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Abstract
Threat Intelligence Sharing is one of the most promising approaches to re-
sist ever-growing cyber attacks. Pressing challenges including concerns about
trust, privacy, negative publicity, policy/legal issues and expense of sharing
inhibit effective sharing. Among all these sharing requirements, open trust is-
sues are most crucial and fundamental prerequisites. Blockchain Technology
has been widely adapted in data sharing market such as IoT Data sharing,
Health Information sharing and so on. Trusted Computing provides an iso-
lated secure trustworthy execution environment.
This thesis AIMs to investigate the use of Blockchain Technology and
Trusted Computing as a mechanism to address open trust issues of threat
intelligence sharing.

Objectives:

1. To understand the drivers, benefits and challenges for organizations to
exchange threat intelligence.

2. To investigate and enumerate the functions of Blockchain that facilitate
exchange of data by studying existing examples in other domains.

3. To identify how Blockchain and Trusted Computing can motivate and
enable threat intelligence sharing by emphasizing its benefits and over-
coming its challenges.

4. To design a trust enhanced threat intelligence sharing system using
Blockchain and Trusted Computing.

5. To prototype and evaluate the feasibility of proposed solution.

This work surveys the benefits and challenges of threat intelligence shar-
ing, studies several Blockchain based systems in the data marketplace, and
identifies three types of trust requirements for threat intelligence sharing.
Afterwards, I describe a novel trust enhancement framework -TITAN- for
decentralized sharing based on the use of P2P reputation systems to address
open trust issues. Our design uses blockchain and Trusted Execution Envi-
ronment technologies to ensure security, integrity and privacy in the operation
of the Threat Intelligence Sharing reputation system.
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Chapter 1

Introduction

1.1 Background

The incidence of cyber attacks and threats is continually growing, as can be

attested by the numerous threat and malware reports on the Internet such as those

from the leading security solution vendors. Organizations are being encouraged

to share Threat Intelligence (TI) i.e. information of received attacks and other

cyber security experiences with each other, as a means to counter such threats.

Such sharing will give organizations a broader view of the current cybersecurity

picture, e.g. at a regional, national or sectoral level, and thus increase their level of

cyber situational awareness. This will in turn improve their attack preparedness

(security posture) and thus decrease their risk of cyber attack.

Despite the clear benefits to be gained, and the presence of the large number

of sharing platforms, there are still substantial barriers remaining to shar-

ing threat intelligence. These include organizations concerns about privacy

(confidentiality of information), negative publicity, policy and legal issues and

cost amongst others [1]. Furthermore, there are fears that not all participants

will contribute equally i.e. some parties may ’freeride’ and consume more than

they contribute [2].

Threat intelligence is normally shared between members of well-defined groups

or communities with varying degrees of openness in sharing. Communities may

be private i.e. closed with sharing only between the members of the community
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or public i.e. fully open with all information available to anyone; or they may

be somewhere in between [3]. Additionally, some companies provide information

commercially. Recently there is evidence of a move away from the existing semi-

static community model towards a more decentralized, dynamic based model -

inspired (and enabled) in large part by the increasing trend, in many fields, to

share data and information via blockchain based markets. One such example,

based on Hyperledger, is TRADE from IBM [4]. Other examples can be found

in the number of startups - such as Polyswarm [5] - establishing markets for

threat intelligence sharing systems. I fully expect this trend to continue and,

furthermore, to see current systems evolve in this direction also. A possible

blueprint for how a future hybrid centralized/decentralized threat intelligence

sharing environment might play out is the Knowledge Exchange (KE) concept

from Serrano [3].

1.2 Motivation

Although sharing of threat intelligence is happening its effectiveness is greatly

held back due to trust related issues [1, 3, 2, 6, 7]. Tounsi and Rais identify

untrusted participants as one of the crucial obstacles for sharing though their

survey [1]. The motivation of sharing will be discouraged when only few parties

are active without getting much in return from the other parties. Sauerwein

et al. emphasize that organizations must trust the sharing platform [2]. They

suggest the access to these platforms must be restricted in order to avoid any

unauthorized access. Johnson believe the trustworthiness of the recipient also

should be taken into consideration, otherwise the information may be misused

[6].

Trust is a broad topic with sometimes subtle shades of meaning. I identify

three type of trust concerns when considering TI sharing: Trust between Partic-

ipants, Trust of TI Quality (TIQ) and Trust in the TI Platform (TIP). All of

these will be of concern in the emerging decentralized TI sharing environment.
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Trust between participants is needed for participants to engage in sharing in the

first place. Trust in the platform helps provide reassurance about engagement

in the community through the provision of Information Technology (IT) security

mechanisms to support confidentiality, integrity and privacy. Trust in TI qual-

ity helps information receivers more efficiently deal with large volumes of TI by

selecting only data with required quality levels.

None of the emerging solutions that I have seen fully addresses all of these

issues. TRADE does discuss a reputation management system to help address

participant trust but few details are provided and they don’t at all mention

data quality trust [4]. Nor is this issue addressed satisfactorily by the various

startups in the area, many of whom also neglect mechanisms for participant trust

management. Al-Ibrahim [8] describes an architectural approach for assessing TI

quality but gives no implementation details and does not at all consider blockchain

based systems.

1.3 Research Objectives and Questions

To address these trust issues, Blockchain Technology is deemed as an approach to

remove the central trust authority, and Trusted Computing ensure the computing

process tamper-proof. This thesis investigates the incorporation of Blockchain

Technology and Trusted Computing as a means to achieve the trust requirements

of Threat Intelligence Sharing.

1.3.1 Research Objectives

There are five research objectives this thesis tries to achieve:

1. To understand the drivers, benefits and challenges for organizations to ex-

change threat intelligence.

2. To investigate and enumerate the functions of Blockchain that facilitate

exchange of data by studying existing examples in other domains.
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3. To identify how Blockchain and Trusted Computing can motivate and en-

able threat intelligence sharing by emphasizing its benefits and overcoming

its challenges.

4. To design a trust enhanced threat intelligence sharing system using Blockchain

and Trusted Computing.

5. To prototype and evaluate the feasibility of proposed solution.

1.3.2 Research Questions

1. What advantages does the use of blockchain bring to threat intelligence

sharing?

2. How could trusted computing help addressing the trust requirements of

threat intelligence sharing?

3. Is is feasible to create a practical trusted treat intelligence sharing system

using Blockchain Technology and Trusted computing?
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Chapter 2

Methodology

The methodologies applied in computer science are varied and don’t always match

to those practised in the natural and social sciences and humanities.

Whittemore and Melkus give an overview of research process which consists

of five phases: Conceptual phase, Design and Planning phase, Empirical phase,

Analytic phase, Dissemination phase [9]. In the Design and Planning phase, they

generalize two types of research design: Qualitative design - aims to describe or

understand a phenomenon. Quantitative design - aims to measure the relation-

ships among variables or examine the effects of an intervention.

In Simon’s perspective, “Natural Science” is different from “Design Science”

[10]. The former is knowledge about objects or phenomenon in the natural and

societal world to describe and explain how they behave and interact with each

other. The latter is knowledge about the design of artifacts meeting certain

desired goals. “Design Science Research” fails to fall into above two categories.

Vaishnavi depicts a Design Science Research (DSR) Process Model in Figure

2.1 [11]:

The DSR process model comprises five steps.

1. Awareness of Problem: To survey and analyse the problem domain and the

current solution domain.

2. Suggestion: To give a tentative design based on previous outcome.

3. Development: To develop and implement the above design. The feedback
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Figure 2.1: Design Science Research (DSR) Process Model

of development will contribute knowledge and increase problem awareness.

4. Evaluation: Once constructed, the artifact will be evaluated. Any devia-

tions from expectations may lead to another round of design, development

and evaluation.

5. Conclusion: To conclude the whole research progress and disseminate the

knowledge generated.

This is the methodology generally used in computer science. It gives birth to

various of innovative protocols, algorithms and artifacts.

I apply the methodology as follows: I will analyse the motives and barriers of

Threat Intelligence Sharing (Objective 1) and study the current Blockchain and

Trusted Computing implementations (Objective 2). Then I will design a specific

solution to embody the desired goals (Objective 3 and 4). Afterwards, I validate
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it by implement and evaluate such a solution (Objective 5).
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Chapter 3

Literature Review

3.1 Introduction

In this chapter, I review the underlying technologies that I use as a base. I also

review literature relevant to related works. This includes the topics that form

part of Objective 1, 2 and 3, i.e., I consider:

• Benefits and Challenges for Threat Intelligence Sharing (Objective 1). I

introduce the background, benefits and challenges of Threat Intelligence

Sharing in section 3.4.

• Blockchain Technology basics (Objective 2). In section 3.2.2, I state the

main concepts of Blockchain Technology which is the kernel of our project.

And I draw four main characteristics of Blockchain.

• Trusted Computing basics (Objective 2). Section 3.2.3 presents the back-

ground and concepts of Trusted Computing.

• Notion of Trust (Objective 3). To identify the trust requirements, I will

clarify the notion of trust in section 3.2.1.

• Data sharing using Blockchain (Objective 2 and 3). With the basic under-

standing of Blockchain, I investigate several Blockchain implementations in

Data Marketplace to learn the advantages of Blockchain in data sharing. It

is depicted in section 3.3.
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• Blockchain in Threat intelligence Sharing (Objective 3). I discuss how

Blockchain will work to mitigate the challenges of Threat Intelligence Shar-

ing, as shown in section 3.5

3.2 Trust Enablers

3.2.1 Notions of Trust

Trust is, in general, a complex and multi-faceted notion. According to Josang

[12] it “is a directional relationship between two parties that can be called trustor

and trustee” where the former is considered a “thinking entity” capable to assess

facts and form judgments and the latter is a person, organization or physical

entity. He identifies two main interpretations of trust, viz:

• Reliability trust - the perceived reliability of something or somebody; the

“subjective probability by which an individual, A, expects that another

individual, B, performs a given action on which its welfare depends”.

• Decision trust - to view trust as a decision to enter into a situation of

dependence.

Josang also considers Reputation in the context of relationships between Trustor

/ Trustee. He notes that trust is a personal judgment about another entity based

on various factor whereas “Reputation can be considered as a collective measure

of trustworthiness (in the sense of reliability) based on the referrals or ratings

from members in a community”. Thus, a Trust System produces a rating that

reflects one party’s subjective view of another entity’s trustworthiness whereas a

Reputation System rates an entity’s trustworthiness (via a reputation score) as

seen by the whole community. In this context trustworthiness can be equated to

reliability.

Trust as a concept is also related to IT security where it can take a variety

of meanings. IT computer system security mechanisms provide protection (confi-

dentiality, availability, integrity) to data and compute resources against attacks.
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Bishop defines a computer system as trustworthy if there is sufficient evidence

that it meets specified security requirements [13]. A number of technologies have

also been identified as key enablers of system trustworthiness. Two particular

such technologies that are significant in this regard are trusted computing and

blockchain. These are discussed later in this section.

Another issue to consider is reputation in Peer-to-Peer (P2P) systems. Indi-

vidual peers rate transactions with other peers (trust) and these individual scores

can be collected and weighted to produce a reputation score by the reputation

system [14]. The amount of information collected from peers can vary according

to the needs of the particular P2P system. In a small system a peer may use

only its own trust ratings to rank other peers whereas in a larger system a peer

may employ a transitive trust chain i.e. ask its ”friends” (one-hop trusted peers)

or ”friends of a friend” (multi-hop trusted peers) right up to a global history

reputation system that collects transaction history for all peers from all peers.

Reputation scores can be calculated by centralized entities or in a decentralized

manner by all the peers e.g by using an algorithm such as EigenTrust [14]. P2P

reputation systems can also take actions to incentivise sharing or punish bad

behaviour.

An important issue that relates to P2P trust and reputation is anonymity. A

P2P system can typically provide various levels of anonymity from no anonymity,

through some form of pseudo anonymity to full anonymity that disconnects

a user’s actions from his real-world identity and his other actions [14]. Full

anonymity however precludes the use of a reputation system.

3.2.2 Blockchain Technology

In 2008, Satoshi Nakamoto designed Bitcoin, a peer-to-peer electronic cash sys-

tem. [15] He introduced a public distributed ledger to prevent double-spending,

and adopted proof-of-work to address the distributed consensus problem. His in-

novative work gave birth to the blockchain technology. By eliminating the trust
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of third parties and keeping high standard of pseudonymity, Bitcoin gained a

tremendous success in business. The technology of Blockchain has also come to

the attentions of researchers.

Key Characteristics

The booming of Blockchain technology in both research and industry areas is due

to some unique features that Blockchain has.

• Immutability. Each block contains the hash link of the previous block. Due

to the feature of hash algorithms, every transaction or data recorded in the

Blockchain is protected by subsequent blocks. Therefore, it can never be

changed. The data is secure as long as the attackers don’t possess over 51%

computing power. The cryptographic hash function will be detailed later.

• Decentralization. A common solution to verify transactions is introducing

a trusted central authority. Blockchain offers a consistent public ledger to

replace the central agency. To reach a consensus view of the ledger among

distribute users, Blockchain employ various distributed consensus, such as

Proof-of-work.

• Anonymity. Peers interact with the Blockchain network through generated

addresses. Addresses are not directly connected to real-world identities.

Furthermore, users can possess many addresses to avoid identity exposure.

Information in Blockchain maintains high level of privacy. Asymmetric

encryption makes it possible.

• Auditability. Since stored in a public tamper-proof ledger, and each trans-

action can be easily traced to previous transactions, this brings a high level

of transparency and auditability to the Blockchain network.

In different scenarios, researchers employ Blockchain for different features.

Section 3.3 surveys the use of Blockchain in the data marketplace.
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Fundamental Blockchain Technology

The following sections will describe the details that make up Blockchain technol-

ogy.

Cryptographic Hash Functions A hash function takes a string of any length

as input, and outputs a fixed-size string, which is usually 256bits. the output

string can be regard as digest of the input. A cryptographic hash function has

four critical properties.

• Collision resistance. It is rather difficult to find two different inputs, that

can produce the same output. It means one can compare two messages by

comparing their hash digests which is much faster.

• Hiding. Given the output and hash function, it is impossible to figure out

the original input. Since the message is digested to 256-bit string, there

exists information loss.

• One-way function. It is easy to produce the output using the input. But

there is no better way than brute force to find an input that can produce

the same output.

• Input sensitive. If the input changes by even a little bit, the output will be

significantly different.

Data Structure Literally, blockchain is the name of the data structure.

As illustrated in Figure 3.1, there are three basic entities within the blockchain.

• Transaction: In Bitcoin, a transaction is a transfer record. Generally speak-

ing, a transaction is an alteration of the ledger.

• Block: A bundle of transactions and some status information compose a

block.
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Figure 3.1: Data Structure of blockchain

• Chain: the block header contains the hash of previous block, a series of such

blocks become a chain. The hash function chains all the blocks together.

The most significant advantage of blockchain structure is tamper resistance. If

an attacker changes a transaction of a block, the hash of the subsequent block will

not match, the discrepancy will pass to the end of the chain, i.e. all subsequent

block hashes will be changed.

Merkle Tree In figure 3.1, The transactions are organized in a structure called

a Merkle tree, which is also known as a hash tree. It is a binary tree with two

main characteristics.

• Every leaf node stores hash of data.

• Every non-leaf node (include the middle node and the root node) contains

the hash of its children’s hash.

The Merkle tree is widely used in many typical scenarios.

• Quickly comparing large amounts of data

Given that large amounts of data are sorted and stored in a Merkle tree, if

the roots of two Merkle trees are the same, the two groups of data must be

exactly the same.
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Since the computing of the hash is very fast, using the Merkle tree to

compare mass data will be of high-efficiency.

• Quickly tracing the discrepancy

As shown in figure 3.1, if anyone changes transaction C, it will consequen-

tially change data F and the root. By tracing root→ F → C, to locate the

discrepancy will be achieved in O(log n).

• Zero-knowledge proof

Take figure 3.1 as an example, if someone wants proof that Transaction B is

in the block without revealing Transaction B, by giving the value of H(A),

F, he can reconstruct the Merkle tree root easily. If the reconstructed root

is equal to the given root, the ownership is credible. The Merkle tree can

do Zero-knowledge proof in O(log n).

The Merkle tree is essential to long-term sustainability. As more and more blocks

are appended to the chain, the disk space bitcoin occupies is growing by over a

gigabyte per month. The Merkle tree will help the implementation of “lightweight

node”. The lightweight nodes download the block headers which contains the

Merkle root. It will be assured that all the transaction data is correct.

Distributed Consensus The consensus problem is one of the main challenges

in any distributed system. If the data in different nodes are not consistent, the

data is problematical. How to maintain a single version of the truth is a primary

goal of distributed system. The basic approach is to make sure every node can

read while one node can write at one time. The Paxos algorithm is a well-known

consensus algorithm in a network of unreliable nodes. All the members compete

as the proposer or leader - the proposer will act as a coordinator to mediate the

dispute.

However, in the Bitcoin network, some nodes may crash, minority nodes may

be malicious. The consensus problem in such scenarios is also known as the
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Byzantine General’s Problem. It cannot be addressed by the Paxos algorithm.

Bitcoin applies the idea of proof-of-work as a practical solution to the Byzantine

General’s Problem. In bitcoin all the nodes compete for the right to append block

to the ledge. The first node who solves a hash puzzle can create the block. Since

the hash puzzle is rather difficult to compute, the nodes with higher computing

power gain a higher probability to create the block. The longest proof-of-work

chain will be the consensus of the unique ledger. The ledger is secure as long

as honest nodes collectively control more computing power than any cooperating

group of attacker nodes.

Proof-of-work brings two significant advantages to the bitcoin consensus. Firstly,

by applying proof-of-work the network selects nodes in proportion to computing

power. This progress is hard to be manipulated. Secondly, there is a cost to

subvert the chain, the cost will significantly outweigh the expected profit, so it is

unwise to sabotage the system.

Proof-of-Work Proof-of-Work literally means to validate nodes by the proof

of workload. It was originally a countermeasure to denial of service attacks, or

Sybil attacks. Bitcoin adapts proof-of-work to make the decision by the majority

in proportion to their computing power.

Figure 3.2: Block with nonce

As shown in Figure 3.2, Bitcoin implements the proof-of-work by adding a

nonce in the block. The block hash will change along with the nonce. When the

block hash has the required zero bits in the head, the hash puzzle is solved. The

nodes who attempt to solve puzzle are called miners. Since the hash puzzle is

15



difficult to compute, miners have to consume large amounts of computing resource

to find the nonce. The first node to figure out the nonce will be able to create

and broadcast the block. Accordingly, the miner will get the rewards.

Incidentally, by changing the number of zero bits, the system is able to adjust

the difficulty of proof-of-work.

Incentives The miners consume a great deal of computing resource and elec-

tricity to find the nonce and create the block. Meanwhile, they collate new

transactions and broadcast the block. It is essential to compensate the miners.

In Bitcoin, miners will gain two kinds of reward from mining.

• Block reward. Every time a block is created, a certain amount of Bitcoin

(BTC) will be the miner’s reward. In the beginning, the block reward is 50

BTCs, the number halves every 210 thousand blocks created. Currently the

block reward is 12.5 BTCs. The theoretical total BTCs is about 21 million.

• Transaction fees. If the output value of a transaction is less than its input

value, the difference is a transaction fee. As time goes by, the block reward

will vanish eventually, transaction fees will be the only incentive.

Smart Contract The Smart Contract is a term firstly coined by Nick Szabo

in 1990s. The underlying idea is that many kinds of contractual clauses can be

embedded in the hardware and software, so that any breach of contract will be

expensive [16]. Besides, Smart Contracts can reduce the regulation and transac-

tion cost, imposed by third parties. Digital Cash is a premier example in Szabo’s

design.

There is a strictly limited scripting language which is dedicated to facilitate the

currency transaction in Bitcoin. The Bitcoin script is a Smart Contract limited

to cryptocurrency. Ethereum is designed to be a general-purpose programmable

blockchain. In the context of Ethereum, Smart Contracts refer to immutable

computer programs that run deterministically on the decentralized Ethereum
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world computer. [17] Since all the nodes of Ethereum operate on the same initial

state and produce the same final state, the system can be viewed as a single “world

computer”. More specifically, the Ethereum world computer can be considered

as a single-threaded machine.

Ethereum Bitcoin is the first implementation of Blockchain Technology to

prove credible in the area of cryptocurrency. Researchers have investigated how

to extend the capability of Blockchain. Vitalik [18] designed Ethereum, named

the second generation of Blockchain, which provides a blockchain the ability to

run code. Ethereum is a blockchain with a built-in Turing-complete programming

language, allowing developers to create decentralized applications. Ethereum may

be seen as a general implementation of a crypto-law system [19].

In bitcoin, there is no concept of accounts. Users possess various Bitcoin ad-

dresses, but there is no balance of each addresses. The validity of a transaction is

checked by the Unspent Transaction Output (UTXO) mechanism. In contrast in

Ethereum, there are generally two types of accounts: Externally Owned Accounts

(EOAs), and contract accounts.

• Externally Owned Accounts. EOAs are controlled by users, usually via a

wallet application which contains the users’ private keys. EOAs do not have

any associated code or data storage.

• Contract Accounts. Unlike EOAs, contract accounts are controlled by smart

contracts. Contract accounts have both associated code and data storage.

Only an EOA can initiate a transaction, and transactions can call contracts.

Ethereum Transaction In bitcoin, the transaction is used to transfer cryp-

tocurreny among each other. It is dramatically different in the case of Ethereum.

Transactions are signed messages originated by an EOA and used to change the

globle state, or launch a contract to execute in the EVM.
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Since a transaction is able to call various Smart Contracts, and contracts can

invoke each other, infinite loops and inadvertently resource-devouring transac-

tions bring the halting problem: there is no way to tell whether a given program

will ever halt or not.

The Gas mechanism is designed to address this problem. Every computation

in a contract costs gas, and the amount of gas is limited in every transaction.

There are two types of transactions: contract creation transactions and mes-

sage call transactions.

• Contract creation transactions. Transactions will create new contracts on

Ethereum for future use. They contain the compiled bytecode to create

Smart Contracts.

• Message call transactions. They are the normal transactions which are used

for the state transition or contract invocation.

These two types of transactions have some fields in common:

• Nonce. A number created by the sender is designed to avoid message replay.

• Gas price. The number of Wei to be paid per unit of gas.

• Gas limit. The maximum amount of gas this transaction can costs.

• To. The recipient Ethereum address.

• Value. The number of Wei to send to the destination.

• v, r, s. The three values of an ECDSA digital signature to determine the

sender of this transaction.

Specially, a contract creation transaction has this field:

• Init. A byte array specifying the contract code. it will be executed once at

account creation and discarded thereafter.

On the other side, a message call transaction has this field:

• Data. The variable-length binary data playload.
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3.2.3 Trusted Computing

Along with the computer’s evolution from calculators to information infrastruc-

ture, Trusted Computing become an increasingly pressing requirement.

As early as 1983, The United States Government Department of Defense

(DoD) issued Trusted Computer System Evaluation Criteria (TCSEC) [20]. These

criteria are divided into four divisions: D, C, B and A. Dvision A stands for the

most comprehensive security. It defines Trusted Computing Base (TCB) as the

totality of protection mechanisms within a system, including hardware, firmware,

and software, the combination of which is responsible for enforcing a computer

security policy. In order to minimize security risks, the TCB should be kept as

small as possible.

Later in 1999, Compaq, HP, IBM, Intel and Microsoft established Trust Com-

puting Platform Alliance (TCPA) [21]. As the successor to the TCPA, the Trusted

Computing Group (TCG) was founded in 2003. TCG’s core technologies include

specifications for the Trusted Platform Module (TPM), Trusted Network Com-

munications (TNC) and Self-Encrypting Drives (SED) [22].

TPM is a standard for a secure cryptoprocessor, which is a microcontroller

dedicated to secure hardware through integrated cryptographic keys. It will be

further detailed later. TNC is an architecture designed to enable posture check-

ing, behavior monitoring, and remediation of both user endpoints and infras-

tructure devices. SED is a encrypt technology which enables the hard drive

automatically and continuously encrypts the data on the drive without any user

interaction.

With the advent of new information technologies and their various application

scenarios, the concept of Trusted Computing keeps growing. There are some

generally recognized features that trusted computing possesses [23]:

• Secure boot allows the system to boot under a defined and trusted configu-

ration.
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• Curtained memory will provide strong memory isolation. Memory cannot

be read by other processes including operating systems and debuggers.

• Sealed storage allows software to keep cryptographically secure secrets.

• Secure I/O thwarts attacks like key-stroke loggers and screen scrapers.

• Integrity measurement is the ability to compute hashes of executable code,

configuration data, and other system state information.

• Remote attestation allows a trusted device to present reliable evidence to

remote parties about the software is running.

TPM

One of the most famed Trusted Computing technologies is TPM. In 2001, the

TCPA releases the first version of Trusted Computing Platform specifications,

it defines a subsystem which “contains an isolated computing engine whose pro-

cesses can be trusted because they cannot be altered” [24]. The concept of TPM

evolves continually. Microsoft states a TPM is a microchip delegated to provide

basic security-related functions, primarily involving encryption keys [25]. TPM

1.2 Main Specification was published in 2003. It was incorporated into billions

of devices. The emerging Internet of Things and mobile networks entail new

requirements which led TCG to develop TPM 2.0 specification in 2013.

According to the latest version of TCP’s specification, the TPM architecture

is depicted in Figure 3.3 [26].
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Figure 3.3: TPM Architecture

All of the TPM components are orchestrated to provide a set of predefined

cryptographic services, integrity measurements, health checks and authentication

services. TPM 2.0 applies a “library” approach, which allows users to choose

applicable functionalities for different levels of security and implementation.

Five types of TPM are summarised by TCG in 2019 [27].
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• Discrete TPM. A discrete chip, built and evaluated for the highest level of

security, can resist all sort of sophisticated attacks. In a typical scenario, it

can used to secure the brake controller in a car.

• Integrated TPM. An integrated chip is capable of resisting software attacks.

It is separated from the main CPU.

• Firmware TPM. It is the code runs on the main CPU implemented to

protected software. Especially, this code should be executed in so called

Trusted Execution Environment (TEE). TEE will be described in next sec-

tion.

• Software TPM. A software emulator of the TPM is suitable for testing or

building a system prototype, but vulnerable in production environment.

• Virtual TPM. In a cloud environment, the virtual TPM is part of the cloud-

based environment and it provides the same services as a physical TPM for

each virtual machine respectively.

TEE

The ultimate goal of trusted computing development is the trusted application.

Although TPM provides trusted cryptographic services and other related services,

trusted applications on TPM are inadequate. Trusted Execution Environment

(TEE) remedies this deficiency.

Before the item “TEE” was defined, various trusted environments had been

implemented. Those implementations evolved from proprietary solutions to a

standard approach. In 2004, Trusted Logic and Texas Instruments pioneered a

generic trusted environment. 2 years later, ARM developed TrustZone, which is

pervasive in ARM’s chips. In the same year, the Open Mobile Terminal Platform

(OMTP) released the first set of requirements for a trusted environment, OMTP

TR0 [28]. In 2008, OMTP TR1 was released, and it defined Execution Envi-

ronment EE as “a set of hardware and software components providing facilities,

22



necessary to support Applications”. Any EE that meets its trust requirements is

referred to as a TEE [29].

In 2010, GlobalPlatform gave their own interpretation of TEE, which is much

more explicit. According to one of its latest publications, The TEE is “a secure

area of the main processor of a connected device that ensures sensitive data is

stored processed and protected in an isolated and trusted environment [30].”

The initial designs of the GlobalPlatform TEE and other TEEs were tailored

for the mobile space, especially for secure video and audio services or secure

payments. However, trusted execution is desirable virtue of every computing

device. It is becoming critical in IoT, clouding computing etc. area.

A lot of chip design and manufacture companies propose different implemen-

tations of TEE. A list of them is below:

• AMD:

– AMD Platform Security Processor (PSP)

• ARM:

– TrustZone

• IBM:

– Secure Service Container (SSC)

• Intel:

– Software Guard Extensions (SGX)

• RISC-V

– MultiZoneTM Trusted Execution Environment

Intel SGX, dominant in the area of servers and PCs, is the technology we

adapt.
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In 2013, researchers from Intel published several papers to introduce the model

and mechanisms of Intel SGX [31, 32, 33]. In 2015, Intel SGX began to be

implemented in 6th Generation Intel Core. Mckeen et al. describe Intel SGX as

the technology enabling application to instantiate a protected container, referred

to as an enclave. The enclave is opaque to the operating system, thus guarantee

the confidentiality and integrity of the application [31].

It supports three main activities to establish trust [34]:

1. Measurement - provides an accurate and protected recording which mea-

sures and proves the identity and integrity of an enclave.

2. Attestation - allows an enclave to prove its identity and authenticity to

another party. Attestation includes both local and remote attestation.

3. Sealing - ensures that the data is only revealed in the trusted environment,

and it is encrypted when stored outside this environment.

Attestation

Attestation is a mechanism that a service provider can prove its identity to the

service consumer. A claimed trusted computing service may run in an emulator,

as show as Figure 3.4. Attestation is the crucial part to solve this sort of concern.

Figure 3.4: Why is attestation needed?

Both TPM and TEE has their attestation implementations, their basic idea

is in common:
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• Each trusted computing chip contains a pair of keys which is concealed and

certified by the Certification Authority (CA).

• The provider generates a report, i.e. attestation data, through the private

key.

• The verifier, or challenger will verify the signatures and looks up the report

in a trusted database.

The following picture illustrate the basic attestation protocol in TPM [23]:

Figure 3.5: Attestation protocol

1. The application “A” generates a pair of keys: PKA & SKA and send PKA

to the TPM.

2. The TPM computes a hash value #A of the executable code of “A”.

3. The TPM creates a certification including PKA and #A and signs it with

SKAIK

4. “A” sends the certification along with the cert. of PKAIK to a verifier.

5. The verifier verifies the cert. chain,

6. then look #A up in a trusted database.
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7. If “A” is proved trustworthy, they will establish a session key using PKA

The attestation of TPM contains one critical limitation. Attestation happens

at the time executable code is loaded and is therefore unable to provide a view

into program behavior at run-time [23]. A program may be compromised during

execution, which can’t be detected by attestation.

Differently, in a TEE the program code resides in isolated secure environment,

which is invisible to attackers. The attestation of TEE preferably proves the

application is trustworthy.

3.3 Data Sharing Using Blockchain

Blockchain can be utilized as a public distributed consistent database, which

can be adapted to share information. The follow sections surveys what bene-

fits Blockchain brings to their system, and how Blockchain is implemented to

accommodate their needs.

3.3.1 IoT Data

The existing Internet of Things (IoT) data structure is cloud-centric architecture.

It causes a myriad of isolated data silos, which limits full use of holistic data-driven

analysis. Hossein et al. [35] adapt Blockchain as an access control system and

empower the users with data ownership. The raw IoT data is stored off-chain,

compatible with both centralized and decenrtalized file systems. The Blockchain

system is adapted to manage the ownership and access permissions of data by

third parties.

Facing the same problem, Kazim et al. propose a blockchain-based, decen-

tralized and trustless data marketplace, IDMoB, where IoT devices vendors and

data consumers may interact and collaborate. [36] End users may be able to

use IoT devices and services freely in exchange for their consent on data us-

age. The consented data in stored in Swarm, a distributed storage system. The

researchers argue that free-to-use or free-if-consented business models bloom in
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every industry. Since the data is stored and managed by a distributed system,

there is no way for anyone to monopolize the datasets. In this system, data is

also stored off-chain. Transactions are used to manipulate data, such as upload,

query, request.

3.3.2 Personal Data

There is a growing public concern about user privacy. Centralized organizations

amass large quantities of personal and sensitive information. Researchers propose

a decentralized personal data management system to ensure users ownership. Guy

et al. [37] re-purpose a blockchain as an access-control moderator, and design

two types of transactions: one is used for access control management; the other

is used for data storage and retrieval. This system requires a network of nodes

or a centralized cloud to store the off-chain data.

3.3.3 Health Information

Hospitals, clinics, institutions, and IoT Devices will produce various healthcare

data, using varying structures and terminologies and vocabularies. These stuc-

ture and semantics issue will preclude compatibility, thus limit the utility of the

data. Kevin et al. [38] utilise Blockchain to share health information, and the

terms of data access is strictly dicated by the patient. They introduce a new

consensus algorithm to facilitate data interoperability. Transactions, represent-

ing patient record, do not inclute the actual record documents, but Uniform

Resource Locators (URLs) of those documents.

Ariel et al. [39] design a health information sharing platform, which use

Smart Contracts to orchestrate a content-access system across separate storage

and provider sites. The contracts contain metadata about the record ownership,

permissions and data integrity, while the transactions carry cryptographically

signed instructions to manage these properties.
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3.3.4 Discussion

Blockchain Technology is widely used in data sharing. The reason why researchers

adapted Blockchain to share information can be summarized as follows:

1. To give users control of their data.

There is no central corporations or organizations that can control or ma-

nipulate big amount of information. Only allowed third party can access

users’ data.

In Shafagh’s work [35], transactions convey access permissions, users can

assign or revoke permissions by sending transactions. Zyskin et al. [37] use

the same idea to protect personal data. They create two types of Trans-

actions: Transaction of access control and Transaction of data. “MedRec”

[39] use various Smart Contracts to record Patient-Provider Relationship.

2. To motivate data sharing by various incentives.

In “IDMoB” [36], users can trade their consent on data usage with free-

use of Iot devices and services. IoT manufacturers can benefit from data

monetization. “MedRec” [39] encourage participantion by granting patients

a holistic, transparent health record, and providing researchers relevant

clinical data.

3. Decentralized marketplace.

In all the systems above, peers can directly share information with each

other without a third agency, which will reduce the transaction cost and

lower the barriers to entry, which will encourage people to participate.

4. Integrity of data.

Because of the feature of Blockchain, all the data in Blockchain is im-

mutable and transparent, and all the data stored off-chain is protected by

the cryptographic hash function. Thus, the data is trustworthy.
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At the system-implementation level, there are three major concerns within

every Blockchain system:

• How is the data stored?

• What does the transaction do?

• Does the Blockchain performance meet system requirements?

As to the first question, all the previous works store the raw data off-chain, and

keep metadata on-chain, such as Hash digest, location data and so on. Shafagh

[35] designs the Data plane which is agnostic to different types of storage. “ID-

MoB” [36] stores the data in Swarm, a peer-to-peer storage platform. “MedRec”

keeps the healthcare record in the local database of each node.

As regards the second question, they have dramatically different design. Shafagh

[35] use transactions to accommodate access permissions. Zyskind [37] designed

two type of transactions, one is used for access control management, the other

is for data storage and retrieval. Both “IDMoB” [36] and “MedRec” [39] use

transaction to invoke Smart Contracts, and the Smart Contract is dedicated to

register the user or manipulate the data, etc.

The key performance indicator of Blockchain implementation is Transactions

Per Second (TPS). Theoretically the TPS of Bitcoin, Ethereum are 7, 15 respec-

tively. Many implementations are built on the top of these platforms [35, 39].

The Consortium Blockchain adopt various high-performance distributed consen-

sus algorithms and their TPS is much higher. According to Androulaki’s test,

Hyperledger Fabric achieves more than 3500 TPS in certain popular deployment

configurations [40]. The balance between openness and performance is a design

consideration.

3.4 Threat Intelligence Sharing

Information systems are a vital infrastructure of corporations, organizations and

countries. Compromise of digital systems through cyber attack means great
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danger and loss to individuals and communities. For example, WannaCry, a

ransomware with worm functionalities, attacked more than 230,000 computers,

caused an estimation of losses between one and four billion dollars [41].

Cyber threat intelligence is the information to help organizations identify,

assess, monitor, and respond to cyber attacks including indicators, Tactics, Tech-

niques and Procedures (TTPs), security alerts, threat intelligence reports and

actionable advice [6].

Threat Intelligence Sharing is an approach of exchanging cyber threat intel-

ligence within a community, to make full use existing information and defend

attacks together.

3.4.1 Benefits

There are several works that state the benefits of threat intelligence sharing.

Table 3.1 is the summary.

Table 3.1: Main Benefits of Threat Intelligence Sharing

Items
Index of Papers

[1] [3] [2] [6] [42] [7]

A Better Situational Awareness * * * *
Greater Defensive Agility * *
Reduced Cost * * * *
Higher Quality of Knowledge * * * *

• Better Situational Awareness. Participants may collect a great deal of exter-

nal threat intelligence, which will grant them a better situational awareness

of the threat landscape. A single indicator of compromise could increase

the awareness of a whole community. Sharing information will make full

use of a threat intelligence [1, 3, 2, 6].

• Greater Defensive Agility. Attacks usually try various Tactics, Techniques,

and Procedures (TTPs) to evade detection and exploit vulnerabilities. Shar-

ing information will identify the changing TTPs faster. Information sharing
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can speed identification and detection of threats, which will prevent poten-

tial or ongoing attacks [1, 6].

• Reducing Costs. In general, cost-saving may stem from quicker reactions to

attacks. Sharing information may help members avoid the denial of services

attacks or other attacks. Secondly when an organization finds it has been

under attack, it usually immediately invests time and money to develop

a countermeasure. If another organization is under the same attack, they

could develop defense measures together and share the cost. Besides, the

adoption of automated exchange mechanisms may reduce human resource

costs, and increase scalability [1, 2, 42, 7].

• Higher Quality of Knowledge. Sharing information would connect data silos.

When seemingly unrelated observations are exchanged, that information

can be correlated with data collected by others. The correlation process will

increase the value of isolated information by discovering implicit relation

among data set [1, 3, 6, 7].

3.4.2 Challenges

Threat intelligence sharing has significant advantages, while challenges still re-

main. Technical challenges are as follows:

Table 3.2: Main Technical challenges of Threat Intelligence Sharing

Items
Index of Papers

[1] [3] [2] [6] [42] [7]

Trust Issues * * * *
Privacy Issues * * * *
Quality Issues * * * * *
Interoperability Issues * * *
Hierarchy Architecture * *
Incentive For Sharing * *
Negative Publicity * * *

• Trust issues. There are three types of trust that need to be taken into

consideration. Firstly, trust between information consumer and informa-
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tion provider is of vital importance. Organizations will only share sensitive

information with organizations they trust. Secondly, all participants must

trust the threat intelligence sharing platform, otherwise they will not par-

ticipate in such a platform [1, 3, 2, 6]. Thirdly, information consumers need

to trust the quality of the sharing information.

• Privacy issues. In terms of sharing information across organizations, pri-

vacy information contains both Personally Identifiable Information (PII)

and organization secrets. PII refers to information which can be used to

distinguish or trace an individual’s identity, such as name, social security

number, biometric records. To recognize and safeguard PII is one of the

main challenges. Organization secrets include intellectual property, trade

secrets and other proprietary information. Disclosure of this privacy infor-

mation may cause violation of legal rules or financial loss [1, 3, 6, 7].

• Quality issues. Threat intelligence quality includes relevance, timeliness,

accuracy, comparability, coherence and clarity. Before acting on received

information, organizations need to confirm that the information is both

correct and relevant. So, evaluating the quality of threat information is

required [1, 3, 2, 6, 7].

• Interoperability issues. Organizations often employ their own terminology

and data standards, which limit interoperability and automate data pro-

cessing between members. Standardized data model, data formats and

transport protocols are required for interoperability. Structured Threat

Information eXpression (STIX) is the most commonly used standard for

describing threat intelligence [3, 2, 6].

• Hierarchy architecture. Different communities share different levels of clas-

sified information. For example, normal citizens are not permitted access

to government classified information. An organization may share general
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threat intelligence to public, sensitive information to community, and re-

stricted information to participants they trust [3, 6].

• Incentive for sharing. Since information sharing may cause privacy dis-

closure and financial loss, participants are reluctant to disseminate their

information. Some free-riders may consume valuable intelligence without

sharing information with equal value. Thus, creating incentives is indis-

pensable to sharing [42, 7].

• Negative publicity. Some sensitive information should be restricted inter-

nally or among few specific participants. Negative publicity might affect

organization’s market value and stock price. Competitors might use the

information against the informant [1, 42, 7].

3.4.3 Requirements for TIS system

An adequate and efficient TIS system should address all the above challenges. To

meet the privacy and legal requirements, Personal Identifiable Information (PII)

and organizations secrets should be masked, anonymized or removed. For the sake

of trust issues, encryption techniques, digital signatures, attestation methods,

access control system, Blockchain and Trusted Computing, Smart Contract, and

so on, are available partial solutions.

Besides those technical barriers, various non-technical issues also need to be

considered, such as policies governing membership schemes [3, 43]. Many data

sharing tools do not fully cover the needs of the communities. Serrano summarises

the minimal requirements of any cyber security data sharing system, and proposes

an “Information Exchange Policy (IEP)” to govern all exchange of data [3]. The

IEPs stipulate at least the following components:

1. IEP related elements:

• Purpose of the exchange covered by the IEP
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• Agreed procedure for modifying the IEP

• Scope of the information covered by the agreement

2. Participant related elements:

• List of participants

• Agreed procedure for admitting new participants

• Instructions for handling received data for leaving participants

• Whether or not exchanged data can be modified by recipients and

subsequently forwarded

• Uses that can be made of exchanged data

3. Data related elements:

• Verifying the quality of exchanged data

• Agreement on the minimum quality of exchanged data

• Mechanisms and communication channels to be used for exchanging

data

• Intellectual property rights of the exchanged data, covering the follow-

ing:

- Reproduction

- Distribution / public performance/ broadcasting

- Commercialization

- Moral rights

• Agreed retention procedures of the exchanged data

• Anonymization required for exchanged data.

Most of the data related elements can be encoded within the TIP, while others

need to be negotiated within different communities and enforced through audit

and other channels.
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On Serrano’s proposal, he did not predict the trend from the central solu-

tion towards a more decentralized, dynamic based model, which demands more

consideration on open trust issues.

Trust Requirements in TIS

Although sharing of threat intelligence is happening, its effectiveness is greatly

held back due to trust related issues [1, 3, 2, 6, 7]. In this section I consider further

the three trust concerns raised earlier with the goal to identify requirements for

the proposed TITAN system. These issues are:

Trust between Participants This type of trust is of paramount importance

and is related to the type of TI, degree of sensitivity of the TI data and the purpose

for which it is exchanged. Sensitive data that could have a negative impact on

a business will be shared only with most trusted partners. Such sharing is often

governed through use of the Traffic Light Protocol (TLP) protocol which defines

categories of sensitivity and corresponding principles for sharing [44]. Higher TLP

category Information is more likely to be of a coarse granularity and very often is

shared via email or through direct (either physical or electronic) conversations.

Participant trust also relates more generally to sharing communities. Tounsi

reports that trust is lowered when some community members are seen to be

under-contributing i.e. freeloading [1]. This is the classic “selfish” peer in P2P

network literature [14]. Furthermore, the potential exists for malicious peers in

P2P networks who may disseminate false or poor-quality information with the

aim to disrupt or harm the operation of the community. This aspect of trust is

likely to become more critical as TI sharing evolve towards a more market-based

model.

Trust as discussed here relates very much to the notion of “Reliability Trust”

discussed earlier. The relationships may be subtly different for the two cases

described here however. In general, in the case of TLP based sharing the Trustor is
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an information publishing entity whereas in the broader community-based sharing

scenario the Trustor is the information receiving entity. In the first case trust is

gained over time from ongoing contacts whereas in the second case participants

will need a mechanism to estimate the trustworthiness of their counterparty.

Reputation systems have been suggested as a means of to achieve trustworthiness

and incentivise TI sharing [1], and, more generally, reputation systems are seen

as very effective means of incentivising information sharing in P2P systems [14].

Trust in the TI Platform This aspect of trust relates to the notion of IT

security trust discussed in the previous section. In general, many different mech-

anisms will be used to ensure that data confidentiality and integrity is maintained

including strong access control, encryption of data at rest and in transit, VPN

and so on. Platform trust also helps to enable participant trust particularly for

communities as many of the policies governing community participation are likely

to be directly supported by platform security mechanism such as those mentioned

here.

The trust technology enablers such as Blockchain and Trusted Computing

are of course also contributors to trust in a sharing platform. To-date these

technologies have not been widely deployed and I discuss their role further in my

own design in the next chapter.

Trust of TI Quality The quality of threat intelligence is based on attributes

such as relevance, timeliness, accuracy, comparability, coherence and clarity and

provenance [7]. Threat intelligence quality (TIQ) trust is becoming evermore

critical as the volumes of threat intelligence grow rapidly larger and threaten to

swamp cybersecurity team’s capability to process incoming information [7, 3, 45,

46]. Having a high degree of trust in the reliability of the information quality is

therefore a very important factor in deciding which TI data or data source, or

community, to join with.
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As TI sharing architectures move toward a more dynamic, decentralized form

it will become increasingly more difficult to judge information quality [45, 8].

This will be exacerbated by the problem of assessing quality across different

dimensionalities and the fact that threat information can be of many different

forms. Furthermore, the mode of delivery is likely to influence assessment of

quality e.g. assessing the quality of a synchronous stream of security events versus

more asynchronous form of information e.g. incident reports or event data files

may require different mechanisms. Sillaber conducted a focus group with security

experts to determine the challenges of assessing TIQ [45]. His recommendations

for future TI sharing practise include the need

1. to inform users of the TIQ since trust in data is of the utmost importance.

2. to crowdsource TIQ management i.e. to allow a publisher’s subjective qual-

ity to be ranked by other participants via a reputation system.

3. to automate the TIQ assessment process. This is required due to the sheer

volume of information shared.

Al-Ibrahim [8] attempts to measure the effectiveness of TI sharing by assessing

the quality of the shared data versus the volume of shared information - the more

traditional approach. He introduces the notion of Quality of Indicators (QoI) to

assess threat intelligence along various quality dimensions. He posits that the

concept will help TI improve including amelioration of the free-riding problem.

Future Threat Intelligence Platforms will need to support a variety of data

quality assessment forms such as computational trust [47] or machine learning

[8]. Furthermore, these systems are likely to allow assessment be provided by

either publisher, consumer or a third-party service [8]. In order to support this

flexibility, it will be necessary for the TIP to be able to independently verify

the integrity of operation of the assessment process in case of dispute. An added

complexity for assessment system design will be the need to deal with a variety of
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TI sharing forms including streaming alerts, security alert files, incident reports

and other discrete data.

3.4.4 Architecture for TIS system

Peers share information in various ways, emails, chats, group meetings, ftp servers,

P2P file sharing systems etc. On the conceptual level, all of those methods can

be characterized into two models: P2P and hub-and-spoke [43]. Some systems

clearly stand at one side, while other employ blended approaches.

Figure 3.6: TIS Architechtures

As depicted in Figure 3.6, the key difference between two architectures is

whether a central hub exists or not. The comparison between two architectures

is represented in Table 3.3.

Peer-to-Peer

In a pure P2P model, each participant, equipped with equal capabilities, can

serve as both a server and a client. Without any “gatekeepers”, peers can join

in and leave off the community at their will. This architecture functions well

as long as there is more than one participant. And they can share information

directly without any intermediate link, thus without any censoring or filtration

from third parties. As a consequence, P2P model is especially beneficial for

smaller communities or sharing with the minority of a community [43].
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Table 3.3: Comparison of TIS Sharing Models

Peer-to-Peer Hub-and-Spoke
Actors Peers Peers and a hub
Advantages • Without trust for central au-

thority
• Dynamic community
• High robusticity
• Less latency
• Natural load balancing
• High efficiency when sharing

in small community.

• Easy to deploy
• Easy to enforce various poli-

cies
• High efficiency when broad-

casing

Challenges • Redundant sharing
• Hard to supervise

• Requirement for the central
trust
• High dependency on the hub
• Single point failure

Since there is no central authority in this model, supervision over the commu-

nity is an emergent challenge, which can be partly mitigate by Smart Contracts.

Another consequence is that redundant sharing on the same information happens

more frequently in this model.

Hub-and-Spoke

Hub-and-Spoke architecture is much more widely used in industry area. On the

contrary to P2P model, a gatekeeper is established at the center of the community,

i.e. a hub. All the participants offload some functionalities to the central agent. In

addition to that, the hub is usually furnished with management and regulatory

capacities. Take this as the background, Hub-and-Spoke models have a much

wider range of technical options. It is easier to deploy and to enforce various

policies.

Benefits and challenges are the two sides of the same coin. If the hub does

not perform as well as it should, the whole sharing community is in paralysis or

in danger. A peer only joins in the community if the hub is trustworthy. All the

regulation data and sharing data is funneled through the hub. It makes the hub

a performance bottleneck. Therefore, severe dependency on the hub leads to a

high possibility of the Single point of failure.
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Hybrid Approach

As discussed above, both architectures have valuable advantages along with sig-

nificant limitations. A hybrid approach combining elements of both would hedge

the risks and extend the strengths.

The incorporation of different models should take two factors into considera-

tion:

• Functionality. A TIS may contain diverse services or functionalities. Some

services involve multiple parties, such as threat intelligence correlation and

analysis. The services which cannot be completed by a single peer is more

likely to be host a Hub-and-Spoke module. Conversely, some services which

can be executed on the edge network is compatible with P2P models.

• Scope of Sharing. Some kind of threat intelligence is of high confidentiality,

which can be only shared with a small group. The less parties involved the

better. In this case the P2P model is a suitable choice. On the other side if

some general information needs to be broadcast as widely as possible then

Hub-and-Spoke is a more efficient option.

3.4.5 Knowledge Exchange

There are multiple sharing communities residing in the same platform. Different

information is shared within specific organizations or communities, which requires

a hierarchy sharing architecture.

To address the above demand, Serrano proposes the concept of Knowledge

Exchanges (KEs) [3]. A KE is a service which maintains a list of data sharing

organizations and their associated data and/or service offerings. The listed ser-

vices may include, but are not limited to, data anonymization, data evaluation,

data translation, data correlation, GDPR verification. Organizations can access

data and request services through KEs, they may interact with data and services

providers directly. A KE can be initialized by any participants, then organiza-
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tions may join in different KEs according to their needs and publish their data

and service offerings on existing KEs. KEs are independent to the information

sharing system itself.

Figure 3.7: Concept of Knowledge Exchanges

Figure 3.7 illustrates three main types of KEs:

• Private. These KEs are isolated from other organizations and KEs. They

adopt strict authentication and authorization processes to ensure member-

ship through trusted channels. They are suitable to share highly sensitive

information within small groups.

• Community. Community KEs also implement strict mechanisms for au-

thentication and authorization. Private KEs are invisible to non-members.

In contrast, Community KEs will exchange information with non-members

based on their authentication information.

• Public. Public KEs, without membership schemes, are used to share public

information. They maintain the list of every peers.
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The concept of KE is intend to regulate the scope of sharing, but the capa-

bilities of KEs are not restricted to this. IEP can be partly implemented through

KEs.

3.5 Blockchain in Threat Intelligence Sharing

From the discussion above, I conclude that Blockchain has several major intrinsic

advantages in the area of data sharing. Here I explain how I adapt Blockchain to

mitigate the challenges of threat intelligence sharing I enumerate in section 3.4.

• Trust issues. In a vulnerable network, members are reluctant to trust each

other when they are unfamiliar with each other. Blockchain gives a single

public distributed tamper-proof ledger, which is trustworthy. The consensus

of this ledger can become the basis of trust that underpins data sharing.

• Hierarchy architecture. Different communities share different levels of clas-

sified information. This can be addressed by an access control system.

Hossein [35], Guy [37] have designed fine grained access control system.

Besides, Smart Contracts grant Blockchain the ability of sophisticated com-

puting that can be used to identify different communities and different levels

of information. Thus, Smart Contracts is capable of supporting advanced

hierarchy architecture.

• Negative publicity. A hierarchy architecture brings fine granularity of infor-

mation designation and the scope of information dissemination is strictly

restricted. This will reduce negative publicity.

• Incentive for sharing. An incentive mechanism is one of the reasons con-

tributing to Blockchain’s success. By creating the block, creators will gain

block reward and transaction fees. With economic incentives and viola-

tion cost, most nodes behave as expected. In threat intelligence sharing

organizations are reluctant to share information due to the fear of privacy
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disclosure and financial loss. So, an effective incentive mechanism is the

more pressing requirement for our system.

Although Blockchain helps a lot to mitigate those challenges, there are some

challenges Blockchain can not address directly.

• Privacy issues. PII and organization secrets need to be removed or masked

before information sharing can occur. Blockchain won’t help because it

works on the sharing procedure. IEP will help organizations to execute the

preprocess procedure, such as pattern matching, extraction, and obfusca-

tion. Blockchain will use cryptography to protect every information on the

ledger and can adopt an audit system for forensic analysis.

• Quality issues. Blockchain will not directly improve the quality of threat

intelligence. A data quality assessment module will give assistance to im-

prove data quality. Information that does not reach the required quality

criteria will not be validated nor accepted. To that extent, blockchain can

assist improving the average quality to some extent. The information qual-

ity assessment is also a preprocessing procedure. Threat intelligence can be

qualified by its completeness and freshness. Completeness is reduced when

missing a field which is stipulated in a sharing data standard. Freshness

will decay as time passes since detection time.

• Interoperability issues. The barriers to interoperability are different termi-

nology and data standards. Blockchain will not directly analyze the infor-

mation’s semantics just as information’s quality. A preprocessing procedure

may help.

3.6 Trusted Computing in Threat Intelligence

Sharing

Trusted Computing (TC) is widely used in payment, biometric and cloud com-

puting area. Few works adopt Trusted Computing to Threat Intelligence Sharing.
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In 2006 Sandhu proposed a PEI models to share information using TC [48]. As

I discussed in Section 3.2.3, TC provides cryptography services capable of seal-

ing sensitive data in the trusted environment. Based on this feature of TC, the

PEI models designed an access control system which makes sure the protected

content is only be obtained by certain authorized clients. In 2008 Lu presented a

P2P resource sharing scheme, RS-UCON, using TC [49]. Besides sealed storage,

RS-UCON exploits an attestation mechanism of TC to establish P2P communi-

cation.

All the above implementations are built on the top of TPM, which provides

attestation and cryptogrphic services. But they fall short of creating trusted

applications. With the advent of TEE, user-defined code can be deployed in a

TC platform. TC’s scope of application is widely extended.

The following challenges of TIS is effectively overcome by TC:

• Trust issues. Trustworthiness is the core value of TC. With the help of TC,

the sharing process is anti-hacking, and the sharing data can be securely

sealed. As a result, the trust towards the platform is greatly enhanced.

• Privacy Issues. All the privacy with in TC is invisible to outside applica-

tions. PII and organization secrets can be securely removed or masked.

• Quality issues. The data quality assessment module can be implemented in

TC; thus, the quality value is tamper-proof.

All the system modules can be migrated from a normal environment to a TC

environment. It will enforce the service logic to be executed as desired.

The shortcomings of a TC implementation are the hardware cost and fee due

to attestation services. This is beyond the scope of my research.
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Chapter 4

TITAN Design

4.1 Introduction

Our approach to address the above requirements is to develop a system to im-

prove participant trust and data quality assessment issues using trusted platform

technologies, namely blockchain and TEE. In this chapter, I explain the proposed

system – Threat Intelligence sharing Trust enhANcement (TITAN).

Specifically, I propose:

1. To develop a TIQ assessment framework based on the use of TEE. This will

enable trust by verifying the integrity of the received TI and the assessment

processing.

2. To develop a reputation system that will allow peers to rate TI sharing

transactions based on the quality of the TI received and also, more generally,

to allow user subjective feedback on a range of peer transaction types e.g.

to rate the quality of a different services (providers).

TITAN is aimed to be a general solution for trusted TI sharing for use across

different TIPs and to incorporate a variety of TIQ assessment and scoring algo-

rithms. The initial development of the tool is based on the use of EigenTrust and

the PROTECTIVE [47] sharing TIP.
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4.2 Architecture

The overview of our system architecture is depicted in Figure 4.1. It consists of

three layers:

Figure 4.1: TITAN Architecture

• TI Sharing Layer. This is the (P2P logically connected) threat intelligence

sharing community. This layer is in fact outside of our framework and

instead consumes the TITAN trust services. TITAN is in general agnostic

to the details of particular TIP e.g. such as underlying communication

distribution models i.e. P2P, hub and spoke or hybrid, but TITAN can be

adapted to TI sharing community specific assessment requirements such as

TIQ assessment algorithms.

• Reputation Layer. The Reputation Layer is the core functionality of the

system. It consists of two principal components the Reputation System and

TI Quality Assessment Calculation.
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The reputation system is based on the use of global history P2P reputa-

tion algorithms such as EigenTrust. It is primarily implemented in the

Trusted Execution layer in both the blockchain and TEE components. The

blockchain is composed of the following smart contract functions:

1. User Administration - registers and deregister peers to TITAN via join

and leave functions

2. TIQ Assesment - responsible for managing the TI quality assessment

scores via the updateQualityScore and getQualityScore functions. This

contract automatically invokes the Trust Scoring contract to convert

TI quality score to local trust score.

3. Trust Scoring - the contract updates the reputation score for a single

peer interaction or transaction via the updateTrustScore function and

the score is retrieved using the getTrustScore function. The trust score

is defined separately from the TI quality assessment as it enables a

more general trust scoring scheme. Thus, reputation may be based on

i) just the TI quality score ii) a combination of TI quality scoring and

other parameters or iii) without the TI quality score.

4. Reputation Scoring - the reputation algorithm triggers the calcula-

tion of the global trust i.e. the reputation score via the calculateRep

function and the score may be retrieved via the getTrustScore function.

The actual scoring calculation is offloaded to the TEE for performance

reasons.

Note that the remote attestation features of the TEE means use of a third

party to provide the assessment service does not change the decentralized

nature of the architecture as any peer may provide the function.

• Trusted Execution Layer. This layer comprises the blockchain and the TEE.

The blockchain stores the trust and reputation score data and provides
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security and integrity against manipulation of the scores. The TEE provides

security and integrity for the TI quality scoring algorithm and data and

prevents manipulation or tampering. The algorithm code is published so

that any person can examine it and verify its operation. The input data to

the assessment is cached in the TEE layer for some policy defined period

to enable remote attestation in case of dispute. The reputation scoring

algorithm is similarly protected.

4.3 Workflow

Figure 4.2 gives a high-level overview of the operation of the TITAN system,

shown in the phases A, B and C. The figure depicts two members of the TI

sharing community, containing the blockchain and TEE components.

In phase A, members of the TI sharing community register as part of the

TITAN via invoking the join smart contract function. At this stage member

accounts and other related data entities are created in the Ethereum blockchain.

Participants are now able to take part in the TITAN sharing scheme.

At some later time, in phase B, one participant receives threat intelligence

from a peer - how this is done is specific to a particular TIP and is not considered

here. The receiving peer then requests the TIQ assessor to assess the quality of

the received TI. The result of the assessment is then posted to the blockchain via

the updateQualityScore smart contract function. After that the receiving peer or

other peers can get the transaction quality score via getTIQuality and their own

Ethereum Agents.

In phase C, a participant requests Reputation Algorithm Calculator to refresh

the reputation scores by calculating the peer global trust values i.e. calculateRep.

This will call offload smart contract function to retrieve all aggregated transaction

scores, which will be fed into the actual reputation calculation function. Then it

produces and stores the reputation results into smart contract. A peer may then,

or at any time, retrieve the reputation score for any other peer via getRepScore
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Figure 4.2: TITAN Workflow
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smart contract function.

The pseudocode of the Smart Contract is shown in Appendix Algorithm 2.

4.4 Quality Assessment

TITAN is using the the H2020 PROTECTIVE TIP [47] as the TI sharing layer to

develop to prototype and validate the approach. PROTECTIVE aims to improve

security situational awareness through TI sharing, amongst other things. The TIP

shares network and email indicators of compromise using the Intrusion Detection

Extensible Alert (IDEA) schema [50].

The project has developed a TIQ assessment algorithm based on computa-

tional trust [47]. The following figure illustrates the process of assessment.
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Figure 4.3: Alert Quality

In the Figure 4.3, Completeness, Freshness and Relevance are defined as:

• Completeness - measures how much the the TI complies with IDEA schema

definition. Completeness decreases for each missing field.

• Freshness - measures how long the information is shared since it is gener-

ated. It decays as time passes.

• Relevance - for each type of alert source, a list of specific keywords is pre-
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defined along an associated relevance value. The relevance score is based

on the number of keyword occurrences in the alert’s field.

In this approach TIQ is expressed as

TIQScore = 60% ∗ Completeness+ 40% ∗ Freshness) ∗Relevance (4.1)

The quality score is calculated for every received security event. In the cur-

rent, static community structure usage, events are exchanged continually between

known community members and trust scores are used primarily as input to an

alert prioritization scheme. In the decentralized scenario I anticipate blocks i.e.

files of indicators of compromise being exchanged and the individual event quality

scores being aggregated by the TIQ assessment function for such event files.

4.5 Reputation Assessment

TITAN uses the EigenTrust algorithm to calculate reputation score. EigenTrust

takes in peer transaction histories and produces global trust values for all par-

ticipants [51]. EigenTrust is based on the notion of transitive trust. Each peer

calculates a local trust score value vijk i.e. the information quality value of kth

transaction from provider i to consumer j. The reputation that consumer j con-

tributes to provider i is Rij:

Rij =
∑
k

vijk (4.2)

The transaction history of the files’ quality scores forms a local reputation

matrix R. EigenTrust computes global trust values using R, based on power

iteration. The basic idea is formulated in following pseudocode.
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Algorithm 1 Pseudocode of Eigen Trust

~t (0) ← ~e
repeat

~t (k+1) ← RT~t (k)

θ ← ||~t (k+1) − ~t (k)||
until θ < ε
return ~t (k+1)

~t (0) represents the initial trust value of each peer. In each iteration, the

original trust value is weighted by its friends’ opinions. With large iterations,

the trust vector ~t will converge to the same vector for every peer. Namely it will

converge to the left principal eigenvector of R. ~t represents a global trust vector

in this model [51].

TITAN stores the transaction trust scores on Ethereum. The integrity and

transparency provided by the blockchain addresses the two main EigenTrust se-

curity concerns i.e. i) the current trust value of a peer must not be computed by

and reside at the peer itself and ii) the calculation of a global trust score for any

peer must not be miscalculated by any other peer [51]. A beneficial side effect of

storing the local trust values in Ethereum is that the centralized version of the

algorithm can be used to calculate the global trust score.

Every peer with the reputation algorithm TEE enclave is capable of process-

ing Eigentrust and can store the result in Ethereum. A reward is provided by

Ethereum to peers who calculate the Eigentrust for the community.
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Chapter 5

TITAN Implementation

5.1 Introduction

This chapter explains the details of TITAN implementation. The following Figure

5.1 illustrates the overall structure.

Figure 5.1: TITAN Implementation

TITAN consists of two components. The upper component is Ethereum part.

A global state containing User list, TIQ and reputation scores is maintained by

smart contract interfaces. The lower component is the TEE part, which contains

five modules.

Further information about those components and modules will be detailed in

subsequent sections. Here I will express the service flows. I have implemented a
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Restful API Server to dispatch users’ requests. There are mainly three different

types of requests, labeled with three different colors:

• Green Work Flow. If the request is to interact with a smart contract di-

rectly, such as to fetch information, it will be assigned to Ethereum Agent

Module, web3py, which will call the smart contract.

• Blue Work Flow. If a user wants to assess the alert quality, the request will

be transmitted to TIQ Assessment Module. Afterwards, the result will be

upload to Blockchain through web3py.

• Red Work Flow. When a user wants to update the reputation score, an

EigenTrust Module is assigned to handle this request. It will fetch data from

a smart contract, compute the Trust Score and upload them to Blockchain.

5.2 Ethereum Part

Ethereum is the most widely adopted platform to deploy Smart Contracts. I

develop the TITAN Smart Contract using an Ethereum Blockchain. Algorithm

2 exhibits the pseudocode in appendix 1.

Since the transactions in the Ethereum main-net are costly and time-consuming,

I don’t deploy smart contracts in the main-net. The evaluation of Ethereum are

given later in Chaper 6.

As a workaround, I deploy smart contracts in Ganache, an emulation Ethereum

network [52]. Ganache will provide a personal blockchain for Ethereum develop-

ment, where I can do anything as in Ethereum, such as send transactions, deploy

and call smart contracts.
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Figure 5.2: Ganache Blockchain

The interaction between TITAN and smart contracts is executed by Ethereum

Agent Module.

This Smart Contract can be divided into two interconnected parts: Global

State and Interfaces.

Global State:

• userList - the list of joined users.

• leaveList - the list of left users.

• repList - the list of reputations for each joined user.

• eigList - the list of EigenTrust Score for each user.

• repMatrix - the aggregated reputations containing the provider - consumer

relation.

• providerDataList - the data list provided by users.

• consummerDataList - the data list consumed by users.
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• dataValue - the average quality score of each batch of data.

Interfaces :

• join - to register in TITAN system.

• leave - to leave the TITAN.

• getRep - to get a reputation score for a specific user.

• getEig - to get a EigenTrust Score for a user.

• updateRep - to upload a quality score of a particular batch of data.

• offloadRep - to offload the reputation matrix which is the input of Eigen-

Trust module.

• updateEig - to store the results generated by EigenTrust module.

5.3 TEE Part

All the compute-intensive and data-intensive tasks are offloaded to the TEE com-

ponent. The TEE part and Smart Contract Part communicate through Ethereum

transactions.

All of those tasks are implemented in SCONE platform and regulated by a

RESTful API Server.

5.3.1 SCONE

SCONE is a Secure CONtainer Environment for Docker using the Intel SGX

technology proposed by Arnautov et al [53] in 2016. The innovation point of this

platform is combining the features of container technology and TEE technology

together. SCONE has three major desirable properties:

1. A small TCB. In SCONE, system calls are executed outside of the enclave,

but they are shielded by transparently encrypting / decrypting application
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data on a per-file-descriptor basis and network communication is protected

by Transport Layer Security (TLS).

2. A low overhead. SCONE provides a user-level threading implementation

which can maximize the time that threads spend inside the enclave and

reduce costly enclave transitions of threads.

3. Transparent to Docker. Secure containers behave like regular containers in

the Docker engine. SCONE requires only a SGX-capable Intel CPU, a SGX

kernel driver and an optional kernel module for asynchronous call support.

To deploy TITAN on the platform of SCONE, instructions are presented as

follows:

1. Install docker.

Official docker tutorial is the best practise. SCONE also provides simplified

execution scripts for Ubuntu clients.

curl -fssl https :// raw.githubusercontent.com/SconeDocs/SH/

master/install_docker.sh | bash

2. Install Intel SGX driver

The official installation method of the SGX 2.0 driver on Linux distribution

is given in its github page [54]. Alternatively, Ubuntu users could execute the

following:

curl -fssl https :// raw.githubusercontent.com/SconeDocs/SH/

master/install_sgx_driver.sh | bash

To check if the SGX driver is successfully installed, following command is

suggested.

ls /dev/isgx >/dev/null 2>1 && echo "SGX Driver installed" ||

echo "SGX Driver NOT installed"

The CPU and the motherboard BIOS must support SGX, otherwise the in-

stallation will fail. In this case, simulation mode of SCONE allows prototype

development.
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3. Run a SCONE container

SCONE supports various programming languages including C, C++, Fortran,

GO, Java, Python, PyPy, Node.js, R, Rust. For each language, SCONE provide

different docker images, which is used to create Enclaves and running specific

programs.

To run the Python interpreter inside an enclave in interactive mode, the con-

tainer should be started.

docker run --rm -it -v "$PWD":/usr/src/myapp -w /usr/src/myapp

sconecuratedimages/python :3.7- alpine sh

The application code located in $PWD is mapped into /usr/src/myapp inside

the container.

4. Execute inside an enclave

The commands will execute a python interpreter inside an enclave

SCONE_HEAP =256M SCONE_VERSION =1 SCONE_MODE=AUTO python

The environment variable is set as SCONE MODE=AUTO, thus SCONE will

use SGX enclaves when available and emulation mode otherwise.

The outputs indicate an enclave is successfully created.

export SCONE_QUEUES =4

export SCONE_SLOTS =256

export SCONE_SIGPIPE =0

export SCONE_MMAP32BIT =0

export SCONE_SSPINS =100

export SCONE_SSLEEP =4000

export SCONE_LOG =1

export SCONE_HEAP =268435456

export SCONE_STACK =2097152

export SCONE_CONFIG =/etc/sgx -musl.conf

export SCONE_ESPINS =10000

export SCONE_MODE=sim

export SCONE_ALLOW_DLOPEN=yes (unprotected)

export SCONE_MPROTECT=yes

musl version: 1.1.20

Revision: a1e5196e61af96370b5b380dc4a03e49542e4f6d (Tue Jul 23

22:00:54 2019 +0200)

Branch: master (dirty)

Enclave hash:

fa59564100f17f76284aeaa4fa335e10ebeb2888a5bb221354d3c757f8

79b493
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Python 3.7.5 (default , Oct 17 2019, 12:25:15)

[GCC 8.3.0] on linux

Type "help", "copyright", "credits" or "license" for more

information.

>>>

5.3.2 RESTful API Server

REpresentational State Transfer (REST) is a software architectural style for

building web services. REST is built on top of HTTP, i.e. the web services

expose resources in the form of Uniform Resource Identifiers (URIs). The promi-

nent advantage of REST architectural style is scalability which allows the support

of large numbers of components and interactions among components.

TITAN adopts an internal RESTful API Server to integrate the sub-modules.

The APIs is designed as follows:

Table 5.1: APIs of TITAN

Api Methods Description
/api/join POST To join in the platform.
/api/leave POST To leave the platform.
/api/updateRep POST To record the alert quality scores and maintain

reputation matrix.
/api/updateEig POST To update the EigenTrust Values.
/api/getRep GET To get the peer’s reputation score based on ses-

sion.
/api/getEig GET To get the peer’s EigenTrust value based on ses-

sion.

Flask is one of the most popular lightweight Python web application frame-

works, which are suitable to build the RESTful API Server.

To install Flask using pip:

pip install -U Flask

A quick example of Flask application is given as:

from flask import Flask , jsonify , request

app = Flask(__name__)
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@app.route(’/’, methods =[’POST’])

def hello_world ():

addr = request.form.get(’addr’)

session[’addr’] = addr

return jsonify(

addr=addr ,

info="Hello , This is Titan."

)

5.3.3 Ethereum Agent Module

Web3.py is a python library for interacting with Ethereum. It is installed by pip:

pip install web3

The Smart Contract is written in Solidity language, then deployed through

Web3.py. The process is detailed in Appendix 2.

During the deployment the address and abi of Smart Contract is stored, which

are used to construct a contract instance during interacting with Ethereum. The

contract instance is defined in Appendix 3.

5.3.4 P2P Util Module

P2P Util Module is designed to set up a P2P Network, through which Alert files

are sharing. It acts as a basic Threat Intelligence Sharing Platform which is a

substitute of a fully featured TIP.

To initiate a P2P network, various strategies are developed. The easiest way

is to dedicate a central server, peers register through the server and get the

information of other members. Then they communicate with each other directly.

This is a hybrid P2P network. The second solution is to assign a specific port

and send millions of initial searches in order to find other participants. It is a

pure decentralised approach but with low availability and performance.

A list of seed peers needs to be predefined. Every newly instantiated node

will send a message to one of the seeds, the seed will return a list of participants.

After receiving the member list, the new comer will introduce himself to every

one on the list. Figure 5.3 conveys the initiation process.
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Figure 5.3: Initiate a P2P network

Peers need to react on various messages; thus, the messages are wrapped in

a certain protocol: Each message contains two field. The first field indicates the

command, and the second field contains the data. Those messages are transferred

with json format.

{
"type":"command string",

"data":"content string",

}

Using this protocol, peers can chat and share file with each other, they can

exit the network as well. The whole sequence diagram of each peer is given is

Appendices 4.
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5.3.5 TIQ Assessment Module

TIQ Assessment Quality is introduced to access the quality of alerts which are

complied with Intrusion Detection Extensible Alert (IDEA) format. Horizon

2020 (H2020) PROTECTIVE project developed a security situational aware-

ness manager to defend cyber attacks [47]. This open source project contains

a PROTECTIVE-trustmodule which addressed the alert quality issue [55]. I

adopt this module into TITAN. The output of this module will be stored in the

Ethereum part. To reduce the transaction traffic of TITAN, alerts are shared and

assessed in bundles of thousands. This perimeter can be defined by user. The

average score of a bundle of alerts will be sent to Ethereum.

The below function is to split a big file into bundles:

# given the folder name , file name , lines (default = 1000) ,

return a list of small file.

def split(path , filename , lines = 1000):

smallfile = None

with open(path + filename) as bigfile:

for lineno , line in enumerate(bigfile):

if lineno % lines == 0:

if smallfile:

smallfile.close ()

small_filename = path + ’small_file_ {}. txt’.

format(lineno + lines)

smallfile = open(small_filename ,’w’)

smallfile.write(line)

if smallfile:

smallfile.close ()

After that, the average score of a bundle file will be assessed.

# given a bundle of alerts , return its average score.

from protective_trustmodule.alertquality import AlertQuality ,

AlertQualityConfig

def assess(filename):

AQ = AlertQuality(AlertQualityConfig ())

allscore = []

with open(filename , ’r’) as f:

for i in f:

allscore.append( AQ.get_quality(i) )

sum = 0

for j in allscore:

print(j[’Score ’])

sum += j[’Score’]

return sum/len(allscore)
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5.3.6 EigenTrust Module

EigenTrust is a reputation calculation algorithm developed by Karmvar et al.

[51]. Due to the feature of preventing collusion attack that EigenTrust has, it is

chosen as TITAN’s reputation assessment algorithm.

The concept and algorithm of EigenTrust is introduced in section 4.5.

Because Smart Contracts in Ethereum can not return 2-dimensional list cur-

rently, EigenTrust Module fetches one-dimensional list as input. The list is con-

verted to Matrix through:

import numpy as np

def list2Mat(list):

l = len(list)

lMat = int(np.sqrt(l))

Mat = np.reshape(list ,(lMat ,lMat))

return Mat

The matrix must be normalized before procession:

def normalizeMartix(repMat):

resMat = []

## the sum of every row is equal to 1.

for row in repMat:

s = sum(row)

if s != 0:

row = [x/s for x in row]

# if i doen’t trust anyone , i trust them equally.

else:

row = [1.0/ len(row)]*len(row)

resMat.append(row)

return resMat

Then EigenTrust Module produces the trust value for all peers through:

def eigenTrust(normMat , epsilon =1e-8):

npMat = np.array(normMat)

transMat = npMat.T

l = len(normMat)

t0 = [1/l] * l

tk = t0

tk1 = None

delta = 1

while delta > epsilon:

tk1 = transMat.dot(tk)

delta = np.linalg.norm(tk1 - tk)

tk = tk1

return tk
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Chapter 6

Evaluation

TITAN provides trust services to a TI sharing platform. The H2020 PROTEC-

TIVE project is used as the TI sharing layer to validate the approach. The intro-

duction of PROTECTIVE and the cooperation of PROTECTIVE and TITAN is

explained in section 6.1.

TITAN is an innovative trust management system combining Smart Contract

and Trust Computing. Few applications are developed using such an approach.

This situation leads to hardly any horizontal comparisons. Nonetheless I test

the performance of TIQ function of phase B (see Figure 4.2) in section 6.2, and

demonstrate other functionalities of TITAN there.

All the results of TITAN are stored in Blockchain through transactions. The

performance of phase C (see Figure 4.2) in TITAN highly relies on Blockchain

Performance. Since the call of Smart Contracts takes a lot of time to be mined,

usually more then 3 seconds, the Smart Contract is the performance bottleneck

of phase C. Thus, the evaluation of Ethereum is required. The throughput and

transaction latency of Ethereum are assessed in section 6.3.

6.1 PROTECTIVE

PROTECTIVE is a Security Situational Awareness Manager (SSAM) designed to

provide security teams with a greater cyber defence capability through improved

cyber situational awareness (CSA) in order to raise their level of awareness of the

risk to their business posed by cyber-attacks as well as enhancing their capacity

65



to respond to threats.

PROTECTIVE has been developed to support two different modes of deploy-

ment, Peer-2-Peer (P2P) and Centralized Mode. TITAN is compatible with both

modes. Only the P2P architecture is introduced here. The Peer-to-peer architec-

ture represents separate communities, each with their own PROTECTIVE Node

– see figure 6.1 below.

Figure 6.1: PROTECTIVE Ecosystem

Such an ecosystem is a federation of a number of PROTECTIVE nodes in

different partner organisations which share information for the purposes of mu-

tually improving identification and prevention and mitigation of threat events in

their respective constituencies. Each network has at least one PROTECTIVE

node which is used to raise organisational cyber situational awareness and also to

route threat information to and from community partner PROTECTIVE node.

This is depicted by the double ended arrows. The figure 6.2 shows the details

inside an instance of a PROTECTIVE node.

The PROTECTIVE node is designed as an information processing pipeline.
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Figure 6.2: PROTECTIVE Node

Information enters the Alert Flow Processing system at the bottom left side

of the diagram through the Alert Ingestion subsystem. The incoming alerts are

converted to the PROTECTIVE normalised security alert format, IDEA (In-

trusion Detection Extensible Alert). After ingestion, IDEA alerts are passed to

the Enrichment subsystem. Here, additional data is annotated to the alerts to

aid with their further processing. After enrichment the alerts are passed to the

Meta Alert Correlation for further processing. In this module IDEA alerts are

aggregated into composite structures known as Meta-Alerts.

The alerts and Meta-Alerts are used by the analysis features described above.

Security alerts are routed to the TI Sharing subsystem for distribution.

6.1.1 Interaction between PROTECTIVE and TITAN

As described in Chapter 4, there are three layers in TITAN architecture. The

first layer is TI sharing layer which is in fact outside of its framework and instead

consumes the TITAN trust services. The PROTECTIVE ecosystem works in this

layer.
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Figure 6.3: TITAN and PROTECTIVE

When the threat intelligence is shared from one PROTECTIVE node to an-

other, TITAN will access the quality of alerts and calculate the reputation for

each entity.

Figure 6.4: Connection between PROTECTIVE and TITAN
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Figure 6.4 shows the connection between PROTECTIVE and TITAN. When

the IDEA alerts flow through the PROTECTIVE enrichment system, they will

be dispatched to TITAN. TITAN provides trust services for the PROTECTIVE

enrichment system, especially the trust sub-module.

Figure 6.5: Alert flow between PROTECTIVE and TITAN

When the alerts flow through trust sub-module, the event handler dispatches

a copy of alerts to TITAN, as show as Figure 6.5. TITAN will assess the alerts and

then send back TIQ and EigenTrust scores to the Reputation Manager. Phase B

and C are the illustrated in Figure 6.6 below. They are very much similar to the

phases in Figure 4.2 which is detailed in section 4.3.
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Figure 6.6: Details of Alert flow between PROTECTIVE and TITAN

In phase B, the Event Handler of PROTECTIVE sends Batches of alerts to

the Agent of TTIAN, when the agent gets the result, it will send the TIQ back

to the Reputation Manager. At some later time, in phase C, after the agent of

TITAN calculates the latest EigenTrust scores, it will send these scores to the

Reputation Manager.

How the TIQ and the EigenTrust are utilized depend on the design of Reputa-

tion Manager. The Information Exchange Policy, which governs all the exchange

of data as previously described in section 3.4.3, can work based on EigenTrust.

For example, a discreet peer will only receive files from a node whose EigenTrust

is above average score. The ranking of alerts may take the TIQ and EigenTrust

as a valuable reference. Besides that, a micro-payment system may work based

on TIQ. This system can be built on (but not limited to) the Smart Contract.

There are various use-case scenarios which are beyond the scope of TITAN.
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6.2 TITAN Verification

The dataset used to evaluate TITAN is the source Threat Intelligence file shared

in H2020 PROTECTIVE project. It is a cluster of alerts using the IDEA format.

Normally a single file is as large as several GBs with around 200,000 alerts. A

single alert is a JSON serialized IDEA security event, as in this example:

{
"Format": "IDEA0",

"ID": "4390 fc3f -c753 -4a3e -bc83 -1 b44f24baf75",

"CreateTime": "2012 -11 -03 T10:00:02Z",

"DetectTime": "2012 -11 -03 T10:00:07Z",

"WinStartTime": "2012 -11 -03 T05:00:00Z",

"WinEndTime": "2012 -11 -03 T10:00:00Z",

"EventTime": "2012 -11 -03 T07:36:00Z",

"CeaseTime": "2012 -11 -03 T09:55:22Z",

"Category": ["Fraud.Phishing"],

"Ref": ["cve:CVE -1234 -5678"],

"Confidence": 1,

"Note": "Synthetic example",

"ConnCount": 20,

"Source": [

{
"Type": ["Phishing"],

"IP4": ["192.168.0.2 -192.168.0.5", "192.168.0.10/25"]

↪→ ,

"IP6": ["2001:0db8:0000:0000:0000:ff00:0042::/112"],

"Hostname": ["example.com"],

"URL": ["http:// example.com/cgi -bin/killemall"],

"Proto": ["tcp", "http"],

"AttachHand": ["att1"],

"Netname": ["ripe:IANA -CBLK -RESERVED1"]

}
],

"Target": [

{
"Type": ["Backscatter", "OriginSpam"],

"Email": ["innocent@example.com"],

"Spoofed": true

},
{

"IP4": ["10.2.2.0/24"],

"Anonymised": true

}
],

"Attach": [

{
"Handle": "att1",

"FileName": ["killemall"],

"Type": ["Malware"],

"ContentType": "application/octet -stream",
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"Hash": ["sha1:0c4a38c3569f0cc632e74f4c"],

"Size": 46,

"Ref": ["Trojan -Spy:W32/FinSpy.A"],

"ContentEncoding": "base64",

"Content": "TVpqdXN0a2lkZGluZwo ="

}
],

"Node": [

{
"Name": "cz.cesnet.kippo -honey",

"Type": ["Protocol", "Honeypot"],

"SW": ["Kippo"],

"AggrWin": "00:05:00"

}
]

}

Such dataset is divided into small files containing thousands of alerts. Those

granulated files will be assessed through TITAN in batches.

I don’t have a PROTECTIVE system running so that I emulate it by running

a P2P Util Module which I developed by myself. The P2P Util Module is fine to

use because I am using the real PROTECTIVE events and the conclusion can

be generalised. It works as a primitive threat intelligence sharing network. when

a file was sent from a provider to a receiver. The TIQ assessment module takes

in the file and assesses its quality. The whole process is depicted as a sequence

diagram in appendix 4. When the quality value is generated it will send to the

Ethereum blockchain. Afterwards, EigenTrust values will be calculated based on

those transactions. The process works as shown in Figure 6.7.

Figure 6.7: The Demo of TITAN

I took a file containing 100,000 alerts to test the performance of the TIQ
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algorithm which is the core program in phase B. The overall runtime is 163.743s,

which means it takes 1.637 millisecond per alert. This result is based on my

laptop, as specified in Table 6.1. Since a server may process higher-speed CPUs

and larger memory, the runtime can be remarkably diminished.

Table 6.1: Computer Information

Items Value
Computer Model Timi TM1701
CPU Intel(R) Core(TM) i5-8250U
Clock Speed 1.60 GHz
Core Number 4
RAM 8 Gbytes

In order to reduce the number of Blockchain transactions, the alerts are bun-

dled into thousands. For the purpose of analyzing the effect that the bundling

brings to the overall performance, I split the same file with different sizes, and

record the length time that TIQ modules takes when assessing them. The result

is depicted in Figure 6.8:

Figure 6.8: TIQ Runtime

The overall runtime of assessing a fixed number of alerts remains stable while

the size of a bundle growing, which indicates that there is marginal effect that size

of a bundle brings to the TIQ performance. The TIQ overall runtime is propor-
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tional to the volume of alert. The batch size is configurable with the possibility

to turn it off when needed. For some security system, if the coming alerts are

more massive and less sensitive, the batch size can be set larger. Otherwise, the

batch size can be smaller. If the computing power are stronger, the batch size

can be larger also.

Besides TIQ algorithms, other services of TITAN are highly interconnected

with Ethereum. They are organized as RESTful APIs, which are demonstrated

below.

Join in TITAN

In order to maintain one’s reputation and trust score through TITAN, registration

is required for every user. Since registration will call the smart contract causing

transaction fees, a payable Ethereum address is indispensable.

POST /api/join

Table 6.2: /api/join Parameters

Name Type Description

addr string
Required. It should be a payable Etheruem address pos-
sessed by the user.

Example:

{
"addr":"0 x0E25F0a98bd2ce8f01BBa053BE509E47f2f99E91"

}

Response:

Status: 200 OK

{
"addr": "0 x0E25F0a98bd2ce8f01BBa053BE509E47f2f99E91",

"info": "You have successfully joined the network ."

}
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If the address already exists in our system, the user will be informed with its

index.

Status: 200 OK

{
"addr": "0 x0E25F0a98bd2ce8f01BBa053BE509E47f2f99E91",

"index":4,

"info": "You had registered in the network ."

}

After this function, a session containing use’s address is created and ready for

later use.

Leave TITAN

“Leave” API is called when one wants to conceal all of one’s information on

TITAN. Because blockchain records the history of transactions, it is unable to

erase one’s trace. When one leaves TITAN, its reputation and trust score is

inaccessible through TITAN services.

POST /api/leave

No parameters are required when invoking this API. the address is obtained

through the session mention above.

Response:

Status: 200 OK

{
"addr": "0 x0E25F0a98bd2ce8f01BBa053BE509E47f2f99E91",

"info": "You have successfully left the network ."

}

Upload TIQ

After receiving a TI file from a provider, the recipient may access the Alert quality

for this file, and the result will send to Smart Contract through this function.
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POST /api/updateRep

Table 6.3: /api/updateRep Parameters

Name Type Description
dataId string Required. It is the hash signature of a shared file.

dataValue float
Required. This value is in [0,1). it is generated by TIQ
assessment module.

uid1 string
Required. It is the id of the information provider which
has already been registered.

uid2 string
Required. It is the id of the information consumer which
has already been registered.

Example:

{
"dataId":"e01a69a18e2600f1b3c155014bc3432109dcf3de9ab60616

↪→ 18258 ff39cabb720",

"dataValue":"0.8606090070712958",

"uid1":"0 xEB8384eBba808E10af03AE71eF2c7BAAE40dFd06",

"uid2":"0 x37CEA667403DF99E7a3Fb3cae8BA5384755D597b"

}

Response:

Status: 200 OK

{
"addr": "0 x0E25F0a98bd2ce8f01BBa053BE509E47f2f99E91",

"info": "The data quality value has been recorded ."

}

The sum of TIQs of a certain provider is his reputation. The provider’s reputation

is aggregated when this API is successfully invoked. the reputation list of all

participants will be used to calculate EigenTrust for each other.

Update EigenTrust

When a user request to update EigenTrust, the reputation scores hosted in

blockchain will be fetch to TEE. Afterwards EigenTrust Module will computer

the EigenTrust score for everyone. The latest scores will be upload to blockchain

and replace the older version.
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POST /api/updateEig

No parameters are needed.

Response:

Status: 200 OK

{
"addr": "0 xEB8384eBba808E10af03AE71eF2c7BAAE40dFd06",

"info": "The EigenTrust Values have been updated ."

}

Get Reputation

TITAN providers an interface for a user to fetch his reputation scores.

GET /api/getRep

Response:

Status: 200 OK

{
"addr": "0 xEB8384eBba808E10af03AE71eF2c7BAAE40dFd06",

"score": 13

}

Get EigenTrust Value

After “updateEig” API is called, the EigenTrust Value is updated. It is fetched

by:

GET /api/getRep

Response:

Status: 200 OK

{
"addr": "0 xEB8384eBba808E10af03AE71eF2c7BAAE40dFd06",
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"aveScore": 0.2,

"value": 0.32499999

}

The sum of all member’s EigenTrust value is equal to 1. “aveScore”, the

average EigenTrust value, is given as a benchmark reference.

6.3 Ethereum Evaluation

The performance of phase C highly relies on Blockchain Performance. Since the

call of Smart Contracts takes a lot of time to be mined, usually more then 3

seconds, the Smart Contract is the performance bottleneck of phase C. Thus, the

evaluation of Ethereum is required. The throughput and transaction latency of

Ethereum are assessed in this section.

In order to address the decentralized consensus problem, various consensus

algorithms are deployed in Blockchain implementations. Peers need to compete

for the right of composing blocks and validate transactions, which results in the

limitation of the theoretical maximum number of Transactions Per Second (TPS).

Bach et al. surveyed ten top high-profile Blockchain implementations and gave a

comparison table in 2018 [56].

Table 6.4: TPS of several cryptocurrencies

Cryptocurrency Name Protocol TPS
Bitcoin PoW 7
Ethereum PoW 15
Ripple RPCA 1500
Bitcoin Cash PoW 60
Cardano PoS 7
Stellar SCP 1000
NEO DBFT 10000
Litecoin PoW 56
EOS DPoS ∼millions
NEM PoI 4000

Although the ideal TPS of Ethereum is 15, the practical TPS given by ether-

scan.io is 8.8 [57] and TPS rendered by etherchain.org is 6.9 [58] at the time of
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writing. The high the TPS, the shorter time a transaction validation takes.

In Ethereum, the waiting time of a transaction is affected by the Gas Price.

Theoretically, the higher a transaction’s Gas Price is, the more likely it will be

included in the block that the miners are mining, i.e. the less waiting time it

takes.

Etherscan provides a pending transactions pool which contains the details

of more than 25000 pending transactions [59]. Fetching All those data gives a

snapshot of pending transactions’ status.

The following table illustrates the contents of this database:

Table 6.5: Pending Transactions

Index Txn Hash Nonce
Gas
Limit

From To Datetime
Waiting
Time
/secs

Gas
Price
/Gwei

Value
/Ether

0 0x548d... 131 52445 0xf256... 0x9a02... 2020-02-27 ... 1 8 0
1 0xbd26... 217 55478 0xea13... 0xada6... 2020-02-27 ... 1 3.96 0
2 0x90b2... 2 40000 0x7a83... 0x7788... 2020-02-27 ... 1 9 0
3 0x5128... 21 21000 0x98cf... 0xe830... 2020-02-27 ... 1 10 0.2701
4 0xf46c... 2189 187772 0xcc28... 0xe5ad... 2020-02-27 ... 1 8 0
... ... ... ... ... ... ... ... ... ...
25095 0x6606... 13 38948 0xff5b... 0xa689... 2020-02-20 ... 633600 0.054906 0
25096 0x7385... 3 100000 0xc55a... 0x71ae... 2020-02-20 ... 633600 0.01 0.000231
25097 0x9fba... 4 200000 0xef36... 0xac9b... 2020-02-20 ... 633600 0.01 0
25098 0x0eac... 7 200000 0xcc24... 0xac9b... 2020-02-20 ... 633600 0.01 0
25099 0x6b39... 3 21000 0xeb29... 0xee56... 2020-02-20 ... 633600 0.05 0.000273

the statistical information from the database is concluded as:

Table 6.6: Statistical Information of All Pending Transactions

Gas Limit
Waiting Time
/ secs

Gas Price
/ Gwei

Value /
Ether

count 22170 22170 22170 22170
mean 470659.3961 36175.20573 0.433291 0.297001
std 1407233.05 62528.17409 5.30478 3.084242
min 21000 1 0 0
25% 100000 28920 0 0
50% 136272 32040 0.01 0
75% 200000 32400 0.1 0.06
max 10000000 633600 328.008578 365

Conclusion 1 : There are 75% transactions whose Gas Prices are below 0.10

Gwei. Their chance of being recorded on chain is almost impossible, thus they
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can be deemed as insincere transaction. There are generated by accident or for

experiment purpose and etc.

To evaluate the real transaction process, I select the data where GasPrice >

0.1Gwei as sincere transactions. The number of transaction drops from 22170 to

4985 (22.48%).

Table 6.7: Statistical Information of Sincere Pending Transactions

Gas Limit
Waiting Time
/ secs

Gas Price
/ Gwei

Value /
Ether

count 4985 4985 4985 4985
mean 737905.9739 45063.07543 1.877072 0.131827
std 1923154.778 78155.72702 11.067001 3.519321
min 21000 1 0.1 0
25% 60000 6480 0.3 0
50% 140000 30480 0.699467 0
75% 404540 32340 1 0
max 10000000 633600 328.008578 200.02772

Conclusion 2 : The average Gas Price of all sincere pending transaction is 1.87

Gwei, and the waiting time is 45063s (12 hours 31 minutes 1 second).

Conclusion 3 : More than 75% of transactions’ value is 0.000000 Ether. It

means the majority of transactions are micro-payment or non-payment transac-

tions.

Most of the Ethereum users have an expectation that their transactions be

validated as soon as possible. Therefore, the time frame of first 60 seconds is

more valuable then the rest.

After select and analyse transactions in this time frame, I find:

Conclusion 4 : For the pending transactions within the first 60 seconds, the

average Gas Price is 8.83 Gwei, and the waiting time is 20.96s.

To identify the correlation between other factors with Waiting Time, I com-

pute Pearson Correlation Coefficient, which is a general measure of the linear

correlation between two variables.
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Table 6.8: Pairwise Pearson Correlation Coefficient

Gas Limit
Gas Price
/ Gwei

Value /
Ether

Waiting Time / secs 0.014347 -0.406881 -0.054424

Conclusion 5 : The correlation coefficient between “Gas Price” and “Waiting

time” is -0.41, which indicates there is a medium negative correlation. It proves

that the less the Gas Price is, the longer the transaction waits.

Conclusion 6 : The effect that “Gas Limit” and “Value” bring to “Waiting

time” is insignificant, with correlation coefficient of 0.014, -0.054 respectively.

To visualize the relation between “Gas Price” and “Waiting time”, I draw the

scatter figure as below.

Figure 6.9: The relation between Gas Price and Waiting Time

Conclusion 7 : From Figure 6.9, I conclude that when the Gas Price is above

7 Gwei, the waiting time is high likely blow 20 seconds. On the contrary, if the

Gas Price is below 7 Gwei, there is a chance of waiting longer than 50 seconds.

The frequency histogram of Gas Price is given below:
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Figure 6.10: The frequency histogram of Waiting Time

Conclusion 8 : In the first 60s-time frame, the Gas Price of highest probability

is around 5, or 6 Gwei.

After aggregating the Gas Price according to waiting time, I compute the

average Gas Price of each time interval.

Figure 6.11: The average Gas Price of time intervals

Conclusion 8 : From above figure, it is suggested that the waiting time de-

creases while the Gas Price rises. But when Gas Price is higher than 9 Gwei,

there is no obvious decrease of waiting time as long as the Gas Price grows.
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6.4 Conclusion

In this chapter, I use PROTECTIVE to verify the feasibility of TITAN solution.

When the IDEA alerts flow through the PROTECTIVE enrichment system, they

will be dispatched to TITAN. TITAN assesses the alerts and then send back

TIQ and EigenTrust scores to the Reputation Manager of PROTECTIVE. The

Reputation Manager will make full use of the trust services. For example, the

Information Exchange Policy can work based on EigenTrust. A micro-payment

system may be established based on TIQ.

Afterwards, I evaluate the performance of TIQ algorithm which is most critical

and most frequently used in TITAN. It takes 1.637 millisecond to assess an event.

The experiment proves that the TIQ performance is rarely affected by the batch

size. So that the batch size is configurable regardless of the TIQ performance,

but the characteristics of alerts as well as computing power of the system etc. If

the alerts are less sensitive or the computing power are more strong, the batch

size should be larger.

TITAN is system built on top of Ethereum, thus the throughput and trans-

action latency of Ethereum are also evaluated. The waiting time decreases while

the Gas Price rises. But when the Gas Price is higher than 9 Gwei, there is no

obvious decease of waiting time as long as the Gas Price grows.

The batch size is higher, the number of transactions is fewer. In order to

reduce the time and cost caused by Blockchain transactions, it is suggested that

the batch size should be larger when it is available. In order to reduce unnecessary

transactions, the call of Update EigenTrust is better to be restricted by a certain

time frame.
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Chapter 7

Conclusion and Discussion

In this final chapter, I firstly recap the whole research project in section 7.1.

Then I discuss some findings, some limitations of TITAN and few expectations

of future researches in section 7.2.

7.1 Conclusion

Threat Intelligence Sharing is one of the most promising approaches to resist ever-

growing cyber attacks. Many pressing challenges still exist for effective TI sharing

especially around trust. First of all, I identify three types of trust requirements

for a general TIP, which are Trust between Participant, Trust in the TI Platform

and Trust of TI Quality. After studying various blockchain and trust computing

implementations, I design TITAN to satisfy each demand.

TITAN is an innovative decentralized TI sharing trust enhancement frame-

work combining Blockchain and Trust Computing, which consists of three lay-

ers: TI Sharing Layer, Reputation Layer and Trusted Execution Layer. The

Blockchain stores the trust and reputation scores which is tamper-proof. The

TEE securely hosts TI quality scoring algorithm and the reputation scoring al-

gorithm.

I implemented TITAN with Ethereum Blockchain and Intel SGX. TIQ algo-

rithm and EigenTrust algorithm are adopted as the reputation algorithms. The

TITAN Smart Contract is also developed to store the TIQ and EigenTrust scores.

In the evaluation phase, the feasibility of TITAN solution is verified by PRO-

84



TECTIVE. The interaction of PROTECTIVE and TITAN is illustrated and ex-

plained. Some typical use-cases of TITAN are also introduced.

Afterwards, I evaluated the performance of TIQ algorithm which is most

critical to TITAN. The experiment proves the TIQ performance is rarely affected

by the batch size. So that the batch size is configurable regardless of the TIQ

performance, but the characteristics of alerts as well as computing power of the

system etc.

The throughput and transaction latency of Ethereum are also evaluated. It is

proven that the waiting time decreases as the Gas price rises. But it won’t drop

too much when the Gas price is higher than 9 Gwei. In order to reduce the time

and cost caused by Blockchain transactions, it is suggested that the batch size

should be larger when it is available. And the call of Update EigenTrust is better

to be restricted by a certain time frame.

7.2 Discussion

There are also some findings worth discussing during this research:

1, The combination of Smart Contract and TEE can be widely used.

Smart Contract has two main limitations:

• It can not access off-chain data.

• Storage and computation on smart contracts are expensive.

Therefore, Smart Contract alone is not suitable for data-intensive or compute-

intensive jobs. I introduce Trusted Execution Environment to off-load those jobs

from smart contracts. TEE is a hardware isolated execution environment. It

only needs Minimal Trusted Computing Base which is Processor. And It pro-

vides a programmable platform, the application’s integrity and confidentiality is

maintained.

2, Currently TITAN is based on Intel SGX.
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TITAN is currently implemented with SCONE platform, which provides Se-

cure Linux containers using Intel SGX and docker.

It is better to extend the compatibility of TITAN to more TEE technologies

such as AMD platform Security Processor, ARM TrustZone and etc.

3, TITAN can be generalized to work with a broader set of Quality Assessment

and Reputation Assessment algorithms.

Those algorithms are developed as two separated modules, which can be re-

placed.

4, TITAN can be evolved into a more fully featured blockchain based TIP with

inclusion of the micro-payment incentive system.

The main application area of Blockchain includes financial system. Micro-

payment incentive system suit TITAN perfectly.

5, The evaluation of Ethereum is based on the trust of Etherscan.

All pending transactions are fetched from Etherscan, a Block Explorer and

Analysis Platform. As a consequence, the evaluation result is based on the trust

of Etherscan.

To generate more concrete conclusions, running a full Ethereum Node is sug-

gested.
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Appendices

1 Pseudocode of TITAN Smart Contract

Algorithm 2 Pseudocode of TITAN Smart Contract

1: string[] userList (value: uid)
. uid: the userID.

2: string[] leaveList (value: uid)
3: uint[] repList (value : Ri)

. i:the index of uid, Ri: the reputation of i
4: uint[] eigList (value : Ei )

. i:the index of uid, Ei: the Eigen Trust Score of i
5: uint[][] repMatrix (value:Rij)

. i,j:the index of uid, Rij: The reputation that provider i attains from
consumer j.

6: mapping providerDataList (key:uid, value:List[])
. List[]: the dataID list provided by uid

7: mapping consumerDataList (key:uid, value:List[])
. List[]: the dataID list consumed by uid

8: mapping dataValue (key:k, value: v)
. k: the dataID, v: the quality score of k
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9: function join(string:uid) . uid: the user’s ID
10: userList.push(uid)
11: return userList.length
12: end function

dummy delete
13: function leave(string:uid) . uid: the user’s ID
14: leaveList.push(uid)
15: end function
16: function getRep(string:uid)
17: i← userList.indexof(uid)
18: return repList[i]
19: end function
20: function getEig(string:uid)
21: i← userList.indexof(uid)
22: return eigList[i]
23: end function

24: function updataRep(k,v,uid1,uid2)
. k:dataid, v:quality value of data, uid*: the id of user

25: i← userList.indexof(uid1)
26: j ← userList.indexof(uid2)
27: dataValue[k] = v
28: providerDataList[i].push(k)
29: ConsumerDataList[j].push(k)
30: repMatrix[i][j] += v
31: repList[i] += v
32: end function
33: function offloadRep(string:uid)
34: if userList.exists(uid) then
35: repList[]← repMatrix
36: Return repList
37: end if
38: end function
39: function updateEig(eigTrustRes)
40: eigList← eigTrustRes
41: end function

2 Deployment of Smart Contract

from web3 import Web3 , HTTPProvider

from solcx import compile_standard

import json

import os

web3 = Web3(HTTPProvider("HTTP ://192.168.200.215:7545"))

base_dir = os.path.dirname(__file__)

path = os.path.join(base_dir , ’TITAN.sol’)

with open(path) as f:
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data = f.read()

input = {

"language": "Solidity",

"sources": {

"TITAN.sol": {

"content": data

}

},

"settings":

{

"outputSelection": {

"*": {

"*": [

"metadata", "evm.bytecode", "evm.bytecode.

sourceMap"

]

}

}

}

}

compiledSol = compile_standard(input)

bytecode = compiledSol[’contracts ’][’TITAN.sol’][’Titan ’][’evm

’][’bytecode ’][’object ’]

abi = json.loads(compiledSol[’contracts ’][’TITAN.sol’][’Titan’

][’metadata ’])[’output ’][’abi’]

CalcContract = web3.eth.contract(abi=abi , bytecode= bytecode)

# deploy SC

list = web3.eth.accounts

tx_hash = CalcContract.constructor ().transact ({

"from":list [0]

})

# get the SC address

tx_receipt = web3.eth.waitForTransactionReceipt(tx_hash)

address = tx_receipt.contractAddress

# store the abi and address for later use

data = {

"address":address ,

"abi":abi

}

path = os.path.join(base_dir , ’abi.json’)

with open(path , ’w’) as fw:

json.dump(data , fw)

def store(data):

with open(’abi.json’, ’w’) as fw:

json.dump(data , fw)

def load():

with open(’abi.json’, ’r’) as f:

abi = json.load(f)

return abi
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3 Contract Instance

from web3 import Web3 , HTTPProvider

import os

import json

class Instance:

contractInstance ={}

def __init__(self):

web3 = Web3(HTTPProvider("HTTP ://192.168.200.215:7545"

))

base_dir = os.path.dirname(__file__)

path = os.path.join(base_dir , ’abi.json’)

with open(path , ’r’) as f:

data = json.load(f)

self.contractInstance = web3.eth.contract(

address = data["address"],

abi = data["abi"]

)

def indexOf(self , uid):

return self.contractInstance.functions.indexOf(uid).

call()

# join the system

# uid is equal to the address

def join(self , uid):

self.contractInstance.functions.join(uid).transact ({

’from’:uid

})

# leave the system

def leave(self , uid):

self.contractInstance.functions.leave(uid).transact ({

’from’:uid

})

# update Reputation Score by data quality value

def updateRep(self , dataId , dataValue ,uid1 ,uid2 ,uid):

dataValue = int(dataValue * pow(10, 2))

self.contractInstance.functions.updateRep(dataId ,

dataValue ,uid1 ,uid2).transact ({

’from’:uid

})

# update Eigen Trust Values

def updateEig(self , eigList , uid):

self.contractInstance.functions.updateEig(eigList).

transact ({

’from’:uid

})

## Read Data From SC ##
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# check the length of User List

def getlength(self):

len = self.contractInstance.functions.getlength ().call

()

return len

def getRep(self , uid):

repScore = self.contractInstance.functions.getRep(uid)

.call()

return repScore

def getEig(self , uid):

eigScore = self.contractInstance.functions.getEig(uid)

.call()

return eigScore

def _checkEig(self):

eigList = self.contractInstance.functions._checkEig ().

call()

return eigList

def _checkRep(self):

repList = self.contractInstance.functions._checkRep ().

call()

return repList

# check the user list

def userList(self , index):

userList = self.contractInstance.functions.userList(

index).call()

return userList

# check the leave list

def leaveList(self , index):

leaveList = self.contractInstance.functions.leaveList(

index).call()

return leaveList

# return list of reputation

def offloadRep(self):

replist = self.contractInstance.functions.offloadRep

().call()

return replist
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4 Sequence Diagram of TITAN’s Peers

Sequence Diagram of TITAN’s Peers
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