microservice call graph and data to train a

raph convolutional neural network (GCNN) to capture the exist-

ng spatial and temporal dynamics within the tracing data. By us-

ng a GCNN to model the application topology and predict ongoing

raffic, the irregular microservice traffic caused by various seeded

yber-attacks is detected.

In this paper, we use a distributed tracing tool to monitor a mi-

roservices application with the goal of detecting cyber security at-

acks targeting the application. We also define a Diffusion Convolu-

ional Recurrent Neural Network (DCRNN), a state-of-the-art GCNN

esigned to learn the directional behaviour of the traffic modelled

n a directed graph and subsequently perform traffic forecasting

or future time steps. In our experiment, we run a microservice

pplication and simulate different cyber security attacks. We de-

ect these attacks by leveraging the DCRNN model to discover the

rregular microservice traffic caused as a result of said attacks.

A user’s request to an application produces a sequence of re-

ated microservice calls. This sequence of remote procedure calls

RPC)s is logged using distributed tracing. Regular user calls made
under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.cose.2022.102728
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.102728&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:s.jacob@research.ait.ie
https://doi.org/10.1016/j.cose.2022.102728
http://creativecommons.org/licenses/by/4.0/

S. Jacob, Y. Qiao, Y. Ye et al. Computers & Security 118 (2022) 102728

t

o

t

T

i

h

w

fi

n

a

a

p

l

p

v

m

p

l

l

o

i

p

S

o

a

t

s

c

S

w

2

c

f

d

o

m

a

t

n

s

u

f

o

h

s

e

fl

i

i

l

p

t

n

d

b

v

e

a

L

w

fl

r

f

C

c

e

o

s

p

o

H

(

c

i

Y

t

p

t

b

s

t

t

p

a

s

N

l

T

t

p

o

p

o

r

f

f

p

t

u

t

o

t

fi

m

p

o the application results in a set of distributed traces comprised

f these RPCs. The DCRNN model is trained to learn from this RPC

raffic and discover the spatial relations and temporal dynamics.

his approach is used to determine the presence of RPC dynamics

n a fixed time window that do not conform to the regular be-

aviour of normal microservice application traffic. The aim of this

ork is to detect anomalies by comparing the computed RPC traf-

c related to a cyber security attack against the RPC traffic from a

ormal data set.

It should be noted that our work to perform graph-based

nomaly detection is loosely similar to the approach used by the

uthors of Chen et al. (2019) . The novelty of our approach is to

rovide a more simplified process of training a GCNN model and

earning the spatio-temporal dynamics of RPC traffic. In our ap-

roach, we train only a single model to learn the entire microser-

ice application as opposed to Chen et al. (2019) in which multiple

odels are trained to each learn a different subsystem of the ap-

lication.

Our main contributions in this paper are summarized as fol-

ows:

• We use a directed graph to model the entire polylithic architec-

ture of a microservices application and the inter-relations be-

tween the individual services. Using this graph, the application

traffic from one microservice node to its neighbouring nodes

can be related to a diffusion process .

• We propose the Diffusion Convolution Recurrent Neural Net-

work to learn the spatial and temporal dependencies of the ap-

plication traffic over a time series using a diffusion convolution

operation.

• We study the traffic forecasting problem to predict microservice

traffic at a future time step given previously learned traffic.

• We apply anomaly detection to discover cyber security attacks

injected into microservice traffic by measuring the irregularity

of the RPCs made as a result of the cyber security attacks.

This paper is structured as follows: Section 2 outlines the re-

ated literature works. Section 3 presents background information

n the microservices architecture, the fields of distributed trac-

ng and anomaly detection. Section 4 presents an overview of our

roposal and present a high-level description of our approach.

ection 5 describes the microservices application we selected for

ur experiment, the different cyber security attacks investigated

nd simulated against the application, and outlines the applica-

ion of anomaly detection to detect the cyber security attacks

eeded amongst the application’s traffic flow. In Section 6 , we dis-

uss the advantages and limitations of our proposed approach and

ection 7 provides a conclusion to our proposal and possible future

ork.

. Related works

This section presents a literature review of related works, in-

luding a number of machine learning-based approaches to per-

orm graph-based anomaly detection on network traffic.

Deep neural networks (DNN) have been used to model data and

iscover the underlying behaviour in the data. A particular class

f neural networks, a recurrent neural network (RNN) is used to

odel sequential data. Such a data series is usually represented as

 case, a sequence of process events. Tax et al. (2017) used a par-

icular type of RNN, the Long Short Term Memory (LSTM) neural

etwork Hochreiter and Schmidhuber (1997) which detects long or

hort term dependencies in cases. This LSTM-based framework was

sed to learn the typical form of cases and subsequently predict

uture events and the timestamp of said events. The performance

f this framework was evaluated by training and learning the be-

aviour of logged cases from two available data sets, and the re-
2
ults were shown to outperform a previous methodology by Polato

t al. (2018) .

Deep learning models have also been used to model the traffic

ow of a network domain. A Convolutional Neural Networks (CNN)

s a DNN suited for modeling and analyzing graphs constructs and

magery. The CNN model would observe and learn the spatial re-

ations of the traffic flow. The authors for Ma et al. (2017) pro-

osed a CNN model to learn the network traffic as images to cap-

ure the spatial and temporal dynamics of the data and predict the

etwork traffic speed. This CNN algorithm was tested using two

ata sets composed of real-world transportation traffic. The CNN-

ased framework’s performance was evaluated against four pre-

ailing statistical algorithms and three deep learning-based mod-

ls and was shown to outperform these models with an improved

ccuracy of 42.91%.

Wu and Tan (2016) proposed a deep model with a CNN and

STM combined architecture (CLTFP) where the CNN component

as used to capture and learn the spatial features of the traffic

ow while the LSTM component was used to learn the tempo-

al dependencies. Afterwards, the trained model was used to per-

orm short term traffic forecasting. The predictions returned by the

LTFP model were then compared with those of other models in-

luding an LSTM, a shallow neural network and a stacked auto-

ncoder model Lv et al. (2014) , and the CLTFP model was shown to

utperform the other models in terms of prediction accuracy and

patial distribution.

In recent works, graph neural networks (GNNs) have become

opular for modelling nodes and dependencies found in vari-

us domains including life science and social networks Kung-

siang (2019) . A variant of GNNs called Spatial-Temporal GNNs

STGNN)s aim to capture the spatial and temporal features within

orrelated data graphs simultaneously to predict future activity

n a wide range of applications Wu et al. (2020) . The work by

u et al. (2017) highlights that timely traffic forecasting is essen-

ial for safe traffic control and that traditional mathematical ap-

roaches like linear regression are not suited for future long-term

raffic prediction. A STGNN was proposed to model the time-series

ased prediction problem of a traffic domain. The network of road

egments were modelled on graphs using convolution structures

o enable fast training with the STGNN and extract the spatial and

emporal features. This approach was evaluated in a series of ex-

eriments using various real-world traffic data sets as examples

nd results show that the model converges easily and outperforms

tate-of-the-art baseline models.

A recent GCNN, known as the Diffusion Convolutional Recurrent

eural Network (DCRNN) is a state-of-the-art model designed for

earning the complex spatial and temporal features in traffic flow.

he authors for Li et al. (2017) outlined the application of spatio-

emporal traffic forecasting in the domain of road networks. They

roposed that the traffic be modelled as an active diffusion process

n a directed graph. After learning the ground truth observations,

redictions of future traffic activity are generated. This methodol-

gy was tested using two different databases containing real-world

oad network traffic. The first data set contains traffic data derived

rom 207 sensors throughout Los Angeles County over a period of

our months. This framework was tested, and was proven to out-

erform baseline state-of-the-art frameworks by a margin of 12%

o 15%.

The work for this paper is similar to that of Chen et al. (2019) to

se a GCNN to detect irregular real-world RPC traffic. The lat-

er aimed to discover cyber security issues within the thousands

f RPCs resulting from numerous microservices. In this work, a

wo-step process was performed to trace and log the RPC traf-

c and detect anomalies. First, the logged RPC traffic from active

icroservice functionality was analyzed and correlating RPC chain

atterns in the data were identified using a density-clustering al-

S. Jacob, Y. Qiao, Y. Ye et al. Computers & Security 118 (2022) 102728

g

a

s

d

l

m

a

fi

a

2

m

c

g

t

t

c

n

r

t

i

a

f

C

l

p

s

i

e

f

s

l

G

t

w

s

a

t

o

T

i

o

o

t

u

t

m

p

T

p

3

v

o

3

s

t

E

p

d

v

c

d

f

R

3

t

a

a

c

c

o

i

r

i

C

a

3

b

a

j

l

a

m

p

d

a

a

t

i

Y

4

t

a

p

4

f

t

a

w

m

C

t

r

a

a

i

t

fi

T

orithm. These chain patterns represent a subsystem of the over-

ll microservice functionality. A GCNN is then used to model each

ubsystem of the RPC traffic and learn the spatio-temporal depen-

encies of the traffic to solve the irregular RPC prediction prob-

em. Using these GCNNs, a series of individual predictions can be

ade for each pre-existing subsystems. This approach was evalu-

ted using two case studies composed of real-world malicious traf-

c threat models including a batch registration of bot accounts and

ccount cracking.

.1. Comparable works

The authors for Le et al. (2011) use a traffic dispersion graph

ethodology to model network traffic over time. This approach is

omposed of two parts: one that learns the static properties of the

raph and a dynamic aspect that models the dependencies of the

emporal dynamics of the TDGs as a function of time. Anomalous

raffic is defined as the traffic caused by different forms of illegal

omputing behaviour, including DDoS attacks, scanning and Inter-

et worms. This TDG model was used to detect anomalies via ir-

egular network traffic occurring over time, as well as to determine

he causes of such anomalies. This TDG method was evaluated us-

ng two data sets of traffic traces and was able to detect a cyber-

ttack with 100% accuracy.

Yao et al. (2019) proposes a high-level attack detection

ramework for network communication data by using a hybrid

NN/LSTM deep learning model called STDeepGraph to learn high-

evel representations of network flow traffic. This work uses a tem-

oral communication graph to model the network communication

tructure and a distance graph kernel to map the communication

nto a high-dimensional space. The CNN component was used for

xtracting the spatial features of the network flow and the LSTM

or the temporal features. Finally, the model uses a softmax clas-

ification function to classify the network traffic as benign or ma-

icious. Two experiments were performed to evaluate the STDeep-

raph using real-world network attack data sets with various at-

acks seeded amongst the traffic flow. The model’s performance

as evaluated using various metrics including accuracy. The results

how that this method outperforms baseline methods in terms of

ccuracy and loss.

The work by Lee et al. (2020) proposes a deep learning model

hat takes a graph representation of traffic-based data transforms

ver time, and learns the spatio-temporal dynamics of the data.

he model was used to predict the dynamic anomalies by measur-

ng the non-Euclidean distance between the actual values and the

utput predictions. This was done by computing the affinity score

f an existing data entity. Subsequently, a threshold value is es-

ablished to detect anomalous behaviour. This approach was eval-

ated the using two available traffic-related data sets of network

raffic and public transport traffic. The metrics used to evaluate the

odel were the sum of absolute differences for the affinity score

rediction and accuracy for the prediction of existing connections.

he model was shown to have competitive results that were com-

arable to state-of-the art techniques.

. Background information

This section describes background information on the microser-

ices architecture, the process of distributed tracing and the field

f anomaly detection.

.1. Microservices

The microservice architecture (MSA), or microservices, is a

ervice-oriented software architectural design where the applica-

ion is decoupled into several smaller inter-connected services.
3
ach micro service handles one specific business function of the ap-

lication’s overall functionality such as a new user registering or a

atabase query. In a microservices application, a single microser-

ice is a well-defined interface that operates alongside other mi-

roservices but can be developed, tested, scaled and deployed in-

ependently due to the application’s polylithic design. This inter-

ace can be called in response to a user’s RESTful API call or an

PC Sun et al. (2015) .

.2. Distributed tracing

The process of distributed tracing is defined as the capability

o log and monitor the process workflow propagating throughout

 cloud-native distributed system at run-time. In a microservices

pplication, a user’s HTTP request typically requires multiple mi-

roservices resulting in a sequence of operations. This set of mi-

roservices is then recorded as a distributed trace , a detailed log

f the execution path throughout the application. A single trace

s composed of units known as spans which share a traceID . A

ecorded span represents a single microservice operation executed

n response to a user’s HTTP request and sports a unique spanID .

haracteristics recorded in the span include the name, timestamp

nd the duration of the microservice operation being called.

.3. Anomaly detection

Anomaly detection is defined as the discovery of irregular

ehaviour or instances within a data set Anodot (2020) . These

nomalous instances, or outliers, either do not conform to the ma-

ority of the instances in the data set or appear at a greater or

esser frequency. Real-world examples of anomalies include enemy

ctivity detected by military surveillance, ailments displayed by

edical imaging and the presence of cyber-attacks within a com-

uter system. Traditional anomaly detection is described as the

iscovery of individual anomalous instances within a data series,

lso known as pointwise anomaly detection . Anomaly detection can

lso be classified as group anomaly detection (GAD), which refers

o a set of grouped data points whose general collective behav-

or differs from normal data patterns Chalapathy et al. (2018) and

u et al. (2015) .

. Methodology

In this section, we present the novelty of our approach for

raining a DCRNN model, and subsequently using graph-based

nomaly detection to discover cyber-attacks in a microservices ap-

lication.

.1. Overview

Graph-based anomaly detection has been applied to many dif-

erent fields including finance, health care and law-enforcement in

he past, even network level IT security Akoglu et al. (2015) . As far

s we know, the authors for Chen et al. (2019) are the only ones

ho have previously applied this form of anomaly detection to a

icroservices application.

As mentioned in Section 1 , our approach is loosely similar to

hen et al. (2019) . The latter carries out their methodology in a

wo-stage process. In their first stage, they identify clusters of RPCs

elated to each other in terms of application functionality, which

re subsystems of the application as a whole. In their second stage,

 DCRNN was trained for each existing RPC subsystem before mak-

ng predictions and performing anomaly detection. By contrast, we

rain a single DCRNN model with a more general unified RPC traf-

c data set to learn the regular behaviour of the entire application.

his eliminates the need to identify subsystems and train a model

S. Jacob, Y. Qiao, Y. Ye et al. Computers & Security 118 (2022) 102728

f

t

m

p

m

m

n

t

p

c

t

e

W

fi

m

t

D

o

p

4

v

c

a

t

J

o

C

s

s

L

m

4

e

m

o

a

e

e

a

c

T

m

v

r

G

w

d

R

A

a

t

a

n

l

t

o

i

o

p

4

e

b

t

p

t

R

R

i

i

c

c

d

e

m

4

i

d

g

t

i

t

[

4

g

t

e

M

t

t

or every subsystem. Using a single model to detect anomalous

raffic with a more unified data set rather than multiple subsystem

odels as proposed by the RPC clustering approach promotes sim-

licity and makes the single model more robust. The novelty of our

ethodology is that we provide a more simplified and generalized

ethod for training a DCRNN to learn the spatial and temporal dy-

amics of microservices traffic and apply graph-based anomaly de-

ection.

The remainder of Section 4 outlines our anomaly detection ap-

roach. First we outline the process of generating synthetic mi-

roservice traffic. Then we describe how a microservices applica-

ion is modelled as a weighted directed graph. We present how the

xecution of microservices calls is represented as a traffic matrix.

e also define the traffic forecasting problem based on this traf-

c matrix. We then outline how diffusion convolution is used to

odel existing spatial dependency structures in graphs and how

he DCRNN model captures the spatio-temporal dependencies. The

CRNN model is then used to predict future traffic and finally we

utline how anomalous traffic is detected by the divergence of the

redicted and the actual traffic.

.2. RPC traffic generation

In the first step of our approach we used an available microser-

ices application. We created synthetic data sets consisting of mi-

roservice RPC traffic data by sending HTTP API requests to said

pplication and recording the resulting traces using a distributed

racing tool. These synthetic data sets can be found in Lee and

acob (2019) . The microservices application we ran is part of an

pen-source benchmark tool called DeathStarBench developed at

ornell University Architecture and group (0 0 0 0) . This benchmark

uite is open-source and its individual applications have been used

everal times in various works, Gan et al. (2020) ; Hou et al. (2020) ;

azarev et al. (2020) ; Somu et al. (2020) generally for performance

anagement and root cause analysis of microservices.

.3. Directed graph representation

In microservices traffic, RPCs are initiated between two differ-

nt services providing collaborative functionality where one service

akes a call to the other. We represent calls from one RPC to an-

ther RPC as nodes on a directed graph. In other words, a node on

 graph represents a source-destination pair of RPCs. A weighted

dge between two nodes exists in the graph when the nodes share

ither a source or destination RPC. This approach promotes scal-

bility, and highlights the architecture of the microservices appli-

ation and the different inter-relations between the microservices.

he directed graph is, in turn, represented as a weighted adjacency

atrix.

More formally, we represent the topology of the application ser-

ices as a weighted directed graph. This graph, known as G is rep-

esented mathematically as shown in Eq. (1) :

 = (N , E , A) (1)

here N is the set of all unique RPC source-destination pair nodes

iscovered in the traffic, E is the set of all edges formed between

PCs when nodes share either a source or destination value, and

 ∈ R NxN is a weighted adjacency matrix that represents level of

djacency of each node to each other. When a single relation be-

ween two source-destination RPC nodes exists, that relation is

ssigned a weighted value. Each relation between two differing

odes a and b is assigned the respective weighted values as fol-

ows: when a and b share the same RPC source or destination

here is both an edge from a to b and from b to a with a weight

f 0.5. When one node’s source is another node’s destination, there

s a dependency edge from a to b (or from b to a) with a weight
4
f 1.0. The procedure for constructing this adjacency matrix is dis-

layed in Algorithm 1 .

Algorithm 1: Build an Adjacency Matrix.

Input : An RPC Node Set: N

Output : The adjacency matrix: A

A ← empty matrix(shape = len(N) * len(N));

for i ← 0 to len(N) do

for j ← 0 to len(N) do

if N[i].src == N[j].src or

N[i].dst == N[j].dst then

V [j, i] ← 0 . 5 ;

V [i, j] ← 0 . 5 ;

end

if N[i].src == N[j].dst then

V [j, i] ← 1 ;

end

if N[i].dst == N[j].src then

V [i, j] ← 1 ;

end

end

end

.4. Traffic matrix representation

As a microservices application executes, a set of attributes for

ach node is represented as an N x M matrix where N is the num-

er of vertices in the directed graph and M is the number of at-

ributes for each node. For our work, we are concerned with the

articular case where a single attribute representing the applica-

ion traffic is stored. This value is simply the number of times the

PC pair executes. This traffic matrix is obtained from a log of all

PC calls as follows.

We define a series of T ′ historical time steps. For the simplic-

ty of our experiment, let each time step be of equal duration. We

terate through the logged RPC calls and for each time step, we

ompute the traffic on each node, that is the number of times the

orresponding source-destination RPC call is executed. Given the

irected graph G , we are returned a series of traffic matrices at

very time step from X t−T ′ +1 to X t , where X t denotes the traffic

atrix X at time step t .

.5. Traffic forecasting

In the field of mathematics, the definition of traffic forecasting

s to predict future traffic activity given previously learned traffic

erived from a network domain Li et al. (2017) . Given the directed

raph G defined in Section 4.3 and the time series of T ′ traffic ma-

rices from Section 4.4 , our goal for the traffic forecasting problem

s to define a function that maps T ′ RPC graph signals at time step

 to T future time steps as outlined in Eq. (2) :

 X

(t−T ′ +1) , . . . , X

(t) ; G] h (.) −−→

[X

(t+1) , . . . , X

(t+ T)] (2)

.6. Diffusion convolution

GCNNs are designed to learn complex data representations from

raphs. One means of defining such representations is to model

he spatial dependency structures of directed graphs. This mod-

lling allows us to capture the stochastic features of the traffic

allick et al. (2020) . In our experiment, we use the DCRNN model

o train the RPC traffic modelled on G using a diffusion convolu-

ion methodology by relating the traffic flow to a diffusion process

S. Jacob, Y. Qiao, Y. Ye et al. Computers & Security 118 (2022) 102728

Fig. 1. System Architecture of the Diffusion Convolutional Recurrent Neural Network. The encoder and decoder components are recurrent neural networks composed of

DCGRU layers with the ReLu activation function. The time series of RPC graph matrices input data is entered into the encoder, trained iteratively using backpropagation and

the final state is used to initialize the decoder. The decoder then outputs RPC predictions based on ground-truth values at testing time.

A

p

a

b

t

d

s

v

W

w

a

S

f

a

c

o

u

4

d

d

R

e

t

s

p

e

t

m

c

d

G

e

C

e

i

u

h

w

fi

r

t

a

D

D

d

4

d

n

t

m

s

n

t

t

R

a

b

c

p

d

e

t

M

w

g

f

twood and Towsley (2016) . This process can described as a sim-

le random walk on G from one node to its neighbor. Furthermore,

ctive traffic flow from a single node to neighbouring nodes can

e modelled as a weighted distribution of infinite random walks

hroughout G . We also include the diffusion process in the reverse

irection so that model can learn from both upstream and down-

tream traffic Li et al. (2017) . Given G , the resulting diffusion con-

olution operation over traffic attribute matrix X is defined as:

 �G X =

K−1 ∑

d=0

(W O (D

−1
O A) d + W I (D

−1
I A) d) X (3)

here K represents the maximum number of diffusion steps

llowed; A represents the adjacency matrix for G defined in

ection 4.3 ; D

−1
O

A and D

−1
I

A are the transition matrices for the dif-

usion process and the reverse diffusion respectively; W O and W I

re the learnable filters applied to the bidirectional diffusion pro-

ess, and D I and D O represent the in-degree and out-degree diag-

nal matrices which provide the capability to learn from both the

pstream and downstream traffic.

.7. Temporal dependency modelling

To leverage the DCRNN model to capture the temporal depen-

encies of the microservices traffic, we implement an encoder-

ecoder architecture of an RNN. The encoder component takes the

PC traffic matrices along the time series as input and the data is

ncoded into a vector representation. The decoder then reads from

his vector and predicts the expected traffic output of future time

teps given previously learned ground truth observations.

The Gated Recurrent Unit (GRU) Chung et al. (2014) is a sim-

le, but well-defined variant of an RNN used for designing this

ncoder-decoder architecture. For our work, both the spatial and

emporal dependency modelling are combined by replacing the

atrix multiplication functionality of the GRU with the diffusion

onvolution operation defined in Eq. (3) . This leads to the pro-

uction of the Diffusion Convolutional Gated Recurrent Unit (DC-

RU). These cells are stacked together to form a series of lay-

rs in a sequence-to-sequence fashion to finalize the DCRNN

han et al. (2020) . The architecture of the DCRNN, including the

ncoder-decoder framework, is displayed in Fig. 1 . The functional-
5
ty defined in Eq. (4) constitutes the DCGRU cell:

r t = σ (W r�G [X t , h t−1] + b r)

t = σ (W u�G [X t , h t−1] + b u)

c t = tanh (W c�G [X t (r t � h t−1] + b c)

 t = u

t
� h t−1 + (1 − u

t) � c t (4)

here X t and h t represent the input traffic graph matrix and the

nal state at time step t respectively; r t , u t and c t represent the

eset gate, update gate and cell state at time step t ; �G represents

he diffusion convolution operation defined in Eq. (3) and W r , W u

nd W c are the corresponding filters applied to each equation. This

CGRU cell is used to build the RNN layers. These layers allow the

CRNN model to train with sequential data and capture long-term

ependencies Li et al. (2017) and Mallick et al. (2021) .

.8. Training the DCRNN model

By implementing both the spatial and temporal data modelling

escribed above, the DCRNN is trained to learn both the spatial dy-

amics of the adjacency matrix A defined in Section 4.3 and the

emporal dependencies within the time series from Section 4.4 si-

ultaneously Li et al. (2017) .

During the training phase, the adjacency matrix A and the time

eries of traffic matrices are fed into the DCRNN’s encoder compo-

ent as input and the final state at the time step t is used to ini-

ialize the decoder component as illustrated in Fig. 1 . To discover

he temporal dependencies and predict the future time series, the

NN layers, composed of DCGRU cells, are trained using backprop-

gation through time, where the states and input data are trained

y the model iteratively over a number of epochs. Finally, the de-

oder predicts the output for T future time steps. In the testing

hase, the ground truth observations are replaced by output pre-

ictions generated by the trained model. The DCRNN model is then

valuated by learning the weight matrices in Eq. (3) by minimizing

he mean absolute error (MAE) loss function:

AE =

1

s

s ∑

i =1

| y i − ˆ y i | (5)

here s represents the number of data samples, y i is the observed

round truth value and ˆ y i is the prediction returned by the model

or the i th training data sample.

S. Jacob, Y. Qiao, Y. Ye et al. Computers & Security 118 (2022) 102728

4

i

t

w

w

a

i

E

a

5

l

v

t

e

w

i

i

p

u

c

q

d

d

t

p

a

i

5

D

s

p

v

h

w

w

f

J

c

o

t

d

c

t

u

a

s

a

a

b

m

v

d

p

u

t

5

c

t

5

d

c

p

a

d

c

i

t

c

5

A

s

2

a

v

T

s

(

t

i

c

5

e

d

(

t

e

m

P

t

j

t

t

t

5

p

w

s

.9. Anomalous RPC detection

After the DCRNN model returns RPC traffic predictions for test-

ng data, similar to Chen et al. (2019) , we perform anomaly detec-

ion in order to detect irregular RPC node traffic. The most suitable

ay to do this is to define a threshold value on the prediction error

hich is the absolute difference between the ground truth values

nd the output predictions. Given that X t
i

is the value of RPC node

 at time step t , the respective prediction error is calculated where

t
i

= X t
i

− ˜ X t
i
. These thresholds are defined as follows where H i is

n upper and lower threshold for node i :

• calculate both the mean μi =

1
n

∑ n
t= i x i and standard deviation

σi =

√

(x i −μi)
2

n for E t

• set the upper and lower limits for the distribution of each RPC

node entry in E t using the following formula H i = μi ± (2 ∗ σi)

. Experiment

In this section, we outline the microservices application se-

ected for our work, DeathStarBench and its individual microser-

ices, we describe the software environment and tools used for

he instrumentation of our application, present the results of our

xperiment and finally we outline the software libraries and hard-

are used to carry out the experiment. We present our main work,

n which three cyber-attacks are simulated against the application

n a series of experiments using penetration testing. For each ex-

eriment, the microservices traffic flow was monitored and logged

sing distributed tracing and the data sets of microservice appli-

ation activity were generated using the distributed traces. Subse-

uently, the DCRNN model was trained and evaluated using the

ata as described in Section 4.8 and the threshold-based anomaly

etection methodology defined in Section 4.9 was applied to de-

ect the cyber-attacks. We observe that because each attack is com-

rised of a large number of concurrent API requests, we can detect

 group anomaly by calculating the computed traffic within a spec-

fied time window.

.1. DeathStarBench

The microservices application used for our experiment was

eathStarBench, an open-source benchmark suite comprised of

everal microservice-based applications. Available end-to-end ap-

lications include a social networking app, a banking system ser-

ice, a media service where a user can post movie reviews and a

otel reservation service Gan et al. (2019a) . For this experiment,

e selected the social networking application, known as SocialNet-

ork . The DeathStarBench suite itself was written in several dif-

erent programming languages including Python 3.7, node.js, Java,

avaScript, PHP, C and C++.

The social networking app emulates a broadcast-style network

omprised of registered users and the follow relationships from

ne user to another. This social networking application supports

he following actions: a registered user logging in with their cre-

entials, uploading posts embedded with text, hyper-links or other

ontent, broadcasting said posts to other users, a user reading

heir fellow users’ activity and receiving recommendations on what

ser(s) to follow (Gan et al., 2020). The overall architecture of the

pplication is displayed in Fig. 2 .

When the social network application is running, a client user

ends a HTTP URL request which is received by a load balancer

nd web browser component implemented by Nginx . The following

re API requests that can be sent to the app’s logic over the load

alancer:

• wrk2-api/user/register
6
• api/user/login

• wrk2-api/post/compose

• wrk2-api/user-timeline/read

• wrk2-api/home-timeline/read

The web server delegates these requests to the appropriate

icroservice to perform requested functionality. Additional ser-

ices for other operations can also be subsequently called such as

atabase storage, search queries and other functionality. The ap-

lication’s backend server uses MongoDB for persistent storage of

ser profiles, posts, media content and user recommendations, and

he data structure stores Memcached and Redis for caching.

.2. Software environment & tools

Here, we outline the software environment in which the mi-

roservices application was executed for our experiment, especially

he software tools used to instrument the application.

.2.1. Docker

Docker is a set of Platform-as-a-Service (PaaS) tools used for

eveloping, executing and deploying containerized software appli-

ations to a virtual software environment (IBM, 2021). Docker is

rimarily used to combine and store an individual’s source code

long with their required tools, libraries and settings in stan-

ardized executable packages called containers . These isolated

ontainers are used to deliver reusable light-weight functional-

ty, which is suitable for implementing the microservices architec-

ure (Jaramillo et al., 2016). In our experiment, each individual mi-

roservice for the application is run as a Docker container instance.

.2.2. Thrift

Thrift is a binary communication protocol developed by the

pache Software Foundation that is used for creating and defining

ervices including user-defined operations and objects (Slee et al.,

007). Thrift functions as an interface definition language which

llows the defined services to operate and interface with other ser-

ices developed across several different programming languages.

he Thrift language also provides a scalable framework for client-

erver RPCs, which is suitable for RPCs sent to microservices

 Gan and Delimitrou, 2018). For our experiments, the interfaces

hat represent each microservice in the application are defined us-

ng a .thrift written in the Thrift language and the different services

ommunicate with each other using Thrift RPCs.

.2.3. Jaeger

Jaeger is an open-source software tool used for tracing the

xecution path of microservices calls propagating throughout a

istributed application in response to a user’s HTTP request

 Authors, 2021). In our experiment, the application is configured

o use the Jaeger tool in the form of three separate components

ach with its own functionality. The jaeger-agent is a network dae-

on that listens for microservice calls, or spans, over a User Data

rotocol (UDP) connection; the jaeger-collector collects and stores

he span data and the jaeger-query functions as a query for the

aeger-collector and a UI for accessing and observing the returned

races. We also configured the jaeger-collector to use the multi-

enant ElasticSearch API as a storage backend for the returned

races as JSON documents.

.3. Data generation

Once the social networking application was operationalized, we

erformed initial work to construct the topology of the social net-

ork. We registered 960 users, established 18,800 follow relation-

hips between various users, and constructed a directed graph

S. Jacob, Y. Qiao, Y. Ye et al. Computers & Security 118 (2022) 102728

Fig. 2. The Microservices Architecture for the Social Networking Application. On the client side, a user’s HTTP request is be forwarded to the application’s Nginx web

browser. Application requests are then delegated to the various microservice interfaces in the application logic. On the server side, persistent storage of data is handled by

MongoDb and data caching is handled by Redis or Memcached . In this application, microservice calls recorded using the Jaeger daemon, the data is stored in the Jaeger

Collector and the Jaeger Query sends queries to the collector component. The Jaeger instrumentation also uses the ElasticSearch API and the Kibana interface for storing

and viewing the data as JSON documents respectively.

w

u

u

a

a

i

F

a

a

t

t

T

T

r

f

t

t

a

e

n

d

o

A

a

t

a

f

fi

c

5

r

c

d

d

o

Fig. 3. Learning curves for Training and Validation loss. These loss values were

calculated using the mean absolute error metric. The loss values were shown to

converge nicely over a period of 50 epochs with a divergence smaller than 0.1 in

measurement.

f

f

r

t

a

t

t

0

u

e

t

i

p

d

l

v

F

h

b

here the nodes represent the users, and the edges represent the

ser-follow relationships. Subsequently, we ran microservices calls

sing API requests and HTTP workload traffic generators to gener-

te both regular application traffic and simulate real world cyber-

ttacks against the application.

For our work, the social networking application was executed

n three separate experiments each with a different cyber-attack.

or each experiment, both the regular application traffic and the

nomalous traffic caused by the seeded cyber-attacks were gener-

ted. The regular application traffic was generally composed of RPC

raffic returned in response to API requests to upload users’ posts

o the application using the API request call wrk2-api/post/compose .

he RPC nodes for the post composition functionality are listed in

able A.4 . Other RPC calls contained in the traffic include calls to

egister new users, for users to log into the app and read up on

ellow users’ timelines.

In each experiment, we generated synthetic data sets of times-

amped, distributed traces resulting from the microservice RPC

raffic sampled over 2 minutes. The resulting data sets contained

pproximately 18,500 microservice calls. From these data sets, we

xtracted a total of 63 unique microservice source-destination pair

odes. Section Appendix A Using this set of nodes, we produced a

irected graph representation of the application’s architecture G as

utlined in Section 4.3 and from there, an adjacency matrix using

lgorithm 1 . Subsequently, as outlined in Section 4.4 , we extracted

 series of time windows from the traffic data and computed the

raffic for each RPC node in every designated time window. We set

side 85% of the data as a training set and the remainder was used

or testing. To detect the cyber-attacks, we analyzed the RPC traf-

c within the time window from the testing data set where the

yber-attacks were seeded.

.4. DCRNN model

For our experiment, the DCRNN model used was composed of 2

ecurring DCGRU layers, defined in Section 4.7 . These layers were

omposed of 150 units each and configured with the bidirectional

iffusion convolution operation presented in Eq. (3) . The maximum

iffusion step K = 2, and using the traffic forecasting approach

utlined in Section 4.5 , the model predicts the RPC traffic matrix
7
or a single future time step. To implement the bidirectional dif-

usion process defined in Section 4.6 , we used the filter type dual-

andom walk to model the time-series parameters. To load the spa-

ial graph data and build the model, the adjacency matrix defined

bove was included as a hyper-parameter. For the training process,

he hyper-parameters for the DCRNN model that produced the op-

imal performance are listed as follows: the base learning rate =

.01, the learning rate decay ratio = 0.1, the Adam optimizer was

sed and the DCRNN model was trained over 50 epochs with an

arly stopping mechanism set after 15 epochs.

To investigate the effect of spatial and temporal modelling by

he DCRNN, we evaluate the model’s performance by computing

ts MAE metric defined in Eq. (5) as a measure of the model’s out-

ut prediction error. To perform this evaluation, given the training

ata set defined above, we set aside 70% of the data set to calcu-

ate the training loss, and the remainder was used to calculate the

alidation loss. The learning curves for the metric is displayed in

ig. 3 which shows that the loss values starts out as moderately

igh, gradually lowering until both curves flatten. Because the gap

etween the training loss and the validation loss is small, and both

S. Jacob, Y. Qiao, Y. Ye et al. Computers & Security 118 (2022) 102728

v

m

5

p

n

v

u

r

5

w

t

p

j

r

i

l

a

fi

a

(

u

e

a

A

t

M

d

o

c

r

f

a

n

o

b

o

e

w

T

R

n

a

f

u

h

p

o

Fig. 4. Brute Force Password Guessing Attack. The application traffic for the RPC

nodes that represent the login RPC functionality are shown to exceed their defined

thresholds while the RPC traffic for composing a user’s posts do not meet their

defined threshold.

c

r

t

t

T

b

5

h

b

c

t

b

s

a

m

c

t

i

d

a

a

b

t

t

A

a

(

a

n

o

u

t

d

alues converge to a point of stability, we observe that the DCRNN

odel proves to be a reasonably good fit for the data.

.5. Cyber attacks

We describe the cyber-attacks investigated and executed using

enetration testing, and the effect each attack has on the social

etworking application. To seed these attacks within the microser-

ice RPC traffic in each experiment, scripts were defined to send

ser HTTP requests to simulate each attack as they would occur in

eal-life.

.5.1. Brute force password attack

As we outlined in our earlier work (Jacob et al., 2021), a pass-

ord guessing, or brute force attack, is an attempt to gain unau-

horized access to an online system by systematically guessing

asswords until a correct one is found (Dhanabal and Shanthara-

ah, 2015). This results in an abnormally large quantity of incor-

ect login traffic over a short period of time. This type of cyber-

ntrusion is detected by monitoring the incorrect login application

ogs. A viable countermeasure for this cyber-attack is that many

pplications will have an account lockout policy where a speci-

ed number of incorrect login attempts to a single account over

 short period of time will result in the account being locked out

 Conrad et al., 2016).

The microservice functionality of the application to log into a

ser’s account is called via the api/user/login API call which is del-

gated to the microservice user-service . The following lists the steps

nd sequence of microservice operations called in response to the

PI api/user/login :

• Login : the user-service calls this operation in response to a API

call

• MmcGetLogin : the application checks if user’s credentials are

cached in Memcached

• MongoFindUser : user is logging in for the first time and

searches for credentials in MongoDB

• MmcSetLogin : the application has found user in MongoDb and

caches the user in Memcached

If a user logs into the social network application correctly for

he first time, the API request sequence ends with the operation

mcSetLogin and the application caches their verified login cre-

entials. For a subsequent login, the API sequence ends with the

peration MmcGetLogin function. An incorrect login request con-

ludes with either the operation MmcGetLogin if the user had cor-

ectly logged in before or MongoFindUser if they were logging in

or the first time.

A brute force attack can be used to a crack a password using

ny possible combination of keyboard characters including letters,

umbers, and special characters. This approach results in hundreds

f login requests per second (Varonis, 0 0 0 0). In this experiment, a

rute force attack was injected into the testing data set at a single

bserved time window t . This malicious form of computing will

nter every existing keyboard character as an attempt at a pass-

ord and will be composed of ninety-two incorrect login requests.

he resulting prediction error for a set of eight randomly selected

PC pair nodes at t is displayed in Fig. 4 , including the random RPC

odes and their irregular traffic which represent the brute force

ttack and a number of select nodes from the regular application

unctionality to compose and upload user’s posts.

In Fig. 4 , we observe the traffic for the prediction error val-

es for a subset of RPC nodes at time step t and the threshold

 i for each node. We see that for a select number of these dis-

layed nodes, their returned traffic exceeds their defined thresh-

lds. These anomalous nodes represent the login functionality
8
alled during the attack and are referenced in Table A.1 and their

espective functionality is outlined as follows:

• 0 0 0 0 : a client user makes a request to the application with the

api/user/login API call

• 0 0 01 : the application directs the user’s request to the nginx

load balancer

• 0 0 04 : the application accepts a request by a user that previ-

ously logged in and calls operation Login

• 0 0 05 : the app checks if a user’s credentials are cached in the

Memcached and calls operation MmcGetLogin

As indicated above, the RPC traffic prediction error traffic for

hese four RPC nodes exceed their defined thresholds compared to

he random nodes from the regular RPC data listed in Table A.4 .

herefore, the conclusion of this experiment was that the injected

rute force attack was successfully detected.

.5.2. Batch registration of bot accounts

A batch registration attack is a form of illegal computing be-

aviour where a hacker creates multiple fake user accounts, or

ot accounts, in large quantities (Chen et al., 2019). These fake ac-

ounts are used for a variety of purposes, usually innocuous ac-

ions such as the falsely increasing the number of ’likes’ on a Face-

ook page, or more malicious ones like spreading malware on a

ystem application for hacking services and for fraudulent online

ctivity to sway political opinion. Sciences (0 0 0 0) stated that a

eans of protecting one’s social media application from bot ac-

ount creation is to establish a baseline of regular application ac-

ivity and then observe abnormal requests that indicate bot attacks

.e., mass user account creation originating from the same IP ad-

ress (Pathak, 2014).

In the social networking app, the API request wrk-

pi/user/register creates a new user profile. Therefore, by calling

 multitude of these API requests within a short time span, a

atch registration attack can be seeded amongst the microservices

raffic. The related RPC node IDs that comprise the functionality

o register a new account are listed in Table A.2 . Like the login

PI request, the request to register a new user is delegated to the

pp’s user-service and the operation RegisterUserWithId is called.

Typically, bot accounts are created in tens or hundreds

 Pathak, 2014). In this experiment, we seeded a set of wrk2-

pi/user-timeline/read API requests at time step t to create 100

ew accounts. The resulting prediction error values for a subset

f eight random RPC nodes at time step t were set aside for eval-

ation. These nodes were comprised of traffic data resulting from

he batch registration attack and regular app functionality and are

isplayed in Fig. 5 as well as their respective defined thresholds.

S. Jacob, Y. Qiao, Y. Ye et al. Computers & Security 118 (2022) 102728

Fig. 5. Batch Registration of Bot Accounts. The traffic values for the RPC nodes

that represent the account creation are shown to exceed their thresholds while the

nodes for composing a user’s posts do not meet their defined threshold.

r

i

n

t

t

5

o

t

s

g

l

s

s

a

w

f

o

e

w

u

t

g

r

s

1

i

c

s

l

t

s

v

v

Fig. 6. Distributed denial of service HTTP Flood Attack. The traffic for the RPC

nodes to return a users activity timeline exceed their set threshold values while

the nodes for composing a user’s posts do not meet their threshold values.

a

c

a

l

i

l

t

R

H

5

t

t

w

p

i

N

G

6

t

n

m

c

v

i

m

C

s

t
As illustrated in Fig. 5 , the prediction error for the nodes that

epresent the batch registration attack exceed their set thresholds,

n contrast to the normal microservices data. These anomalous

odes are listed in Table A.2 and outlined as follows:

• 0 0 08 : a client user makes a request to the app with the wrk2-

api/user/register API call

• 0010 : the nginx load balancer calls the operation RegisterUser

• 0011 : app delegates the request to the user-service and calls the

operation RegisterUserWithId

• 0012 : the user-service calls an operation MongoInsertUser to

register the new user with MongoDb

We determine that these anomalous prediction error values for

he nodes in the Fig. 5 are the result of the simulated batch regis-

ration, showing that the batch registration was detected.

.5.3. Distributed denial of service

A third cyber-attack explored in our work is a distributed denial

f service (DDoS) attack. The attacker aims to overwhelm a sys-

em’s resources with multiple executions of requests that leaves a

ervice unavailable to legitimate users. A DDoS attack can be cate-

orized as one of three types: volumetric, protocol or application-

ayer. The application-layer variety supports requests sent to web

ervers over HTTP and the magnitude of such attacks are mea-

ured in requests per second (Revuelto et al., 2017). The DDoS

ttack we performed in our project was a HTTP Flooding attack

hich targets both web servers and application-level features. This

orm of cyber intrusion can be comprised of multiple HTTP GET

r POST requests which can collectively cause a denial-of-service

ffect (Radware, 2021).

In the social network application, an available GET request,

rk2-api/user-timeline/read , can be called to return a timeline of a

ser’s application activity including the composition of uploaded

ext posts to the application by said user. The web-server dele-

ates this API request to the microservice user-timeline-service . The

esulting RPC then calls the operation ReadUserTimeLine in re-

ponse to this API request.

The magnitude of application-layer attacks are between 50 and

00 requests per second (Imperva, 2021). For this experiment, we

njected a HTTP Flood attack into the microservices RPC traffic

omposed of 100 GET requests for users’ application timelines to

imulate a Denial-of-Service intrusion on the application. In a real-

ife scenario, this attack causes a disruption to the app’s user-

imeline-service microservice and hinder the service operations to

tore and cache said user timelines in the MongoDB and Redis ser-

ices respectively.

After the prediction error was returned by the trained model,

alues for a number of random RPC nodes that comprise the DDoS
9
ttack were compared against random nodes from the regular mi-

roservices traffic. These RPC nodes that comprise the DDoS attack

re outlined in Table A.3 . The prediction error values for these se-

ected nodes and their set thresholds for time step t are displayed

n Fig. 6 .

In Fig. 6 , we observe the prediction error for a number of se-

ected nodes resulting from the DDoS attack at time step t exceed

heir node’s set thresholds and are described as follows:

• 0014 : the client user sends the wrk2-api/user-timeline/read API

call to the app’s web server and produces its child node de-

noted as 0015

• 0015 : the web server calls the ReadUserTimeline operation and

delegates the API call to the user-timeline-service microservice

• 0016 : the API request calls the ReadUserTimeline from the ac-

tual user-timeline-service

• 0018 : the microservice calls an operation MongoFindUser-

Timeline to find a user’s timeline activity in MongoDb

From these observations, it was determined that the anomalous

PC node traffic to read a user’s timeline as part of the simulated

TTP Flooding Attack was detected.

.6. Software & hardware environment

The microservices application was operationalized using an In-

el Core i3-2370 CPU processor. The real-world cyber security at-

acks were injected into the microservices traffic, and the RPC data

as generated also using this device. The actual coding for the ex-

eriment was executed using scripts written in Python 3.7+ and

ncluded various software libraries including Tensorflow 1.13 and

umpy 0.19.0. The DCRNN model was trained using an NVIDIA

PU server with a four-card Tesla SXM2.

. Limitations

For our experiment, we train a single DCRNN model to learn

he behaviour of the entire microservices application. It is normally

ecessary to model the entire application as it is difficult to deter-

ine where an attacker will target the application.

However, one drawback to our approach is that it is diffi-

ult to maintain a large and unified model of general microser-

ice call traffic. Microservices are updated and old functionality

s deprecated regularly, so there is a need to retrain the entire

odel which costs time and resources. As mentioned in Section 1 ,

hen et al. (2019) uses multiple DCRNN models to learn a different

ubsystem of the application’s functionality which takes less time

o train. A limit to this is that their approach would not be able to

S. Jacob, Y. Qiao, Y. Ye et al. Computers & Security 118 (2022) 102728

d

a

t

c

c

a

i

t

d

a

b

p

c

t

p

a

N

w

t

c

l

m

s

n

D

c

i

w

o

a

e

(

c

t

s

o

d

m

d

p

t

I

t

p

z

t

t

i

(

r

t

v

t

b

m

s

m

r

7

m

c

u

o

R

t

t

t

p

d

t

t

t

a

i

a

a

e

u

fi

o

a

u

c

t

i

u

f

a

D

c

i

C

D

s

Y

i

A

t

P

u

R

etect cyber-attacks which would span multiple subsystems of the

pplication. This is not a limitation of our approach.

In our approach, we monitor the traffic flow of the application

o detect cyber-attacks simulated using the microservice HTTP API

alls which are sent over the application layer of the system. A

yber-attack that does not take place over the application layer is

 Man-in-the-Middle (MITM) attack. A MITM involves an attacker

ntercepting the traffic between a legitimate user and the applica-

ion by placing malicious WiFi hotspots on the network layer. Our

istributed tracing tool would not be able to monitor the resulting

ctivity caused by the attacker. This cyber-attack can be mitigated

y running the application on a Virtual Private Network (VPN) that

rovides cyber security by encrypting the networking traffic, in-

luding the internet connection.

A means of performing a DoS attack against the application is

o carry out a TCP-SYN flooding attack which establishes multi-

le client-server connections. In the case of our application, the

ttacker creates multiple TCP connections with the application’s

ginx web server to deny legitimate users access. Our approach

ould not be able to detect this attack because it takes place at the

ransport layer. This attack can be mitigated by implementing SYN

ookies, a form of cryptographic hashing that verifies the client as

egitimate (Imperva, 0 0 0 0).

Our ML approach proposes a group-based anomaly detection

ethod that detects attacks that generate a high volume of the

ame RPC in a small time window. An attack our approach would

ot be able to detect is a cross-site scripting (XSS) attack. In the

eathStarBench application, a malicious user could upload a post

ontaining a malicious web link that a legitimate user clicks result-

ng in that user’s privileged information being stolen. Our method

ould not be able to detect this form of intrusion since it requires

nly a single composePost API request. A countermeasure used

gainst this cyber-attack is to use appropriate HTTP response head-

rs to prevent HTTP responses that contain any HTML or JavaScript

 PortSwigger, 0 0 0 0).

Our anomaly detection method is data-driven and relies on ma-

hine learning. If the ML-based model or the data are not pro-

ected, the security of the model is at risk of becoming a soft

pot. Poisoning Apruzzese et al. (2019) , as an example, is a type

f adversarial machine learning method that perturbates training

ata in order to poison the model, therefore affecting the decision-

aking at run-time by altering the threshold value for the anomaly

etection model. The corresponding defences can be realized by

rotecting both data and/or the model. For data, sanitization de-

ects and removes anomalous samples based on predefined rules.

n addition, sanitization works on trained models by continuously

raining the model on new data, thereby mitigating the impact of

oisoned samples. For our application, both data and model saniti-

ation are not feasible as it is difficult to define rules and no new

raining data is available. Another promising countermeasure is to

rain the model using data from randomized sources which make

t difficult for the hacker to devise an effective adversarial attack

 Joseph et al., 2013).

In our approach, the anomaly detection threshold value is de-

ived by minimising the prediction error for every node at run-

ime. A second form of adversarial machine learning attack that

iolates the model’s integrity can be planted at testing time when

he trained DCRNN model is operational. The anomaly detector has

een deployed, so the attacker aims to subvert its behaviour by

odifying malicious ground truth values to not meet the threshold

etting and would not be detected as an anomaly. A viable counter-
10
easure is to smooth the decision boundaries of the model, thus

educing the effects caused by adversarial attacks (Xu et al., 2009).

. Conclusion

This work established that the polylithic behaviour of a

icroservices-based application can be modelled as a microservice

all graph and a distributed tracing tool can be used to monitor

sers’ API requests to the application. We proposed that a state-

f-the-art graph convolution network, the Diffusion Convolutional

ecurrent Neural Network, can be trained to learn the microservice

raffic and discover the spatial and temporal dependencies within

he data. Our aim was to perform traffic forecasting to predict fu-

ure microservice traffic for future time steps. We evaluated the

erformance of the DCRNN by applying threshold-based anomaly

etection to detect abnormal microservices activity that indicated

he presence of cyber security attacks. This paper is a continua-

ion of our previous paper where distributed tracing can be used

o detect cyber security attacks in microservices.

Using this approach, we detected three different forms of cyber-

ttack against our application: a brute force attack, a batch reg-

stration of bot accounts and a DDoS HTTP Flooding attack. An

nomaly detection method was applied by calculating the mean

nd standard deviation. The microservice traffic resulting from

ach attack was compared to the normal application traffic for reg-

lar application requests at run-time. The difference in RPC traf-

c volume was proven to be greater than two standard deviations

utside the mean which satisfies the empirical rule. Because these

ttacks can be identified by calculating the greater, irregular vol-

me of the microservice call traffic, our anomaly detection method

an be classified as a group anomaly detector.

For this work, the DCRNN model was used to carry out RPC

raffic prediction. The model predicted the number of times an RPC

s called in a specific time period. Distributed tracing can also be

sed to capture the duration of the microservice calls. Therefore,

uture work could include the detection of irregular microservice

ctivity based on their execution time.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

RediT authorship contribution statement

Stephen Jacob: Writing – original draft, Methodology, Software,

ata curation, Formal analysis, Visualization, Investigation, Re-

ources. Yuansong Qiao: Validation, Software, Resources. Yuhang

e: Writing – review & editing, Validation. Brian Lee: Conceptual-

zation, Writing – review & editing.

cknowledgments

This publication has emanated from research conducted with

he financial support of Athlone Institute of Technology under its

residents Seed Fund (2021) and Science Foundation Ireland (SFI)

nder Grant Number SFI 16/RC/3918, co-funded by the European

egional Development Fund .

https://doi.org/10.13039/501100008530

S. Jacob, Y. Qiao, Y. Ye et al. Computers & Security 118 (2022) 102728

A

Destination

nginx-web-server + /api/user/login

login nginx-web-server + /api/user/login

login nginx-web-server + Login

user-service + Login

user-service + Login

user-service + MmcGetLogin

user-service + MongoFindUser

user-service + MmcSetLogin

Destination

nginx-web-server + /wrk2-api/user/register

ister nginx-web-server + /wrk2-api/user/register

ister nginx-web-server + RegisterUser

user-service + RegisterUserWithId

user-service + MongoInsertUser

social-graph-service + InsertUser

social-graph-service + MongoInsertUser

Destination

nginx-web-server + /wrk2-api/user-timeline/read

read nginx-web-server + /wrk2-api/user-timeline/read

 /read nginx-web-server + ReadUserTimeline

user-timeline-service + ReadUserTimeline

user-timeline-service + ReadUserTimeline

user-timeline-service + RedisFind

user-timeline-service + MongoFindUserTimeline

user-timeline-service + RedisUpdate

post-storage-service + ReadPosts

post-storage-service + MemcachedMget

post-storage-service + MongoFindPosts

post-storage-service + MmcSetPost
ppendix A

Table A1

RPCs for Brute Force Attack.

ID Source

0000 -

0001 nginx-web-server + /api/user/

0002 nginx-web-server + /api/user/

0003 nginx-web-server + Login

0004 -

0005 user-service + Login

0006 user-service + Login

0007 user-service + Login

Table A2

RPCs for Batch Registration Attack.

ID Source

0008 -

0009 nginx-web-server + /wrk2-api/user/reg

0010 nginx-web-server + /wrk2-api/user/reg

0011 nginx-web-server + RegisterUser

0012 user-service + RegisterUserWithId

0013 user-service + RegisterUserWithId

0014 social-graph-service + InsertUser

Table A3

RPCs for Distributed DoS Attack.

ID Source

0015 -

0016 nginx-web-server + /wrk2-api/user-timeline/

0017 nginx-web-server + /wrk2-api /user-timeline

0018 nginx-web-server + ReadUserTimeline

0019 -

0020 user-timeline-service + ReadUserTimeline

0021 user-timeline-service + ReadUserTimeline

0022 user-timeline-service + ReadUserTimeline

0023 user-timeline-service + ReadUserTimeline

0024 post-storage-service + ReadPosts

0025 post-storage-service + ReadPosts

0026 post-storage-service + ReadPosts
Table A4

RPCs for Regular Traffic.

ID Source Destination

0027 - nginx-web-server + /wrk2-api/post/compose

0028 nginx-web-server + /wrk2-api/post/compose nginx-web-server + /wrk2-api/post/compose

0029 nginx-web-server + /wrk2-api/post/compose nginx-web-server + ComposePost

0030 nginx-web-server + ComposePost text-service + UploadText

0031 nginx-web-server + ComposePost media-service + UploadMedia

0032 nginx-web-server + ComposePost user-service + UploadUserWithUserId

0033 nginx-web-server + ComposePost unique-id-service + UploadUniqueId

0034 text-service + UploadText user-mention-service + UploadUserMentions

0035 text-service + UploadText url-shorten-service + UploadUrls

0036 text-service + UploadText compose-post-service + UploadText

0037 media-service + UploadMedia compose-post-service + UploadMedia

0038 user-service + UploadUserWithUserId compose-post-service + UploadCreator

0039 compose-post-service + UploadMedia compose-post-service + RedisHashSet

(continued on next page)

11

S. Jacob, Y. Qiao, Y. Ye et al. Computers & Security 118 (2022) 102728

lines

lines

R

A

A

A

A

A

A

C

C

C

C

C

D

G

G

G

G

H

H

I

I

J

J

J

I

K

L

L

L

L

L

L

M

M

M

P

P

P

R

eferences

koglu, L., Tong, H., Koutra, D., 2015. Graph based anomaly detection and descrip-

tion: a survey. Data Min. Knowl. Discov. 29 (3), 626–688 .

nodot. What is anomaly detection?(Accessed on 10/27/.2021), https://www.anodot.
com/blog/what- is- anomaly- detection/ 2020.

pruzzese, G., Colajanni, M., Ferretti, L., Marchetti, M., 2019. Addressing adversar-
ial attacks against security systems based on machine learning. In: 2019 11th

International Conference on Cyber Conflict (CyCon), volume 900. IEEE, pp. 1–18 .
rchitecture S., group) I.L.S.. Github - delimitrou/deathstarbench: Open-source

benchmark suite for cloud microservices. https://github.com/delimitrou/

DeathStarBench , (Accessed on 01/27/2022).
twood, J., Towsley, D., 2016. Diffusion-convolutional neural networks. In: Advances

in neural information processing systems, pp. 1993–2001 .
uthors T.J.. Jaeger: open source, end-to-end distributed tracing. (Accessed on

10/27/2021), https://www.jaegertracing.io/ ; 2021.
halapathy, R., Toth, E., Chawla, S., 2018. Group anomaly detection using deep gen-

erative models. In: Joint European Conference on Machine Learning and Knowl-

edge Discovery in Databases. Springer, pp. 173–189 .
han, V., Gan, Q., Bayen, A., 2020. A graph convolutional network with signal phas-

ing information for arterial traffic prediction. arXiv preprint arXiv:201213479 .
hen, J., Huang, H., Chen, H., 2019. Informer: irregular traffic detection for container-

ized microservices RPC in the real world. In: Proceedings of the 4th ACM/IEEE
Symposium on Edge Computing, pp. 389–394 .

hung, J., Gulcehre, C., Cho, K., Bengio, Y., 2014. Empirical evaluation of gated recur-

rent neural networks on sequence modeling. arXiv preprint arXiv:14123555 .
onrad, E., Misenar, S., Feldman, J., 2016. Eleventh Hour CISSP®: Study Guide. Syn-

gress .
hanabal, L., Shantharajah, S.P., 2015. A study on NSL-KDD dataset for intrusion de-

tection system based on classification algorithms. International journal of ad-
vanced research in computer and communication engineering 4 (6), 446–452 .

an, Y., Delimitrou, C., 2018. The architectural implications of cloud microservices.

IEEE Comput. Archit. Lett. 17 (2), 155–158 .
an, Y., Zhang, Y., Cheng, D., Shetty, A., Rathi, P., Katarki, N., Bruno, A., Hu, J.,

Ritchken, B., Jackson, B., et al., 2019. An open-source benchmark suite for mi-
croservices and their hardware-software implications for cloud & edge systems.

In: Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 3–18 .

an, Y., Zhang, Y., Cheng, D., Shetty, A., Rathi, P., Katarki, N., Bruno, A., Hu, J.,

Ritchken, B., Jackson, B., et al., 2020. Unveiling the hardware and software im-
plications of microservices in cloud and edge systems. IEEE Micro 40 (3), 10–19 .

an, Y., Zhang, Y., Hu, K., Cheng, D., He, Y., Pancholi, M., Delimitrou, C., 2019b. Lever-
aging deep learning to improve performance predictability in cloud microser-

vices with seer. ACM SIGOPS Oper. Syst. Rev. 53 (1), 34–39 .
ochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9

(8), 1735–1780 .
ou, X., Li, C., Liu, J., Zhang, L., Hu, Y., Guo, M., 2020. Ant-man: towards agile power

management in the microservice era. In: SC20: International Conference for

High Performance Computing, Networking, Storage and Analysis. IEEE, pp. 1–14 .
BM I.. What is docker?(Accessed on 10/27/2021), https://www.ibm.com/in-en/cloud/

learn/docker ; 2021.
mperva. (1) new messages! https://www.imperva.com/learn/ddos/syn-flood/ (Ac-
cessed on 01/31/2022).
12
Destination

compose-post-service + RedisHashSet

compose-post-service + UploadUserMentions

compose-post-service + UploadUrls

compose-post-service + RedisHashSet

compose-post-service + RedisHashSet

post-storage-service + StorePost

user-timeline-service + WriteUserTimeline

write-home-timeline-service + FanoutHomeTimelines

compose-post-service + UploadUniqueId

compose-post-service + RedisHashSet

compose-post-service + RedisHashSet

write-home-timeline-service + FanoutHomeTimelines

post-storage-service + StorePost

user-timeline-service + WriteUserTimeline

social-graph-service + GetFollowers

write-home-timeline-service + RedisUpdate

post-storage-service + MongoInsertPost

social-graph-service + RedisGet

social-graph-service + MongoFindUser

social-graph-service + RedisInsert

user-timeline-service + MongoFindUser

user-timeline-service + MongoInsert

user-timeline-service + RedisUpdate

acob, S., Qiao, Y., Lee, B.A., 2021. Detecting cyber security attacks against a mi-

croservices application using distributed tracing. In: ICISSP, pp. 588–595 .
aramillo, D., Nguyen, D.V., Smart, R., 2016. Leveraging microservices architecture by

using docker technology. In: SoutheastCon 2016. IEEE, pp. 1–5 .

oseph, A.D., Laskov, P., Roli, F., Tygar, J.D., Nelson, B., 2013. Machine learning
methods for computer security (dagstuhl perspectives workshop 12371). In:

Dagstuhl Manifestos, volume 3. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, pp. 1–30 .

mperva. What does DDoS mean? | distributed denial of service explained
| imperva. (Accessed on 09/30/2021), https://www.imperva.com/learn/ddos/

denial- of- service/?utm _ campaign=Incapsula- moved; 2021.

ung-Hsiang H.T.D.S.. A gentle introduction to graph neural net-
works (basics, deepwalk, and graphsage). (Accessed on 09/17/2021),

https://towardsdatascience.com/a-gentle-introduction-to-graph-
neural- network- basics- deepwalk- and- graphsage- db5d540d50b3 ; 2019.

azarev, N., Adit, N., Xiang, S., Zhang, Z., Delimitrou, C., 2020. Dagger: towards ef-
ficient rpcs in cloud microservices with near-memory reconfigurable nics. IEEE

Comput. Archit. Lett. 19 (2), 134–138 .

e, D.Q., Jeong, T., Roman, H.E., Hong, J.W.K., 2011. Traffic dispersion graph based
anomaly detection. In: Proceedings of the Second Symposium on Information

and Communication Technology, pp. 36–41 .
ee B., Jacob S.. [dataset] | gitlab | stephenj - repository. (Accessed on

02/04/2022), https://gitlab.com/sri- ait- ie/phd- projects/stephenj/- /tree/
journal _ Branch ; 2019.

ee, J., Bae, H., Yoon, S., 2020. Anomaly detection by learning dynamics from a

graph. IEEE Access 8, 64356–64365 .
i, Y., Yu, R., Shahabi, C., Liu, Y., 2017. Diffusion convolutional recurrent neural net-

work: data-driven traffic forecasting. arXiv preprint arXiv:170701926 .
v, Y., Duan, Y., Kang, W., Li, Z., Wang, F.Y., 2014. Traffic flow prediction with big

data: a deep learning approach. IEEE Trans. Intell. Transp. Syst. 16 (2), 865–873 .
a, X., Dai, Z., He, Z., Ma, J., Wang, Y., Wang, Y., 2017. Learning traffic as images: a

deep convolutional neural network for large-scale transportation network speed

prediction. Sensors 17 (4), 818 .
allick, T., Balaprakash, P., Rask, E., Macfarlane, J., 2020. Graph-partitioning-based

diffusion convolutional recurrent neural network for large-scale traffic forecast-
ing. Transp. Res. Rec. 2674 (9), 473–488 .

allick, T., Balaprakash, P., Rask, E., Macfarlane, J., 2021. Transfer learning with
graph neural networks for short-term highway traffic forecasting. In: 2020 25th

International Conference on Pattern Recognition (ICPR). IEEE, pp. 10367–10374 .

athak, A., 2014. An analysis of various tools, methods and systems to generate fake
accounts for social media. Northeastern University Boston, Massachusetts De-

cember .
olato, M., Sperduti, A., Burattin, A., de Leoni, M., 2018. Time and activity sequence

prediction of business process instances. Computing 100 (9), 1005–1031 .
ortSwigger. What is cross-site scripting (XSS) and how to prevent it? | web se-

curity academy. https://portswigger.net/web-security/cross-site-scripting , (Ac-
cessed on 01/31/2022).

adware. Http flood (http ddos attack). (Accessed on 09/13/2021), https://www.

radware.com/security/ddos-knowledge-center/ddospedia/http-flood/ ; 2021.
Table A4 (continued)

ID Source

0040 compose-post-service + UploadCreator

0041 user-mention-service + UploadUserMentions

0042 url-shorten-service + UploadUrls

0043 compose-post-service + UploadUrls

0044 compose-post-service + UploadUserMentions

0045 compose-post-service + UploadUserMentions

0046 compose-post-service + UploadUserMentions

0047 compose-post-service + UploadUserMentions

0048 unique-id-service + UploadUniqueId

0049 compose-post-service + UploadUniqueId

0050 compose-post-service + UploadText

0051 compose-post-service + UploadText

0052 compose-post-service + UploadText

0053 compose-post-service + UploadText

0054 write-home-timeline-service + FanoutHomeTime

0055 write-home-timeline-service + FanoutHomeTime

0056 post-storage-service + StorePost

0057 social-graph-service + GetFollowers

0058 social-graph-service + GetFollowers

0059 social-graph-service + GetFollowers

0060 user-timeline-service + WriteUserTimeline

0061 user-timeline-service + WriteUserTimeline

0062 user-timeline-service + WriteUserTimeline

http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0001
https://www.anodot.com/blog/what-is-anomaly-detection/
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0003
https://github.com/delimitrou/DeathStarBench
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0005
https://www.jaegertracing.io/
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0018
https://www.ibm.com/in-en/cloud/learn/docker
https://www.imperva.com/learn/ddos/syn-flood/
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0024
https://www.imperva.com/learn/ddos/denial-of-service/?utm_campaign=Incapsula-moved
https://towardsdatascience.com/a-gentle-introduction-to-graph-neural-network-basics-deepwalk-and-graphsage-db5d540d50b3
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0027
https://gitlab.com/sri-ait-ie/phd-projects/stephenj/-/tree/journal_Branch
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0036
https://portswigger.net/web-security/cross-site-scripting
https://www.radware.com/security/ddos-knowledge-center/ddospedia/http-flood/

S. Jacob, Y. Qiao, Y. Ye et al. Computers & Security 118 (2022) 102728

Revuelto S., Socha K., Meintanis S., 2017. DDoS overview and response
guide. https://cert.europa.eu/static/WhitePapers/CERT-EU _ Security _ Whitepaper _

DDoS _ 17-003.pdf , (Accessed on 09/13/2021).
Sciences S.. What are bot attacks? Bot mitigation for web apps & APIs. https://www.

signalsciences.com/glossary/bot-attack-protection/ , (Accessed on 09/16/2021).
Slee, M., Agarwal, A., Kwiatkowski, M., 2007. Thrift: scalable cross-language services

implementation. Facebook white paper 5 (8), 127 .
Somu, N., Daw, N., Bellur, U., Kulkarni, P., 2020. Panopticon: A comprehensive bench-

marking tool for serverless applications. In: 2020 International Conference on

COMmunication Systems & NETworkS (COMSNETS). IEEE, pp. 144–151 .
Sun, Y., Nanda, S., Jaeger, T., 2015. Security-as-a-service for microservices-based

cloud applications. In: 2015 IEEE 7th International Conference on Cloud Com-
puting Technology and Science (CloudCom). IEEE, pp. 50–57 .

Tax, N., Verenich, I., La Rosa, M., Dumas, M., 2017. Predictive business process mon-
itoring with LSTM neural networks. In: International Conference on Advanced

Information Systems Engineering. Springer, pp. 477–492 .

Varonis. What is a brute force attack? https://www.varonis.com/blog/
brute- force- attack , (Accessed on 01/21/2022).

Wu, Y., Tan, H., 2016. Short-term traffic flow forecasting with spatial-temporal cor-
relation in a hybrid deep learning framework. arXiv preprint arXiv:161201022 .

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y., 2020. A comprehensive
survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32 (1),

4–24 .

Xu, H., Caramanis, C., Mannor, S., 2009. Robustness and regularization of support
vector machines. J. Mach. Learn. Res. 10 (7) .

Yao, Y., Su, L., Lu, Z., Liu, B., 2019. Stdeepgraph: Spatial-temporal deep learning on
communication graphs for long-term network attack detection. In: 2019 18th

IEEE International Conference On Trust, Security And Privacy In Computing And
Communications/13th IEEE International Conference On Big Data Science And

Engineering (TrustCom/BigDataSE). IEEE, pp. 120–127 .

Yu, B., Yin, H., Zhu, Z., 2017. Spatio-temporal graph convolutional networks: a deep
learning framework for traffic forecasting. arXiv preprint arXiv:170904875 .

Yu, R., He, X., Liu, Y., 2015. Glad: group anomaly detection in social media analysis.
ACM Trans. Knowl. Discov. Data (TKDD) 10 (2), 1–22 .

Stephen Jacob is a Ph.D. candidate with the Software Re-

search Institute (SRI) at the Technological University of

the Shannon: Midlands Midwest working in the field of
Cyber Security. He received his BsC in Computer Science

at University of Limerick in 2015 and his MSc in Software
Engineering at Athlone Institute of Technology in 2016.

Dr. Yuansong Qiao is a Senior Research Fellow in the

Software Research Institute (SRI) at Technological Uni-
versity of the Shannon: Midlands Midwest, Ireland. He

is a Science Foundation Ireland (SFI) Funded Investiga-
tor in the SFI CONFIRM Smart Manufacturing Centre. He

received his Ph.D. in Computer Applied Technology from

the Institute of Software, Chinese Academy of Sciences,
Beijing, China, in 2008. He is a member of IEEE (Com-

munications, Computer and Robotics and Automation so-
cieties and Blockchain Community) and ACM (SIGCOMM

and SIGMM). His research interests include Future Inter-
net Architecture, Blockchain Systems, Robotics and Edge

Intelligence and Computing.

Dr. Brian Lee is the director of the Software Research

Institute (SRI) at Technological University of the Shan-
non: Midlands Midwest, Ireland. He is a Science Foun-

dation Ireland (SFI) Funded Investigator in the SFI CON-
FIRM Smart Manufacturing Centre. He received his Ph.D.

in Computer Science from Trinity College Dublin in

2004. He is a member of IEEE (Communications, Com-
puter and Robotics and Automation societies) and ACM).

His research interests include Computer Security (Access
Control, Network Security, Security Analytics) and Pro-

grammable Networking and Edge Computing.

Yuhang Ye received the B.Eng. and M.EngSc. degrees in
Electronic Engineering from the National University of

Ireland, Maynooth, Ireland, and the PhD degree from the
Athlone Institute of Technology, Ireland. He is currently a

Post-Doctoral Researcher with the Software Research In-

stitute, Technological University of the Shannon. His cur-
rent research interests include IIoT security, adversarial

machine learning and multimedia communication.

13

https://cert.europa.eu/static/WhitePapers/CERT-EU_Security_Whitepaper_DDoS_17-003.pdf
https://www.signalsciences.com/glossary/bot-attack-protection/
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0041
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0042
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0043
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0044
https://www.varonis.com/blog/brute-force-attack
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0046
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0047
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0048
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0049
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0050
http://refhub.elsevier.com/S0167-4048(22)00123-7/sbref0051

	Anomalous distributed traffic: Detecting cyber security attacks amongst microservices using graph convolutional networks
	1 Introduction
	2 Related works
	2.1 Comparable works

	3 Background information
	3.1 Microservices
	3.2 Distributed tracing
	3.3 Anomaly detection

	4 Methodology
	4.1 Overview
	4.2 RPC traffic generation
	4.3 Directed graph representation
	4.4 Traffic matrix representation
	4.5 Traffic forecasting
	4.6 Diffusion convolution
	4.7 Temporal dependency modelling
	4.8 Training the DCRNN model
	4.9 Anomalous RPC detection

	5 Experiment
	5.1 DeathStarBench
	5.2 Software environment & tools
	5.2.1 Docker
	5.2.2 Thrift
	5.2.3 Jaeger

	5.3 Data generation
	5.4 DCRNN model
	5.5 Cyber attacks
	5.5.1 Brute force password attack
	5.5.2 Batch registration of bot accounts
	5.5.3 Distributed denial of service

	5.6 Software & hardware environment

	6 Limitations
	7 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A
	References

