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Addressing cohort uncertainty through
advanced length frequency and stage-based
assessment models with application to
anglerfish

Luke Batts

Abstract

Fisheries stock assessments are important tools for successful management of
fisheries. Reliability of a stock assessment model is often determined by the
data available and accounting for key uncertainties in the data is an important
aspect of stock assessments and management. Central to many assessment
models is the tracking of cohorts through the population, but uncertainty in
the identification of cohorts, in the form of uncertainty in age-estimation and
fish growth, can impact model performance. Overall, the aim of this thesis
was to develop methods to address this cohort uncertainty, as well as assess
the impact of biased age-composition data on the fisheries advice process. I
focus on anglerfish as the main case study species, as their assessment and
management is affected by the challenges touched upon earlier.

To provide context, Chapter 1 gives an overview of stock assessment and
management, focussing on the challenges of uncertainty in age-estimation and
growth, as well as the approaches used to account for them. Anglerfish fisheries
are also summarised and issues affecting their assessment and management
discussed.

Chapter 2 addresses the topic of cohort uncertainty by developing a new
method of length frequency analysis. The model is a maximum likelihood-
based procedure that uses Gaussian mixture models and the Expectation-
Maximisation algorithm to estimate von Bertalanffy growth parameters from
length frequency data from fisheries surveys. The model was applied to length
data from the white-bellied anglerfish stock in the Celtic Sea and Bay of Biscay.
The basic model estimated a single set of growth parameters, whereas the
hierarchical extension to the model was able to model some of the natural
variability in fish growth between cohorts or years with bivariate random
effects on key parameters.

Chapter 3 approaches the issue of cohort uncertainty from a different per-
spective, implementing and and testing the performance of stage-based stock
assessment models. Stage-based assessment models have less data requirements
and simpler population dynamics than more complex assessment models, so
are likely to be more robust to cohort uncertainty in the data. The stage-based
assessment models implemented were: Catch-Survey Analysis (CSA), and a
model first described in a theoretical paper by Schnute (1987). The perfor-
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Abstract

mance of these two theoretically different stage-based assessment models was
assessed with a simulation-testing framework and on a real anglerfish stock.
The findings showed both models are useful stock assessment models, with
CSA more robust but less precise than the Schnute model. The Schnute model
was more precise than CSA but required growth and mean fish weight data
unaffected by selectivity.

As part of the work conducted for Chapter 3, the R package ‘sbar’ was
developed. This is a fully documented R package that contains the functions to
run the stage-based assessment models. Chapter 4 outlines the key assumptions
and data requirements of the models, as well as demonstrating use with data
from a real anglerfish stock. Versions of the Schnute model not described or
tested in Chapter 3 were also detailed here. A goal of this chapter was to
allow new users to begin running stage-based assessment models with relevant
background information provided.

Chapter 5 addresses the impact of using age-composition data generated
with a biased growth function in stock assessment and management over
time. A management strategy evaluation framework was used, with both
stage-based and age-based management procedures tested. A method for
estimating CSA reference points was also developed. Both management
procedures were affected by the biased sampling data, but in different ways.
Performance statistics indicated that it is important to consider the uncertainty
and potential bias in growth estimates when generating age-composition data.

Overall, the research presented in this thesis has developed and implemented
techniques that aim to further advance the field of fisheries stock assessment
and management when cohorts are uncertain. The thesis focussed on anglerfish
for the majority of case studies due to the fisheries’ reported issues, however
the methods implemented here are useful in a wider context and there are
many species to which the techniques could be applied.
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1. General Introduction

1.1 Stock assessment and age-estimation

1.1.1 Stock assessment background

Fish are an important source of food globally and reliant fisheries often
have a complex dynamic of social, economic and ecological aspects (Hilborn
and Walters, 1992; FAO, 2020). Since the 1970’s there has been a growing
realisation and concern about the overexploitation of global fish stocks, leading
to the concept of sustainable fisheries management growing in prominence
(Hilborn et al., 2020). In 2015, The United Nations Sustainable Development
Goals were published, with conservation and sustainable use of the marine
environment being one of the key goals (SDG 14) (United Nations, 2015).
A primary target of SDG 14 is to regulate fishing practices and implement
management that restores fish stocks to ‘levels that can produce maximum
sustainable yield’ (United Nations, 2015).

Successful and sustainable fisheries management (i.e. stock abundance within
biologically sustainable levels) typically requires a reliable stock assessment
(Worm et al., 2009; Costello et al., 2012; Bianchi et al., 2014; Hilborn et al.,
2020). Fisheries stock assessments utilise a range of different data to estimate
relative size of a fish stock and the rate at which the stock has been harvested.
Results of a stock assessment often determine the management advice for a
fishery (Hilborn and Walters, 1992).

Uncertainty is an integral part of stock assessment and management, and
can generally be split into five components: process uncertainty, observation
uncertainty, model uncertainty, estimation uncertainty and implementation
uncertainty (Rosenberg and Restrepo, 1994; Privitera-Johnson and Punt, 2020).
The first four listed concern the stock assessment, whilst implementation is
the uncertainty associated with the implementing of management procedures
(Privitera-Johnson and Punt, 2020).

A need to reduce and account for different types of uncertainty has often
driven research and development of methods in fisheries science. Reliability
and choice of a particular stock assessment is often determined by the available
data (Hilborn and Walters, 1992; ICES, 2012; Maunder and Punt, 2013).
In many cases sparseness or uncertainty in data are key issues that hinder
development of assessments for fish stocks (Chen, 2003; Maunder and Piner,
2015; Chrysafi et al., 2019).
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1. General Introduction

Stock assessment models range from data-poor to data-rich approaches. At
the data-poor end of the spectrum there are approaches such as CMSY (Catch-
Maximum Sustainable Yield) (Martell and Froese, 2013; Froese et al., 2017)
and length-based methods such as LBSPR (Length-based Spawning Potential
Ratio) (Hordyk et al., 2015) and LIME (Length-based Integrated Mixed
Effects) (Rudd and Thorson, 2018). Surplus production models such as SPiCT
(Surplus Production in Continuous Time) (Pedersen and Berg, 2017) or ASPIC
(A Surplus-Production model Incorporating Covariates) (Prager, 1992) are
an example of a data-moderate approach, generally requiring a time-series of
catch and an index of biomass to run. Stage-based assessment models such as
biomass-based delay-difference models (Deriso, 1980; Schnute, 1987; Meyer and
Millar, 1999) or CSA (Catch-Survey Analysis) (Collie and Sissenwine, 1983;
Mesnil, 2003) can also be considered data-moderate approaches. As stock
assessment models increase in complexity to age-structured models (Shepherd,
1999; Jardim et al., 2014; Nielsen and Berg, 2014) and further still to integrated
models (Bull et al., 2005; Methot and Wetzel, 2013), spatial models (Cadigan
et al., 2017) or ecosystem models (Begley and Howell, 2004), they are considered
data-rich approaches to fisheries stock assessment. Generally, the majority
of contemporary stock assessments are based on age-based models, when
sufficient data are available (Punt et al., 2013).

1.1.2 Importance of growth estimates and ageing data
in stock assessment

Generating reliable age-composition data and/or estimates of growth are
often fundamental aspects of developing reliable stock assessments, as they
facilitate tracking of the progress cohorts of fish within a fish stock (Hilborn
and Walters, 1992; Quinn and Deriso, 1999). More broadly, fish growth is an
important branch of fish biology and is well studied due to its importance for
many aspects of fisheries science, including life-history theory (Denney et al.,
2002) , ecosystem modelling (Smith et al., 2015; Halouani et al., 2019) and
investigations of climate change impacts (Blanchard et al., 2012; Denechaud
et al., 2020). Fish growth in the form of a length-at-age relationship is most
commonly modelled with the well-known von Bertalanffy growth function (von
Bertalanffy, 1938).
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1.1.3 Challenges to age-estimation

A common method for obtaining growth information for teleost fish is to
utilise otoliths (or some other hard part that lays down incremental growth
rings e.g. fin rays, scales, vertebrae) to estimate the age of individual fish
(Campana, 2001). An age-length key (ALK) can then be used to convert
catch-at-length data to catch-at-age estimates. However, this method can
often be challenging in terms of time and resources, or if age-estimates are
considered unreliable (Hilborn and Walters, 1992). Unreliable age estimates
are a common issue in tropical and deep sea marine fish where seasonal
changes in growth are not thought to be substantial enough to leave clear
growth increments in the calcified structures of fish (Maunder and Piner, 2015),
although there is evidence that this may not be the case for some species
(Morales-Nin and Panfili, 2005; McMillan et al., 2021). Even with species for
which the ageing method is well established, there can be issues due to the
environmental complexities affecting incremental growth rings (Folkvord et al.,
2000; De Pontual et al., 2006; Hüssy et al., 2016).

1.1.4 Alternative methods for age assignment

Alternative methodologies are needed to generate age-composition data for
age-based stock assessments in situations where age-estimates are unreliable,
require validation or are not feasible (Sparre and Venema, 1998; Chang et al.,
2012; Maunder and Piner, 2015). Pre-assessment processing of length frequency
data is commonly conducted either through age-slicing (cohort-slicing) (Hilborn
and Walters, 1992; Ailloud et al., 2015) or length frequency analysis (Hasselblad,
1966; Bhattacharya, 1967; Fournier et al., 1990; Taylor and Mildenberger, 2017)
where an ALK is not available. Age-slicing requires at least basic information
on growth, to separate numbers-at-length data into length intervals according
to an assumed distribution of lengths-at-age (Hilborn and Walters, 1992;
Ailloud et al., 2015). Length frequency analysis is another typical approach to
estimating growth parameters and assigning fish age prior to an assessment.
This approach makes use of the distinct modes found in length frequency data
and their progression through periodic data (Hasselblad, 1966; Bhattacharya,
1967; Fournier et al., 1990; Taylor and Mildenberger, 2017; Batts et al., 2019).

A range of different methodologies have been developed for length frequency
analysis, from relatively simple approaches such as the Bhattacharya method
(Bhattacharya, 1967), which is a graphical method for separating length
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frequency distributions into Gaussian components, to more complex model-
based procedures such as ELEFAN (Electronic Length Frequency Analysis) and
MULTIFAN (Pauly, 1987; Fournier et al., 1990; Taylor and Mildenberger, 2017).
MULTIFAN is a widely used maximum likelihood-based procedure, whereas
ELEFAN is a non-parametric procedure. Both models require fish lengths to
be grouped into length bins prior to running the procedure and are typically
constrained to estimating a single growth curve (although this is addressed to an
extent with the development of the integrated stock assessment MULTIFAN-
CL) (Pauly, 1987; Fournier et al., 1990, 1998). Recent developments of
ELEFAN have improved performance with modern optimisation algorithms and
have also provided methods for estimating uncertainty in parameter estimates
via bootstrapping (Mildenberger et al., 2017; Taylor and Mildenberger, 2017;
Schwamborn et al., 2019).

1.1.5 Implications for assessing fish stocks

Ageing difficulties are common to many fish stocks around the world and
anglerfish fisheries also fall into this category. Anglerfish stocks face a number
of challenges in their assessment and management, many of which arise from
key uncertainties in data observation and processing, often specifically related
to growth and age estimation (Perez et al., 2005a; Farina et al., 2008; Maguire
et al., 2008; Richards, 2016; ICES, 2018). Other key uncertainties include
aspects of anglerfish life-history that are not well-known (Farina et al., 2008).

1.2 Anglerfish fisheries and assessment

1.2.1 Anglerfish fisheries around the world

Commercially caught anglerfish, often referred to as monkfish, are a family
of bottom-dwelling teleost fish (Lophidae) that are found all over the world
and sustain fisheries in many of these regions (Wilson, 1937; Farina et al.,
2008). These fisheries range from the historical and profitable fisheries found
in the north-west (Haring and Maguire, 2008; Richards et al., 2008; Richards,
2016; Charbonneau et al., 2020) and north-east Atlantic (Laurenson, 2003;
Farina et al., 2008; ICES, 2021a,e); to more recently exploited stocks in the
south-eastern (Maartens and Booth, 2001; Walmsley et al., 2005; Glazer and
Butterworth, 2013) and south-western Atlantic (Perez et al., 2005a). There is
also a fishery in the Pacific (Yoneda et al., 1997; Sun et al., 2021). The majority
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of these fisheries are conducted with bottom-trawling or gillnets and anglerfish
are usually a by-catch or a component of a mixed fishery, although for some
fleets and certain times of year they are the primary target (Perez et al., 2005a;
Farina et al., 2008; Haring and Maguire, 2008; Glazer and Butterworth, 2013;
ICES, 2018).

1.2.2 Historical anglerfish fisheries in the North Atlantic

In the earlier part of the 20th century anglerfish were mostly considered a by-
catch species for many of the historical groundfish fisheries and their potential
as a lucrative product had not been fully explored (Farina et al., 2008; Maguire
et al., 2008; Richards et al., 2008). In the north-east and north-west Atlantic
there were reports of widespread discarding of the species due the the lack of
commercial value (Dobby et al., 2008; Haring and Maguire, 2008). However,
from the 1980’s onwards anglerfish fisheries in the North Atlantic grew rapidly
(Farina et al., 2008).

In the US, this expansion of the fishery saw goosefish (Lophius americanus) be-
come the highest value groundfish in the north-eastern United States (Richards
et al., 2008). By the late 1990’s, this fishery began to show signs of over-
exploitation and a fisheries management plan was developed (Haring and
Maguire, 2008). Some of the European anglerfish fisheries saw similar patterns
in exploitation, with landings in the southern Bay of Biscay, as well as the
North Sea, Rockall, West of Scotland, Skagerrak and Kattegat, reaching their
peak in the 1980’s or early 1990’s respectively and decreasing since (ICES,
2021a,b,d). However, the anglerfish fishery in the Celtic Seas ecoregion has
shown relatively steady catches since the mid-eighties (ICES, 2021c,e).

1.2.3 Anglerfish stocks in the North-East Atlantic

In the north-eastern Atlantic there are two species of exploited anglerfish; white-
bellied anglerfish Lophius piscatorius; and black -bellied anglerfish Lophius
budegassa (Farina et al., 2008; ICES, 2018; Vasilakopoulos and Maravelias,
2016). Distribution of each species differs somewhat across the region, with
white-bellied anglerfish relatively more abundant in more northern waters and
black-bellied more abundant in the south (Farina et al., 2008). For these two
species, there are six stocks that the International Council for the Exploration
of the Seas (ICES) provides advice for (ICES, 2018). Assessment of stocks
is species-specific in both the Celtic Seas and Northern Bay of Biscay region
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(ICES subarea 7 and divisions 8.a-b and 8.d (Figure 1.1))(ICES, 2021c,e), as
well as the Cantabrian Sea and Atlantic Iberian waters (ICES divisions 8.c
and 9.a) (ICES, 2021b,d). However, as anglerfish are not separated by species
in the landings data, each of these regions are managed by a combined total
allowable catch (TAC) for the two species in their respective management
areas (ICES, 2018). Northern shelf stocks (anglerfish in the North Sea, Rockall,
West of Scotland, Skagerrak and Kattegat - ICES subareas 4, 6 and 3.a; and
anglerfish in the North-East Arctic - ICES subareas 1-2) jointly assess the
population of both species and manage under a joint TAC (ICES, 2018, 2021a).

1.2.4 Current knowledge and state of anglerfish assess-
ment and management

Collectively, anglerfish species have been considered particularly susceptible to
over-exploitation, due to a combination of rapidly developing fisheries, lack of
data and uncertainty in the life-history characteristics (Maguire et al., 2008).
Nevertheless, there has been a considerable amount of work focussing on
Lophidae species that has greatly improved our understanding of their biology
and distribution (Farina et al., 2008). Focussing on northern Atlantic stocks,
assessment and management of anglerfish is still somewhat problematic due
to a multitude of data issues (e.g. catch separation, survey coverage,etc.) and
a considerable degree of uncertainty in key aspects of the biology (e.g. age
estimates, growth, maturity, stock structure etc.) (Farina et al., 2008; Maguire
et al., 2008; ICES, 2018; Richards, 2016).

For example, the assessment of anglerfish in the US had adopted a SCALE
model (a statistical catch-at-length model) in 2007 to assess the status of the
population (NESFC, 2007). Whilst the assessment was based on catch-at-
length data, it also relied upon a growth curve estimated from the vertebral
ageing estimates of sampled anglerfish (NESFC, 2007; Richards, 2016). In 2016,
it was found that the vertebral ageing method was not valid, leading to the
abandonment of the SCALE model and an approach using the rate/direction
of change in survey indices to assess the anglerfish stock in the previous
two assessments (NESFC, 2007; Richards, 2016; Bank et al., 2020). Ability
to incorporate accurate catch data is central to stock assessments as they
represent observed removals.

On the other side of the Atlantic there are similar issues with ageing and
growth, as well other uncertainties in the data (such as no separation of
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species in the landings data) which make assessment problematic (Laurenson
et al., 2005; ICES, 2011; Landa et al., 2013; ICES, 2018). Currently, of the
six stocks that ICES provides advice for, only two (white-bellied anglerfish
in: subarea 7, 8.a-b and 8.d (Figure 1.1); and in 8.c and 9.a) are defined as
category 1 assessments (i.e., stocks with quantitative assessments, including
those with full analytical assessments and forecasts as well as stocks with
quantitative assessments based on production models (ICES, 2019)) (ICES,
2021d,e). Black-bellied anglerfish in 8.c and 9.a is a category 2 stock (analytical
assessment treated qualitatively) and other stocks are classified as category 3
stocks (use relative abundance trends from assessments or survey trends to
assess the population) or category 4 (only reliable catch available) in the case
of Arctic anglerfish (ICES, 2018; ICES, 2019; ICES, 2021a,b,c).

Figure 1.1: ICES subareas of the anglerfish stocks in the Celtic Sea and
Northern Bay of Biscay and survey coverage (French EVHOE survey, Irish
groundfish survey IE-IGFS and Spanish Porcupine Bank survey SP-PORC).
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In an Irish context, anglerfish are an important component of the catch for
the Irish demersal fishing industry (Marine Institute, 2020). The fleet mainly
fish the Celtic Seas and Northern Bay of Biscay stocks and despite their
relatively low quota share, anglerfish catch is one of the most valuable (Marine
Institute, 2020). At the time this project began catch advice for both the
white-bellied and black-bellied stocks were based on survey trends, with no
estimation of stock levels, fishing mortality or MSY reference points (ICES,
2012). Many of the key uncertainties mentioned above affect these stocks
but the main issue hampering assessments was inconsistency and uncertainty
in age estimates and growth (ICES, 2018). An interesting development that
occurred during the period of this study was the acceptance of a statistical
catch-at-age assessment for the white-bellied anglerfish stock at a benchmark
meeting, where age-composition data was constructed through model-assisted
cohort-slicing partly informed by work done for this thesis Batts et al. (2019)
(ICES, 2018).

This thesis focusses mainly on the white-bellied anglerfish stock in the Celtic
Sea and Northern Bay of Biscay as a case study for the methods developed
throughout (Figure 1.1).

1.2.5 Ageing difficulties for anglerfish

Structures used for ageing Lophius species differ between countries and there
have also been numerous comparisons between vertebrae, otoliths and illicia
(dorsal fin spine) over the years in regions where anglerfish are fished (Yoneda
et al., 1997; Maartens et al., 1999; Laurenson et al., 2005; ICES, 2011; Landa
et al., 2013; Ofstad et al., 2013). Anglerfish have historically been difficult
to age with accuracy and precision (Farina et al., 2008; Bank et al., 2020).
For anglerfish in the north Atlantic, the validity of age estimates is a key
issue for the reliability of the stock assessments (Farina et al., 2008; ICES,
2018; Richards, 2016). In the US, anglerfish have traditionally been aged
using vertebrae of the fish (Armstrong et al., 1992; Richards, 2016). Using
chemical marking a recent study showed that growth increments in cross-
sectioned vertebrae were not annual increments and therefore vertebrae did
not give valid age estimates (Bank et al., 2020). In Europe, an ICES workshop
compared age estimates from otoliths and illicia, finding the latter to be a more
reliable structure in terms of precision and reliability, particularly when the
reader is less experienced (ICES, 2011). However, there were still considerable
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disparities in the age estimates between structures and between readers (ICES,
2011). Following this workshop there has been further validation of age
estimation methods (Landa et al., 2013; Brophy, 2019; Brophy et al., 2021),
however there is still concern about their robustness for use in assessments
(ICES, 2018).

1.3 Stock assessment in the presence of ageing
uncertainty

1.3.1 Choosing a stock assessment model

In many cases, it is the availability and reliability of data that drives the use of a
particular stock assessment model (Hilborn and Walters, 1992). One approach
to dealing with uncertainty in age estimates and individual growth of fish is
to use alternative assessments to the typical statistical catch-at-age models
(Maunder and Punt, 2013). Stock assessment models that are aggregated,
stage-based, compositional size-based or integrated are often preferred in these
situations (Smith and Addison, 2003; Punt et al., 2013; Kathena et al., 2018;
Wang et al., 2020).

1.3.2 Aggregated biomass stock assessment models

Aggregated surplus-production stock assessment models such as ASPIC (A
Surplus-Production model Incorporating Covariates) (Prager, 1992) and SPiCT
(Surplus-Production in Continuous Time) (Pedersen and Berg, 2017) are one
option that has been explored for anglerfish stocks. These models typically have
less data requirements than catch-at-age models and often less assumptions.
However, their performance can warrant caution for management use when
there is a lack of contrast in available data (Hilborn and Walters, 1992;
Bouch et al., 2021) and they are generally limited by biomass indices that
should be from the exploited biomass thus do not contain information on
incoming recruits. ASPIC is currently used for the black-bellied anglerfish
in ICES areas 8.c and 9.a (ICES, 2021b) and SPiCT was investigated as a
“data moderate” comparison for the age-based stock assessment of Lophius
vomerinus in Namibia (Kathena et al., 2018). Aggregated biomass estimates
have also been used to assess the anglerfish stock in Brazilian waters (Perez
et al., 2005b). Elsewhere, a length-based estimator (LBB) was used to assess
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Lophius litulon (Wang et al., 2020) and as mentioned previously, the US
assessment for Lophius americanus was based on a statistical catch-at-length
model (SCALE) until issues with age estimates were highlighted (NESFC,
2007; Richards, 2016). In compositional size-based models such as LBB and
SCALE, uncertainty in age estimates can often be circumvented somewhat by
the use of raw length frequency data. However, sometimes these models still
require information on growth (i.e. mean length-at-age) (NESFC, 2007).

1.3.3 Integrated stock assessment models

In recent years there has been an increase in the use of integrated stock
assessments such as Stock Synthesis (Methot and Wetzel, 2013), CASAL (C++
Algorithmic Stock Assessment Laboratory) (Bull et al., 2005) or MULTIFAN-
CL (Fournier et al., 1998). These models are relatively complex and can
often incorporate different forms of data. Integrated stock assessments also
often have the added advantage of incorporating uncertainty in growth or
age-composition data directly into the estimation of the model (Maunder and
Piner, 2015; Punt et al., 2021), however there is a trade-off as they require
more data and more expert experience than simpler models (Ailloud et al.,
2015). In the context of anglerfish stocks, a Stock Synthesis assessment is
currently implemented for the white-bellied anglerfish stock in ICES areas 8.c
and 9.a (ICES, 2021d). At the same stock assessment benchmark where the
assessment for white-bellied anglerfish in ICES areas 8.c and 9.a was developed
Stock Synthesis was also applied to other stocks but these were not considered
suitable for candidate assessments due to the lack of time to fully develop the
models at the meeting (ICES, 2018).

1.3.4 Stage-based stock assessments as an alternative

Stage-based models are a somewhat under-utilised form of assessment that can
be considered an alternative middle ground between aggregate and complex
compositional models. Generally, these models require considerably less data
than compositional stock assessments along with relatively simple population
dynamics and assumptions, whilst still incorporating information on recruit-
ment (Hilborn and Walters, 1992). Two theoretically different approaches
to stage-based assessment models are: biomass-based delay-difference mod-
els (Deriso, 1980; Schnute, 1985; Fournier and Doonan, 1987; Schnute, 1987;
Meyer and Millar, 1999; Kienzle et al., 2014); and numbers-based depletion
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models, the most prevalent of which is Catch-Survey Analysis (CSA) (Collie
and Sissenwine, 1983; Cadrin, 2000; Smith and Addison, 2003; Cook and
Heath, 2018; Li et al., 2019). Stage-based models have generally been used
for species that are difficult to age (Cadrin, 2000; Smith and Addison, 2003;
Zhou et al., 2011; Kienzle et al., 2014), are short- lived or lacking in data
(e.g by-catch species)(Cook and Heath, 2018). One of the recommendations
from the ICES stock assessment benchmark for anglerfish was to develop
stage-based assessment models for the species (ICES, 2018).

1.4 Testing the effect of ageing uncertainty
and bias on stock assessment and manage-
ment

It is important to understand how uncertainty and bias in data may impact
stock assessment and fisheries management over time (Polacheck et al., 1999;
Punt et al., 2014; Privitera-Johnson and Punt, 2020). The traditional ap-
proach of testing certain sensitivities of the “best assessment” does not always
give a complete picture, as a full range of uncertainties are rarely taken into
account, there is a lack of feedback control and risk is not properly evaluated
(Butterworth, 2007). Management Strategy Evaluation (MSE) offers a com-
prehensive simulation framework where the effect of key uncertainties such as
age-composition and growth uncertainty can be investigated in detail (Smith
et al., 1999; Butterworth, 2007; Kell et al., 2007; Punt et al., 2014).

1.4.1 Origins of management strategy evaluation

Management strategy evaluation originated within the Scientific Committee
of the International Whaling Commission (IWC). Issues were encountered
with the traditional approach of developing a “best assessment” for a resource
and so a method was sought to investigate the appropriateness of values used
within harvest control rules and to account for their uncertainty (de la Mare,
1986; Kirkwood, 1992; Butterworth, 2007; Punt and Donovan, 2007). Around
this time the Precautionary Approach (PA) was beginning to be adopted and
an FAO Technical Consultation on the Precautionary Approach to Capture
Fisheries in 1995 explicitly recommended the approach developed by the IWC
(Butterworth, 2007). MSEs have been used and developed extensively since
the 1990’s, as applied in regions such as South Africa and Australia, who
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were early adopters of the MSE approach to manage many of their fisheries
(Smith, 1994; Smith et al., 1999; Plagányi et al., 2007; Punt et al., 2014).
Generally, the focus has been on single species MSE’s but in more recent years
there has been extensive development of multispecies MSEs based on various
multispecies models such as Atlantis and Gadget (e.g. Howell and Bogstad,
2010; Fulton et al., 2014).

1.4.2 Components and attributes of management strat-
egy evaluations

Management strategies or management procedures (MPs) are a key component
of an MSE and are comparable to the “traditional approach” to fisheries
management where, an estimator (e.g. abundance or harvest state) is applied
to a stock, usually some form of reference points are estimated and a harvest
control rule is applied to give future management controls such as a given
level of effort or total allowable catch (TAC) (Butterworth, 2007; Holland,
2010) (Figure 1.2). The estimator does not always have to be model-based
(i.e. stock assessment) and empirical estimators (e.g., survey trends-based)
can be used to good effect in certain circumstances such as when there are
absolute abundance estimates or as an interim MP if there is not sufficient
data available for a model-based assessment immediately (Rademeyer et al.,
2007).

The other main component of an MSE is the operating model (OM), which
represents the “true” dynamics of the stock and the fishery (in contrast to the
MP which can be thought of as how the stock is perceived)(Holland, 2010).
An OM is a simulated population and fishery with associated stochasticity
(e.g., recruitment variability). Linking the OM to the MP is the observation
error model (OEM), where data that would be available to an MP is generated
with associated uncertainty and stochasticity (Punt et al., 2014). The OEM is
where uncertainty and/or bias in age estimates can be incorporated. Linking
the MP back to the OM is the implementation error model. Performance
statistics are often used to evaluate the performance of MPs with respect to
management objectives with quantitative results (e.g., probability of stock
dropping below a given level or reference point) (Kell et al., 2005; Holland,
2010; Punt et al., 2014) (Figure 1.2).
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Figure 1.2: Schematic of a typical management strategy evaluation (MSE)
simulation framework. Components include: operating model (OM), obser-
vation error model (OEM), implementation error model (IEM), management
procedure (MP), and performance statistics. Also shown are the chapters of
this thesis in relation to the relevant aspects of an MSE framework. Adapted
from Punt et al. (2014).

An MSE is a simulation framework that allows users to assess the performance
and trade-offs of MPs, given the properties and uncertainty inherent in the
system. Users can assess the ability of an MP to achieve management goals
(e.g., preventing stock collapse) set for the stock (Holland, 2010; Punt et al.,
2014). Where MSEs differ from sensitivity testing within the traditional
approach is that they can incorporate a wider range of uncertainties into
simulations, including in the OM itself. Furthermore, a key aspect of MSEs
is the feedback loop from the simulated management decisions (MP) to the
simulated population (OM), which allows for a better understanding for how
an MP will perform over a number of years. (Butterworth, 2007; Punt et al.,
2014) (Figure 1.2). MSEs have not only been used to assess the potential
risk (and reward) of MPs in a range of different contexts (Dichmont et al.,
2006; Butterworth, 2007; Szuwalski and Punt, 2013; Kell et al., 2014), the
framework can also be utilised to identify future research areas to focus on
and allocate resources efficiently to reduce scientific uncertainty, as well as
understand how potential biases and uncertainty within the system can affect
the status of stock over time (Marasco et al., 2007; Kell et al., 2012; Tyszko
and Pritt, 2017; Carruthers et al., 2015).
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1.5 Gaps in our understanding

Current approaches to tracking cohorts from length frequency analysis leave
scope for further development of new methods. Both MULTIFAN and ELEFAN
require pre-defined length bins, potentially introducing subjectivity. Both
models are also constrained to a single growth curve and do not incorporate
inter-annual or inter-cohort variability in growth (although this is addressed
to some extent in the development of MULTIFAN-CL) (Fournier et al., 1998).
In this thesis I address these limitations by developing an approach that
removes the need to pre-define length classes and offers the flexibility to
include variability in growth.

As mentioned previously, stage-based stock assessment models are a set of
useful data-moderate stock assessment models that are somewhat underutilised.
In many instances these models have been tested with simulations and on real
stocks (Collie and Sissenwine, 1983; Meyer and Millar, 1999; Cadrin, 2000;
Mesnil, 2003; Kienzle et al., 2014; Zhou et al., 2011), however there has been
a lack of a comprehensive simulation-testing framework where numbers-based
and biomass-based stage-based assessment models were compared. I address
this shortcoming in this thesis and add further evidence to the usefulness of
stage-based stock assessment in the wider context of fisheries stock assessment
and also specifically for anglerfish stocks (which was recommended at the stock
assessment benchmark (ICES, 2018)).

Stage-based assessment models may limit the need to disentangle all cohorts
but how do these methods perform in an applied management context? CSA
has not been tested in a management strategy evaluation framework, nor has
the current assessment and management approach (an age-based assessment
and the ICES advice rule) been tested for an OM based on the life-history
of anglerfish. Engagement with stakeholders is a key aspect of a true MSE
(Butterworth, 2007; Punt et al., 2014) and an early consultation with Irish
fishing industry stakeholders was part of the MSE process in this thesis.
These stakeholders expressed a desire to test the effectiveness of the ICES
advice rule as a starting point. There is also still much to be learned about
the effect of ageing uncertainty and bias on stock assessment and fisheries
management over time (Lai and Gunderson, 1987; Tyler et al., 1989; Bertignac
and De Pontual, 2007). The full-feedback system of a management strategy
evaluation framework is an ideal setting to address these knowledge gaps in
this thesis.
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1.6 Thesis aims and objectives

Key uncertainties prevail in stock assessment and fisheries management. The
main objective of this thesis was to improve our knowledge of how these key
uncertainties (specifically focussing on age estimates and growth) potentially
impact the fish populations and fisheries, as well as investigating methods to
account for them. The methods developed in this thesis focus on anglerfish as
a case study.

The overall aim of this thesis was to explore and develop methods used to
address cohort uncertainty in fisheries assessment and management (Chapters
2-4), and to developing a framework for testing how uncertainty in the form
of biased age-composition data may influence stock status and management
goals over time (Chapter 5). The white-bellied anglerfish Lophius piscatorius
stock in the Celtic Seas and Bay of Biscay region (ICES subareas 7, 8.a-b and
8.d) was used throughout as the main case study stock but these methods
are broadly applicable to many other fish stocks. Firstly, a new method for
length frequency analysis was developed (Chapter 2). Next, stage-based stock
assessments were implemented and tested in a factorial simulation experiment
covering a range of population and fishery features/factors. (Chapter 3), in
addition to an associated R package with vignettes (Chapter 4). Finally, a
management strategy evaluation framework was constructed to test the impact
of uncertainty in growth estimates of white-bellied anglerfish (Chapter 5).

Specific objectives for this thesis are presented by chapter below. These are
linked via the background of the General Introduction and placed in context
in the General Discussion:

Chapter 1: General Introduction

Provides an overview of: stock assessment and the challenges of age-estimation;
anglerfish fisheries; estimating fish growth when uncertainty in age-estimates
is present; stock assessment when uncertainty in ageing estimates is present
and testing the effect of ageing uncertainty on stock assessment and fisheries
management over time.

Chapter 2: Estimating growth parameters and growth variability
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from length frequency data using hierarchical mixture models.

A new length frequency analysis procedure (LFEM) that uses mixture models
and an Expectation-Maximisation algorithm was developed to estimate
growth parameters by maximum likelihood. The basic model estimated a
single set of von Bertalanffy growth parameters that determined component
means and standard deviations that best fit length frequency distributions
from multiple surveys and years. The LFEM model was then extended into
a hierarchical framework, which allows for bivariate random effects to be
estimated and variability in fish growth between cohorts and/or years to be
modelled. Testing on haddock and white-bellied anglerfish showed that the
basic model provides a useful alternative to available methods, whilst the
hierarchical extension enables modelling of some of the natural variation in
growth of fish.

This Chapter has been published in the ICES Journal of Marine Science
(Manuscript I):

Batts, L., Minto, C., Gerritsen, H., & Brophy, D. (2019). Estimating
growth parameters and growth variability from length frequency data
using hierarchical mixture models. ICES Journal of Marine Science, 76(7),
2150-2163.

Chapter 3: Numbers or mass? Comparison of two theoretically
different stage-based stock assessment models and their ability to
model simulated and real life stocks.

Stage-based stock assessment models are an alternative middle ground
between aggregate and compositional stock assessment models. Two
contrasting stage-based stock assessment models, the numbers-based
Catch-Survey Analysis (CSA); and a biomass-based delay-difference model
(Schnute, 1987), were implemented and extended. Model performance
was compared in a comprehensive simulation testing framework and in
comparison to the accepted age-based assessment on the real white-bellied
anglerfish stock in ICES subareas 7, 8.a-b and 8.d. In the simulation-testing
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framework, estimates from the biomass-based two-stage models were close
to the true values in certain scenarios, but were sensitive to selectivity
assumptions and configuration of growth within the model. CSA was more
robust to selectivity assumptions, performing well in all simulated stock
scenarios. CSA estimates of stock numbers were remarkably similar to the val-
ues estimated in the accepted age-based assessment for the real anglerfish stock.

This Chapter has been published in the Canadian Journal of Fisheries and
Aquatic Sciences (Manuscript II):

Batts, L., Minto, C., Gerritsen, H., & Brophy, D. (2022). Numbers or mass?
Comparison of two theoretically different stage-based stock assessment models
and their ability to model simulated and real life stocks. Canadian Journal of
Fisheries and Aquatic Sciences, Just-In

Chapter 4: sbar vignette: An R package for implementing stage-
based assessment models

An R package was developed for the stage-based assessment models imple-
mented in Chapter 3. Key functions were documented and were demonstrated
in the vignette. The stage-based assessment models: Catch-Survey Analysis
(CSA), and a delay-difference model (Schnute, 1987), were introduced and
their key assumptions outlined. Simple and more complex examples of the
models in use were given, as well as detailing some of the models (versions
not implemented in Chapter 3) in more detail. Black-bellied anglerfish in the
Celtic Seas and Bay of Biscay, which is not currently analytically assessed
with an assessment model, was used as an example stock.

The package can be found at: https://github.com/lbatts/ sbar .

Chapter 5: Comparative impacts of ageing bias on stage and
age-based fisheries stock assessment models.

Accounting for uncertainty in age-composition data can be difficult in
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age-based stock assessment models. A management strategy evaluation
framework was used to investigate the impact of bias in age-composition
data on the assessment and management of white-bellied anglerfish. Both
stage-based and age-based management procedures were investigated. Bias in
age-composition data was found to impact the stock in opposite ways for each
of the MPs. The perception of the stock was directly affected in the age-based
MP, whereas for the stage-based MP biased age-composition data affected the
management indirectly through implementation. The nature of bias (high
or low growth) on age-composition data had contrasting effects on the stock
status and stock trajectory depending on the MP. Non-proxy reference points
for CSA were also developed as part of this research and in combination with
the CSA assessment model results showed that a CSA MP could be used to
successfully assess and manage a stock over time.

This chapter is in preparation for submission to the ICES Journal of Marine
Science:

Comparative impacts of ageing bias on stage and age-based fisheries stock
assessment models. Batts, L., Minto, C., Gerritsen, H., & Brophy, D.

Chapter 6: General Discussion

Here, I provide a summary of the findings within this thesis and place them
in the context of existing knowledge. Application of the methods developed
are discussed broadly, as well as specifically in the context of anglerfish
stocks. Implications of cohort uncertainty on stock assessment and fisheries
management over time are addressed. I also explore future extensions of the
work.
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Chapter 2

Estimating growth parameters
and growth variability from
length frequency data using
hierarchical mixture models

This chapter is a verbatim reproduction from the following published
paper. The published version is found in Appendix A, Supplemen-
tary Material in Appendix B.
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Abstract

Analysis of length frequency distributions from surveys is one well
known method for obtaining growth parameter estimates where di-
rect age estimates are not available. We present a likelihood-based
procedure that uses mixture models and the Expectation- Maximi-
sation (EM) algorithm to estimate growth parameters from length
frequency data. A basic LFEM model estimates a single set of
growth parameters that produce one set of component means and
standard deviations that best fits length frequency distributions
over all years and surveys. The hierarchical extension incorporates
bivariate random effects into the model. A hierarchical framework
enables inter-annual or inter-cohort variation in some of the growth
parameters to be modelled, thereby accommodating some of the
natural variation that occurs in growth of fish. Testing on two fish
species, haddock (Melanogrammus aeglefinus) and white-bellied
anglerfish (Lophius piscatorius), we were able to obtain reason-
able estimates of growth parameters, as well as successfully model
growth variability. Estimated growth parameters showed some
sensitivity to the starting values and occasionally failed to con-
verge on biologically realistic values. This was dealt with through
model selection and was partly addressed by the addition of the
hierarchical extension.

Keywords: EM algorithm, von Bertalanffy growth, LFEM, bi-
variate random effects, anglerfish Lophius piscatorius, haddock
Melanogrammus aeglefinus
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2.1 Introduction

Fish growth is a widely studied aspect of fish biology (Pardo et al., 2013),
reflecting its importance for understanding life histories (Denney et al., 2002),
the effects of changing environmental conditions (Jobling, 2002; Baudron
et al., 2014) as well as ecosystem and population dynamics (Quinn and Deriso,
1999; Travers et al., 2007; Smith et al., 2015). Growth parameters are a
fundamental component of fisheries stock assessments (Quinn and Deriso,
1999) and their accurate estimation can be key to ensuring that assessments
are reliable (Hilborn and Walters, 1992). Estimation of other important
population dynamics parameters such as fishing mortality and selectivity
depend on the accurate estimation of growth (Hoggarth, 2006; Maunder et al.,
2016).

For teleost fish, growth information is usually obtained by estimating age from
incremental growth layers laid down within the otoliths (fish ear bones), scales
or fin rays. When age estimation using calcified structures is too costly to
implement, not practical or is suspected to give unreliable estimates then other
methods such as tagging or length frequency analysis provide an alternative
means of obtaining growth estimates (Hilborn and Walters, 1992). Clear,
unambiguous growth increments are often lacking in the calcified structures
of tropical or deep sea species that are not exposed to marked seasonal
temperature changes, while direct ageing of crustaceans using hard parts still
requires further validation (Kilada and Driscoll, 2017). As a consequence,
assessments of fisheries for these species often rely on alternative methods for
estimating age (Sparre and Venema, 1998; Chang et al., 2012).

The most widely used fish growth model is the von Bertalanffy growth function
(VBGF), which relates length to age using three parameters; L∞ (asymptotic
mean length), K (rate of growth) and t0 (the theoretical time at which
fish length equals zero) (von Bertalanffy, 1938). Various modifications of
the traditional VBGF appear in the literature. For example, Schnute and
Fournier (1980) re-parameterised the VBGF to include more biologically
intuitive parameters (i.e. the mean lengths of the first and last ages of the
sampled population and a parameter that controls growth between ages).
Another example is the incorporation of seasonal oscillation into the VBGF
(Pitcher and MacDonald, 1973; Lloyd-Jones et al., 2016). Other growth
functions that have been used to model fish growth include the Gompertz
(Winsor, 1932), allometric (Quinn and Deriso, 1999), logistic (Cormon et al.,
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2016) and bi-phasic models (Minte-Vera et al., 2016); the most appropriate
choice of model depends on the species (Katsanevakis and Maravelias, 2008).
Here, the re-parameterised VBGF was chosen as the underlying model because
of the widespread use of the VBGF and its appropriateness for length frequency
analysis (Schnute and Fournier, 1980).

Growth can often vary spatially, temporally, between cohorts, between individ-
uals and within individuals (Quinn and Deriso, 1999; Wang, 1999; Morrongiello
and Thresher, 2015). Cohort effects can vary to a lesser or greater extent
depending on the species and have been linked to environmental changes (Bau-
dron et al., 2014; Morrongiello and Thresher, 2015). Accounting for cohort
growth variability can also improve stock assessment models (Whitten et al.,
2013). Methods for accounting for individual growth variation in length-at-age
data have also been explored, for example Pilling et al. (2002) used a non
linear random effects model to model growth parameter variability between
individuals length-at-age data. Cadigan et al. (2016) developed a hierarchical
mixed-effects model to account for between stock and between individual
variability in length-at-age data. Growth models incorporating random effects
have also been applied to analysis of tagging data, where between-individual
growth variability is often considerable (Eveson et al., 2015).

In situations where fish cannot be aged directly, length frequency analysis
offers an alternative means of estimating fish growth parameters, providing
there is a distinct spawning season (Hasselblad, 1966; Bhattacharya, 1967;
Fournier et al., 1990; Taylor and Mildenberger, 2017). Perhaps the most
prominent length-frequency method in the literature is the robust maximum
likelihood-based estimation procedure MULTIFAN, which is now incorporated
into a length-based statistical catch at age stock assessment model (Fournier
et al., 1990, 1998). The non-parametric ELEFAN procedure (Pauly, 1987)
is also widely used and has recently been extended into the R environment
where modern optimisation algorithms are used to improve its performance
(Mildenberger et al., 2017; Taylor and Mildenberger, 2017).

Currently available approaches to length frequency analysis present some
limitations. Both MULTIFAN and ELEFAN require that length bins are
defined prior to the analysis, potentially introducing subjectivity to the iden-
tification of cohorts. For ELEFAN it is recommended that L∞ be fixed in
the initial analysis and is then re-calculated post optimisation. Both models
are also largely constrained to a single growth curve and do not incorporate
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inter-annual or inter-cohort variability in growth (although this is addressed
to some extent in the development of MULTIFAN-CL) (Fournier et al., 1998).
Current limitations could be addressed by developing a model and using an
expectation-maximisation (EM) algorithm to estimate growth parameters
(Dempster et al., 1977). This approach would remove the need to pre-define
length classes and offers the flexibility to include variability in growth.

Whilst the EM algorithm is widely used to model length frequency distribu-
tions, it has rarely been used to estimate mixture model parameters with an
incorporated von Bertalanffy growth structure. However, the methodology of
MULTIFAN is similar to the EM algorithm in its application of maximum
likelihood theory (Fournier et al., 1990). The “mixdist” package in the R
environment enables the user to fit a mixture model with component means
constrained to a growth curve and this utilises an EM algorithm (Macdonald
and Du, 2011). In addition, a recent paper by Lloyd-Jones et al. (2016) used
a minorisation-maximisation (MM) algorithm (the EM algorithm is a form
of MM algorithm) to estimate seasonally oscillating von Bertalanffy growth
over a year on monthly length frequency data of a crab species (Lloyd-Jones
et al., 2016), where L∞ is considered a random variable, although it is not
modelled explicitly. These examples leave much scope for expanding this area
of research further.

This study aims to develop a new method, based on the EM algorithm, to model
fish growth from length frequency data whilst incorporating von Bertalanffy
growth structure and accounting for variability in growth between cohorts
or years. Gaussian mixture models are developed and fit to length frequency
distributions, where means of components within a cohort (represented by
normal distributions in the mixture models) are restricted to von Bertalanffy
growth. Firstly, a basic version (analogous to MULTIFAN) of the methodology
is introduced and tested using length frequency data for two fish species;
haddock Melanogrammus aeglefinnus and white-bellied anglerfish Lophius
piscatorius. Secondly, hierarchical models that introduce various bivariate
random effects, are introduced and tested with the intention of modelling some
of the variation in the recruitment and growth of the fish species. The overall
aim of the study is to introduce an alternative approach to obtaining a range
of credible estimates of growth parameters from length frequency data and
account for variability in growth by cohort or year.
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2.2 Methods

A description of the growth function used within the model is first introduced,
followed by a description of the model itself. A summary of model parameters,
inputs and outputs is then given, as well as a description of the model selection
criteria and software used for development. Finally the two data sources that
the LFEM model is applied to are described.

2.2.1 Growth function

Length frequency distributions were modelled using mixture models, where
the means of the cohorts (normal distributions within the mixture models)
follow a von Bertalanffy growth function. Schnute and Fournier (1980) re-
parameterised the classical von Bertalanffy (CVBG) equation into one more
appropriate to length frequency analysis, represented by

µi = l + (L − l) 1 − ki−1

1 − kM−1 ; i = 1, ...., M (2.1)

where µi is the mean length of fish at age ai; l and L are the first and final
component or cohort mean lengths, i.e. µ1 and µM where M is the maximum
age class; k is equivalent to exp(−K) and controls the distance between two
successive component means (Equation 2.1). The CVBG parameters can then
be calculated from these parameters using

L∞ = L − lkM−1

1 − kM−1 , (2.2)

K = − ln(k), (2.3)

t0 = a1 − 1
ln(k) ln

{
L − l

L − lkM−1

}
(2.4)

where L∞ is the asymptotic length of the fish, K controls the rate at which
the asymptote is approached and t0 is the theoretical time when an individual
would have length zero. a1 is the assumed age of the l component. Standard
deviation (SD) of the normal distribution of the component (σi) is either
estimated as constant (CSD) or a linear (LSD) function of component means
(Schnute and Fournier, 1980). The equation for LSD is
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σi = s + (S − s)µi − l

L − l
; i = 1, ...., M (2.5)

where s is the SD of the first component and S is the SD of the final component.

2.2.2 LFEM model and algorithm

This methodology summarises the basic model developed in this study where
a single set of growth parameters that produce one set of component means
and standard deviations are estimated (i.e. if l, L and k are identical for every
cohort then component means in each annual mixture for a particular survey
model are identical).

Based on the observed data log-likelihood for a single mixture model (McLach-
lan and Peel, 2004), the observed data log-likelihood for a set of finite mixture
models on length frequency distributions of fish where cohort component
means are restricted to the re-parameterised von Bertalanffy growth function
(RVBG) is

ln L(Ψ) =
V∑

v=1

R∑
r=1

nvr∑
j=1

ln{
M∑

i=1
λvrifvri(yjvr; θvri, a1v)} (2.6)

fvri(yjvr; θvri, a1v) = N(yjvr; µvri, σvri, a1v) (2.7)

µvri = lv + (Lv − lv) 1 − ki−1

1 − kM−1 ; i = 1, ...., M ; v = 1, .., V (2.8)

where the components of the mixture models are normally distributed and their
means, µvri, are given by equation 2.8. Component SDs are either assumed
constant or constrained by equation 2.5. Indices denote survey (v), year (r),
component (i) and observation (j). Ψ is a vector that contains all unknown
parameters in the model, V is the number of surveys, R is the number of years,
M is the number of components and nvr is the total number of fish in any
given survey and year. λvri is the mixing proportion for the ith component in
the vth survey in the rth year, yjvr is the length of fish j in the vth survey
in the rth year and θvri are the parameters of the ith component in the vth
survey in the rth year. a1v determines the assumed age of first component of
the vth survey and is used to incorporate surveys of differing timings by back

40



2. Length frequency analysis

or forward projecting component means using equations 2.2, 2.3 and 2.4.

The complete data log-likelihood can be given as

log Lc(Ψ) =
V∑

v=1

R∑
r=1

M∑
i=1

nvr∑
j=1

zjvri{logλvri + logfvri(yjvr; θvri, a1v)} (2.9)

where equations 2.7 and 2.8 apply. zjvr is a data label vector distributed
according to a multinomial distribution of length of M with zjvri = (zjvr)i = 1
or 0, according to whether that particular fish or yj belongs to the ith compo-
nent in the vth survey in the rth year (McLachlan and Peel, 2004). However,
as we do not know what component each fish belongs to the expectation-
maximisation (EM) algorithm was used to treat zjvri as missing data and
estimate Ψ iteratively. Direct estimation of the observed log-likelihood is
possible but not practical in this case and the EM algorithm offered a simple
framework to implement the model in (Minto et al., 2017). For details on the
EM algorithm see Appendix B.

2.2.3 Hierarchical extensions

Hierarchical models were developed, incorporating bivariate random effects into
the model formulation and allowing inter-annual or inter-cohort variation to be
modelled. In contrast to the basic model that applies a single set of component
means to the data, these models allow cohorts to be modelled through years
and surveys. For the three hierarchical models both CSD and LSD models
were implemented. To avoid over-parameterisation these hierarchical models
were not extended beyond bivariate random effects and in each model either
the key parameter for the asymptotic length (L) or the growth parameter (k)
is random, not both. The logic behind this is also discussed by Eveson et al.
(2007) and Lloyd-Jones et al. (2016), suggesting that random effect on either
K or L∞ incorporates sufficient variability but also has less bias than if both
parameters were random.

Hierarchical models were fitted using the same number of components as
the best fitting basic model (based on the model selection criteria described
below). Three different hierarchical model structures were tested: 1) bivariate
random effects on cohort specific l and L; 2) bivariate random effects on
cohort specific l and k; 3) bivariate random effects on cohort specific l and
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yearly k. Correlation between the bivariate random effects in each scenario
is also modelled. A random effect on l was specifically chosen to account for
variability in the mean length of the first component in each cohort. Other
random effects were chosen to investigate and incorporate growth variability.
For details on the model formulation see Appendix B.

2.2.4 Model parameters, inputs and outputs

A wide range of starting values for parameters of the basic model were tested
(Table 2.1), amounting to over 1000 model runs for each species and each
SD type. In order to test the suitability of the model selection criteria for
identifying the number of identifiable age classes in the length frequency data,
the number of components tested ranged from 3-14 for haddock and 6-14 for
white-bellied anglerfish. Standard deviations for the random effects of l and
k for the haddock hierarchical model were fixed at exp(−5) in order to give
the model stability but still retain the random effect. More information on
model stability in the haddock hierarchical models and general model inputs
can found in Appendix B.

Table 2.1: Summary of the starting values tested for the model parameters of
the basic model

Species parameter Starting values tested
From To By

haddock

l 10 10 NA
L 40 70 10
k 0.6 0.9 0.1
s 6 6 NA

S or σ 10 10 NA
No. components 3 14 1

λi 1/No. comp NA NA

white-bellied anglerfish

l 16 16 NA
L 100 130 10
k 0.7 0.99 0.1
s 6 6 NA

S or σ 10 10 NA
No. components 6 14 1

λi 1/No. comp NA NA
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Table 2.2: Summary of model parameters, and other relevant inputs/outputs
of models. N.B. Not all hierarchical model parameters are used in each model

Notation Type Description
Basic model
L parameter mean of final component
l parameter mean of first component
k parameter controls rate of growth
s parameter standard deviation of first component
S parameter standard deviation of final component
j index individual fish length
i index component number
v index survey number
r index number of year
λvri parameter(s) mixing proportion of ith component in survey(v) and year(r)
µi output mean of ith component
σi output standard deviation ith component
L∞ output CVBG parameter
K output CVBG parameter
t0 output CVBG parameter
a1v input used to calculate t0
M input number of components/ages assumed present in length frequency data
nvr input number of observations(fish) in a given survey(v) and year(r)
Hierarchical models
Lc parameter mean of final component of a cohort
lc parameter mean of first component of a cohort
kc parameter mean of random effect that controls rate of growth for a cohort
kt parameter mean of random effect that controls rate of growth for a particular year
σL parameter standard deviation of random effect on L
σl parameter standard deviation of random effect on l
σk parameter standard deviation of random effect on k
ρlk parameter correlation of bivariate random effects on l,k for example
µvri output mean of ith component in survey(v) and year(r)

2.2.5 Model selection criteria and standard errors

Through exploratory simulation analysis it was found that AIC performed best
from a range of model selection criteria. Model selection for this study was
performed by selecting the model with highest observed log-likelihood value for
each “number of components” tested. A variation on AIC we call “sub-AIC”
was used to select the best fitting model. “sub-AIC” is similar to AIC, however
the observed log-likelihood used is only contributed to by a subset of the
length frequency data where reasonable numbers of fish were observed (i.e.
haddock <= 40cm & anglerfish <= 100cm). This method ensures model
selection is based on the majority of the data and not confounded by low fish
numbers at high lengths. A similar method where model deviance is calculated
from a subset of length classes when numbers in some length classes are low
was used in model selection for fish selectivity curves (Millar and Fryer, 1999).

The EM algorithm does not directly provide estimates of uncertainty of
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parameters (McLachlan and Peel, 2004). Standard errors were approximated
by first fitting the model to convergence with the EM algorithm, then using the
maximum likelihood parameter estimates to optimise the observed data log-
likelihood function (Equation 2.6) (Minto et al., 2017). Standard errors were
approximated via the delta method with the R package “TMB” (Kristensen
et al., 2016).

2.2.6 Validation for haddock

Age data on the North Sea International Bottom Trawl Survey (NS-IBTS) are
collected on a length-stratified basis. In order to obtain unbiased length-at-age
data for haddock the length-stratified age data was used to construct annual
age length keys (ALKs). Annual length frequency distributions (i.e. the same
used in the length frequency analysis) were applied to their respective ALKs
using the method described by Isermann and Knight (2005), resulting in an
assigned age for each individual fish of the length frequency distribution. To
enable comparison with the growth parameters estimated from the length
frequency data alone, a VBGF was fit to this length-at-age data using maximum
likelihood and mean length-at-age was also calculated.

2.2.7 Software

We develop a hybrid EM algorithm that uses the R package “TMB" within
the “maximisation” step (Kristensen et al., 2016). Specifically, complete data
log-likelihood functions were written in C++ using the TMB library class,
compiled and automatically differentiated (Kristensen et al., 2016). These
objective functions, including gradients, were then optimised at each iteration
with the statistical software R using the nlminb function within base R (R
Core Team, 2018). The remaining computations of the algorithm and other
analysis were conducted with R (R Core Team, 2018). The “FSA” R package
(Ogle, 2018) was used to apply ALKs to the un-aged length frequency data,
using the semi-random method from Isermann and Knight (2005).
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2.2.8 Data
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Figure 2.1: Areas of survey coverage from where length frequency data was
obtained for haddock (standard roundfish area one of the NS-IBTS) and
white-bellied anglerfish (EVHOE, IE-IGFS and SP-PORC)

Haddock was chosen to validate the method as otolith age readings and growth
parameters derived from lengths at age are reliable. White-bellied anglerfish
was chosen because age readings are considered unreliable (ICES, 2011) and
there is need for a cohort analysis to build an assessment model on. Both
species are characterised by fast growth and a discrete recruitment season,
leading to distinct length cohorts that can be tracked over time. Combined
sex data was used for both species as is convention for haddock and white-
bellied anglerfish in the most recent ICES assessment of the stock (ICES,
2018). Survey catch data were obtained from the ICES DATRAS database
(ICES, 2018b). Haddock length frequency data were from standard roundfish
area one (Figure 2.1) of the North Sea International Bottom Trawl Survey
(NS-IBTS). Only data collected in the third quarter of the year were used.
The corresponding age-length key for this area and time of year was also
extracted from DATRAS. Length frequency data for white-bellied anglerfish
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were obtained from three surveys that cover the anglerfish stock in ICES
areas 7.b-k, 8.a-b and 8.d; the French EVHOE groundfish survey, the Irish
groundfish survey (IE-IGFS) and the Spanish Porcupine groundfish survey
(SP-PORC) (Figure 2.1). The French and Irish surveys were conducted mainly
in the fourth quarter of the year and the Spanish survey in September. A
Grande Ouverture Verticale (GOV) fishing gear was used on all surveys with
the exception of the Spanish Porcupine bank survey which used “porcupine
baca" fishing gear (ICES, 2018a).

2.3 Results

2.3.1 Haddock

2.3.1.1 Haddock basic LFEM model

The basic model (single set of growth parameters estimated) was sensitive
to starting parameter values. Some of the model runs tended to converge
on k parameter values very close to 1. Whilst these gave good or even the
best model fits according to the sub-AIC model selection criteria, the classical
VBGF parameters were biologically unreasonable (i.e. L∞ tending to very
large values). A number of model runs were discarded (406 of 1488 CSD
models and 42 of 1488 LSD models) due to this issue and were identified by
choosing an arbitrary value of 500 as the cut off for “biologically unreasonable"
L∞ estimates. To further filter out any spurious models the results were
further refined by identifying and removing any models that had a second
component mean <= 15cm. An example of why refining is important when a
wide range of starting parameters are tested can be found in Appendix B.

A nine component model was the best fitting (lowest sub-AIC) for CSD and
no models above nine components had reasonable fits for this SD type. LSD
models gave generally lower sub-AIC values than CSD models and the best
fitting model overall had 12 components and LSD (Table 2.3). Within both SD
types, but particularly in LSD models, parameter estimates and component
means were consistent across the range of number of components tested (Table
2.3 and 2.4). When compared to the VBGF estimated from length-at-age
data (K̂ = 0.499, L̂∞ = 39.5 and t̂0 ≈ 0), the VBGF from the best fitting
basic LSD model is similar, although it does slightly underestimate early age
mean lengths (Figure 2.2). The best fitting basic CSD model follows a similar
growth pattern until the fifth component, the following component means
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Table 2.3: von Bertalanffy growth parameters from (lowest sub-AIC) model
runs on haddock length frequency data after refining valid model runs. Number
of components is the number of ages assumed to be present in the data.
Rows highlighted in grey are the models with the lowest sub-AIC model
selection criteria values. Estimated standard errors for the corresponding
RVBG parameters are given in parentheses. RVBG parameter estimates are
given to 3 s.f. and CVBG to 2 s.f.

SD type No. components RVBG parameters CVBG parameters sub AIC
l̂(cm) L̂(cm) k̂ L̂∞(cm) K̂ t̂0

CSD

3 10.5 (0.008) 32.4 (0.007) 0.816 (0.0012) 76 0.20 -0.10 6167506
4 10.3 (0.006) 37.1 (0.011) 0.780 (0.0007) 61 0.25 -0.12 6031048
5 10.3 (0.005) 39.7 (0.014) 0.754 (0.0006) 53 0.28 -0.13 5989126
6 10.3 (0.005) 41.8 (0.018) 0.750 (0.0005) 51 0.29 -0.15 5974158
7 10.3 (0.005) 43.0 (0.021) 0.752 (0.0005) 50 0.29 -0.18 5957923
8 10.4 (0.004) 44.0 (0.022) 0.761 (0.0004) 49 0.27 -0.23 5946292
9 10.4 (0.004) 45.0 (0.026) 0.773 (0.0004) 50 0.26 -0.27 5941101

LSD

3 10.1 (0.003) 31.3 (0.008) 0.854 (0.0013) 88 0.16 -0.14 5982480
4 10.1 (0.003) 34.9 (0.012) 0.720 (0.0007) 49 0.33 -0.07 5918972
5 10.1 (0.003) 37.0 (0.015) 0.689 (0.0006) 44 0.37 -0.06 5901698
6 10.1 (0.003) 37.5 (0.016) 0.665 (0.0005) 41 0.41 -0.06 5889986
7 10.1 (0.003) 38.4 (0.018) 0.661 (0.0005) 40 0.41 -0.06 5886624
8 10.1 (0.003) 39.0 (0.020) 0.658 (0.0004) 40 0.42 -0.06 5885749
9 10.1 (0.003) 39.5 (0.021) 0.658 (0.0004) 40 0.42 -0.06 5885240
10 10.1 (0.003) 40.0 (0.023) 0.661 (0.0004) 40 0.41 -0.06 5885145
11 10.1 (0.003) 40.4 (0.024) 0.663 (0.0004) 40 0.41 -0.07 5885031
12 10.1 (0.003) 40.6 (0.025) 0.665 (0.0004) 40 0.41 -0.07 5885004
13 10.1 (0.003) 40.8 (0.026) 0.666 (0.0004) 41 0.41 -0.07 5885005
14 10.1 (0.003) 40.9 (0.027) 0.667 (0.0004) 41 0.41 -0.07 5885023
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then appeared to over estimate the mean length of fish in comparison to the
LSD model and the length-at-age estimated model fit (Figure 2.2). Estimated
standard deviation was very similar within SD types (Table 2.4).
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Figure 2.2: Length-at-age data and estimated von Bertalanffy growth curves
for haddock. Showing mean length-at-age, the von Bertalanffy model fit
(maximum likelihood estimated) on the length-at-age data, growth curves
from best fitting basic length frequency models and overall growth curves (i.e.
means of RE parameters) from hierarchical l/k models. Ages are jittered for
visualisation

Table 2.4: Component/cohort means and their standard deviation parameters
(SD) for haddock, corresponding to the basic models presented in Table 2.3.
In the case of constant SD models S = s but values are only given in the final
(S) column.

SD type No. components Component
ŝ Ŝ

1 2 3 4 5 6 7 8 9 10 11

CSD

3 10.5 22.6 32.4 3.66
4 10.3 21.5 30.2 37.1 2.89
5 10.3 21.0 29.0 35.1 39.7 2.65
6 10.3 20.6 28.4 34.2 38.5 41.8 2.50
7 10.3 20.2 27.7 33.3 37.5 40.7 43.0 2.39
8 10.3 19.8 27.0 32.4 36.6 39.8 42.2 44.0 2.29
9 10.4 19.4 26.4 31.9 36.1 39.3 41.8 43.8 45.3 2.21

LSD

3 10.1 21.5 31.3 1.63 4.93
4 10.1 21.1 29.1 34.9 1.65 4.59
5 10.1 20.9 28.3 33.5 37.0 1.66 4.42
6 10.1 20.7 27.7 32.4 35.5 37.5 1.67 4.28
7 10.1 20.6 27.5 32.1 35.1 37.1 38.4 1.67 4.23
8 10.1 20.6 27.4 32.0 34.9 36.9 38.2 39.0 1.68 4.22
9 10.1 20.5 27.4 31.9 34.9 36.8 38.1 39.0 39.5 1.68 4.21
10 10.1 20.5 27.4 31.9 34.9 36.9 38.2 39.1 39.6 40.0 1.68 4.20
11 10.1 20.5 27.3 31.9 34.9 36.9 38.3 39.1 39.7 40.1 40.4 1.68 4.19
12 10.1 20.4 27.3 31.9 34.9 37.0 38.3 39.2 39.8 40.2 40.4 40.6 1.68 4.18
13 10.1 20.4 27.3 31.9 34.9 37.0 38.3 39.2 39.8 40.2 40.5 40.7 40.8 1.68 4.18
14 10.1 20.4 27.3 31.9 35.0 37.0 38.3 39.3 39.9 40.3 40.5 40.7 40.8 40.9 1.69 4.18
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2.3.1.2 Haddock hierarchical LFEM model with cohort specific l

and k
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Figure 2.3: Length-at-age data and estimated von Bertalanffy growth curves for
cohorts of haddock observed up to at least their 9th component. Showing mean
length-at-age, the von Bertalanffy model fit (maximum likelihood estimated)
on the length-at-age data of the cohort and cohort specific growth curves
estimated within the linear SD hierarchical model that varies l and k. Ages
are jittered for visualisation
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Overall CVBG parameters for the hierarchical CSD model (K̂ = 0.241, L̂∞ =
52.9 cm and t̂0 = -0.31) were similar to those given by the basic CSD model
and followed a similar trajectory. Hierarchical LSD model parameters (K̂ =
0.394, L̂∞ = 42.1 cm and t̂0 = -0.06) were also similar to estimates from its
corresponding basic model (Table 2.3 and Figure 2.2).

The performance of the hierarchical l and k LSD model (corresponding to
the best fitting basic model) was examined in more detail. Ranges of the
cohort specific L∞ estimates were 41.8 - 42.5 cm for L̂∞ and 0.334 - 0.463 for
K̂. Correlation parameter ρ̂ for the random effects l and k was estimated as
-0.23. Cohort specific random effects gave the model flexibility in its estimated
growth trajectories for each cohort. When examining the cohorts that were
observed at least till the ninth component over the period analysed (2000 -
2009) the estimated cohort growth curves from this study’s hierarchical model
appear to fit reasonably well in some cohorts (e.g cohorts 2002, 2003 and 2004)
and very well in others (e.g. cohorts 2000, 2005 and 2009) (Figure 2.3). When
cross-referenced with Figure 2.4 the hierarchical model cohort curves that are
very similar to length-at-age estimated cohort curves are those cohorts where a
strong signal can be seen through a number of years (i.e. cohort 2000) (Figures
2.3 and 2.4). Deviance (difference between LFEM model length-at-age and ML
estimated length-at-age) of these cohorts showed that in the early ages of some
cohorts the hierarchical LFEM model underestimated the mean length-at-age
in comparison to the ML fit on the length-at-age data Appendix B. In the
later years of the length frequency distributions the hierarchical model begins
to severely underestimate growth (Figure 2.4). Also of note is the flexibility
the random effect on the mean of the first component (l) gives when modelling
the shifting position of the first component over the years, such as in 2006 or
2013 (Figure 2.4).
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Figure 2.4: Length frequency distributions of haddock with fitted distributions from: (a) the lowest sub-AIC basic model (12
components and LSD) and (b) the corresponding hierarchical model with bivariate random effects on cohort specific l and k. Also
shown is the progression of the cohort mean values. Note that the maximum length of fish was 72 cm but only fish up 45 cm were
plotted here as there was little data above this length, all estimated cohorts are displayed.
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2.3.2 White-bellied anglerfish

2.3.2.1 White-bellied anglerfish basic LFEM model

As with haddock, the basic LFEM model was sensitive to starting parameters,
particularly k and some of the model runs tended to converge on k parameter
values very close to 1. These models often gave good or even the best model
fits according to the sub-AIC model selection criteria, however the classical
VBGF parameters were biologically unreasonable (i.e. L∞ tending to very
large values). A large number of model runs were discarded (720 of 1080 CSD
models and 740 of 1080 LSD models) due to this issue and were identified by
choosing an arbitrary value of 500 as the cut off for “biologically unreasonable"
L∞ estimates.

Overall, the nine component model for LSD was best fitting (lowest sub-AIC)
and LSD models consistently had lower sub-AIC values than their counterpart
CSD models. For LSD models as the number of components assumed was
increased the final component means (L) increased, as did the CVBG parameter
K, while L∞ decreased. CSD models showed no such pattern (Table 2.5 and
2.6).

Table 2.5: von Bertalanffy growth parameters from LFEM model runs that
gave the lowest sub-AIC value on white-bellied anglerfish length frequency
data. Number of components is the number of ages assumed to be present in
the data. Parameters l and L are those estimated for the surveys that occurred
in the fourth quarter of the year (EVHOE and IE-IGFS). Estimated standard
errors for the corresponding RVBG parameters are given in parentheses. RVBG
parameters estimates are given to 3 s.f. and CVBG to 2 s.f. (with the exception
of L∞). The Spanish survey estimates of can be found in Appendix B.

SD type No. components RVBG parameters CVBG parameters

l̂(cm) L̂(cm) k̂ L̂∞(cm) K̂ t̂0 sub AIC

CSD

8 17.1 (0.090) 114.4 (0.572) 0.966 (0.003) 469 0.035 -0.20 99430
9 17.0 (0.087) 118.6 (0.621) 0.945 (0.003) 294 0.057 -0.17 99397
10 17.0 (0.085) 119.9 (0.621) 0.930 (0.003) 232 0.072 -0.17 99419

CSD 11 16.6 (0.082) 125.3 (0.653) 0.974 (0.002) 489 0.026 -0.45 99341
12 16.6 (0.081) 128.4 (0.699) 0.969 (0.002) 401 0.031 -0.48 99367
13 16.6 (0.080) 130.1 (0.734) 0.951 (0.002) 267 0.050 -0.40 99419
14 16.5 (0.078) 126.8 (0.653) 0.940 (0.002) 215 0.062 -0.41 99444

LSD

8 16.5 (0.076) 107.3 (0.919) 0.941 (0.005) 276 0.061 -0.13 99112
9 16.3 (0.075) 108.7 (0.997) 0.967 (0.005) 412 0.033 -0.34 99102
10 16.3 (0.076) 113.1 (0.999) 0.974 (0.004) 471 0.027 -0.45 99110
11 16.4 (0.076) 114.9 (1.017) 0.951 (0.004) 264 0.051 -0.39 99173
12 16.4 (0.076) 116.3 (0.992) 0.938 (0.003) 213 0.064 -0.37 99237
13 16.4 (0.076) 120.1 (1.022) 0.930 (0.003) 195 0.072 -0.34 99312
14 16.4 (0.076) 122.1 (1.077) 0.921 (0.003) 177 0.082 -0.31 99393

Component means were consistent between and within SD types up to the
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fourth component, particularly for models with an assumed number of com-
ponents of 11 or above. LSD model component means did not change with
increasing number of components assumed and the best fitting model across
all models (linear SD, nine components) had very similar component means
to the best fitting constant SD model (Table 2.6). When plotted on the raw
length frequency data the best fitting basic model appears to fit the data
reasonably well in some years but not in others and cohort progression can be
seen up until the seventh component in some cohorts (Figure 2.6a).

The growth curve of the parameters estimated from the best fitting basic
LFEM model differs somewhat from the growth curves estimated in a previous
study (Landa et al., 2013). Growth curves were reasonably similar up to
age six, although the present study’s VBGF shows marginally faster growth.
After age six the growth curves begin to diverge more, with the present study
estimates of length-at-age markedly higher (Figure 2.5a).
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Figure 2.5: von Bertalanffy growth curves estimated for white-bellied angler-
fish from: (a) the best fitting basic model and overall parameters from the
corresponding hierarchical model with a cohort specific random effect on l
and L, as well as growth curves (estimated from illicia and model progression
analysis (MPA)) from a previous study (Landa et al., 2013), (b) estimated
cohort growth curves from the hierarchical LSD model with cohort specific
random effects on l and L.
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Table 2.6: Component/cohort means and their standard deviation parameters
for white-bellied anglerfish, corresponding to the basic models presented in
Table 2.5. In the case of constant SD models S = s but values are only given
in the final (S) column.

SD type No. components Component
ŝ Ŝ

1 2 3 4 5 6 7 8 9 10 11 12 13 14

CSD

8 17.1 32.5 47.3 61.7 75.5 88.9 101.9 114.4 4.91
9 17.0 32.4 46.9 60.6 73.6 85.8 97.4 108.3 118.6 4.75
10 16.9 32.0 45.9 58.9 71.0 82.3 92.7 102.5 111.5 119.9 4.62

CSD 11 16.6 28.8 40.7 52.3 63.5 74.5 85.2 95.6 105.8 115.7 125.3 4.34
12 16.6 28.4 39.8 50.9 61.7 72.1 82.3 92.1 101.6 110.8 119.7 128.4 4.23
13 16.6 28.9 40.6 51.7 62.2 72.3 81.9 90.9 99.6 107.8 115.6 123.0 130.1 4.20
14 16.5 28.5 39.8 50.4 60.3 69.7 78.5 86.7 94.5 101.8 108.6 115.1 121.1 126.8 4.12

LSD

8 16.5 32.0 46.5 60.2 73.1 85.2 96.6 107.3 3.96 11.15
9 16.3 29.3 41.8 53.9 65.6 76.9 87.9 98.5 108.7 3.83 12.03
10 16.3 28.2 39.9 51.2 62.2 72.9 83.4 93.5 103.5 113.1 3.85 9.90
11 16.3 28.6 40.2 51.3 61.8 71.8 81.4 90.4 99.0 107.2 114.9 3.86 9.28
12 16.4 28.6 40.1 50.9 61.1 70.5 79.4 87.8 95.6 103.0 109.9 116.3 3.87 8.55
13 16.4 28.9 40.5 51.3 61.3 70.6 79.3 87.4 94.9 101.9 108.4 114.5 120.1 3.90 7.72
14 16.4 29.1 40.8 51.6 61.5 70.6 79.1 86.8 94.0 100.5 106.6 112.2 117.3 122.1 3.91 7.60
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(a) basic LFEM fit on IE-IGFS
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(b) corresponding hierarchical LFEM model
fit to (a) with bivariate random effects on l
and L on IE-IGFS

Figure 2.6: Length frequency distributions of white-bellied anglerfish from the quarter four Irish groundfish survey (IE-IGFS) with
fitted distributions from: (a) the lowest sub-AIC basic LFEM model (9 components and LSD) and (b) the corresponding hierarchical
model with bivariate random effects on cohort specific l and L. Also shown is the progression of the cohort mean values (black solid
lines). Similar plots for the Spanish Porcupine Bank survey (SP-PORC) on the French groundfish survey (EVHOE) can be found in
Appendix B.
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2.3.2.2 White-bellied anglerfish hierarchical LFEM model with
cohort specific l and L

Overall CVBG parameters for the hierarchical LSD model with cohort specific
l and L corresponding to the best fitting basic model (K̂ = 0.089, L̂∞ =
215.2 cm and t̂0 = -0.14) differed to those given by the basic model. K̂ was
increased and L̂∞ reduced dramatically, t̂0 was also slightly reduced. The
resulting VBGF curve was different from the basic model curve as well as the
growth curves from a previous study (Landa et al., 2013). The hierarchical
model showed faster growth than the other curves and estimated component
means somewhat different to the best fitting basic LFEM model (Figure 2.5a).
Cohort specific growth curves from the hierarchical LFEM model showed a
range of trajectories and cohort L̂∞ estimates ranged from 184.9 - 246.6 cm
(Figure 2.5b). The slowest growing cohort with the lowest estimated L∞ (2014
cohort) followed a similar trajectory to the basic LFEM model (Figure 2.5).

There was a negative correlation estimated (ρ̂ = -0.69) between the bivariate
random effects l and L of each cohort (Figure 2.7). The bivariate cohort specific
random effects show a moderate degree of variation over a few centimetres for
l̂ and approximately 30 cm for L̂. There is a also negative trend in L (Figure
2.7). There is a high degree on uncertainty around estimates of L for the last
few cohorts (Figure 2.7b).
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Figure 2.7: Estimated random effects on first (l) and last (L) component means
of cohorts from a nine component hierarchical LSD model on length frequency
distributions of white-bellied anglerfish. Shaded area denotes 2*standard
error of the random effect estimates and dashed lines denote the mean of the
random effect. Parameter estimates are for quarter four surveys (EVHOE and
IE-IGFS).
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2.3.2.3 Other White-bellied anglerfish hierarchical models

Hierarchical models with a cohort specific k or yearly varying k were also fit
to the anglerfish data. In both cases the RVBG parameter K varies to a large
extent between cohorts, however L∞ also varies and the resulting cohort curves
differ but not dramatically. Parameter estimates can be found in Appendix B.

2.4 Discussion

2.4.1 Overview of LFEM

This study aimed to improve upon currently available approaches for growth
estimation of fish through length frequency analysis. A basic method utilising
the EM algorithm and analogous to MULTIFAN (Fournier et al., 1990) was
produced. The methodology was then extended further to incorporate bivariate
random effects in order to capture some of the growth variation in length
frequency data.

Few studies have modelled growth variation in length frequency data (Fournier
et al., 1998; Roa-Ureta, 2010; Lloyd-Jones et al., 2016). The approach of
using a VBGF to constrain mixture model component means through a time
series (i.e. along a cohort) whilst explicitly estimating cohort or year specific
random effects on two growth parameters is a worthwhile extension to this
area of research (see Lloyd-Jones et al. (2016) for an alternative). The aim
of this integrated approach was to aid identification of growth parameters in
variable length frequency distributions obtained from multiple annual surveys.
Furthermore, the associated uncertainty of the parameter estimates is also
approximated. Overall both versions of the methodology produced reasonable
estimates of von Bertalanffy growth parameters and their variability between
cohorts/years. However there were problems with convergence to biologically
unreasonable estimates of classical von Bertalanffy parameters particularly
in the basic models, as well as issues with model stability in the hierarchical
models where information was intermittently sparse (i.e weak or low abundance
cohorts).

2.4.2 Haddock

Basic and overall hierarchical parameter estimates for haddock were within
or close to previously reported ranges (K ≈ 0.1 - 0.5 and L∞ ≈ 45cm -

58



2. Length frequency analysis

55cm) (Baudron et al., 2011). Parameter estimates from the best fitting basic
model (12 components and LSD) and overall parameter estimates from the l/k

hierarchical LSD model gave very similar growth curves to that of a maximum
likelihood fit on length-at-age data for fish from the same region and time of
year (Figure 2.2). CSD models overestimated growth somewhat in older fish
indicating the importance of identifying the correct standard deviation. When
applying their method to data for pike and abalone Schnute and Fournier (1980)
also found that standard deviation treatment was particularly important when
deriving growth from observed length frequencies. The number of components
identified by the best fitting basic LFEM model (12 components) is close
to the number of ages present in the ALK (11 ages). The model selection
criterion was also particularly useful for identifying the more suitable SD type.
The effect of misidentifying component number is also negated somewhat by
the consistency of the component means with differing number of components
(Table 2.4).

From the hierarchical model (random effects on l and k) we can see a similar
variation in cohort specific growth parameters as Baudron et al. (2011) found
in their study. Hierarchical model and length-at-age estimated cohort growth
curves were similar in cohorts observed up until the ninth component. However
outside of these cohorts growth was often underestimated, indicating the effect
of the lack of information in later ages. Cohort growth curves that showed the
most similar fits to the data between the two methods also tended to be for
cohorts where strong signals were present in sequential years (Figure 2.3 and
2.4).

2.4.3 White-bellied anglerfish

Parameter estimates for white-bellied anglerfish (both sexes combined) were
broadly similar to those in the literature, although differences are more pro-
nounced in the later ages and estimates of L∞ from this study were consistently
higher than previously reported (Farina et al., 2008; Landa et al., 2013).

The basic and hierarchical models produced different growth curves, despite
having the same starting parameters. The 2014 cohort from the hierarchical
model follows a similar trajectory to the best fitting basic LFEM model growth
curve, indicating that 2014-2016 (the years 2014 cohort is observed) may
be dominating in the estimation of the basic model. Flexibility within the
hierarchical model was able estimate a slower growth for the 2014 cohort, whilst
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estimating a slightly faster growth for other cohorts. Further investigations
showed that when years 2014 to 2016 (these years had a higher number of
fish than other years) were removed from the data the basic LFEM model
component means were more alike to the hierarchical model estimates for the
majority of years. Subjectively, fitted distributions of the hierarchical model
seem to fit better than the basic LFEM model (Figure 2.6) . Estimated growth
curves predicted faster growth, particularly in the older fish, compared to
anglerfish age validation studies (Figure 2.5) (Farina et al., 2008; Landa et al.,
2013). Faster growth in the later ages was less pronounced in models that
assumed a higher number of components, however these were not selected as
the best fitting model (Table 2.5).

Model selection based on sub-AIC indicated that a nine component model
with LSD provided the best fit to the data. Although L. piscatorius is
thought to live frequently to over ten years of age (Farina et al., 2008),
fish of this age are not sufficiently well represented in the length frequency
data to support the selection of a large number of components. The nine
component model produced a higher estimate of L∞ and a lower estimate of
K compared to other studies (Farina et al., 2008; Landa et al., 2013), however,
the estimates of components means and standard deviations fit the length
frequency distributions reasonably well (Figure 2.6).

As with haddock SD treatment was important. Including a linear increasing
component standard deviation produced components with very wide length
distributions and mixing proportions appeared to be biased towards a single
component in some cases. Constant standard deviation allowed for more
overlap between components and more balanced mixing estimations but not
necessarily a better fitting model (Table 2.5).

Overall, discrepancies between parameter estimates from this study and those
from studies that use direct ageing methods may reflect modelling challenges
with the data or the difficulties of obtaining reliable age estimates for anglerfish
(ICES, 2011). Landa et al. (2013) used length-frequency analysis techniques
to validate direct ageing of illicia and found good agreement between the
parameter estimates produced by both methods. However that study was
based on survey data from the Porcupine Bank while the present study also
included data from two other surveys as model inputs. Further difficulty in
estimating growth may have been introduced here by combining data for males
and females as white-bellied anglerfish show sexual dimorphism in growth
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(Farina et al., 2008).

2.4.4 Caveats

The EM algorithm is an accepted method for estimating latent variables but
is sensitive to the choice of starting parameters (Biernacki et al., 2003), as
was evident from the model outputs presented here. This was accounted for
by conducting sensitivity runs on some of the main parameters (k, L and
number of components), producing a wide range of values for each parameter
estimate. Some other starting parameters were fixed, such as the mean of the
first component (l) and the starting mixing proportions, which was arbitrarily
set as 1/No. components. It is likely that the starting mixing proportions in
conjunction with a k growth rate parameter drove the variation in parameter
estimates at convergence. Lloyd-Jones et al. (2016) modelled length frequency
distributions using a methodology similar to the one employed here, but used
a minorisation-maximisation algorithm in order to estimate parameters.

The number of sensitivity runs was large for this study (>1000 for each
SD type) and a wide range of starting parameter values was used. Many
k parameter starting values were very different to known estimates, which
may partially account for the number of model runs that were excluded
before further analysis. The present study’s approach to parameter sensitivity
by multiple model runs followed by exclusion of models with “biologically
unreasonable” parameter estimates is a robust method for dealing with the
sensitivity, although caution should be used when setting a threshold (e.g.
this study used a L∞ of 500 cm, so as not to introduce subjectivity into
model selection). Haddock required a further refining of models by identifying
and removing any models with a second component mean <=15cm. Second
component means <=15cm were caused by certain (slow growth) starting
parameters and the second component mixing proportion tending to zero.

In this study the sub-AIC model selection criteria appeared to work reasonably
well (details of sub-AIC are given in subsection 2.5). sub-AIC was chosen as the
model selection criteria in part due to the performance of AIC in exploratory
simulation analysis with the LFEM model. AIC was able to identify the correct
number of components when the standard deviation of components was small
(∼1), as did BIC. With increasing standard deviation of length frequency data
AIC was more robust, still under-fitting the data somewhat but much less
severely than other model selection criteria. However, model selection is often
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problematic in studies such as this, hence should be conducted cautiously
using expert knowledge of the species in question (Schnute and Fournier, 1980;
Fournier et al., 1990; Taylor and Mildenberger, 2017).

Correlation between parameters could contribute to the observed variation
in parameter estimates. Classical von Bertalanffy parameters (K and L∞)
have been shown to covary strongly (Gallucci and Quinn, 1979; Pilling et al.,
2002). Here, the re-parameterised von Bertalanffy growth parameters appeared
strongly correlated, with many combinations of k and L parameters resulting
in very similar model fits. The same issue arises with other length frequency
analysis methods such as MULTIFAN and ELEFAN and is usually dealt
with by fixing either K or L∞ in the initial stages of the analysis (Fournier
et al., 1990; Taylor and Mildenberger, 2017). Variation in estimated maximum
likelihood parameters could also be driven by the substantial variability that
exists in the input data.

Hierarchical models appeared to be less sensitive to the choice of starting
parameters, although due to computational demands these models were not
subjected to the same level of sensitivity testing. Model testing using the
haddock data showed that when length frequency data indicates very variable
recruitment (i.e. in some years the first component is almost not present) the
hierarchical model initially struggled to estimate these components, shifting
the first component to the second component position and thus confounding
estimates of cohort progression. It seemed that there was not sufficient
information within the estimated distribution of the random effect to prevent
this. This issue is a form of the label switching problem that is well-known in
mixture models (Yao, 2015). Fixing the standard deviation of the bivariate
random effects at a suitably low value (i.e. exp(-5)) as detailed in section 2.5,
retained enough flexibility in the model to estimate variable random effects but
sufficient constraint to keep l and k random effects estimates within reasonable
bounds, thus preventing label switching.

2.4.5 Further work

A comprehensive comparison of the basic and hierarchical models with other
methodologies such as MULTIFAN, the updated ELEFAN procedure and the
more subjective Bhattacharya method would be a useful avenue for further
research (Bhattacharya, 1967; Fournier et al., 1990; Taylor and Mildenberger,
2017). In MULTIFAN-CL density dependence can be included in the structure
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of the model as abundance of a cohort can effect growth rate in some fish
species (Fournier et al., 1998). The hierarchical model presented in this study is
currently designed to model growth variability between cohorts independently
of cohort abundance but could be modified to include cohort abundance as a
covariate, increasing complexity and modelling the connection between mixing
probabilities of a cohort. Laslett et al. (2004) and Roa-Ureta (2010) devised
stage-based approaches to model fitting. A comparison of these stage based
approaches with hierarchical model presented here would be useful in order to
the assess the effectiveness of integrating constraints and random effects into
the mixture model parameter estimation.

Currently the components of the mixture models are assumed to be normally
distributed. Further development of the method could enable the user to
specify alternative distributions such as log normal, gamma or other, thus
allowing non-normality and skewness to be modelled (Macdonald and Pitcher,
1979; Lloyd-Jones et al., 2016).

2.5 Conclusions

Use of length frequency analysis to obtain growth parameters is a well developed
area of research (Hasselblad, 1966; Fournier et al., 1990, 1998; Taylor and
Mildenberger, 2017). These techniques provide growth information when age
of individuals cannot be determined otherwise. Parameter estimates, their
associated uncertainty and model fits presented here demonstrate the usefulness
of our method for obtaining growth information from length frequency data.

Growth parameters are estimated whilst simultaneously fitting finite mixture
models using the EM algorithm. The use of the EM algorithm removes the
need to define length bins, allowing a more objective set up of the modelling
procedure. Models can take inputs from multiple surveys from different times
of year and offer an alternative framework to other well-known approaches
for estimating growth parameters from length frequency data. Furthermore,
within the hierarchical framework we explicitly model bivariate random effects
on growth parameters, successfully modelling growth variability and allowing
trends to be identified in the estimates.

Where age data is not readily available modelling cohort growth variability
through the present study’s methodology can improve information available for
stock assessments (i.e. cohort specific growth curves for age slicing. In addition,
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estimates from these length frequency models give useful credible estimates of
the boundaries of growth parameters that could be tested for stock assessments
in a simulation context, such as in a management strategy evaluation (Punt
et al., 2013). Finally, length frequency distribution derived cohort growth
parameter estimates could also be used to investigate environmental covariates
such as sea temperature (Baudron et al., 2014; Barrow et al., 2018).

2.6 Supplementary material

The following supplementary material is available at ICESJMS online.
Further details on the model derivation and some additional results
can be found here. Code and examples of model runs can be found at
https://github.com/lbatts/LFEM.
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Chapter 3

Numbers or mass? Comparison
of two theoretically different
stage-based stock assessment
models and their ability to
model simulated and real- life
stocks

This chapter is a verbatim reproduction of a paper accepted and in
the Canadian Journal of Fisheries and Aquatic Sciences. Supple-
mentary material can be found in Appendix D.
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3. Stage-based assessment models

Abstract

Stage-based assessment models are a type of fisheries stock as-
sessment model that offer an alternative middle ground between
aggregate and compositional models. We compare the capabilities
of two theoretically different stage-based assessment approaches:
an implementation of a biomass-based delay-difference model first
described in a theoretical paper by Schnute (1987), and an im-
plementation of the well-known numbers-based two-stage model
Catch-Survey Analysis (CSA). Models were tested within a sim-
ulation framework as well as on the real stock of white-bellied
anglerfish in the Celtic Seas and Northern Bay of Biscay. For
the simulated stocks, estimates from the biomass-based two-stage
models were close to the true values in certain scenarios, but were
sensitive to selectivity assumptions and configuration of growth
within the model. CSA was more robust to selectivity assumptions,
performing well in all simulated stock scenarios. Key estimated
values from CSA were remarkably similar to the values estimated
in the accepted age-based assessment for the real anglerfish stock.
Overall, results indicated that CSA was a robust stock assess-
ment model but with relatively low precision, whereas the Schnute
model was precise but required growth and mean fish weight data
unaffected by selectivity.

Keywords: anglerfish Lophius piscatorius, data-limited, stage-
based, stock assessment, TMB
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3.1 Introduction

Fisheries stock assessments are an important tool for fisheries management
(Hilborn and Walters, 1992; Dichmont et al., 2016). Using a variety of data
sources, stock assessments determine the size of a fish population and the
rate at which the stock is being fished. There are many different forms of
fisheries stock assessment models, ranging from biomass dynamic models (e.g.
Prager, 1992; Pedersen and Berg, 2017), to age-based assessment models
(e.g. Shepherd, 1999; Jardim et al., 2014; Nielsen and Berg, 2014), to more
complex spatial (e.g. Cadigan et al., 2017), ecosystem (e.g. Begley and Howell,
2004) or integrated assessment models (e.g. Methot and Wetzel, 2013). The
choice of a suitable assessment model and its reliability is often determined
by the available data (Hilborn and Walters, 1992). For example, in stocks
where there is large uncertainty in age and growth estimates, more complex
compositional age-based models may not be possible and a different approach
using aggregated, stage-based, size-based or integrated models is preferred
(Smith and Addison, 2003; Punt et al., 2013).

Two well known but theoretically different approaches to stage-based assess-
ment models are biomass-based delay-difference models, first described by
Deriso (1980) and developed by Schnute (1985, 1987) as well as Fournier and
Doonan (1987), and numbers-based depletion models, the most well-known
of which is the Catch-Survey Analysis (CSA) (Collie and Sissenwine, 1983;
Smith and Addison, 2003). Standard implementations of these two approaches
consist of two stages; fish recruited to the exploited population in a given
year, and fish that recruited in previous years. Delay-difference models can be
generally considered as biomass dynamic models but with different parameters
and a structure that allows for time lags in growth and recruitment (Hilborn
and Walters, 1992). Schnute (1987) described a size-based delay-difference
model linking population size structure and mean weights. In its simplest
form, this consists of two stages of biomass (recruits and previously exploited
biomass) and assumes deterministic growth of all individuals in the exploited
stock. The model also allows for flexibility in the assumptions regarding the
relative importance of recruitment and previously exploited biomass that un-
derlie estimation of total biomass. CSA is a relatively simple two-stage model
(numbers of recruits and post-recruits), which has changed somewhat from the
original model first described in Collie and Sissenwine (1983). The most recent
version can be found in the NOAA Fish and Fisheries Integrated Toolbox
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(NFFT), where population dynamics centre on Baranov’s catch equation and
estimation is through maximum likelihood (NOAA, 2019).

Unreliable age-composition data or uncertainty in data that is not suitably
accounted for either in the assessment model or in the processing of data prior
to an assessment model, can lead to bias in numbers-at-age estimates (Kell
and Kell, 2011; Maunder and Punt, 2013; Ailloud et al., 2015). Integrated
assessment models such as Stock Synthesis (Methot and Wetzel, 2013) or
MULTIFAN-CL (Fournier et al., 1998) have been used widely in recent years
to address a lack of reliable age-composition data. However, these assessment
models are often relatively complex, requiring more data and expertise than
other simpler assessments (Maunder and Punt, 2013; Punt et al., 2013; Ailloud
et al., 2015). In these situations, stage-based models can be useful as they
generally require fewer data and parameters to estimate, and are likely to be
more robust to large uncertainties in the data.

Stage-based assessment models such as the Schnute (1987) model or CSA
(NOAA, 2019) offer an alternative middle ground between aggregate and
compositional models, as they incorporate information on recruitment where
aggregate models do not and also have more limited data requirements than
compositional models (Hilborn and Walters, 1992; Cadrin, 2000; Ailloud et al.,
2015; Cook and Heath, 2018; Li et al., 2019). Generally, stage-based models
have been used in situations where species are difficult to age (e.g. crustacean
fisheries) (Cadrin, 2000; Smith and Addison, 2003; Zhou et al., 2011; Kienzle
et al., 2014) or are short lived (e.g. squid fisheries) (Roel and Butterworth,
2000; Ibaibarriaga et al., 2008).

While the importance of two-stage models has long been known and their
theoretical properties well understood, the two approaches (numbers-based
and biomass-based) have not been compared in detail. We attribute this
primarily to a lack of implementations of the general biomass-based model.
Here, we implemented the Schnute (1987) delay-difference and NOAA (2019)
CSA assessment models within a common estimation framework (Template
Model Builder, TMB) (Kristensen et al., 2016), taking advantage of automatic
differentiation of the likelihood during optimisation.

Our aims are to: 1) fully describe the comparative implementation of the
models; 2) assess the ability to recover known properties of realistically simu-
lated stocks under a range of data scenarios; and 3) compare against a fully
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age-based stock assessment model for the white-bellied anglerfish (Lophius
piscatorius) in the Celtic Seas and Northern Bay of Biscay. A simulated stock
framework was used to determine the reliability of the assessment models, as
well as the accuracy of their parameter estimation. The white-bellied anglerfish
stock gave a useful test case to evaluate the performance of assessment models
on a real stock with more complex population dynamics. Here, a stage-based
modelling approach could be of use in the future assessment and management
of anglerfish, as well as similar species with prominent uncertainty regarding
growth.
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3.2 Methods

A description of the theoretical model from Schnute (1987) is first introduced,
followed by implementation details. A summary of the CSA model and its
implementation is then given. Finally, the simulated and real stocks are
described. We use the same notation as Schnute (1987) to describe both
models where possible. An asterisk is used to distinguish between biomass and
numbers (e.g. N∗ and N are population biomass and numbers respectively).

3.2.1 Schnute model

Schnute (1987) described a size-based delay-difference model that links popu-
lation size structure and biomass with the mean weights of size classes. Many
of the following equations are taken directly from Schnute (1987) in order to
explain the model and its implementation. Where possible, we have used the
same terminology, in addition, the reader should note that the term weight is
used to refer to mass throughout. The prime is used to denote a weight after a
year of growth (e.g. V

′ is a function of starting weight V ). The reader should
refer to Schnute (1987) for a full description of the theoretical underpinnings.

3.2.1.1 Population dynamics and notation

Time is discrete in this model and there is an implicit assumption that growth
occurs at the end of the year. Total survival of the population from one year to
the next is also assumed to be weight-independent (analogous to age-structured
delay-difference models (Schnute, 1985)). These fundamentals lead to the
key dynamic equations for a weight-structured population model described in
Schnute (1987) and summarised in Appendix D.

In its simplest form, the Schnute (1987) model defines two weight intervals
that correspond to the two stages in the delay-difference model. V is the
recruitment weight at which fish are assumed to be fully selected and the
weight range [V, V

′) encompasses all fish that are large enough to be exploited
for the first time in the current year (i.e., recruit stage). Fish larger than V

′

are assumed to have been large enough to be exploited for at least one year
previous to the current year (i.e., previously-exploited biomass stage). The
theoretical weight limit, V ∞, was the upper bound of the interval, i.e., weight
interval [V, V ∞) encompasses the entire range of fish weights in the assessed
population. Schnute (1987) elaborates this methodology further and extends
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the theory to a full cohort analysis, however, implementation of this was
beyond the scope of this study and our implementation follows the two-stage
model.

Table 3.1: Summary of the Schnute model notation. Hat operator denotes
estimated parameters (for this study) or predicted values from the model.
Parameters without hats were treated as known values. ‘S1 specific’ indicates
notation specific to this form of the Schnute model.

Notation Type Description
General model

N∗ output Population biomass
P ∗ output previously exploited biomass
R∗ output Recruitment biomass
σ parameter proportion of population that survives natural mortality
q̂s parameter catchability coefficient of survey indices s

δ̂s parameter standard deviation of log-normal survey indices
λ parameter standard deviation of log-normal catch biomass
ρ parameter coefficient of linear growth model
W parameter intercept of linear growth model
θs parameter timing of survey
Z̄t input mean weight of fish in previously exploited biomass stage at time t
X̄t input mean weight of fish in entire biomass at time t
Ȳt input mean weight of fish in recruit biomass stage at time t
ωt output fraction of total biomass in year t due to newly recruited fish
C∗

t input observed catch biomass at time t
I∗

ts input observed survey biomass at time t for survey s
µ input fraction of the catch removed before natural mortality
Î∗

ts output predicted survey biomass at time t for survey s
s index element survey number
t index element number of year

S1 specific
N̂∗

1 parameter initial biomass of population at t = 1
Ĉ∗

t output predicted catch biomass at time t

F̂t parameter fishing mortality at time t
µ̂t output fraction of the catch removed before natural mortality

Growth of the surviving population biomass from one year to the next relies on
the assumption that fish are fully available to the fishery above the specified
recruitment weight V (knife-edged selection). The growth model for a weight
structured population is assumed to be linear here, where weight this year
(w′) is a linear function of the weight in the previous year (w) with intercept
and slope a function of the von Bertalanffy K and W∞ parameters (Schnute,
1987). This growth model is typical of delay-difference models (usually with
weights-at-age) (Hilborn and Walters, 1992) and implies that growth does not
vary over time.

Average weights are also a key component for the weight-structured model
proposed in Schnute (1987). The model implemented in this study requires
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the following inputs: mean fish weight of the assessed population X̄t, recruit
mean fish weight Ȳt and the previously exploited biomass mean fish weight Z̄t

at time t (Table 3.1). Mean weights are assumed to stay constant through the
year.

We implement two forms of the proposed two-stage model from Schnute (1987).
Models S0 and S1 are presented (Tables 3.1 and 3.2) and detailed below.

3.2.1.2 Deterministic equations

The basic delay-difference equation can be simply described as predicting
biomass at time t+1 from three basic components: recruitment biomass at
t+1, surviving biomass from time t and growth of the surviving fish (Deriso,
1980; Schnute, 1985; Hilborn and Walters, 1992). Details of how this process
is specifically presented in Schnute (1987) can be found in Appendix D. In
summary, biomass in year t + 1 minus recruitment, or previously exploited
biomass P ∗

t+1, is derived from the surviving biomass from year t multiplied by
a growth factor of X

′
t

Xt
, where:

X
′

t = W + ρXt (3.1)

X
′
t is the average weight of a fish in the entire surviving population after a

year of growth and equivalent to Zt+1, W is the intercept of the linear growth
model and ρ is the slope.

An intriguing aspect of the model proposed in Schnute (1987) is that there are
three model versions, where a predicted total biomass index can be calculated
a number of ways. Two of these model versions use all three time series of
mean fish weights (X, Z and Y ) to calculate ωt, where ωt is defined as the
fraction of total biomass in year t due to newly recruited fish (Table 3.1),

ωt = R∗
t

N∗
t

(3.2)

where R∗
t is recruitment biomass at time t and N∗

t is population biomass at
time t. Schnute (1987) demonstrates that ωt can be derived from mean weights
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alone:

ωt =
(

Yt

Xt

)(
Zt − Xt

Zt − Yt

)
(3.3)

To compute estimates of N∗
t , ωt values can then be used with either the recruit

stage R∗
t or the previously-exploited population stage P ∗

t .

Here, we focus on the model version that estimates N∗
t from P ∗

t (P ∗
t being

calculated from N∗
t−1) at each time step. The more classical model version

where N∗
t is the sum of estimated recruits and previously exploited biomass, as

well as the model version that calculates N∗
t from R∗

t , were also implemented
and are available within the developed R package (https://github.com/lbatt
s/ sbar) but are not investigated in this study. The particular model version
used in this study was chosen due to its relative simplicity compared to the
other versions. Details for the model version focused on in this study can be
found in Appendix D.

3.2.1.3 Model variants

Schnute (1987) presented an autoregressive process error model (referred to
as Original Schnute Process Error Model (S0 ) subsequently) that takes catch
biomass as known and µ (fraction of the catch removed prior to natural
mortality) (Table 3.1) is specified by the user. We also develop a model where
fishing mortality rate is estimated and catch biomass is predicted using the
Baranov equation (S1).

When demonstrating how their theory relates to more classical theory, Schnute
(1987) shows (but does not include in the composite model) that µ is a function
of instantaneous rates of fishing mortality and natural mortality, we index
fishing mortality by time to give:

µt = Ft(1 − e−M) − Me−M(1 − e−Ft)
Ft(1 − e−M)(1 − e−M−Ft) (3.4)

where Ft is the fishing mortality at time t. Survival σ in the Schnute (1987)
model is equivalent to e−M where M is instantaneous natural mortality rate
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(Table 3.1).

Using the indexed equation we are able to estimate yearly fishing mortality
within the model, whilst maintaining the majority of the the original equations
of Schnute (1987). µt computed from the estimated Ft can be thought of as
the fraction of the catch taken before natural mortality occurs that mimics the
application of exponential total mortality (−M − Ft) in the classical Baranov
catch equation:

C∗
t = Ft

M + Ft

(
1 − e−M−Ft

)
N∗

t (3.5)

where C∗
t is catch biomass at time t.

We develop a model that uses the above to predict catch biomass. This new
adaptation of the Schnute (1987) model also estimates biomass in the first
time step and is an observation-error-only model (referred to subsequently as
the Adapted Schnute Observation Error Model (S1 )) (Tables 3.1 and 3.2) .

3.2.1.4 Model summaries

We implement two forms of the proposed two-stage model from Schnute
(1987) (Schnute model version where entire biomass is derived from previously
exploited biomass as stated in section 3.2.1.2) that can be distilled into a
set of steps representing the processes within the models. Model variants S0
and S1 are presented (Table 3.2). S0 is faithful to Schnute (1987) with an
autoregressive process error, S1 estimates initial biomass (N∗

1 ) as a stand-alone
parameter and with observation-error-only.
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Table 3.2: Summary of the steps within the Original Schnute Process Error
Model (S0 ) and Adapted Schnute Observation Error Model (S1 ). Hat operator
denotes predicted states assuming measurement error only within the model.

Step Model
S0 S1

1 N∗
t = I∗

t,s+qsθs[(1−σ)]C∗
t

qs[1−θs(1−σ)] N̂∗
1 estimated within the model

2 P ∗
t+1 = X

′
t

X̄t

[
σ[N∗

t − µC∗
t ] − (1 − µ)C∗

t

]
P̂ ∗

t+1 = X
′
t

X̄t

[
σ[N̂∗

t − µtĈ
∗
t ] − (1 − µt)Ĉ∗

t

]
3 R∗

t+1 = P ∗
t+1ωt+1
1−ωt+1

R̂∗
t+1 = P̂ ∗

t+1ωt+1
1−ωt+1

4 N∗
t+1 = P ∗

t+1
1−ωt+1

N̂∗
t+1 = P̂ ∗

t+1
1−ωt+1

5 Î∗
t+1,s = qs

(
[1 − θs(1 − σ)]N∗

t+1 − θs[(1 − σ)]C∗
t+1

)
Î∗

ts = qs

(
[1 − θs(1 − σ)]N̂∗

t − θs[(1 − σ)]Ĉ∗
t

)
1 Where the subscript s denotes survey specific values. µt and Ĉ∗

t for S1 are
calculated through Equations 3.4 and 3.5 respectively (conversely µ is a fixed
constant scalar and C∗

t is not predicted in S0 ). ωt is calculated through
Equation 3.3.

Table 3.2 contains the same key equations within Schnute (1987) with the
exception of the estimation of N∗

1 in S1, which this study has introduced as
a stand-alone parameter in the adapted model. This was done to allow the
removal of the autoregressive process error and allow catch and surveys to be
predicted for the first time step. In S0, when there are multiple survey indices,
a geometric mean of biomasses calculated for each qs is used for N∗

t . S0 cycles
through steps 1-5 at each time step t and the autoregressive process comes
from the recalculation of biomass (step 1) from the observed survey index.

3.2.1.5 Likelihood

Schnute (1987) does not detail parameter estimation. Observed log-likelihood
can be simply split into two key components: log-likelihood for the catch
ln Lc (only relevant for S1 ) and log-likelihood for the survey indices ln LI .
We assume that the observed catches C∗ and observed survey indices I∗ are
log-normally distributed, with measurement error on catches with variance λ2

and survey-specific error variances for indices δ2
s . Likelihood components are

given as:

ln Lc(Ψ|C) = −n

2 ln
(
2π
)

− n

2 ln λ2 − 1
2λ2

n∑
t=T 1

(
ln C∗

t − ln Ĉ∗
t

)2
(3.6)
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ln LI(Ψ|I) =
G∑

s=1

[
− n

2 ln
(
2π
)

− n

2 ln δ2
s − 1

2δ2
s

n∑
t=T 1

(
ln I∗

ts − ln Î∗
ts

)2
]

(3.7)

where G is the number of surveys and n is the number of years, and Ψ the
full set of parameters. Total log likelihood is the sum of these components
for S1 (where T1=1) and only the indices component (where T1=2) for S0,
assuming independence in the model system.

3.2.1.6 Estimation in this study

Typically, growth parameters W and ρ are taken as inputs to the model (as
suggested by Schnute (1987)), with no error associated with them, although in
some circumstances they may be estimable. We estimated these parameters
prior to running assessment models through estimation of linear models on
mean weights in order to simplify model testing. Stage mean fish weights from
sampling are also taken into the model without any error (i.e., assuming these
are the true mean weights of the population).

We explore two growth/mean weight configurations for the Schnute model: 1)
growth parameters were estimated with mean weights-at-age (i.e., akin to a
Ford-Walford plot and detailed in Appendix D) and stage mean fish weights
are taken from the survey (i.e., not skewed by selection) and 2) Stage mean
fish weights are taken from the catch (i.e., potentially biased due to selection
pattern) and growth parameters are estimated from the catch overall mean
fish weights X̄t and previously exploited stage mean fish weights Z̄t (i.e., Z̄t+1

vs. X̄t). When fitting these linear models prior to running the assessment
models, residuals were assumed to be normally distributed.

This study implements both S0 and S1 with the two different growth/mean
weight configurations (Table 3.3). These configurations aim to cover possible
differences in the data available for an assessment.

Table 3.3: Summary of Schnute model and growth/mean weight configurations.

Notation Model Stage mean weights sampling Growth parameter estimation
S0c Original Schnute process error model catch using mean fish weights of stages from catch
S0waa Original Schnute process error model survey using weights-at-age
S1c Adapted Schnute observation error model catch using mean fish weights of stages from catch
S1waa Adapted Schnute observation error model survey using weights-at-age

Survival σ (i.e., e−M) was also fixed at the correct value for the stock. Pre-
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analysis testing indicated models were not sensitive to starting values in
estimated parameters. A table of starting values for key parameters in both
the simulation framework as well as the real fish stock is given in Appendix D.

For simulated stocks Original Schnute Process Error models (S0) estimated two
parameters (qs and δs), whereas Adapted Schnute Observation Error models
(S1) estimated either 23 or 43 parameters depending on the length of time
series (N∗

1 ,qs, δs and 20/40 Ft). For the real stock, Schnute models (S0waa

and S1waa) were fit to three total biomass indices as well as catch biomass.
S1waa estimated 23 parameters (16 F̂t, 3 q̂s, 3 δ̂s and N̂∗

1 ). S0waa estimated six
parameters (3 q̂s and 3 δ̂s). All parameters were estimated in log-space, except
qs, which was logit transformed (based on the assumption 0 ≤ qs ≤ 1).

3.2.2 CSA

Our implementation of CSA is similar to that found in the NOAA Fish
and Fisheries Toolbox (NFFT), with a few minor alterations (i.e., options
for a stand-alone post-recruit index and estimating survey indices standard
deviation). Notable differences between the current version of CSA and the
original model described by Collie and Sissenwine (1983) are that the latter
model does not consider catch error and catch does not occur continuously
through the year but is taken instantaneously. The original model also has a
process error component to the likelihood.

3.2.2.1 Population dynamics and notation

To project the population, the Baranov equation (Equation 3.5, here catch
biomass and population biomass are replaced by catch numbers Ct and popula-
tion numbers Nt) are used (Table 3.4). Instantaneous fishing mortality Ft and
natural mortality rate M are constant across stages. Natural mortality rate
does not vary through time, whereas fishing mortality is estimated at each
time step. Population numbers Nt are subject to a total mortality (Ft + M)
at each time step, which exponentially decreases to give post-recruit numbers
at the next time step Pt+1 (Table 3.5). Recruit numbers Rt are estimated at
each time step as parameters and post-recruit numbers at the first time step
P1 is also estimated as a parameter to initialise population dynamics (Tables
3.4 and 3.5).

The recruit stage Rt is the group of fish that enter the fishery at or during the
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current time step, the post-recruit stage Pt is comprised of fish recruited in
previous years. Theoretically these stages are analogous to the recruits stage
and previously exploited stage of the proposed model of Schnute (1987). Both
stages are assumed to be fully available to the fishery in this implementation.
Similarly, survey indices are assumed to have constant catchability between
stages (knife-edged selection); however, there is an option (not used in our
study) where this assumption can be relaxed and users can enter a proportion
of recruits available to the recruit survey index. Stages can be defined by age,
length or any other grouping that offers distinct stages that move from one to
the other over a given time period.

Table 3.4: Summary of the CSA model notation. Hat operator denotes
estimated parameters (for this study) or predicted values from the model.
Parameters without hats were treated as known values.

Notation Type Description
General model
Nt output Population numbers at time t
Pt output Post-recruit numbers at time t
M parameter natural mortality rate
q̂s parameter catchability coefficient of survey indices s
τ̂s parameter standard deviation of log-normal survey numbers
ω parameter standard deviation of log-normal catch numbers
P̂1 parameter initial numbers of post-recruits at t = 1
R̂t parameter Recruitment numbers at time t

F̂t parameter fishing mortality at time t
θs parameter timing of survey
hts input selectivity for recruit survey s
Ct input observed catch numbers at time t
IR

ts input observed survey recruit numbers at time t for survey s
IP

ts input observed survey post-recruit numbers at time t for survey s
Its input observed survey population numbers at time t for survey s

Ĉt output predicted catch numbers at time t

ÎR
ts output predicted survey recruit numbers at time t for survey s

ÎP
ts output predicted survey post-recruit numbers at time t for survey s

Îts output predicted survey population numbers at time t for survey s
s index element survey number
t index element number of year

Surveys can be undivided surveys (i.e., catch both stages) or split into a recruit
index and a post-recruit index or a stand-alone post-recruit survey index (a
new addition to NFFT implementation). Survey catchability coefficients qs

are survey specific (not index specific), thus for split surveys, one coefficient
is estimated across the recruit and post-recruit indices. Similarly, standard
deviations are survey specific, not index specific. At least one split survey is
required for a CSA model run (Table 3.4).
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The GUI (Graphical User Interface) provided for CSA does not allow for
estimating survey standard deviation; however, the version implemented in
this study allows for estimation of this parameter. Another adaption here
is that stand-alone post-recruit survey indices can be input allowing some
flexibility in indices used (NOAA, 2019).

3.2.2.2 Deterministic equations and model summary

The CSA GUI helpfiles contain the underlying code and additional information
that was used to implement CSA (NOAA, 2019). Key dynamic equations
and model steps in mathematical notation are summarised in Table 3.5. The
model was an observation-error-only model and parameters were estimated by
maximum likelihood.

Table 3.5: Summary of the steps within the CSA model. Hat operator denotes
predicted values from the model that are found in the likelihood.

Step

1 P̂1 is a key parameter estimated within the model

2 Nt = Pt + R̂t

3 Ĉt = F̂t

(
1−e−M−F̂t

M+F̂t

)
Nt

4 Pt+1 = Nte
−M−F̂t

5 ÎR
ts = (q̂sR̂thts)eθs(−M−F̂t)

6 ÎP
ts = (q̂sPt)eθs(−M−F̂t)

7 Îts = (q̂sNt)eθs(−M−F̂t)

3.2.2.3 Likelihood

The observed log-likelihood is comprised of two key components: log-likelihood
for the catch ln Lc, and log-likelihood for the survey indices ln LI . We assume
that the observed catches C and observed survey indices I,IR and IP are
log-normally distributed, with measurement error on catches with variance
ω2 and survey-specific measurement error variances for indices τ 2

s . Likelihood
equations for catch numbers and survey indices were the same as those used in
the Schnute model (Equations 3.6 and 3.7), where G is the number of surveys
and n is the number of years, and Ψ the full set of parameters. The notation
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Its represents any survey index. The total log-likelihood was the sum of these
components, assuming independence in the model system.

3.2.2.4 Estimation for this study

Natural mortality rate was a fixed parameter and was at the correct value for
the stock. Recruit survey index selectivity hts is assumed to be 1 (i.e., recruits
fully selected in survey) for all CSA models in our study. Starting values for
key parameters for both the simulated stocks and the real fish stock are found
in Table 2 in Appendix D. Pre-analysis testing indicated CSA was not sensitive
to starting values in estimated parameters.

For simulated stocks, CSA estimated either 43 or 83 parameters depending on
the length of time series (q̂s, τ̂s, P̂1, 20/40 F̂t and 20/40 R̂t). For the real stock,
CSA estimated 39 parameters (of which 16 F̂t, 16 R̂t, 3 q̂s, 3 τ̂s and P̂1) and
was fit to one recruit numbers index and three post-recruit numbers indices as
well as catch numbers. All parameters were estimated in log-space, except q̂s,
which was logit transformed (based on the assumption 0 ≤ qs ≤ 1).

3.2.3 Data

Self-tests were used initially to check consistency and implementation. To test
model capabilities a simulation framework was developed. A real fish stock
was then used to test models in a real world scenario.

3.2.3.1 Simulation framework

Simulated stocks were used to test the assessment models in different data
scenarios. Stocks were age-based, with explicit modelling of age-structured
population dynamics and fisheries selectivity. The population was projected
forward using a stock-recruit model for incoming recruitment in the following
year and all other age class subject to exponential mortality (Quinn and
Deriso, 1999). We developed a simulation framework based on Rosenberg
et al. (2014) using the“FLife” package in R (Kell, 2018) to simulate fish stocks
and generate data under a variety of conditions (Kell et al., 2017). A quasi-
factorial simulation framework included three harvest dynamics scenarios, three
selectivity patterns, two life-history strategies, two time-series lengths, two
recruitment variability scenarios and two recruitment autocorrelation scenarios
(Table 3.6). FLife was used to create 144 unique age-structured stock scenarios
with 100 replicates for each of the 144 scenarios. Variability among replicates
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came from a combination of recruitment variability, catch error and survey
index error. Stocks were created at equilibrium when fishing mortality was
zero and there was no initial depletion before applying the harvest dynamics
(HD) scenario. The stock-recruit model used was a Beverton-Holt model
parameterised with virgin biomass and steepness of the life-history strategy
(Equations in Appendix D).

Assessment models were tested across two contrasting life-history strategies.
These were a) small pelagic fish — similar to Atlantic herring Clupea harengus
harengus and b) large demersal fish — similar to white-bellied anglerfish
Lophius piscatorius (Table 3.6). The latter life-history strategy was chosen
as this was the species of the case study (ICES, 2019b,a). The small pelagic
life-history strategy was chosen for contrast. Details of parameters used for
each life-history can be found in Appendix D.

The harvest dynamics (HD) scenarios were chosen to test the assessment
model’s ability to model stocks with different fisheries contrasts. HD scenarios
were: 1) constant (“c”), 2) one-way trip (“ow”) and 3) roller-coaster (“rc”)
(Table 3.6). Details of of these scenarios can be found in Appendix D.

Table 3.6: Simulation experimental design factor levels.

Factor Factor label Level 1 Level 2 Level 3
Harvest dynamics HD Constant harvest rate (c) One way trip (ow) Roller-coaster (rc)
Time-series length TS 20 40 -
life-history LH small pelagic large demersal
Selectivity SEL constant/knife-edged logistic dome-shaped
Recruitment error SR 0.1 0.4
Recruitment autocorrelation AR 0 0.6

All assessment models tested assume a knife-edged selection pattern. To test
how these models perform under a different selectivity pattern, simulation
scenarios were set up with three different selectivity patterns: 1) constant/knife-
edged, 2) logistic and 3) dome-shaped (Table 3.6). Knife-edged selection
pattern assumed that all ages of the fish stock were fully selected in the fishery.
Exact values for the other selectivity patterns differed between life-history
strategies. Details of logistic and dome-shaped selectivity patterns used in the
simulated stocks can be found in Appendix D.

Time-series lengths varied between 20 and 40. Recruitment error was random
log-normal noise around the S-R function, set at either relatively low (sd =
0.1) or relatively high (sd = 0.4). Recruitment of the stock was either set up
with no autocorrelation or high autocorrelation (rho = 0.6) (Table 3.6).
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A fully selected survey index of numbers-at-age was generated for each stock
as the product of stock numbers at the beginning of each year, a catchability
coefficient of 1E − 6 and a random log-normal error (sd = 0.3) on numbers-at-
age. A random log-normal error was also applied to catch numbers-at-age (sd
= 0.1 for all ages).

For simplicity, stages for the assessment models were defined by age. It was
assumed that fish at age zero were in [V, V

′) (i.e., recruit stage) and fish of
ages 1+ were in [V ′

, V ∞) (i.e., previously exploited/post-recruit stage). This
implies that there was no significant overlap in lengths between age zero and
age 1.

3.2.3.2 Real anglerfish stock

Data for the white-bellied anglerfish stock in ICES areas 7.b-k, 8.a-b and 8.d
was collated from the 2019 ICES assessment (ICES, 2019b,a). This consisted of
catch data and three survey indices that cover the anglerfish stock: a combined
IBTS index of the French EVHOE survey (Q4) and Irish Groundfish survey
(IE-IGFS, Q4) spanning 2003-2018, Spanish Porcupine Groundfish survey
(SP-PORC, Q3/Q4) spanning 2003-2018, Irish Anglerfish and Megrim Survey
(IAMS, Q1) in years 2007-2008 and 2016-2018. The SP-PORC survey has a
relatively small spatial coverage compared to the other surveys. The stock
is currently assessed with an age-based analytical assessment using the a4a
Stock Assessment Modelling framework (Jardim et al., 2014; ICES, 2019b) and
was used for comparison with the two-stage models implemented here. The
purpose of comparison for the case study was not to investigate the potential
bias of the age-based a4a assessment model but to explore whether stage-
based assessment models with less data requirements were capable of giving
comparable results to the age-based assessment model. Natural mortality rate
was fixed at 0.25 for all model runs, as this was the value used for all ages
for the official a4a assessment. Similar to the simulated stocks, stages for the
assessment models were defined by age, with the same assumptions as above.
A key assumption was that the procedure used to compile age-composition
data for the age-based assessment identifies and defines recruits without bias
(age 0 fish in catch and surveys).

In the official assessment model that is used for comparison, the number of
ages to which each survey index is tuned to is specific, i.e., ages 0-2 for IBTS
combined survey, 1-5 for IAMS and 2-6 for SP-PORC. Schnute and CSA
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models did not allow for this subtlety. Four survey indices were used for the
CSA model; both recruit and post-recruit indices from the IBTS combined
survey as well as post-recruit indices of IAMS and SP-PORC. Schnute models
used the three surveys (combined IBTS, IAMS and SP-PORC) as biomass
survey indices.

3.2.4 Model performance

To compare between the Schnute and CSA approaches, stock numbers were
used to compare across the different models. As Schnute is a biomass-based
model with a time-series of stage mean fish weights, stock numbers were
calculated by dividing the estimated biomass by the corresponding mean
weight at a given time step. For comparison (for the simulated stocks and
age-based assessment of anglerfish) overall fishing mortality F was calculated
from fishing mortality-at-age as an average F weighted by population numbers-
at-age. Convergence of assessment models was determined in two steps. After
convergence was indicated by the optimiser, parameters were checked for
identifiability with the second-derivatives of the marginal likelihood (Thorson,
2020). Only model runs where all parameters were identifiable were used in
the results.

For the simulation framework, performance metrics were applied to key outputs
from the assessment models (i.e., fishing mortality at the start and end and
stock numbers). Performance of assessment models was evaluated using
Relative Error (RE =

(
θ̂ − θ

)
/θ) to assess bias and Relative Standard Error

(RSE = σθ̂/θ̂) to assess precision (θ̂ is the estimated value from an assessment
model, θ is the true value and σθ̂ is the standard error of θ̂). Standard error was
the approximated asymptotic SE estimated within TMB via the delta-method.
Medians were calculated for relative errors giving performance metrics MREN

for stock numbers in all years and MREF1 or MREFend for fishing mortality
at the start and end of a time-series respectively. Median Absolute Relative
error (MARE) was also calculated for estimated stock numbers in the final
year MARENend and estimated fishing mortality in the final year MAREFend.
These values at the end of the time series were chosen as they would likely
have the most uncertainty as well as arguably being the most important
predictions from an assessment model. MARE accounts for both bias and
variability and can be used to identify the best overall model by finding the
model configuration that minimised the maximum MARE (min-max solution)
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across scenarios (Johnson et al., 2015).

3.2.4.1 Self-tests

Self-tests were used to check the consistency of assessment models on a
simulated stock scenario and white-bellied anglerfish under the structural
assumptions and conditions of the models (Deroba et al., 2015). This process
involved fitting the models and computing or simulating model predictions (100
replicates) of survey indices and catch (if relevant) from the models directly,
with the same settings and estimated parameters from the original fit. Models
were then fit to the simulated data (Nielsen and Berg, 2014; Cadigan, 2015;
Deroba et al., 2015).

The simulated stock used was a replicate from the simulation framework (life-
history = large demersal,harvest dynamics = rollercoaster, time series length =
40, selection pattern= knife-edged, recruitment error = 0.1 and autocorrelation
= 0). In this case, self-tests were conducted with (same error on survey and
catch as simulation framework) and without error on observations.

3.2.5 Software

Both models in this study were implemented using the R package “TMB" (Kris-
tensen et al., 2016). Specifically, complete data log-likelihood functions were
written in C++ using the TMB library class, compiled and automatically dif-
ferentiated (Kristensen et al., 2016). All other analysis as well as optimisation
(using nlminb) was conducted within the statistical software R (R Core Team,
2019). R package “TMBhelper” was used to check identifiability of parameters
of models after optimisation for the real fish stock (Thorson, 2020). As men-
tioned previously, the simulated stock was created with the “FLife” R package
(Kell, 2018) and code for the simulations that is loosely based on Mosqueira
(2016) can be found at : https:// github.com/lbatts/ sim_sbar . An R package
was also developed for these assessment models (as well as other forms of the
Schnute model) and can be found at: https://github.com/lbatts/ sbar .
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3.3 Results

Results are first presented for self-tests on a simulated stock. Followed by the
five assessment models (the two forms of Schnute (1987) with two growth/mean
weight configurations and CSA) on the simulated stocks. Stock assessment
models on the white-bellied anglerfish stock are then presented.

3.3.1 Self-tests

Self-tests demonstrated that CSA and Adapted Schnute Observation Error
model S1c were self-consistent and able to estimate parameters without bias
from data simulated under the same conditional assumptions as the models
with or without observation error. In contrast, the Original Schnute Process
Error model S0c showed a small degree of bias (mainly at the latter end of
the time series) when there was no observation error but showed considerable
bias when observation error was present (Figure 3.1).
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Figure 3.1: Estimated population numbers (N̂) and “self-test” replicates for
three assessment models; CSA, S1c and S0c on a simulated stock replicate
(LH = large demersal,HD = rc, TS = 40, SEL = knife-edged, SR = 0.1 and
AR = 0) with or without error on observations. Estimate from original data
(bold black line) and re-estimated stock numbers from conditional simulations
(thin grey lines).
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3.3.2 Simulation framework

Across all assessment models, 73% (52961) of runs converged and had iden-
tifiable estimated parameters. 15% (10713 runs) converged but at least one
parameter was not identifiable and 12% (8326 runs) did not converge. The
most important factor causing unidentifiable parameters or non-convergence
was selectivity pattern (Table 3.7). Across all other factors of the simulation
framework, the percentages of model runs in each category were roughly equal
(Table 1 in Appendix D). All assessment models (with the exception of a small
number of runs for S1waa) converged with identifiable parameters on stocks
created with knife-edged selection (Table 3.7). In addition, CSA, S0waa, and
S1waa assessment models also converged reliably across the other selectivity
patterns (Table 3.7). Models S0c and S1c consistently did not converge with
identifiable parameters on stocks with logistic or dome-shaped selectivity
patterns.

Table 3.7: Percentage (to two decimal points) of model runs across the five
assessment models and three selectivity patterns that: converged, did not
converge, or converged but with unidentifiable parameters.

Assessment model Classifcation Selectivity
knife-edged logistic dome

CSA
All parameters are identifiable 100.00 99.90 99.96
Converged but not all parameters identifiable 0.04 0.02
Did not converge 0.06 0.02

S1c

All parameters are identifiable 100.00 1.42 2.17
Converged but not all parameters identifiable 11.38 12.98
Did not converge 87.21 84.85

S1waa

All parameters are identifiable 99.85 99.83 99.92
Converged but not all parameters identifiable
Did not converge 0.15 0.17 0.08

S0c

All parameters are identifiable 100.00 0.10 0.21
Converged but not all parameters identifiable 99.38 99.40
Did not converge 0.52 0.40

S0waa

All parameters are identifiable 100.00 100.00 100.00
Converged but not all parameters identifiable
Did not converge

Performance of assessment models was variable across factors and between
models. Generally, assessment models performed similarly across factor levels
for time series length, recruitment error and recruitment autocorrelation.
Selection pattern, life-history strategy and harvest dynamics, as well as the
assessment model and its configuration were the primary drivers of differences
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in the results on simulated stocks (Figures 3.2, 3.3, 3.4, 3.5 and Table 3.8,
Appendix D). For this reason, the following figures focus on one recruitment
error, recruitment autocorrelation and times series length combination, figures
showing the full set of scenarios are in Appendix D.

Table 3.8: Assessment model performance (model runs where all parameters
were identifiable) in terms of the metric Median Absolute Relative Error
(MARE) of estimated fishing mortality in the final year MAREFend (F) and
estimated stock numbers in the final year MARENend (N). Highlighted cells are
the min-max solution (i.e., the minimum maximum MARE across assessment
models indicating the model which would be best placed to reduce bias and
variability in different situations) for each life-history scenario by selectivity
scenario block. Min-max solutions for MARENend across all selectivity patterns
for each life-history strategy are models highlighted in bold (only comparing
models with values across all scenarios).

LH Assessment model Knife-edged Logistic Dome
Constant One-way Roller Constant One-way Roller Constant One-way Roller
F N F N F N F N F N F N F N F N F N

large
demersal

CSA 0.22 0.22 0.17 0.14 0.12 0.11 0.27 0.23 0.36 0.14 0.29 0.12 0.22 0.22 0.24 0.16 0.16 0.12
S1c 0.10 0.09 0.08 0.08 0.08 0.08 0.97 17.37 0.95 16.55

S1waa 0.98 0.48 0.70 0.34 0.31 0.22 0.88 0.43 0.63 0.29 0.27 0.17 1.14 0.46 0.99 0.33 0.55 0.20
S0c 0.15 0.11 0.10 27.31 44.24

S0waa 0.43 0.23 0.22 0.37 0.17 0.15 0.41 0.20 0.18

small
pelagic

CSA 0.25 0.23 0.23 0.19 0.20 0.17 0.61 0.33 0.64 0.22 0.62 0.18 0.50 0.30 0.53 0.21 0.51 0.18
S1c 0.11 0.09 0.13 0.11 0.11 0.10

S1waa 0.15 0.12 0.17 0.12 0.11 0.10 0.28 0.11 0.45 0.13 0.43 0.14 0.14 0.10 0.30 0.12 0.30 0.15
S0c 0.30 0.25 0.27

S0waa 0.16 0.19 0.22 0.42 0.44 0.45 0.38 0.41 0.45

Harvest dynamics had a noticeable effect on each assessment model’s perfor-
mance (Figures 3.2, 3.3, 3.4, 3.5 and Table 3.8). MARE, MRE, and MRSE
were generally lower (i.e., less bias and more precision) in one-way trip (HD:
ow) and roller-coaster (HD: rc) scenarios than for constant harvest dynamics
(HD: c) (Figures 3.4, 3.5 and Table 3.8). Trends in median stock numbers and
fishing mortality from assessment models also moved closer to median real
values for stocks with harvest dynamic scenarios with some fisheries contrast
(HD: ow and HD: rc) (Figures 3.2, 3.3, 3.4 and 3.5).
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Figure 3.2: Median estimated stock numbers, as well the corresponding
median real values for large demersal (A) and small pelagic(B) life-history
strategies. Simulated stock scenarios with high recruitment error (SR:recsd0.4)
and autocorrelation (AR:0.6rho) across all selectivity patterns and harvest
dynamics are shown. Estimates from five different assessment models (CSA,
S1c, S1waa, S0c and S0waa) are given. As the majority of S1c and S0c runs did
not converge or could not identify all parameters in logistic or dome-shaped
selection scenarios, these models are not shown for these scenarios. A small
amount of runs that did identify parameters for these models were omitted, as
estimated values were very large and prevented comparison of other models.

For knife-edged selection scenarios, S1c was the min-max solution for both
life-histories. S1c consistently had minimal bias, as well as high precision in
stock numbers and fishing mortality estimates relative to other models across
the other factor levels (Figures 3.2, 3.3, 3.4, 3.5 and Table 3.8, Appendix D).
CSA was similarly accurate with MREs close to zero but precision was lower
(higher MRSE) and MARE values were higher.

For the small pelagic life-history, CSA and Schnute assessment models set
up the with ‘waa’ growth/mean weight configuration ( S0waa and S1waa)
performed largely the same across selectivity scenarios, giving similar MREs
across the factor levels and estimating similar median stock numbers (Figures
3.2, 3.3, 3.4, 3.5 and Table 3.8, Appendix D). These models were the min-max
solutions for MARENend and MAREFend in logistic and dome-shaped selectivity
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scenarios with small pelagic life-history (Table 3.8).
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Figure 3.3: Median estimated fishing mortality, as well the corresponding
median real values for large demersal (A) and small pelagic(B) life-history
strategies. Simulated stock scenarios with high recruitment error (SR:recsd0.4)
and autocorrelation (AR:0.6rho) across all selectivity patterns and harvest
dynamics are shown. Estimates from three different assessment models (CSA,
S1c and S1waa) are given. As the majority of S1c did not converge or could
not identify all parameters in logistic or dome-shaped selection scenarios these
models are not shown for these scenarios. A small amount of runs that did
identify parameters for these models were omitted, as estimated values were
very large and prevented comparison of other models.

Schnute models with ‘waa’ growth/mean weight configuration (S0waa and
S1waa) did not perform well (relatively high MARE and MRE) in the large-
demersal scenarios, but performed much better in the small pelagic scenarios,
particularly S1waa (Figures 3.4, 3.5 and Table 3.8). CSA was the only as-
sessment model to have relatively low MARE and MRE, as well as median
estimated values close to the median real values across both life-history strate-
gies and all selectivity patterns, as well as other factors. CSA was only the
min-max solution in large-demersal logistic or dome-shaped selection scenarios
(Figures 3.2, 3.3, 3.4, 3.5 and Table 3.8, Appendix D).
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Figure 3.4: Distribution of relative error (A, B) and relative standard error
(C, D) of the stock numbers in the current year for large demersal (A, C) and
small pelagic (B, D) life-history strategies. Simulated stock scenarios with
high recruitment error (SR:recsd0.4) and autocorrelation (AR:0.6rho) across
all selectivity patterns and harvest dynamics are shown. Median relative error
and median relative standard error is also shown by the diamond points. Shape
of violin plots represent the kernel probability density of the data. Estimates
from five different assessment models (CSA, S1c, S1waa, S0c and S0waa) are
given. As the majority of S1c and S0c runs did not converge or could not
identify all parameters in logistic or dome-shaped selection scenarios, these
models are not shown for these scenarios. A small amount of runs that did
identify parameters for these models were omitted, as estimated values were
very large and prevented comparison of other models.
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Figure 3.5: Distribution of relative error (A, B) and relative standard error (C,
D) of fishing mortality at the start (F1) and end (Fend) of a time series for large
demersal (A, C) and small pelagic (B, D) life-history strategies. Simulated
stock scenarios with high recruitment error (SR:recsd0.4) and autocorrelation
(AR:0.6rho) across all selectivity patterns and harvest dynamics are shown.
Median relative error and median relative standard error is also shown by
the diamond points. Shape of violin plots represent the kernel probability
density of the data. Estimates from three different assessment models (CSA,
S1c and S1waa) are given. As the majority of S1c did not converge or could
not identify all parameters in logistic or dome-shaped selection scenarios these
models are not shown for these scenarios. A small amount of runs that did
identify parameters for these models were omitted, as estimated values were
very large and prevented comparison of other models.
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3.3.3 Real white-bellied anglerfish stock

Model runs for assessment models using the stage mean fish weights and
growth parameters derived from the catch (S0c and S1c) did not have a stable
convergence and were not included in the following results. Self-tests for
the three assessment models that did converge demonstrated that CSA and
Adapted Schnute Observation Error model S1waa were self-consistent and able
to estimate parameters without bias from data simulated under the same
conditional assumptions as the models. In contrast, the Original Schnute
Process Error model S0waa showed considerable bias in these simulations
(Appendix D).

CSA fit the survey data relatively well (Figure 3.6B). Overall, the recruit index
and post-recruit index from the combined IBTS survey had the closest fit
between observations and the predicted values. The model fit for the Spanish
Porcupine Bank survey (SP-PORC) index for post-recruits was reasonably
close to observations at the start of the time series and then departed markedly
at a couple of points near the end of the time series (Figure 3.6). Schnute
model fits to survey data differed somewhat between the models. S1waa fit
closely to the combined IBTS survey index for the whole time-series, whereas
S0waa had a closer fit to the Spanish Porcupine Bank survey (SP-PORC) index
for the entire time series (Figure 3.6A).
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Figure 3.6: Observations and predicted values for survey indices (S0waa and
S1waa survey index [kg. unit effort], CSA survey index [numbers of fish unit
effort]) and entire catch (biomass (kg) or numbers respectively) for the three
assessment models ((‘Schnute fits’ panel) S0waa, S1waa and (‘CSA fit’ panel)
CSA) on the white-bellied anglerfish stock in ICES areas 7.b-k, 8.a-b and
8.d. Surveys for CSA are both a recruit and post-recruit indices for the
combined IBTS survey index (comprising of the Irish groundfish and French
EVHOE surveys), a post-recruit index for the Irish monkfish and megrim
survey (IE-IAMS) and a post-recruit index for the Spanish Porcupine bank
survey (SP-PORC). Surveys for S0waa and S1waa are entire biomass surveys.
Shaded area denotes ±2 asymptotic SE of the predicted values.
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Estimates for the entire population, post-recruit and recruit numbers from
the CSA assessment model were similar to estimates from the age-based
assessment model (Figure 3.7A). Fishing mortality levels and overall trend
were similar between the two assessment models, but CSA estimated overall
fishing mortality somewhat lower than the age-based model (Figure 3.7B).

Estimates for entire population and previously exploited numbers for S0waa and
S1waa were reasonably close to the population estimates from the age-based
assessment model and trends were very similar. Recruit numbers were notably
closer to the age-based assessment model estimates. Uncertainty around those
estimates from S1waa was relatively low compared to CSA, but S0waa estimates
were less precise (Figure 3.7A). Fishing mortality levels estimated by model
S1waa were not close to those estimated by the age-based assessment model
and did not appear to follow the same trend (Figure 3.7B).
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Figure 3.7: Estimated time series for population numbers (N̂), post-recruit
numbers (P̂ ), recruitment numbers (R̂) (Figure A) and fishing mortality (F̂ )
(Figure B) for three assessment models (S0waa, S1waa and CSA) on the white-
bellied anglerfish stock in ICES areas 7.b-k, 8.a-b and 8.d. Note S0waa does
not estimate fishing mortality so is not included in Figure B. Shaded area
denotes ±2 asymptotic SE of the predicted values. Full range of estimates
and associated error are not given for S0waa to allow comparison.
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3.4 Discussion

We have implemented two different approaches to stage-based stock assess-
ment modelling in a common estimation framework, applied them within a
simulation-testing framework and on a real fish stock, and then compared
their performance. The first approach was a biomass-based size structured
delay-difference model based on the theoretical paper by Schnute (1987), with
some alternative adaptations (e.g. observation error instead of process error)
and configurations (S1c, S1waa, S0c and S0waa). The second was a version
of the current CSA model (NOAA Fish and Fisheries Toolbox) with some
adjustments (i.e., ability to have stand-alone post-recruit indices) (NOAA,
2019).

Differences in the performance of models on simulated stocks were largely
dependent on harvest dynamics, life-history strategy and model assumption
violations in selectivity patterns. CSA performed consistently (i.e., converged
with relatively low bias on estimates) across all scenarios, although uncertainty
was inherently higher than in Schnute models. On the other hand, CSA was
the min-max solution for a minority of the compared scenarios and Adapted
Schnute Observation Error models (S1) performed similarly or outperformed
CSA in many scenarios. Results were also mixed for the real white-bellied
anglerfish stock, reflecting the complexity of a real stock. However, despite
their relative simplicity, the Adapted Schnute Observation Error model (S1waa)
estimated population numbers were reasonably close to a4a assessment model
estimates and CSA estimated population numbers (and to a lesser extent
fishing mortality) were remarkably close to a4a assessment model estimates.

3.4.1 Model performance

Self-tests, followed by simulation-testing showed that both CSA and Adapted
Schnute Observation Error model S1 were robust assessment models that had
the ability to fairly accurately estimate population numbers and to a lesser
extent fishing mortality under a variety of different data scenarios, including
violations of model assumptions in selectivity pattern of the fishery. Schnute
model convergence and accuracy was dependent on the growth/mean weight
configuration, and how this matched the selectivity and/or life-history of a
stock. In contrast, CSA consistently converged and was consistently accurate
across all scenarios but lacked precision, which may have prevented the model
being the min-max solution more frequently. This was more apparent in
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the small-pelagic scenarios, where CSA may have been more sensitive to
observation errors in the recruit survey index.

CSA is a well-known stage-based stock assessment model that has proven
to be particularly effective in data-limited situations such as where species
are difficult to age and our results support these previous findings (Conser,
1995; Collie and Kruse, 1998; Cadrin, 2000; Cook and Heath, 2018; Li et al.,
2019). Mesnil (2003) also found in their sensitivity analysis of a prior version
of CSA that the model performed remarkably well, given the limited data.
Their study also highlighted issues with correctly identifying the recruit stage
and variability in survey catchability of discrete groups of fish (i.e., different
catchabilities at each stage) (Mesnil, 2003), which could also be an issue for
this study’s implementation as well.

Given CSA’s accurate estimation and S1waa’s underestimation of stock numbers
in large demersal life-history scenarios with logistic or dome-shaped selectivity
patterns, it was somewhat expected that the assessment models would also
perform as they did on the real fish stock. CSA estimated population numbers
close to estimates from the official assessment model and S1waa estimates were
reasonably close. Fishing mortality was less accurate for both models but this
was likely due to the selectivity of the fishery, which has been estimated as
dome-shaped within the official age-based assessment model (ICES, 2018).
Closeness of CSA and S1waa population numbers estimates to the official
assessment model estimates is notable given the reduced data, conflicting
signals from the survey indices and that at least some surveys indices are
unlikely to be fully selected.

Self-tests for both a simple simulated stock scenario and for white-bellied
anglerfish indicated that our implementation of the Original Schnute Process
Error model S0 was inherently biased and not a reliable or consistent assessment
model, despite the model sometimes estimating close to expected values.
Divergence in self-tests is not uncommon in case studies (Deroba et al., 2015);
however, the extent of inconsistency under low levels of observation error
and for the anglerfish case study is cause for concern. Furthermore, when no
observation error was present, there was still a small but obvious divergence
at the latter end of the times series. A comprehensive check of code was
the first step in these circumstances but no issues could be found, indicating
both structural uncertainty, as well as observation error may be causing the
inconsistency (Deroba et al., 2015). Further checks with data generated from
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a separately coded Schnute population dynamics model are also needed for
further clarity.

3.4.2 Model developments

An interesting aspect of the approach described in Schnute (1987) is that
the user may adjust the model in accordance with the relative importance of
recruitment (not tested here) or previously exploited biomass (Schnute models
in our study) or both (also not tested) in the population dynamics of the
stock. Our study focussed on the method where future biomass is calculated
from previously exploited biomass because it reduced estimated parameters
(no recruitment parameters) and for practical reasons (pre-testing indicated
recruitment parameters were difficult to estimate without optimisation with
a genetic algorithm). The benefit of this flexibility was demonstrated in the
results, as Schnute models (in certain scenarios) were able to model the stocks
accurately without estimating recruitment parameters or assumptions on the
spawning proportion of the stock. Of course, the implication is that population
estimates are largely dependent on the relationship between stage mean fish
weights, which are currently assumed without error within the model.

Recruitment is still calculated within the model, so it can be extracted post-
assessment and fit with a suitable S-R model, rather than attempting to fitting
it internally.

Since individual recruitment parameters (R̂t) are not estimated in the Schnute
models, this greatly reduces the number of parameters of the model compared
to CSA or other more complex assessment models. Furthermore, given only
total biomass from an annual survey is needed for the model, it lends itself
to assessment situations that are more data-limited. The theory behind the
Schnute model could be extended further still by introducing recruitment or
previously exploited biomass survey indices into the likelihood and the possi-
bility of using only stage-specific survey indices to estimate entire population
biomass.

An initial biomass parameter and a switch to an observation error model with
additional fishing mortality estimation were the adaptions implemented in
this study to the original “composite model” found in Schnute (1987). These
additions appear to have worked well for the Adapted Schnute Observation
Error models (S1) enabling accurate estimation of the simulated stocks with

103



3. Stage-based assessment models

relatively low uncertainty. Estimating fishing mortality was also an important
addition, as it is a useful output from stock assessment models that aids
fisheries management (Hilborn and Walters, 1992).

CSA is highly parameterised in comparison to Schnute models (due to CSA
estimating R̂t) and requires more information/data to set up the stock assess-
ment model (i.e., at least one survey needs to be split into numbers of recruits
and post-recruits). One minor adaptation of this study’s implementation of
CSA was that post-recruit surveys can stand alone and do not need a recruit
survey as well. This meant that the CSA set up was reasonably similar to the
configuration of the age-based assessment model with its age-range-tailored
surveys. The nuance of CSA that allows differing trends in recruits and post
recruits gives more flexibility within the model, hence the similar fit to the
age-based assessment model on the white-bellied anglerfish stock.

3.4.3 Growth parameter estimation and stage mean fish
weights configuration

Growth parameters (ρ and W ) and stage mean fish weights had a profound
effect on the accuracy of Schnute models. Knife-edged selection gave a conve-
nient comparison between the estimation methods for growth parameters, as
stage mean fish weights were the same between “c” and “waa” growth/mean
weight configurations (i.e., survey mean fish weights = catch mean fish weights).
This meant that the differences between S1c and S1waa were due solely to the
growth parameter estimation method. S1c gave more consistently accurate
population estimates than S1waa. These results suggest that the ideal Schnute
model growth/mean weight configuration should be stage mean fish weights
from sampling not skewed by selection (e.g. survey) and growth parameters es-
timated directly from those mean fish weights. However, it is also worth noting
that S1waa was nearly as accurate as S1c for the small-pelagic life-history.

Further investigation should include additional configurations (i.e., stage mean
fish weights from survey index and growth parameter estimation from them)
to explore the ability of these models with the above configuration in logistic
or dome-shaped selectivity scenarios. Also worth investigating further is
why there is a difference in accuracy of models when growth parameters are
estimated differently and why growth parameters estimated from weight-at-
age give less accurate estimation in models. This difference may be because
the Schnute model population dynamics are underpinned by stage mean fish
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weights and estimated growth parameters from those mean weights are a
more accurate representation of the assumed dynamics of the stock within the
model.

3.4.4 Convergence and identifiability

Also linked to growth/mean weight configuration of Schnute models was the
convergence and identifiability of S1c and S0c models in logistic and dome-
shaped selectivity scenarios. We found that in the majority of cases, S0c

converged but survey catchability qs was not identifiable, whereas S1c failed
to converge due to some or all of the parameters being unidentifiable. In
these instances, stage mean fish weights are skewed by the selectivity pattern,
inflating overall mean fish weight and previously exploited biomass mean fish
weight. There are two direct consequences to a skewed stage mean fish weight
for the “c” configuration: 1) a low ω (fraction of total biomass in a given year
due to newly recruited fish) and 2) growth parameters that give a slower linear
growth. Evidently, this affects the internal dynamics of the Schnute model
to an extent that estimation is not possible. Further investigation to look at
different combinations of growth parameter/mean weight configuration would
indicate which factor has the larger bearing on convergence.

3.4.5 Limitations and further work

Simulated stocks were set up under certain conditions where natural mortality
rate (M) did not vary temporally or across other factors such as size or age. In
addition, the true value of natural mortality rate was used a fixed parameter
within assessment models, as is common practice (Lee et al., 2011; Maunder
and Piner, 2015). These are key assumptions for models and population
dynamics of a stock, in all likelihood aiding estimation of other key parameters
in assessment models. In reality these assumptions are unlikely to be realistic
(Vetter, 1988; Deroba and Schueller, 2013).

Both models implemented here were limited by their assumptions on selectivity.
A knife-edged selection is assumed with all fish fully selected, although this
assumption can be relaxed within CSA by manually inputting selectivity for
the recruit survey. A similar capacity could be implemented within the Schnute
model. This presented no issues for the simulated stock as it was set up with
a fully selected fishery and survey. However, the white-bellied anglerfish stock
selectivity is likely to be more nuanced, as shown by the age-based assessment
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model. To improve both stage-based assessment models, it would be useful to
investigate whether the models could estimate different selectivity between the
stages under certain conditions. In practice, this would mean experimenting
with fishing mortality separable by stage as well as survey selectivity.

Modern stock assessment models are often built in a state-space framework,
providing flexibility that accounts for uncertainty in both the model processes
and the observations (Schnute, 1991; Pella, 1993; Gudmundsson, 1994; Free-
man and Kirkwood, 1995; Nielsen and Berg, 2014; Aeberhard et al., 2018).
Extending these models into observation and process error state-space would
be a logical step to improving the models and their usefulness as assessment
models. This may not be possible with CSA as NOAA (2019) states that
process errors tend to be difficult to estimate as they cannot be separated
from variability in natural mortality rate, survey variance and recruitment.
However the Bayesian implementation of an extended CSA accounts for both
process and observation error (Li et al., 2019) and we note that the original
CSA (Collie and Sissenwine, 1983) implemented a penalized likelihood that
could be thought of as a state-space model.

3.5 Conclusions

We aimed to implement the Schnute (1987) delay-difference model and the
NOAA (2019) Catch-Survey Analysis (CSA) within the TMB framework and
determine the capabilities of these differing approaches to stage-based stock
assessment modelling. To the authors’ knowledge this was the first time the
model described in the theoretical paper by Schnute (1987) has been imple-
mented. Overall, results were poor for both the Original Schnute Process
Error model and mixed for the Adapted Schnute Observation Error model.
However, under certain conditions, and with the correct mean weight/growth
configuration, the Schnute approach performed well and offers an alternative
stage-based assessment model for situations where data are limited. Devel-
oping the Schnute models further would be a worthwhile endeavour, perhaps
developing a hybrid model with some similar aspects of CSA, as well as identi-
fying the ideal mean weight/growth configuration. More often than not, CSA
was not the best performing model in simulated stock scenarios; however, it
was the only model to perform consistently (i.e., convergence and generally
accurate estimation) across all scenarios. CSA was also the better performing
model (in terms of closeness to values from the official assessment model) of
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the assessment models on white-bellied anglerfish. Our CSA assessment model
implementation from the NOAA Fish and Fisheries Toolbox (NOAA, 2019)
with the addition of stand-alone post-recruit indices had more flexibility in
the range of survey index inputs, allowing for a more nuanced set up in the
model, closer to that of the age-based assessment model.

Stage-based assessment models are a somewhat under-utilised type of fisheries
stock assessment model that offer a useful middle ground between aggregated
models and more complex compositional models. By incorporating information
on the recruitment each year but with relatively simple underlying population
dynamics, stage-based assessment models can be important tools in assessing
fish populations where estimates of growth are unreliable (e.g. many anglerfish
stocks) or not available. This study adds further evidence that stage-based
assessment models are an effective tool for stock assessment and accurately
assess fish populations with less data requirements and reduced assumptions,
compared to more complex models. Looking forward, focussing on case studies
would be particularly useful for the development of these models.
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Chapter 4

sbar vignette: An R package for
implementing stage-based
assessment models
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Abstract

The R package ‘sbar’ provides a set of functions to run a number
of different stage-based stock assessment models, as well as plot
the outputs. Stage-based stock assessment models were: the well-
known numbers-based depletion model, CSA, and a biomass-based
delay-difference model first described in a theoretical paper by
Schnute (1987). An example dataset, catch and survey data for the
black-bellied anglerfish stock in the Celtic Seas and Bay of Biscay,
is also provided in the package. This vignette introduces the as-
sessment models and demonstrates key aspects for implementation.
Details on the different Schnute model versions are given, outlining
how the user can adjust relative importance of recruit biomass or
previously-exploited biomass, as well run a more classical version
of the model. Stock assessment model applications to the the
black-bellied anglerfish stock demonstrated the functionality of
‘sbar’ models, as well as providing preliminary results of stock levels
and historical exploitation pattern for a stock that is currently
unassessed analytically.
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4.1 Introduction

Stock assessment models determine the size (relative or absolute) of stocks
and the extent to which they are exploited. This information is an important
aspect of fisheries management, as it facilitates understanding of population
dynamics of fish stocks (Hilborn and Walters, 1992; Cadrin and Dickey-Collas,
2014; Dichmont et al., 2016). Assessment models use a variety of different
data sources to estimate key values for fish stocks.

Stock assessment models range in complexity from aggregate models (which
require data on total catch over time and an abundance index for the stock) to
compositional models (which also require information on the age-composition of
the stock). Stage-based models occupy a middle ground in terms of complexity;
they generally have simpler population dynamics, more general assumptions
and lower data requirements than more complex assessment models, yet they
can account for variability in recruitment, which simpler models cannot. Stage-
based models are useful in situations where age data are not available but
where the cohort of recruiting fish can be identified clearly (e.g., because they
form a clear mode in the length frequency distribution). They are particularly
useful in situations where the population structure is affected by irregular
events of high recruitment.

Considering the large number of stocks without reliable age data for which
an assumption of constant recruitment is not appropriate, is it somewhat
surprising that stage-based assessment models are not more widely used.
This may be in part due to the limited availability of these models in the R
environment.

sbar is an R package for fitting stage-based fisheries stock assessment models
in R. Estimation relies on the Template Model Builder (TMB) framework,
taking advantage of the automatic differentiation of the likelihood (Kristensen
et al., 2016). Two theoretically different stage-based assessment approaches
are implemented:

1. CSA (Catch-Survey Analysis) - the well-known numbers-based two-
stage model

2. Biomass-based delay-difference two-stage models based on the theoretical
paper by Schnute (1987)

• Original Schnute Process Error model
• Adapted Schnute Observation Error model
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Standard implementations of these two approaches consist of two stages; fish
recruited to the exploited population in a given year, and fish that recruited
in previous years. Minimum data required for these assessments consists
of at least one survey index of relative abundance and a catch time series
corresponding to the survey period. There also needs to be some method for
splitting the survey data into the two stages (e.g., size or age).

We explore the three models found in the sbar R package in this vignette.

4.1.1 General details

• Models require a time series (numbers-based or biomass-based) of catch
and at least one survey time series.

• Models are fit by maximising the total log-likelihood of the objective
function.

• In both approaches, surveys and catch (where relevant) are assumed to
be lognormally distributed.

• Catch is assumed to be fully selected over both stages (i.e. recruitment
stage is fully selected)

• Survey catches are assumed to have the same selectivity pattern as the
catches (i.e. fully selected), however this assumption can be relaxed for
CSA.

• Stages (recruits and post-recruits for CSA, recruit biomass and previously-
exploited biomass for Schnute models) can be defined by the user by
age, length or any other grouping that offers distinct stages that move
from one to the other over a given time period. NB post-recruit stage of
CSA and previously exploited stage for Schnute models are analogous.

• Assessments models are limited to the time period covered by surveys
and cannot estimate stock values outside of this.

4.2 Installation, data and other useful pack-
ages

4.2.1 Installation

You can install the sbar package from the github repository with the
devtools package:
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devtools::install_github("lbatts/sbar")

4.2.2 Data

Example stock data loaded with sbar are for the black-bellied anglerfish
(Lophius budegassa) stock in the Celtic Seas and northern Bay of Biscay (ICES
Subareas 7, 8a-b and 8d.), which was collated for ICES and processed by Hans
Gerritsen (Marine Institute, Ireland).

Data were originally age-structured, so in the interest of simplicity we defined
stages (recruits = age 0 and post-recruits/previously exploited = age 1+)
according to their age. In reality, users may want to explore other methods to
identify the recruit stage in length frequency data (Bhattacharya, 1967, Taylor
and Mildenberger (2017); Batts et al., 2019). The ank78 data object is a
list of vectors and dataframes with the necessary data to run the assessment
models. It includes: natural mortality ( M ), survey timings ( • _timing), a
dataframe containing catch data, and two dataframes ( ibts and ieiams )
containing survey catch-per-unit-effort data for the combined International
Bottom Trawl Survey (IBTS), and Irish anglerfish and megrim fisheries survey
(IE-IAMS). These dataframes contain time series for total numbers and biomass,
post-recruit numbers and biomass, and, recruit numbers and biomass.

4.2.3 Setup

Load the sbar and TMBHelper packages. TMBhelper is a very useful pack-
age that should be automatically installed with sbar but needs to be loaded
if you choose to use it. This package can be used for optimisation of TMB
objective functions, as well as further explore convergence and estimability of
parameters.

library(sbar)
library(TMBhelper)

Load the data and define years and no.years objects. These variables are
based on the years that are covered by at least one survey as sbar cannot
estimate stock levels outside of survey data (i.e. if catch data goes further
back).
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set.seed(1234)
data("ank78")

years <- as.character(2003:2020)
no.years <- length(years)

4.3 Introduction to CSA

CSA is a numbers-based depletion model first described in Collie and Sissenwine
(1983). The most recent version, which differs somewhat from the original,
can be found in the NOAA Fish and Fisheries Toolbox (where a GUI can be
downloaded to run the assessment model) (NOAA, 2019) . Our implementation
of the CSA assessment is very similar to the NOAA version, but with a few
minor adjustments to increase the flexibility of the model. These primarily
are:

• An option for including stand-alone post recruit survey(s).
• An option to estimate survey specific error.
• General flexibility in estimating or fixing certain parameters in the model

(e.g., survey CV, catch CV, natural mortality)

4.3.1 CSA - quick start

Observations needed for a CSA assessment are catch numbers and a matrix of
survey indices (catch numbers per unit effort). A survey split into a recruit
index and post-recruit index (i.e. one survey, two indices) is the minimum
requirement. In this example we use the combined IBTS survey data that
has been processed already into numbers-at-ages. This gives a simple way to
define recruits (age 0) and post-recruits (age 1+).

catch.no <- ank78$catch$total_no

no.ind = 2

obs <- matrix(NA, nrow = no.ind, ncol = no.years)
obs[1, ] <- ank78$ibts$rec_no
obs[2, ] <- ank78$ibts$postrec_no
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obs[obs == 0] <- NA # Make sure missing years are NAs, zeros
will be considered as data

Many of the settings for running CSA have defaults but the function requires
some user defined values. indices_att contains attributes relating to obs ,
indicating if indices (each row) are from the same survey (i.e. same number)
and what type of indices they are:

1. recruit index
2. post-recruit index
3. undivided index

Here, we define that obs contains two survey indices from the same survey
survey = c(1,1) and that the first row of the matrix is a recruit index
together with the post-recruit index in the second row type = c(1,2) . CSA
allows stand-alone post-recruit indices (no corresponding recruit index) in
addition to at least one split survey (recruit and post-recruit indices). In theory,
the user could input a stand-alone recruit index in addition to a split survey,
however it is unlikely that the model could estimate a survey catchability
parameter.

indices_att <- data.frame(survey = c(1,1),type = c(1,2))
timing <- ank78$surv_timing["ibts"] # survey timing
M <- ank78$M #natural mortality
M
#> [1] 0.25

Lets run the assessment with default settings. There’s warning messages
letting you know that defaults are being used for key inputs.

obj <- csa(catch_n = catch.no, indices_no = obs,
indices_att = indices_att, ts = timing, start_nmort = M)

#> Argument 'selrec' missing. Recruits index/indices assumed
fully selected
#> Argument 'start_q' missing. Default start q used for each
survey
#> Argument 'start_surveycv' missing. Default value used for
each survey
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#> Argument 'start_catchcv' missing. Default value used for
each survey
#> Argument 'start_f_calc' missing. Default value used for
each year
#> Argument 'start_prec0' missing. Default value used
#> Argument 'start_rec' missing. Default value used for each
year

For those familiar with TMB , csa is simply a wrapper function that gives
the output from TMB::MakeADFun , i.e. an objective function with derivatives,
Hessian etc. We have kept optimisation and extraction of values from the
assessment models separate to allow flexibility with optimisation methods as
well as easy access to TMB outputs such as the hessian, gradients etc. See
TMB documentation for details.

Optimising with nlminb looks like this, note starting values for parameters
are already defined in obj by the csa function.

opt <- nlminb(start=obj$par,objective=obj$fn,gradient=obj$gr)
opt$convergence
#> [1] 0

opt$par
#> logitqhat logphat1 logrhat logrhat logrhat logrhat
#> -10.000918 10.386337 8.931332 11.060665 10.288809 10.106021
#> logrhat logrhat logrhat logrhat logrhat logrhat
#> 10.629008 11.052483 9.120382 10.092034 10.833050 10.498836
#> logrhat logrhat logrhat logrhat logrhat logrhat
#> 11.521685 10.979062 10.513877 10.796414 11.288606 11.025207
#> logrhat logrhat logf_calc logf_calc logf_calc logf_calc
#> 10.950577 12.293373 -1.011232 -1.710150 -1.791739 -1.810962
#> logf_calc logf_calc logf_calc logf_calc logf_calc logf_calc
#> -2.263982 -1.640474 -1.053673 -1.400797 -1.796318 -1.437401
#> logf_calc logf_calc logf_calc logf_calc logf_calc logf_calc
#> -1.675537 -1.770628 -2.012250 -2.129092 -2.358514 -2.886793
#> logf_calc logf_calc log_surveycv
#> -2.783537 -3.159775 -1.693288

After optimisation, sdreport should be used to calculate standard deviations
of all model parameters. When summarised (to obs.srep ) this gives a matrix
with parameters estimated from optimisation, as well as standard deviations
of those parameters (estimated within TMB via the delta-method).
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obs.srep <- summary(TMB::sdreport(obj))

There are also many other estimated or calculated values from the assessment
model with associated error estimates (if relevant) given here. For example
"phat" is the estimated post-recruit numbers:

obs.srep[row.names(obs.srep) == "phat",]
#> Estimate Std. Error
#> phat 32413.71 5193.317
#> phat 21640.90 4402.343
#> phat 55415.76 10203.765
#> phat 55914.95 10562.577
#> phat 53174.51 10520.097
#> phat 66324.86 12176.978
#> phat 83031.17 12582.110
#> phat 50652.54 10108.767
#> phat 45533.55 9687.902
#> phat 63468.07 12200.225
#> phat 61254.40 12688.090
#> phat 104712.30 20411.281
#> phat 107301.58 22130.937
#> phat 98198.43 21489.277
#> phat 101675.35 23315.569
#> phat 128656.09 27119.992
#> phat 139991.00 27852.914
#> phat 144210.23 28930.612

A list of all the outputs that are reported from the assessment models in sbar
are given in the function help files (e.g., ?csa ).

When optimising with nlminb there’s also a handy function in TMBhelper
to do the previous step (and more) that gives practically the same results. See
?TMBhelper::fit_tmb for details.

fit <- fit_tmb(obj = obj, getHessian = T ,quiet=T,control =
list(trace=0))
all.equal(fit$par,opt$par)
#> [1] "Mean relative difference: 9.326973e-08"
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all.equal(fit$objective,opt$objective)
#> [1] TRUE
all.equal(summary(fit$SD),obs.srep)
#> [1] "Mean relative difference: 6.740039e-07"

4.3.2 Simple plot of CSA results

An easy way to visualise the key outputs from an sbar assessment model is
to generate an object with makeasbarclass and then plot. We recommend
to follow these with residual diagnostic plots. In the future this feature will
be developed for the sbar package.

survnames<- c("IBTS recruits (CPUE)","IBTS post-recruits
(CPUE)")
x <- makesbarclass(obs.srep,survnames,catch.no,obs,years)

plot(x,out="fit")
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Figure 4.1: Observations and predicted values for catch numbers and survey
indices for a CSA assessment model fit on black-bellied anglerfish. Shaded
area denotes ±2 SE on the predicted mean (approximate asymptotic 95%
confidence interval).
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plot(x,out="stock")
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Figure 4.2: Estimated stock numbers and fishing mortality for a CSA assess-
ment model fit on black-bellied anglerfish. Shaded area denotes ±2 SE on the
predicted mean (approximate asymptotic 95% confidence interval).

4.4 Introduction to Schnute models

Schnute (1987) describes a size -based delay-difference model linking population
size structure and mean weights. Growth is assumed to be deterministic and
occurs at the end of the year. Mean weights are assumed to not vary throughout
the year.

An interesting aspect of this approach is that it offers flexibility in the assump-
tions regarding the relative importance of recruitment and previously-exploited
biomass (i.e. whether the population levels of a fish stock are primarily driven
by recruitment or previously-exploited biomass), which underlies the estima-
tion of entire biomass (determined by function argument version ). We look
at this in more detail in the section: Schnute models in more detail.

In sbar we implement two interpretations of the theoretical model proposed
by Schnute (1987). The first which we call the Original Schnute Process Error
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model (run with schnute_orig ), which has an autoregressive process error,
takes catch biomass as known and assumes no observation error. The other
model we call the Adapted Schnute Observation Error model model (run with
schnute_obserror ), which fits to survey and catch biomass, in addition to
being an observation-error-only. Users should note that Batts et al. (2022)
found the Original Schnute Process Error model was not consistent in self-tests,
indicating this model may be structurally biased, particularly under high levels
of observation error (Deroba et al., 2015).

4.4.1 Schnute models - quick start

Schnute assumes weight does not change through the year. This maybe a little
confusing at first but makes sense under the model assumptions and should
be considered when preparing your own data for an sbar stock assessment
model.

There are three options (1,2 or 3) for the function argument version , but
for these ‘quick start’ examples we will use version = 2 (default), which
requires a matrix of sampled mean fish weights for the entire stock and for
each stage:

• recruit mean weights Ȳ (first row)
• previously exploited biomass mean fish weights Z̄ (second row)
• entire assessed biomass mean fish weights X̄ (third row).

Ideally mean fish weights should come from a sample that is not affected by
selectivity (i.e. usually catch has lower selectivity in smaller fish), so in this
example we use survey index (combined IBTS survey) to calculate mean fish
weights as they’re less likely to be (as) biased.

Y <- ank78$ibts$rec_bio/ank78$ibts$rec_no
Z <- ank78$ibts$postrec_bio/ank78$ibts$postrec_no
X <- ank78$ibts$total_bio/ank78$ibts$total_no

Then we can populate a matrix with mean fish weights from each stage and
the overall mean fish weight.

mwts <- matrix(NA, ncol = no.years, nrow = 3)
mwts[1, ] <- Y
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mwts[2, ] <- Z
mwts[3, ] <- X
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Figure 4.3: Mean fish weights of stages and entire assessed population of
black-bellied anglerfish from the combined IBTS survey

There’s an issue in 2017 as there’s no survey data for this year, so we linearly
interpolate between the pre and proceeding points (using the function “approx”
in R) for each times series.

Y2017<-approx(x = c(2016, 2018), y = mwts[1,c(14,16)], xout =
2017)$y
Z2017<-approx(x = c(2016, 2018), y = mwts[2,c(14,16)], xout =
2017)$y
X2017<-approx(x = c(2016, 2018), y = mwts[3,c(14,16)], xout =
2017)$y

mwts[,15] <- c(Y2017,Z2017,X2017)
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Figure 4.4: Mean fish weights of stages and entire assessed population of
black-bellied anglerfish from the combined IBTS survey

Next, we need growth parameters. This aspect is discussed in more detail in
Section 4 but for now just note that we fit a linear model to overall mean fish
weights and previously exploited mean fish weights (Z̄t+1 vs X̄t)

mod <- lm(mwts[2,2:no.years]~mwts[3,1:no.years-1])
W1 <- coef(mod)[1]
rho1 <- coef(mod)[2]

Extract the catch biomass and generate a biomass index from the data.

catch_biomass <- ank78$catch$total_bio
index1 <- ank78$ibts$total_bio

obs <- matrix(NA,nrow=1,ncol=no.years)
obs[1,] <- index1 #
obs[obs==0] <- NA

sigma <- exp(-M)
mu <- 0.5

sigma is survival (i.e. the proportion of the population that survives natural
mortality), where sigma = e−M . mu is the proportion of the fraction of the
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catch removed before natural mortality and is user defined in the Original
Schnute Process Error model but calculated internally in the Adapted Schnute
Observation Error model.

4.4.1.1 Original Schnute Process Error model

Firstly, we need to use approx again to obtain a value for the survey index
in the year where we have a missing value. In 2017, there were issues with
survey coverage of the IBTS. Due to the internal structure of the process error
within the model, the Original Schnute Process Error model cannot run with
missing survey data.

For demonstration purposes we use approx , but ideally other methods should
be explored (e.g., Vector-Autoregressive Spatio-Temporal (VAST) (Thorson
et al., 2015)).

obs_fill<-obs
obs_fill[,15] <- approx(x = c(2016, 2018), y =
index1[c(14,16)], xout = 2017)$y

We can then run the assessment model with some default arguments and then
optimise in the same manner as CSA.

obj <- schnute_orig(catch_b = catch_biomass, indices_b =
obs_fill, ts = timing, mwts = mwts, rho = rho1, W = W1,
start_sigma = sigma, mu = mu)
#> Argument 'version' missing. Default model version is 2
#> Argument 'ind_l_wt' missing. Default indices likelihood
weighting of 1 used for each survey
#> Argument 'spawn_prop' has length 1 . Given value used for
each year
#> Argument 'start_rec_a' missing. Default value used
#> Argument 'start_rec_b' missing. Default value used
#> Argument 'start_q' missing. Default start q used for each
survey
#> Argument 'start_indexsigma' missing. Default
start_indexsigma used for each survey
fit <- fit_tmb(obj = obj, getHessian = T ,quiet=T,control =
list(trace=0))
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#> Note that `getReportCovariance=FALSE` causes an error in
`TMB::sdreport` when no ADREPORTed variables are present
#> Warning in nlminb(start = startpar, objective = fn,
gradient = gr, control =
#> nlminb.control, : NA/NaN function evaluation

#> Warning in nlminb(start = startpar, objective = fn,
gradient = gr, control =
#> nlminb.control, : NA/NaN function evaluation
obs.srep<-summary(fit$SD)

Even though the model converged in nlminb, lets do some due diligence and
check the estimability with TMBhelp::check_estimability .

check_estimability(obj)
#> All parameters are estimable

All parameters are estimable. However, in other work self-tests for
Original Schnute Process Error model showed this model was
inherently biased and not self-consistent. This indicates structural
uncertainty in the model and extra caution is urged when using this
model.

survnames<- c("IBTS biomass (CPUE)")
x <-
makesbarclass(obs.srep,survnames,catch_biomass,obs_fill,years)

plot(x,out="fit")
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Figure 4.5: Observations and predicted values for the survey index for a
Original Schnute Process Error model fit on black-bellied anglerfish. Shaded
area denotes ±2 SE on the predicted mean (approximate asymptotic 95%
confidence interval).

plot(x,out="stock")
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Figure 4.6: Estimated stock biomass, previously-exploited biomass, recruit
biomass and fishing mortality for an Original Schnute Process Error model
fit on black-bellied anglerfish. Shaded area denotes ±2 SE on the predicted
mean (approximate asymptotic 95% confidence interval).

Note that this model does not predict the initial year of the survey index and
fishing mortality is not estimated as catch is taken in the model without error.

4.4.1.2 Adapted Schnute Observation Error mode

We can run the Adapted Schnute Observation Error model assessment with
the same data. Again, there are a number of defaults which we will leave for
this example but will explore in the following section. An important point
here is that the assessment can deal with missing survey data so we’ll use
the original biomass index obs rather than obs_fill , as predicting without
this data may be preferable to interpolating externally.

obj <- schnute_obserror(catch_b = catch_biomass, indices_b =
obs, ts = timing, mwts = mwts, rho = rho1, W = W1, start_sigma
= sigma)
#> Argument 'version' missing. Default model version is 2
#> Argument 'ind_l_wt' missing. Default indices likelihood
weighting of 1 used for each survey
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#> Argument 'start_B0' missing. Default value used
#> Argument 'spawn_prop' has length 1 . Given value used for
each year
#> Argument 'start_rec_a' missing. Default value used
#> Argument 'start_rec_b' missing. Default value used
#> Argument 'start_q' missing. Default start q used for each
survey
#> Argument 'start_indexsigma' missing. Default
start_indexsigma used for each survey
#> Argument 'start_catchsigma' missing. Default
start_catchsigma used for each survey
#> Argument 'start_f_calc' missing. Default value used for
each year
#> Argument 'start_f_calc' has only one value which will be
used for each year

fit <- fit_tmb(obj = obj, getHessian = T ,quiet=T,control =
list(trace=0))
#> Note that `getReportCovariance=FALSE` causes an error in
`TMB::sdreport` when no ADREPORTed variables are present

obs.srep <- summary(fit$SD)

check_estimability(obj)
#> All parameters are estimable

Check out the fits and stock predictions

survnames <- c("IBTS biomass (CPUE)")
x <- makesbarclass(obs.srep,survnames,catch_biomass,obs,years)

plot(x,out="fit")
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Figure 4.7: Observations and predicted values for the survey index for a
Adpated Schnute Observation Error model fit on black-bellied anglerfish.
Shaded area denotes ±2 SE on the predicted mean (approximate asymptotic
95% confidence interval).

plot(x,out="stock")
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Figure 4.8: Estimated stock biomass, previously-exploited biomass, recruit
biomass and fishing mortality for an Adpated Schnute Observation Error model
fit on black-bellied anglerfish. Shaded area denotes ±2 SE on the predicted
mean (approximate asymptotic 95% confidence interval).

4.5 Schnute models in more detail

In this section we will go into more detail into certain aspects of the Schnute
models implemented within sbar . To demonstrate these aspects we’ll run
through an assessment with the more complex Adapted Schnute Observation
Error model on the black-bellied anglerfish stock.

In this example we’ll also try to fit to an additional survey which is the
IE-IAMS monkfish and megrim survey. This survey runs from 2006 to 2020
but has quite a few missing years.
head(ank78$ieiams)
#> year rec_no postrec_no total_no rec_bio postrec_bio total_bio
#> 1 2006 9.035172 26.30244 35.33761 0.4459575 13.40772 13.85368
#> 2 2007 3.238904 35.53733 38.77623 0.1717488 18.94035 19.11210
#> 3 2008 NA NA NA NA NA NA
#> 4 2009 NA NA NA NA NA NA
#> 5 2010 NA NA NA NA NA NA
#> 6 2011 NA NA NA NA NA NA

index2 <- ank78$ieiams$total_bio
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We still use the IBTS survey for stage mean fish weights (Ȳ ′ , Z̄
′ and X̄

′) as
this is the closest to unbiased (i.e. not skewed by selectivity) mean fish weights
samples we can get. Catch is likely to be too biased by the selectivity of the
fleet and we know the IE-IAMS survey targets larger fish.

Also a reminder that there’s no survey data for IBTS in 2017, this isn’t an
issue for this assessment model with the survey observations but we still need
a fully populated mean weight matrix, as discussed above.

Lets visualise the difference selectivity makes on the mean fish weights time
series and plot catch mean fish weights with IBTS mean fish weights.
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Z (previously−exploited stage mean fish weight from catch)
X (Total biomass mean fish weight from catch)

Figure 4.9: Mean fish weights of stages and entire assessed population of
black-bellied anglerfish from the combined IBTS survey and catch

4.5.1 Growth and estimating growth parameters

If information on growth is available and weights-at-age are available these
can be used (as is common for delay-difference models) to estimate growth
parameters with a linear model,

w̄a+1 = W + ρw̄a

where w̄a is the estimated weight-at-age and w̄a+1 is the weight-at-age a year
older from sampling.

Another option, suggested as a check by Schnute (1987), can be used to
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estimate growth parameters through estimation of a linear model on overall
mean fish weights and previously-exploited stage mean fish weights from
sampling:

X
′

t = W + ρX̄t = Z̄t+1

This equation states that the entire population sampled mean fish weight
X̄t, after a year of growth will be X̄

′ , which is the equivalent to the sampled
mean fish weight of the previously-exploited population (Z̄) in time t+1. This
relationship enables the estimation of the parameters W and ρ prior to running
an assessment model by fitting a simple linear model.

We encourage users to try both these methods, however simulation-testing
indicated that the latter methodology to estimate growth parameters from Z̄

and X̄ is a better approximation of the deterministic growth assumed within
the models Batts et al. (2022). However, this only the case if sampled
mean fish weights are not skewed excessively by selectivity between
stages.

We estimate growth parameters like so,

mod <- lm(mwts[2,2:no.years]~mwts[3,1:no.years-1])
W1 <- coef(mod)[1]
rho1 <- coef(mod)[2]

Visually this looks like:
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Figure 4.10: Linear relationship between overall mean fish weight and mean
fish weight of the previously-exploited biomas.

We can visualise this approximation of linear growth on the mean fish weights
time series.
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Figure 4.11: Mean fish weights of stages and entire assessed population of
black-bellied anglerfish from the combined IBTS survey and approximate
linear growth

It is unlikely these surveys do not have any selectivity differences over sizes or
ages but these Schnute models assume the same catchability over the entire
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assessed population and offer no flexibility in the input.

Note that the obs matrix now has two rows, one for each biomass survey
index, and index2 starts at column 4 as this index began in 2006.

obs <- matrix(NA,nrow=2,ncol=no.years)
obs[1,]<-index1
obs[2,4:no.years]<-index2 #
obs[obs==0]<-NA

At this point in the quick start sections we just ran the function with this
minimum amount of data and the default arguments. Here, we’ll set up a list
with data and arguments we want to specify. Note we are setting this list for
the Adapted Schnute Observation Error model.

dat <- list( version = 2,
catch_b = catch_biomass,
indices_b = obs,
ts = ank78$surv_timing,
mwts = mwts,
rho = rho1,
W = W1 ,
start_q = c(1e-8, 2e-5),
start_indexsigma = c(0.1, 0.2),
start_catchsigma = 0.1,
start_sigma = sigma,
start_f_calc = 0.5,
fix_sigma = TRUE,
fix_indexsigma = TRUE,
fix_catchsigma = TRUE)

Details of arguments can be found in the function documentation but things
to note here:

• two survey timings ( ts )
• two starting survey catchabilities ( start_q )
• two starting survey standard deviations ( start_indexsigma )
• starting value for fishing mortality estimates is 0.5 ( start_f_calc )
• survival (sigma) fixed

138



4. sbar R package

• survey standard deviations are estimated

and. . . version is set at 2.

4.5.2 Version and the relative importance of recruit or
previously-exploited biomass

An intriguing aspect of the model proposed in Schnute (1987) is that there are
three model versions, where a predicted total biomass index can be calculated
a number of ways. Two of these model versions utilise all three time series of
mean fish weights (X̄, Z̄ and Ȳ ) to calculate ωt. Where, ωt is defined as the
fraction of total biomass in year t due to newly recruited fish:

ωt = R∗
t

N∗
t

where R∗
t is recruitment biomass at time t and N∗

t is population biomass at
time t. Schnute (1987) demonstrates that ωt can be derived from mean fish
weights alone:

ωt =
(

Yt

Xt

)(
Zt − Xt

Zt − Yt

)

With ωt, N∗
t can be calculated in the population dynamics of the Schnute

model with solely either the recruit stage R∗
t ( version = 1 ) or the previously-

exploited population stage P ∗
t ( version = 2 ).

version N∗
t calculation

1 R∗
t

ωt

2 P ∗
t

1−ωt

3 R∗
t + P ∗

t

version = 3 is the more classical model form where estimated biomass in
a given year is a combination of recruit biomass and previously exploited
biomass.

These versions offer flexibility with the type of model you would like to fit.
For example, version = 1 where the relative importance is shifted to recruit
biomass might be useful for a small pelagic stock where recruitment is a big
driver of biomass changes. In terms of simplicity version = 2 would be the
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preferred model as no recruitment parameters need to be estimated internally.
Versions 1 and 3 fit a Beverton-Holt stock recruitment function internally in
the model and these parameters can be difficult to estimate (as we’ll see later).

4.5.3 Comparison of Schnute model types

Lets load the data, with the three versions. We use the default recruitment
parameters and proportion of biomass mature ( spawn_prop ) (default is 1).

ver2<-do.call(schnute_obserror,dat)

dat$version = 1
ver1<-do.call(schnute_obserror,dat)

dat$version = 3
ver3<-do.call(schnute_obserror,dat)

Check models evaluate to a finite number with starting parameters

ver1$fn(ver1$par)
#> [1] 90079.62

ver2$fn(ver2$par)
#> [1] 101474.3

ver3$fn(ver3$par)
#> [1] 102492.4

All three do which is a good start. If they didn’t then we would have to play
around with starting parameters.

Now let’s try and optimise them using TMBhelper::fit_tmb , which uses
nlminb .

fit1 <- fit_tmb(obj = ver1, getHessian = T ,quiet=T,control =
list(trace=0))
#> Note that `getReportCovariance=FALSE` causes an error in
`TMB::sdreport` when no ADREPORTed variables are present

fit2 <- fit_tmb(obj = ver2, getHessian = T ,quiet=T,control =
list(trace=0))
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#> Note that `getReportCovariance=FALSE` causes an error in
`TMB::sdreport` when no ADREPORTed variables are present

fit3 <- fit_tmb(obj = ver3, getHessian = T ,quiet=T,control =
list(trace=0))
#> Note that `getReportCovariance=FALSE` causes an error in
`TMB::sdreport` when no ADREPORTed variables are present
#> Warning in fit_tmb(obj = ver3, getHessian = T, quiet = T,
control = list(trace =
#> 0)): Hessian is not positive definite, so standard errors
are not available

We can see that the models where version = 1 and version = 2 optimised
without flagging an issue, whereas the model with version = 3 could not
return a positive definite Hessian.

Remember to follow up convergence with a check on estimability.

check_estimability(ver1)
#> Param MLE Param_check
#> 1 logrec_param 30.71665 Bad
#> 2 logrec_param 16.78303 Bad
#> 3 logB0 33.12821 Bad
#> 4 logitq -33.12888 Bad
#> 5 logitq -30.61805 Bad
#> 6 logf_calc -23.97572 Bad
#> 7 logf_calc -24.08621 Bad
#> 8 logf_calc -24.68734 Bad
#> 9 logf_calc -25.28017 Bad
#> 10 logf_calc -24.84121 Bad
#> 11 logf_calc -24.73365 Bad
#> 12 logf_calc -26.05905 Bad
#> 13 logf_calc -25.06500 Bad
#> 14 logf_calc -24.08598 Bad
#> 15 logf_calc -24.65532 Bad
#> 16 logf_calc -22.82286 Bad
#> 17 logf_calc -23.99215 Bad
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#> 18 logf_calc -24.35234 Bad
#> 19 logf_calc -24.47183 Bad
#> 20 logf_calc -24.51880 Bad
#> 21 logf_calc -24.86906 Bad
#> 22 logf_calc -25.05115 Bad
#> 23 logf_calc -23.75291 Bad
check_estimability(ver2)
#> All parameters are estimable
check_estimability(ver3)
#> Param MLE Param_check
#> 1 logrec_param 11.5357401 OK
#> 2 logrec_param 11.4588316 OK
#> 3 logB0 9.0132474 OK
#> 4 logitq -7.1149272 OK
#> 5 logitq -5.9768465 OK
#> 6 logf_calc 18.5382081 Bad
#> 7 logf_calc 1.2268301 OK
#> 8 logf_calc 1.9878611 OK
#> 9 logf_calc 1.0408927 OK
#> 10 logf_calc 0.8391916 OK
#> 11 logf_calc 0.6127227 OK
#> 12 logf_calc 1.0666506 OK
#> 13 logf_calc 1.1370871 OK
#> 14 logf_calc 1.1162249 OK
#> 15 logf_calc 0.9615100 OK
#> 16 logf_calc 0.9402604 OK
#> 17 logf_calc 1.2084133 OK
#> 18 logf_calc 1.2860135 OK
#> 19 logf_calc 1.0672158 OK
#> 20 logf_calc 28.5689851 Bad
#> 21 logf_calc 0.4776739 OK
#> 22 logf_calc 0.5812587 OK
#> 23 logf_calc 0.3451750 OK

Models with version 1 (even though converged with nlminb with a reasonable
max gradient) and version = 3 were not able to properly estimate all their
parameters. These two models are estimating recruitment parameters, which
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is likely the problem, hence the issues flagged with the warning about the
Hessian and parameter estimability.

Investigating the version = 1 and version = 3 we’ve found that optimi-
sation with a genetic algorithm to avoid local optima may work for these
models. Also worth trying is a stock that is more driven by the recruit stage,
e.g., a small pelagic. Stock-Recruit parameters may be easier to estimate in
these circumstances.
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Comparative impacts of ageing
bias on stage and age-based
fisheries stock assessment
models
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Abstract

Reliable estimation of fish growth is often a key component of a
fisheries stock assessment. Growth parameters can be used for age-
slicing or cohort-slicing as a means of generating age-composition
data for an age-based stock assessment model. A high degree of
uncertainty in the growth parameters or misspecification can lead
to bias in the age-composition data, potentially altering the percep-
tion of the stock and hindering sustainable fisheries management.
A management strategy evaluation framework was used to investi-
gate the effect of bias in age-composition data on fisheries stock
assessment and management. We test two management procedures
(MPs), one based upon an an age-based assessment model (a4a)
and the other based upon a stage-based stock assessment model
(CSA). A biological reference point methodology was also devel-
oped for CSA. An underestimated or overestimated growth rate
biased age-composition data by shifting the densities of younger
and older fish, affecting the different MPs in contrasting ways. For
the age-based MP, the perception of the stock was altered directly
by the changes in density of the age-composition data, whereas the
stage-based MPs were affected indirectly through the management
implementation and the use of biased weights-at-age to set catch
limits. Overall, the stage-based assessment MP was the more pre-
cautionary MP in all scenarios but there was a trade-off with yield.
In terms of stock status and management, this study indicates
that due consideration should be given to the type of assessment
and the potential impact of misspecified growth parameters when
providing fisheries management advice.
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5.1 Introduction

Effective fisheries management is typically associated with fisheries stock
assessment, reflecting the importance of the latter in the advice process for
fisheries (Worm et al., 2009; Bianchi et al., 2014; Hilborn et al., 2020). Scientific
uncertainty is present in all aspects of assessment and management of fisheries,
therefore it is important to account for and quantify this uncertainty (Privitera-
Johnson and Punt, 2020). To a large extent, efforts to account for uncertainty
and deal with issues of data availability, have lead to progress and development
in the field of stock assessment (Patterson et al., 2001; Maunder and Punt,
2013).

There are many forms of stock assessment ranging from surplus-production
models (Prager, 1992; Pedersen and Berg, 2017) to age-based models (e.g.
Shepherd, 1999; Jardim et al., 2014; Nielsen and Berg, 2014) to ecosystem (e.g.
Begley and Howell, 2004) or integrated assessment models (e.g. Bull et al.,
2005). However, the majority of contemporary stock assessments are age-based
models, when sufficient data is available (Punt et al., 2013).

Age-composition data for both fisheries catch and scientific surveys are essential
components of age-based stock assessment models (Hilborn and Walters, 1992).
Catch-at-age and age-structured survey data are typically converted from
length-composition data using: age estimates of sampled individuals in an
age-length key (ALK) (Fridriksson, 1934; Hoenig and Heisey, 1987; Maunder
and Piner, 2015); length frequency analysis (Fournier et al., 1990; Taylor and
Mildenberger, 2017; Batts et al., 2019); or age-slicing (cohort-slicing) (Hilborn
and Walters, 1992; Ailloud et al., 2015).

Uncertainty associated with derived age-composition data is often difficult to
account for adequately in traditional statistical catch-at-age stock assessment
models (Maunder and Punt, 2013). Age-composition data has the potential to
be biased by the conversion process, such as errors in the age-reading method
or misspecification or unreliable estimation the of the growth model (Bertignac
and De Pontual, 2007; Piner et al., 2005; Maunder and Piner, 2015). Bias at
this stage of data collation for an age-based assessment affects other key values
of the stock such as catch weight-at-age, stock weight-at-age and maturity-
at-age. Cumulatively, these can have a large impact on overall estimates of
the fish population when conducting an age-based assessment on potentially
biased age-composition data (Bertignac and De Pontual, 2007; Tyszko and
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Pritt, 2017).

Integrated stock assessments are increasingly used to account for uncertainty
in age-composition data (Maunder and Punt, 2013; Ailloud et al., 2015) such
as CASAL for example (Bull et al., 2006; Doonan et al., 2016), Stock Synthesis
(Methot and Wetzel, 2013) or MULTIFAN-CL (Fournier et al., 1998). These
relatively complex assessment models often allow the user to incorporate
many different forms of data (e.g. age-composition data, length-composition
data, tagging data, sex or stage data), as well as account for and estimate
uncertainty in the data (Maunder and Piner, 2015; Punt et al., 2021). However,
these models often require more data than simpler assessment models (Ailloud
et al., 2015). In situations where complex compositional models may not
be possible, alternative aggregated or stage-based assessment models can
be used to potentially reduce (or negate) bias in the age-composition data
due to reduced data requirements and more general assumptions within the
population dynamics of the models.

Stage-based assessment models bridge the gap between aggregate models and
more complex models, as they are based upon relatively simple population
dynamics and assumptions. However, they do incorporate information on
recruits into the fishery, by modelling the lag between spawning and recruitment
(Hilborn and Walters, 1992; Cadrin, 2000; Ailloud et al., 2015; Cook and Heath,
2018; Li et al., 2019). Generally, stage-based assessment models also have
lower data requirements than more complex models, and due to the simplified
structure of the models they are less likely to be susceptible to issues in ageing
uncertainty or bias in age-composition data (Cadrin, 2000; Ailloud et al.,
2015).

Catch-Survey Analysis (CSA) is a well-known numbers-based two-stage model
(recruit stage and post-recruit stage) with relatively simple population dy-
namics, assumptions and data requirements. (Collie and Sissenwine, 1983;
Mesnil, 2003; NOAA, 2019). Recently CSA has been implemented in the
statistical software ‘R’ (Batts et al., 2022a), making use of the automatic
differentiation capabilities of the ‘TMB’ framework (Kristensen et al., 2016).
Batts et al. (2022b) found that CSA performed relatively well when compared
to a statistical catch-at-age assessment for the white-bellied anglerfish in the
Celtic Sea and Northern Bay of Biscay.

As part of the stock assessment process, estimated abundance is compared
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to reference values for management (Hilborn and Walters, 1992). Biological
reference points (BRPs) are key tools for fisheries management, enabling the
status of the stock to be assessed and inform advice through harvest control
rules (HCR) (Kvamsdal et al., 2016; Silvar-Viladomiu et al., 2021; Zhang and
Fong, 2021). Maximum sustainable yield (MSY) is a common and widely
accepted approach to fisheries management that is based on targeting estimated
reference points of fishing mortality (Fmsy) and spawning stock biomass (Bmsy)
that will sustain a maximum yield in the long term (Mace, 2001; Mesnil,
2012). The precautionary approach, which is widely advocated and utilised
in fisheries management, recognises that there is often marked uncertainty
in fisheries systems. Reference points are implemented to account for this
uncertainty and minimise the risk of stock collapse (Garcia, 1995; Hilborn
et al., 2001; Punt, 2006). The International Council for the Exploration of the
Seas (ICES) define target reference points (like Fmsy) to optimise long-term
yield as well as limit reference points (like MSY Btrigger and Blim) to minimise
the risk of stock collapse (ICES, 2021). Currently there is no protocol to
estimate reference points to be used with a CSA assessment under the ICES
management framework. In the US, where CSA is used for some fisheries,
proxy reference points are more often used (NESFC, 2014).

Various forms of stage-based stock assessment models have been implemented
and tested in studies, demonstrating their usefulness in assessing a fish stock
with limited data requirements (Cadrin, 2000; Smith and Addison, 2003;
Ibaibarriaga et al., 2008; Kienzle et al., 2014; Cook and Heath, 2018; Li et al.,
2019). Furthermore, comprehensive simulation testing has shown that stage-
based models can perform well under a variety of different stock scenarios
(Mesnil, 2003; Deroba et al., 2015; Batts et al., 2022b). Unlike other forms of
assessment model, stage based models have yet to be tested for assessment and
management capabilities through time, using management strategy evaluation
(Carruthers et al., 2014; Fulton et al., 2014; Kell et al., 2014; Walsh et al.,
2018).

First developed as a concept within the Scientific Committee of the Inter-
national Whaling Commission (IWC) (de la Mare, 1986; Kirkwood, 1992;
Butterworth, 2007), management strategy evaluation (MSE) is a simulation
framework that can be used to gain valuable insights into the assessment
and management of stocks (Kell et al., 2005; Butterworth et al., 2010). An
MSE consists of two main components: an operating model (OM), and a
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management procedure (MP) or management strategy. An OM is a simulated
population that can be assessed and managed in a feedback loop via a MP,
with uncertainty and stochasticity incorporated into the framework at various
points (e.g. observation error, implementation error, recruitment variability)
(Smith, 1994; Punt et al., 2014). An MP usually consists of an estimation
method (e.g stock assessment) and a harvest control rule (HCR). MSEs can
be used in many different contexts to assess the potential risk associated
with a range of assessment models, HCRs and utilities. (Dichmont et al.,
2006; Holland, 2010; Szuwalski and Punt, 2013; Mildenberger et al., 2021). In
other cases MSEs can provide an understanding of how potential biases in
the assessment and management process can affect the overall status of the
stock over time (Marasco et al., 2007; Kell et al., 2012; Tyszko and Pritt, 2017;
Carruthers et al., 2015).

To compare management performance of stage and age-based assessment
methods, the goals of this study were to: 1) evaluate the general ability of
the CSA MP compared to the age-based MP; 2) develop a procedure for
applying bias to generated age-composition data within the MSE; and 3)
assess the impact of using biased age-composition data on a fish stock when an
age-based assessment MP or a CSA MP is used. Developing a reference points
methodology for the CSA assessment MP was also a fundamental component
of this study.
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5.2 Methods

A short summary of the MSE set up and software is given first, followed by a
description of the operating model. The observation error model is detailed
next. Descriptions of the management procedures (MPs) are then given and
finally performance statistics summarised.

5.2.1 Overview

We simulate a fish stock with similar characteristics to the white-bellied
anglerfish stock in ICES areas 7.b-k, 8.a-b and 8.d for the OM and then
develop a method for implementing bias on age-composition data through
age-slicing within the operating error model (OEM) of the MSE. Assessment
models are fit to the historical observations from the OEM and relevant
reference points are estimated for inclusion in the MPs. MPs are implemented
over a 12 year management cycle and their performance evaluated.

5.2.2 General MSE settings

MSEs were implemented within the statistical software R using the FLR
framework (Kell et al., 2007). We specifically utilise the ‘mse’ package to
run MSEs (Mosqueira and Jardim, 2020) and the “FLife” package (Kell,
2018) to simulate the operating model. Management procedures use either
the stage-based assessment model CSA, implemented by Batts et al. (2022b)
and available in the ‘sbar’ package (Batts et al., 2022a), or the age-based
assessment model a4a from the ‘FLa4a’ package (Jardim et al., 2014). The
initial operating model period was 40 years and MSEs were run for a 12 year
cycle on top of this. Simulations began with the assessment year in year 40 (as
an intermediate year) as was necessary for a management lag and assessment
lag of one. Management implementations are first seen in the OM in year 41.

5.2.3 Operating model

The operating model was an age-structured simulated stock created using
the“FLife” package in R (Kell, 2018), which uses a combination of given charac-
teristics and life-history theory to generate a stock at equilibrium. Stochasticity
in the operating model came from recruitment variability. The stock was cre-
ated at equilibrium and exploitation began with spawning stock biomass at
Bmsy. Stock-recruit relationship was modelled with a Beverton-Holt model
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parameterised with virgin spawning stock biomass and steepness (Equations in
Supplementary Appendix G). Recruitment variability was assumed lognormal
(sd = 0.4) with no autocorrelation in the recruitment process deviations.

Life-history parameters used in the initial set up of the stock were those
assumed for the official age-based assessment of the stock (L∞ = 171.0 cm,
K = 0.1075, t0 = -1e-6, a = 3.03e-5, b = 2.82, L50 = 65.6 cm and a50 = 4.5)
(ICES, 2019b,a). Steepness of the stock-recruit function was estimated for
the genus using the “FishLife” package in R (Thorson, 2019) and set at 0.95.
A value for virgin stock biomass was approximated by taking the product of
spawners-per-recruit at zero fishing mortality and mean recruitment from the
2019 assessment. Age range was from 0-20 and natural mortality was fixed
at 0.25, which is the value used in the age-based assessment (ICES, 2019a).
Selectivity of the fishery was a relatively steep logistic curve (age 0 = 0.23, age
1 = 0.85, age 2= 0.99 and age 3+ = 1), similar to that of the white-bellied
anglerfish stock.

Historical exploitation was set over a 40 year period with “roller-coaster”
harvest dynamics, which was similar to the fishing mortality pattern estimated
for white-bellied anglerfish (ICES, 2019b). In our OM, fishing mortality
increased from Fmsy to 3 x Fmsy in the first third of the time series, then
stayed at this fishing mortality rate for fifteen years. Fishing mortality was
then steadily decreased to Fmsy at the end of the time series (Figure 5.5). The
level of overexploitation was exaggerated (high exploitation F is approximately
doubled) compared to that estimated in the ICES assessment of the stock; this
allowed a clearer investigation into whether management procedures (MPs)
could successfully recover or begin to recover the stock if it had been fished well
above MSY level for a prolonged period. Estimation of reference points, more
specifically the fitting of stock-recruit functions, was also aided by an extended
period of high fishing mortality as it provided contrast for the stock-recruit
relationship.

5.2.4 Observation Error model

Observations of catch numbers and at least one survey index of relative
abundance were required for the two assessment methods used in management
procedures (MPs) tested here. For the time period of the initial operating
model, a fully-selected CPUE index of numbers-at-age was generated from the
OM as the product of stock numbers half way through the year (survey timing
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= 0.5), a catchability coefficient of 1e-6 and a random log-normal error (sd =
0.3 for all ages) on numbers-at-age (same error distributions used in Batts et al.
(2022b)). A random log-normal error (sd = 0.1) was also applied to catch
numbers-at-age from the initial operating model. An additional step in the
observation error model was implemented prior to adding random deviances,
where catch numbers-at-age and survey CPUE-at-age were age-sliced (cohort-
sliced) with or without bias on the growth parameter K (detailed in the
following subsection).

As the population was projected forward in time, catch and survey index
observations in additional years were generated from the operating model with
the same method as above.

5.2.4.1 Bias growth

The OM is age based and generated age-composition data for catch and survey
observations. We convert these ages to lengths by creating an age-transition
(AT) matrix . This AT matrix is created by applying normal distributions
around mean length-at-age from a von Bertalanffy growth function and esti-
mating the probability of a fish in each length class at a given age and vice
versa. Simulated length data can then be generated (i.e. the data that is
available from sampling the catches and from surveys). We can then apply
the transpose of an AT matrix to the length sampling data to convert them
into back into age classes for the stock assessment model. We do this using an
unbiased AT matrix and AT matrices that are biased towards low and high
growth rates. Details of the methodology are given below.

The method of age-slicing catch-at-age and survey CPUE-at-age data was a
two stage process using age-length transition matrices (Hilborn and Walters,
1992; Hordyk et al., 2015). An age-transition (AT) matrix is a probability
matrix for converting number-at-age to numbers-at-length (and vice versa)
where the probability of a fish being at age a and in length class j is given by:

Pa,j =



γ

(
luj+1−La

σLa

)
if j = 1 ,

γ

(
luj+1−La

σLa

)
−
(

luj −La

σLa

)
if 1 < j ≤ J ,

1
(

luj −La

σLa

)
if j = J

(5.1)
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where γ is the cumulative normal distribution, La is the mean length-at-age,
σLa is the standard deviation of mean length-at-age and lu

j is the upper bound
of length bin j. Length bins of 0cm (jmin) to 205cm (jmax) with a width of
1cm were used (columns of AT matrix). Mean lengths at age were estimated
using the von Bertalanffy growth equation (rows of AT matrix),

La = L∞
(
1 − e−K(a−t0)

)
; a = ar + ϕ, ..., amax + ϕ (5.2)

where La is mean length at age, L∞ is the asymtototic length of the fish, K

controls the rate at which the asymtote is approached and t0 is theoretical
age where La = 0. ar is the age of recruitment into the fishery, amax is the
maximum age and ϕ is the timing of the sampling through the year. Standard
deviation of mean length at age was given as:

σLa = λ1e
(−1+λ2

(
1−ρa−1

1−ρA−1

)
) (5.3)

where λ1 controls the magnitude of standard deviations, λ2 controls the trend
in σLa over ages and ρ = e−K (Fournier et al., 1991; Batts et al., 2019).
Numbers at length Nj were established by multiplying the vector of sampled
numbers-at-age Na by the AT matrix P ,

Nj =
jmax∑
jmin

P Na (5.4)

To convert numbers-at-length back into numbers-at-age the AT matrix P was
transposed (P T ) and standardised (Ṗ T ) so that the probability of a fish of
length j being one of the ages ar to amax was 1,

Ṗ T
j,a =

P T
j,a∑jmax

jmin
P T

j,a

(5.5)

where Ṗ
T is the standardised and transposed AT matrix. A new vector of

numbers-at-age was then given by:
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Na =
amax∑

ar

Ṗ
T
Nj (5.6)

Three AT matrices were generated: correct (unbiased) slicing, biased high

slicing and biased low slicing using the equations above. Minimum and
maximum ages ar (0) and amax (20) were the same as the operating model
ages, as were the von Bertalanffy growth parameters used for the correct AT
matrix (Kc = 0.1075, Lc

∞ = 171cm and tc
0 = -1e-6). A biased high AT matrix

was generated using a K parameter of 1.2Kc (0.129, assumed faster growth)
and a biased low AT matrix was generated using 0.8Kc (0.086, assumed slower
growth) to calculate length-at-age 5.1.

Parameters controlling standard deviation at mean length at age were set at
appropriate values (λ1 = 2 and λ2 = .4) that gave relatively small standard
deviations ranging from approximately 1.3 - 3.0. Such a small standard
deviation at older ages is somewhat unrealistic but deliberate as this facilitated
a smooth age-slicing transition from numbers-at-age to numbers at length to
numbers-at-age (Figure 5.1). Preliminary testing found that if σLa increased to
a larger value (e.g 10-15 for age 20 fish) then this meant when performing the
correct (unbiased) slicing too many fish were being distributed to different ages
when converting back to numbers-at-age from the length frequency data, thus
skewing catch too far from the original catch and introducing unwanted (and
difficult to account for bias). This issue is a general problem with age-slicing
and the reason why typically a relatively young plus group is chosen when
age-slicing is implemented to generate age-composition data (Kell and Ortiz,
2011).

Table 5.1: Summary of the steps and age-transition matrices used in the
observation error model to bias age-slicing. AT′ represents the transpose of
the AT matrix

Step
Age-slicing observation error Ages to lengths Lengths to ages
correct (unbiased) correct AT matrix correct AT′ matrix
biased high correct AT matrix AT′ matrix with 1.2Kc

biased low correct AT matrix AT′ matrix with 0.8Kc

To bias age-slicing, an AT matrix constructed with biased growth was used in
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the second step of the process (Table 5.1). Three observation error models were
tested within the MSE framework, all three manipulated observations with
the age-slicing methodology, however one of the models used the correct AT
matrix in the second step (Table 5.1). This accounted for any unknown effects
of the age-slicing process. As a further check, un-sliced observations were also
included in the MSE framework as an additional operating error model and
compared to the correct age-slicing results (Supplementary Appendix G).
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Figure 5.1: Effect of bias on von Bertalanfy growth curves, numbers-at-length
density distribution (step 1 of age-slicing) and re-sliced numbers-at-age density
distribution (step 2 of age-slicing) for a typical catch-at-age sample (biased
high = 1.2Kc and biased low =0.8Kc). Age densities were calculated using a
relatively small bandwidth to show peaks in density.

Biased age-slicing changed the age densities of the catch-at-age and age-
structured survey data (Figure 5.1). More general shifts in density were seen
with increased bandwidth in the density function (Figure 1 in Supplementary
Appendix G). When a more extreme bias was applied to experiment, differences
in density were more pronounced and obvious (Figure 2 in Supplementary
Appendix G).
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Other key values needed for assessments (and subsequent reference points
estimation) were also adjusted to account for bias on the K growth parameter.
Catch weights-at-age and stock weights-at-age were adjusted by re-calculating
weights according to the biased growth curve as well as a and b length-weight
parameters (Figure 5.2). Maturity-at-age was also adjusted by shifting the
maturity ogive according to the biased ages. An important note here is that
with the adjusted weights, total catch weight of observations that have been
biased remains almost exactly the same as the correct total catch weight. This
makes sense as the actual catch weight would not change in real life if bias
was present in the ageing/age slicing data collation.

0 5 10 15 20

0.
2

0.
4

0.
6

0.
8

1.
0

Age (years)

M
at

ur
ity

Correct
Biased low
Biased high

(a)

0 5 10 15 20

0
10

20
30

40
50

Age (years)

W
ei

gh
t a

t a
ge

 (
kg

)

(b)

Figure 5.2: Bias adjusted maturity ogives (a) and catch weights-at-age (b)
used in the observation error model

5.2.5 Stock assessment methods

Two contrasting estimation methods were used in the construction of MPs
tested within the MSE framework. For our study we required estimation
methods that produced outputs that can be used to estimate biological ref-
erence points, which can then be used in the HCRs to assess stock status
and determine future management. Given the age-slicing observation error
model affected numbers-at-age in both the survey and catch it was sensible to
use an age-based assessment as one of the estimation methods. We used the
a4a statistical catch-at-age model (Jardim et al., 2014), which was also the
current assessment framework for the real white-bellied anglerfish stock used
to condition the OM (ICES, 2019b). To contrast the fully age-based model
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we also implemented management procedures that use CSA (Catch-Survey
Analysis), which has recently been implemented in the R environment (Batts
et al., 2022a), making use of the R package “TMB” taking advantage of the
capacity for automatic differentiation (Kristensen et al., 2016; Batts et al.,
2022b). CSA is a two-stage numbers-based assessment model that has rela-
tively simple underlying population dynamics compared to a4a and but still
incorporates information on recruitment (Collie and Sissenwine, 1983; Batts
et al., 2022b). CSA was chosen as it was likely to perform differently to the
age-based assessment with regards to age-slicing bias. To our knowledge, CSA
has not been MSE tested nor have non-proxy reference points been developed
based on the model.

The a4a model requires observations of catch-at-age and a survey CPUE-
at-age index, which are both assumed to be normally distributed on the
log-scale within the assessment. The a4a assessment framework allows model
structure to be controlled by a series of linear models on key aspects of the
model (Jardim et al., 2014). Fishing mortality was estimated independently
for each age class up to age 5, after which it was assumed to be the same
for all older ages. F was assumed to be separable, meaning that only the
absolute level of fishing mortality and not the selection pattern (relative F
at age) changed over time (same setup as the current assessment for white-
bellied anglerfish (ICES, 2019b)). Recruitment was estimated yearly and
survey catchability was assumed to be constant across ages and years. Default
values and configurations were used for the other aspects of the assessment.
Natural mortality was fixed at the value used within the operating model. a4a
assessments were run with a plus-group of age 7 and survey timing was set at
0.5.

CSA requires a time series of total catch numbers therefore catch-at-age obser-
vations were aggregated. A split survey of two survey indices for recruits and
post-recruits was also required for CSA. Survey CPUE-at-age was simplified
into a recruit index (we assumed recruits were identified as age = 0 for simplic-
ity) and post-recruit index (ages 1-20 aggregated). CSA assumes both catch
numbers and indices are log-normally distributed. Natural mortality was fixed
at the same value of the ICES assessment. A key assumption of CSA is that
both stages in the catch are fully-selected, which is is not the case in these
simulations. Key outputs of CSA include recruit and post-recruit numbers in
the stock and an estimation of yearly overall fishing mortality.
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5.2.6 a4a biological reference points

Biological reference points required for the HCR were estimated for each of the
observation error models. This involved fitting the correct, biased high and
biased low stock observations from the initial operating model time period
(across all iterations) with the a4a assessment model. The median values for
key outputs from estimated stocks (across the 100 iterations) were then run
through the standardised procedure in ICES for estimating biological reference
points for the MSY approach (ICES, 2021). This procedure uses “eqsim”,
which is stochastic simulation software implemented in the R package “msy”
that can be used to estimate and explore reference points (Simmonds et al.,
2019; ICES, 2021).

Following ICES protocol Blim was estimated as the breakpoint of a segmented
regression as the stock-type was deemed to be type 2 (wide ssb range and
evidence that recruitment is or has been impaired) (Figure 5.3). Bpa is defined
a “stock status reference point above which the stock is considered to have full
reproductive capacity, having accounted for estimation uncertainty” (ICES,
2021). Bpa = Blim x e(1.645 x σ) where σ was the default value of 0.2. Flim

was estimated with eqsim simulations, as was Fmsy and MSY Btrigger. Fpa was
derived from Flim. It is important to note that because the stocks have not
been fished at (estimated) Fmsy for the last five years of the initial operating
model period ICES protocol suggests using Bpa as the MSY Btrigger value in
the advice rule (where MSY Btrigger is defined as a biomass reference point
that triggers a cautious response within the ICES MSY framework). Fmsy

estimates for the three stocks were all < Fpa and < Fp.05, where Fp.05 is the
fishing mortality that would result in a 95% probability of SSB being above
Blim in the long term. However, the ‘biased low’ stock Fmsy was very close to
Fpa (Table 5.2 and Figure 5.3) (ICES, 2021).
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Figure 5.3: Summary of key outputs across correct, biased high and biased low
OEMs from the estimation of a4a reference points including: the stock-recruit
data with median estimated segmented regression models and Blim (a); and
estimated reference points in relation to estimated SSB. Where dashed lines
are Blim, dotted lines are Bpa and dash-dot lines are MSY Btrigger.
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Table 5.2: Summary of biological reference points (biomass BRPs are in tonnes)
estimated with a4a (with FBAR =3-6) and eqsim with observations from the
initial operating model time period. Observations were from three different
observation error models with different age-slicing bias. The analytical Fmsy
value of the simulated stock is shown in parentheses

Observation error model Blim Bpa MSY Btrigger Flim Fpa Fmsy (0.148 )
Correct 17459 24261 61615 0.41 0.28 0.15

Biased high 13731 19080 113305 0.53 0.36 0.14
Biased low 29045 40360 41014 0.28 0.19 0.19

5.2.7 CSA biological reference points

Biological reference points were also required for the HCR implemented with
CSA, however because the assessment is completely numbers-based (no spawn-
ing stock biomass estimation) and not age-based, eqsim could not be used.
CSA has not been used within the ICES framework before therefore there was
no protocol to follow or software developed. We developed our own methodol-
ogy for estimating reference points for CSA and assessing stock status in an
“ICES style” HCR.

Similarly to a4a, CSA was fit to correct, biased high and biased low stock
observations from the initial operating model time period. The median es-
timated stocks (across iterations) were then used in the methodology below.
CSA reference points were not estimated stochastically. We developed a
methodology for estimating CSA reference points based upon the relatively
simple assumptions and outputs of the CSA assessment. Assumptions on
growth and weight-at-age were needed in order to calculate a catch biomass
at equilibrium.

5.2.7.1 Fmsy and Nmsy

Fishing mortality that would lead to long-term maximum sustainable yield
(Fmsy) and stock numbers that support Fmsy (Nmsy) was found with the
following steps using the methodology detailed in the Supplementary Appendix
G. CSA model-based reference points were derived as follows:

1. Estimate stock-recruit parameters (a and b) by fitting a B-H function to
recruit numbers and stocks numbers from a CSA assessment.

2. For a range of F values, calculate stock numbers-at-equilibrium N∗
n and

catch-at-equilibrium C∗
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3. Identify the F value that gives maximum C∗ (Fmsy) and corresponding
N∗

n (Nmsy) (Table 5.3)

Two key assumptions on growth are introduced in the reference point method-
ology for CSA: 1) ages of the stock range from 0-20 and 2) that we have
growth parameters and length-weight parameters that are used to calculate
weight-at-age (biased or not).
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Figure 5.4: Summary of key outputs from the estimation of CSA reference
points including: the stock-recruit data with fitted models (a); equilibrium
yield vs. fishing mortality (b) and stock numbers (c); and Estimated reference
points in relation to stock numbers estimated in CSA assessments.

To follow a ICES style Advice rule for the harvest control rule in the CSA
MPs additional reference points were needed that were reasonably analogous
to those estimated for the age-based assessments for the PA (Blim and Bpa).
The simplest approach was to develop numbers-based versions of Blim and Bpa.
Similarly to Blim we define Nlim as the estimated breakpoint of a segmented
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regression on the stock-recruit curve (rec vs N) (Figure 5.4). ICES protocol
states that Bpa = Blim x e(1.645 x σ) but can be calculated as 1.4 x Blim in
situations where assessment uncertainty (σ) is unavailable (ICES, 2021). We
define Npa = 1.4 x Nlim (Table 5.3). Note that we discuss the limitations of
the numbers-based approach in the Discussion.

The assumptions detailed above regarding mean weights-at-age are only rele-
vant to Fmsy and Nmsy estimates.

Table 5.3: Summary of biological reference points estimated with CSA and
CSA reference point methodology with observations from the initial operating
model time period. Observations were from three different observation error
models with different age-slicing bias.

Observation error model Nlim Npa Nmsy Fmsy
correct 47815 66941 72810 0.11

biased high 47815 66941 71805 0.11
biased low 47815 66941 74181 0.10

5.2.8 Harvest Control Rules and implementation

Management advice was annual and implemented in the year following the
assessment. Assessments were run with data from the full time period prior
to the assessment year. HCRs were based on the ICES MSY approach for
long-lived category 1 and 2 stock (ICES, 2019).

For the age-based assessment management procedures the HCR is simply that
from ICES technical guidelines, using Blim, Bpa and Fmsy to determine stock
status and fishing mortality (F ) for the following year. Bpa was used instead
of MSY Btrigger as the stocks were not estimated to be fished at MSY Btrigger

for a time period before reference point estimation. HCRs for the age-based
MPs follow the ICES Advice Rule:

F =


Fmsy SSB ≥ Bpa (in our case)

Fmsy · (SSB
Bpa

) Blim < SSB < Bpa

0 SSB ≤ Blim

In reality, when SSB is found to be below Blim fishing mortality is often not set
to 0 but for the purposes of this MSE it was a suitable management decision.

CSA MPs follow a similar procedure to the age-based assessment MPs. We
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implemented an “ICES style” advice rule HCR where numbers-based biological
reference points (Nlim, Npa and Fmsy) were used to assess stock status (in terms
of stock numbers N) and determine fishing mortality for the following year:

F =


Fmsy N ≥ Npa (in our case)

Fmsy · ( N
Npa

) Nlim < N < Npa

0 N ≤ Nlim

Fishing mortality for management was then converted into a total allowable
catch (TAC) by estimating stock numbers in the following year given a mean
recruitment over the last three years and simulating the management F. For
the CSA MPs the methodology for reference point estimation was utilised here.
It is important to note that for all MPs TAC was calculated with observation
error model weights, thus biased growth assumptions also had an effect here.

5.2.9 Performance statistics

Performance metrics were used to evaluate and compare MPs. Performance
focused on two aspects; 1) comparison between MPs that used fundamentally
different assessments and reference points (a4a and CSA MPs); and 2) com-
parison of the performance of each MP when observations were altered by
age-slicing bias.

To examine short and medium-term effect of MPs on stock status we calculated
F/Fmsy and B/Bmsy across replicates half-way through the projected time
period of the MSE (six years in) and at the end of of the projected time period
(12 years in). Where F and B were fishing mortality (fbar = 3-6) and spawning
stock biomass of the operating model respectively. Fmsy and Bmsy were the
analytical values of the these reference points calculated when the operating
model was simulated initially. We also examine a Kobe plot of mean and
median F/Fmsy and B/Bmsy in the final year of simulations.

Risk and sustainability were evaluated by calculating the proportion of repli-
cates for each MP that were at a SSB below 20% of B0 (risk of stock being
fished at low levels, where B0 is virgin or unexploited spawning stock biomass)
(Beddington and Cooke, 1983; Myers et al., 1994) and the proportion of repli-
cates above Bmsy (sustainability) in each year of simulations. These values are
plotted against mean catch biomass in each year to examine trade-offs.
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5.3 Results

Results from initial assessments are examined first, followed by the MSE
results. Finally we compare across the two different MP estimation methods
across the set of performance statistics.

5.3.1 Initial assessments

a4a assessments

a4a assessments on observations from the three OEMs (correct, biased high

and biased low) for the initial operating model time period (40 years) gave very
different estimations of the stock (Figure 5.5). Estimated biological reference
points (using a4a assessment estimates) also differed notably between OEMs
(Table 5.2).

When age-slicing was biased low the a4a assessment over-estimated spawning
stock biomass (SSB) and recruit numbers in comparison to when the correct

age-slicing was used. Fishing mortality was estimated lower than the assessment
using the correct OEM observations. For the biased high OEM the opposite
pattern was seen, with SSB and recruitment estimated lower in comparison to
the values estimated with the correct OEM observations, along with estimated
fishing mortality which was estimated higher (Figure 5.5).
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Figure 5.5: a4a stock assessment estimates using observations from three
OEMs (correct, biased high and biased low) for initial data years of the
operating model. F(3-6) is Fbar (mean fishing mortality rate for ages 3-6).
Solid lines are the median values across replicates, light shading represents
90% quantiles and dark shading 75% quantiles.

Estimated stock numbers-at-age and fishing mortality-at-age showed the same
pattern as SSB and mean fishing mortality(fbar), whereas catch-at-age showed
a different pattern, similar to that of the OEM observations when biased
age-slicing is applied (Figure 5.1) (Supplementary AppendixG - Figure 3).
Estimated catch numbers at age 0 are very similar, however numbers-at age
alternate somewhat over ages and age-slicing bias. Generally biased low

observations of catch over estimate the number of older fish in the catch
and under estimate younger fish compared to the assessment on correct

age-slicing observations. Assessment results on biased high observations show
the opposite, estimating higher numbers in younger years (age two mainly)
and lower in older years (Supplementary AppendixG - Figure 3).

CSA assessments

In contrast to the initial a4a assessments, CSA assessments on observations
from the three OEMs gave almost identical stock estimates across differing
age-slicing bias (Figure 5.6). There was no difference in the estimation of Nlim
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and Npa reference points with these assessment results, however Fmsy and Nmsy

were different but not by a large degree (Table 5.3).
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Figure 5.6: CSA stock assessment estimates on initial data years of correct,
biased high and biased low simulated observations). Values were extremely
similar so are not discernable. F(0-1) is Fbar (mean fishing mortality rate
for recruit and post-recruit stages). Solid lines are the median values across
replicates, light shading represents 90% quantiles and dark shading 75%
quantiles.

5.3.2 Effect of age-slicing bias in MSE simulations

Age-slicing bias in the OEM on catch-at-age and CPUE-at-age had a large
effect on the trajectory of operating models over the MSE projection period
for a4a and CSA MPs (Figures 5.7 and 5.9).

a4a MSE results

In simulations where an a4a assessment MP was used on a biased low age-
slicing OEM fishing mortality increased substantially to a much higher level
than with the correct OEM and then levelled off. SSB for the biased low OEM
did not continue the upward trajectory of the initial operating model period
and began to level off almost immediately, whereas SSB increased gradually
throughout the projection period for the other age-slicing OEMs (Figure 5.7).

168



5. Impacts of biased age-slicing

A biased high OEM resulted in a lower fishing mortality and lower catch being
implemented on the stock, relative to the other OEMs. Coupled with this was
a steeper rise in SSB over the projection period and a higher SSB at the end
of the projection period (Figure 5.7).
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Figure 5.7: MSE simulations for a4a assessment MPs. Showing operating
model projections across three OEMs (age-slicing bias: correct, biased low
and biased high) displaying recruitment, ssb, catch and fishing mortality (fbar
3-6). Initial operating model period (OM) is also shown. Solid lines are the
median values across replicates, light shading represents 90% quantiles and
dark shading 75% quantiles.

For age-based assessment MPs, when age-slicing bias was biased low or
biased high in the OEM there was a large amount of assessment bias in
the annual assessments of the stocks. A biased low OEM resulted in the a4a
assessments consistently over estimating SSB and under estimating fishing
mortality in comparison to the operating model. In contrast, the biased high

OEM caused the a4a assessment to under-estimate SSB and over-estimate
fishing mortality relative to the operating model. Assessment bias was not
notable for the a4a assessment with the correct age-slicing OEM, however,
SSB was marginaly over-estimated relative to the operating model (Figure
5.8).

169



5. Impacts of biased age-slicing

●●●●

●
●●

●

●●●
●
●
●●●

●●
●
●

●
●●●●

●

●

●

●●

●

●

●

●

●

●●
●●

●●●
●
●●●

●

●●

●●

●●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●●●●●

●

●
●●●
●
●●●

●

●

●●
●
●●

●

●
●

●

●
●●●●

●
●
●
●●●●
●
●

●

●●

●

●●
●●
●●●
●
●●

●
●●●●●

●

●

●

●●

●

●
●
●

●●
●●

●●
●

●●
●●

●●●

●
●●

●

●●

●

●●
●

●

●

●

●

●

●●
●

●
●

●
●
●
●
●

●
●

●
●●●
●
●

●

●
●●●
●
●

●

●●●●●

●

●

●●

●

●●●●
●

●

●

●

●

●●●●
●
●●●

●

●

●

●●
●
●●●
●

●

●
●

●

●

●

●●●●
●

●●

●

●

●●●

●

●

●

●

●●

●
●●●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●●●

●

●

●

●
●

●

●●●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●
●

●

●
●
●

●

●●●●

●

●

●

●●●

●
●

●
●

●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●
●
●

●●●●●●●●●

●●●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●●●●
●

●

●●●●

●●

●

●●

●●

●

●

●

●

●

●

●●
●
●

●●
●
●
●●

●

●
●●
●
●

●●●

●

●

●

●●●
●
●●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●
●
●

●

●●

●●

●

●●●

●

●

●

●

●

●●●●

●

●●

●

●●

Fishing mortality SSB

41 42 43 44 45 46 47 48 49 50 41 42 43 44 45 46 47 48 49 50

0.0

0.5

1.0

1.5

2.0

Year

A
ss

es
sm

en
t b

ia
s 

(E
st

/O
M

)

Correct

Biased low

Biased high

Figure 5.8: a4a assessment bias of spawning stock biomass (SSB) and fishing
mortality (fbar = ages 3 to 6) across three OEMs (age-slicing bias: correct,
biased low and biased high) for MSE simulations with a4a assessment MPs.
Where assessment bias = estimate/OM value. X axis refers to the year an
assessment was run (e.g. assessment year= 41, data years 1:40, OM comparison
= end of year 40 ).

CSA MSE results

Simulations with CSA assessment MPs showed the opposite effect of age-slicing
bias compared to a4a MP results. SSB in the operating models showed a
relatively steep increase over the projection period with the biased low OEM
and a steady increase for the correct OEM. SSB for the biased high OEM
appears to level off (Figure 5.9). Fishing mortality is highest in the operating
model where the biased high OEM is used and lowest with the biased low

OEM. Trajectories appear to be levelling off but still decreasing somewhat
over the simulation period (Figure 5.9).

In the CSA MPs, catch and fishing mortality show a large degree of variability
in the early years of the projection for all OEMs. Notably, a number of
replicates have zero fishing mortality and catch in those early years. Catch
and fishing mortality for the biased high OEM shows the aforementioned
variability throughout the time period of the simulation (Figures 5.9 and 5.11).
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Figure 5.9: MSE simulations for CSA assessment MPs. Showing operating
model projections across three OEMs (age-slicing bias: correct, biased low
and biased high) displaying recruitment, ssb, catch and fishing mortality (fbar
3-6). Initial operating model period (OM) is also shown. Solid lines are the
median values across replicates, light shading represents 90% quantiles and
dark shading 75% quantiles.

CSA assessment MPs showed assessment bias, demonstrating that CSA under-
estimated both stock numbers and fishing mortality across OEMs. There was
no discernable difference in stock numbers assessment bias in the annual assess-
ments across OEMs. There was also little difference across OEMs for fishing
mortality assessment bias, however a slight difference did develop through the
simulations as the operating models diverged under differing OEMs and MPS
(Figure 5.10).

There were notable differences in the application of the CSA harvest control
rule (given the different Fmsy across OEMs), where fishing mortality for the
following year differed between age-slicing bias in the OEMs. These differences
were apparent and amplified somewhat in the implementation step converting
the given fishing mortality into a total allowable catch (TAC). HCR and TAC
implementation steps for the biased high OEM resulted in a much higher
TAC on average than the correct age-slicing OEM. Conversely, the biased low

age-slicing OEM implemented a much lower TAC on average than the correct

age-slicing OEM (Figure 5.11).
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Figure 5.10: CSA assessment bias of total stock numbers and fishing mor-
tality (fbar =3-6) across three OEMs (age-slicing bias: correct, biased low
and biased high) for MSE simulations with CSA assessment MPs. Where
assessment bias = estimate/OM value.
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Figure 5.11: CSA MP outputs of fishing mortality from the harvest control
rule (HCR) and implemented total allowable catch (TAC) across three OEMs.

5.3.3 Performance statistics comparison

The biased high CSA combination showed the greatest variability in stock sta-
tus (B/Bmsy and F/Fmsy) in both the short-term and mid-term of management
simulations. The a4a MP with biased low OEM generally maintained F/Fmsy

>1 and B/Bmsy <1 over the short term and mid term with no indication of
movement towards a more favourable stock status (Figures 5.12 and 5.13).
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CSA MPs with correct and biased low OEMs reached and maintained F/Fmsy

generally <1 (i.e. fished below Fmsy) in the short term and mid-term over
simulations, as did the a4a MP with biased high OEM. a4a MP with correct

OEM reached maintained a distribution of F/Fmsy values clustered around
one for the short-term and mid-term (Figures 5.12 and 5.13).

CSA MPs with correct and biased low OEMs, as well as the a4a MP with
biased high OEM had distributions of B/Bmsy <1 in the short-term but by
mid-term (end of simulations) B/Bmsy values for replicates were generally >1
(i.e. SSB > than Bmsy) and actually well above in the case of CSA MPs. a4a
MP with correct OEM had a distribution of B/Bmsy values clustered just
below one by mid-term (Figures 5.12 and 5.13).
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Figure 5.12: Distribution of stock status (F/Fmsy and B/Bmsy) in the 6th year
(short-term) and final (12th) year (mid-term) of MSE simulations. Boxplots
summarise replicates across management procedures (a4a and CSA) and
observation error models (correct, biased high and biased low). A small
number of F/Fmsy values > 5 were omitted for plot clarity.
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The a4a MPs with high biased and correct OEMs were closest to optimising
exploitation (i.e. middle of Kobe plot) by the end of the simulation period
as their mean/median B/Bmsy and F/Fmsy were close to the centre of the
Kobe plot (Figure 5.13). CSA MPs with biased low and correct OEMs were
comfortably in the under-fished section of the Kobe plot. Average B/Bmsy

and F/Fmsy values placed CSA MP with biased high OEM and a4a MP with
biased low OEM in the area of the Kobe plot where stocks are likely to be
overexploited. The a4a MP with biased low OEM was by far the worst in
terms of its position in the Kobe plot given median values of B/Bmsy and
F/Fmsy at the end of the simulation period (Figure 5.13).
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Figure 5.13: Kobe plots (B/Bmsy vs. F/Fmsy) for the final (12th) year of MSE
simulations across management procedures (a4a and CSA) and observation
error models (correct, biased high and biased low). Circles are means and
diamonds are median values across replicates. Solid black lines show 10% - 90%
quantiles across replicates for B/Bmsy (horizontal lines) and F/Fmsy(vertical
lines).

Biased low OEM with a4a MP was the only scenario where there was no
reasonable increase in the proportion of replicates above Bmsy or below 20%
of B0, however it did sustain the highest catches over the simulation period.
Overall, for the other scenarios, mean catch increased over time with increases
in the proportion of replicates above Bmsy and decreases in the proportion
below 20% of B0. Each MP and OEM combination did so at similar rates but
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CSA MPs and biased low and correct OEMS reached very high proportions of
replicates > Bmsy by the end of simulations. Only biased low with a CSA MP
and biased high with a4a MP did not reach a high proportion of replicates <

20% of B0 in over the time period (Figure 5.14).
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5.4 Discussion

Age-slicing or cohort-slicing is a commonly used method for obtaining age-
composition data for stock assessments (Ailloud et al., 2015). This study
offers an insight into the impact that age-slicing with a biased growth model
can have on the assessment and management of a stock over time with an
age-based or stage-based assessment. In addition, we have also evaluated the
suitability of CSA as an alternative assessment/reference point framework.

Overall, the simulation analysis demonstrated that both age-based and CSA
MPs were considerably affected by bias in age-slicing, however the point where
bias altered the outcomes of the MPs clearly differed. The age-based assessment
was directly affected by the shifts in density of the biased age-composition data,
whereas stage-based assessment were affected indirectly by the mean weights-
at-age used in reference points and catch limits. Biased growth assumptions
also had contrasting effects on the ability of MPs to assess the stock and
implement advice. As a result, stock status and trajectory differed across
MP and age-slicing combinations. Biased low age-slicing (assumed slower
growth) with an age-based MP had a negative impact on the trajectory of
the stock compared to correct growth, whereas with a CSA MP management
was conservative in comparison to the correct simulations and resulted in
more positive trajectory for the stock. The opposite was true for biased high

age-slicing and the two MPs. In general, the CSA MP performed well in
the correct and biased low scenarios, having a positive effect on stock status.
However the CSA MP appeared to be somewhat more precautionary than the
age-based MP in the correct scenario.

5.4.1 Effect of age-slicing bias

Biased age slicing clearly introduces a large degree of bias in the assessment
and perception of the stock with an age-based MP. In the scenario where
age-slicing was biased low the perception of stock biomass was approximately
one and a half that of the real value. For the biased high scenario the opposite
was true. If we look at the methodology we can see that these results generally
reflect the changes in age densities caused by biased slicing. Whilst not a
simple pattern, we can say that overall biased high slicing results in catch-
at-age and index CPUE-at-age to be higher than the correct numbers in
young fish and lower than the correct numbers in older fish (there is more
nuance than this if looking at specific ages) and vice-versa for biased low age
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slicing. These shifts in age densities are reflected in the assessment, where
for example the a4a MP with biased high observations underestimated SSB
and over-estimated fishing mortality. These differences in perception of the
stock resulted in estimated reference points being biased as well, which may
somewhat compensate assessment bias. Other studies also found that bias in
age-composition data can alter estimated levels of the stock and also suggest
an assumed faster growth could lead to greater sustained SSB and increased
landings in the future or vice-versa for a slower growth rate (Lai and Gunderson,
1987; Tyler et al., 1989; Bertignac and De Pontual, 2007).

In contrast, CSA showed no obvious effect of bias age-slicing in initial assess-
ments or assessment bias in MSE simulations. The structure of the stage-based
model is likely to be the main reason why the perception of the stocks by CSA
was not influenced by biased age-slicing (Collie and Sissenwine, 1983; Mesnil,
2003). Observations of recruit and post-recruit CPUE in the survey indices
showed no discernable differences across age-slicing scenarios (as age 0 was
scarcely influenced by the biasing process and post-recruits were aggregated)
and catch numbers were aggregated, leading to extremely similar data inputs
across age-slicing scenarios.

Nevertheless, CSA MPs were affected by biased age-slicing. CSA MP outputs
were altered by bias age-slicing in the HCR and implementation steps of the
MP, whereas age-based MPs were mainly altered by the perception of the
assessment. Decisions controlled by the HCR differ somewhat across age-slicing
scenarios as Fmsy was estimated at marginally different levels across scenarios
as assumptions on growth and weight-at-age were needed to calculate yield for
Fmsy and Nmsy estimation. Weights-at age (which were biased in the biased
scenarios) also influenced the implementation step as they were used to convert
the fishing mortality for the next year into a TAC.

The effect of age-slicing bias indicates that certain MPs are more precautionary
depending on the age-slicing scenario. Our findings indicate that, for a given
stock, if there was some uncertainty in growth parameters and a possibility
that they are biased the user should carefully consider what assessment should
be used (Lai and Gunderson, 1987; Tyler et al., 1989; Chrysafi et al., 2019). If
fish growth was suspected of being biased high, both a4a and CSA provide for
good stock status with compromised yields (in the case of a4a) or higher yields
(in the case of CSA). For suspected biased low growth CSA provides for good
stock status but compromised yields, but a4a would lead to overexploitation
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of the stock.

Interestingly, the CSA MP appears to slowly be recovering the stock even in the
biased high scenario, indicating if uncertainty was high in growth parameters
CSA would be the more likely MP to recover a stock regardless of any bias in
age-composition data, albeit with reduced yield. However, the range in stock
status (B/Bmsy and F/Fmsy) and mean catch for replicates for this MP and
age-slicing scenario also demonstrate that the HCR and TAC implementation
did not perform well at stabilising the stock in the time period of simulations.

5.4.2 General effectiveness of CSA

Overall, a combination of CSA assessment, CSA derived reference points and
‘ICES style’ HCR had a positive effect on stock status and stock trajectory given
a correct scenario. However, CSA MPs were generally more precautionary
than the age-based MPs, probably due to a combination of underestimating the
stock and reference point estimation method. With this risk averse approach,
there is a trade off with yield, as is common in fisheries management (Thorpe
and De Oliveira, 2019). Nevertheless, from a management perspective this is
a much preferred outcome than an over-estimation and unsustainable high
yields (Wetzel and Punt, 2011; Chrysafi et al., 2019).

CSA underestimated stock numbers and fishing mortality within the MSE
simulations, which is somewhat contrary to the results of Batts et al. (2022b)
study where CSA gives reasonably close estimates of stock number for simulated
stocks with logistic selection. The key difference with this study is the timing
of survey indices is half way through the year, therefore the survey index
(whilst catchability is constant across ages) was affected by the selectivity
pattern of the stock. Interestingly, further investigations indicated that this
issue manifests itself within the assessment by underestimating post-recruit
numbers. Further exploration of this issue would be worthwhile.

Broadly speaking, MSE simulations demonstrated the reference point estima-
tion method and subsequent HCR developed for this study could be used to
recover and sustainably manage a stock under correct or biased low scenarios.
However, there was a considerable number of replicates that were classified by
the HCR as below Nlim in the early years of simulations, resulting in a zero
TAC being implemented for those replicates. Further development of the Nlim

limit reference point may be needed for management of real stocks, as it is

178



5. Impacts of biased age-slicing

not often realistic to stop a fishery completely (Hilborn, 2007). Furthermore,
expanding the reference point estimation method for CSA into a stochastic
simulation analogous to eqsim would be a useful development (Simmonds
et al., 2019; ICES, 2021).

Another issue worth considering, is whether using numbers for biological
reference points is viable at all. In our study, these values were successful
in managing the stock tested but in others there may be issues arising from
the mismatch of numbers and biomass. In certain situations, where fishing
mortality is high, a stock may have high stock numbers (driven by young fish)
but low biomass (because high proportion of young fish). How this scenario
would be managed under the current CSA reference point procedure developed
here is difficult to ascertain without further extensive simulation testing of
the procedure. We suggest that this should be the next step in bringing CSA
assessment and management forward. In addition, due consideration should
be given to alternative approaches to developing non-proxy biological reference
points for CSA, as well as stage-based models in general.

5.4.3 Conclusions

Adequately accounting for uncertainty and bias in age-composition can be
difficult in traditional statistical catch-at-age assessments (Maunder and Punt,
2013; Ailloud et al., 2015). In this study we aimed to assess the impact that
biased age-composition data could have on a stock when age-based or stage-
based assessment and management were implemented. We also investigated
the suitability of a stage-based assessment model as an alternative assessment
and management framework, developing a reference point estimation method
in the process. MSEs offered a useful simulation framework to fulfill these
objectives. Age-slicing, leading to biased age-composition data, was found
to affect both the age-based management procedures and the stage-based
management procedures, although in very different ways. A key finding here
was that age-composition data generated with a faster growth rate than the
true growth rate, has a more precautionary impact on management advice for
a stock in comparison to a biased slow growth rate. Our study also established
CSA could be a potentially useful tool for stock assessment and management
in Europe under ICES guidelines in the future.
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Tracking cohorts is key to many different stock assessment models. Multiple
factors can influence our ability to track cohorts, such as: available data,
type of stock assessment, exploitation pattern, recruitment deviations, and
life-history characteristics of a fish stock. The main aims of my thesis were to:
develop methods to address cohort uncertainty in fisheries stock assessment
and management (Chapters 2-4), as well as developing a framework for testing
how uncertainty in the form of biased age-composition data may influence stock
status and management goals over time (Chapter 5). Cohort uncertainty in the
form of age-estimation and growth was specifically focussed upon. Anglerfish
Lophius piscatorius and Lophius budegassa stocks in the Celtic Seas and Bay
of Biscay (ICES subareas 7, 8.a-b and 8.d) were used throughout as case study
stocks.

Chapters 2-5 addressed these objectives. Here, the results are placed in overall
context of current fisheries stock assessment and management, as well as
specifically for anglerfish, with a view to further improvements on the basis of
the understanding developed.

6.1 Summary of main thesis results

Chapter 2 developed a novel method of length frequency analysis called LFEM,
or Length Frequency analysis with the Expectation-Maximisation algorithm.
This method is a maximum likelihood procedure that uses mixture models and
the Expectation-Maximisation (EM) algorithm to estimate von Bertalanffy
growth parameters from length frequency data from survey data. The basic
version of LFEM fits mixture models over all years and multiple surveys to
give a single set of estimates for von Bertalanffy growth parameters. The basic
model was extended into a hierarchical framework, where growth variability
could be modelled through bivariate random effects on cohort specific growth
parameters. Testing on haddock and anglerfish determined that the basic
model gave reasonable estimates of growth parameters and their associated
uncertainty. The hierarchical extension successfully modelled growth variability
in cohorts. Overall this method proved to be a robust and accurate method
of length frequency analysis, providing a useful alternative to other widely-
used analyses. Along with being published in a peer-reviewed paper (Batts
et al., 2019), LFEM was presented at the ICES stock assessment benchmark
workshop on anglerfish in ICES areas and contributed to the development of
an ICES assessment for white-bellied anglerfish in the Celtic Sea and Bay of
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Biscay (WKANGLER) (ICES, 2018) (Supplementary Appendix C ).

Chapter 3 implemented and compared the performance of two theoretically
different stage-based stock assessment models: the well-known numbers-based
depletion model, CSA, first developed by Collie and Sissenwine (1983) and cur-
rently available in the NOAA Fish and Fisheries Integrated Toolbox (NOAA,
2019); and a biomass-based delay-difference model first described in a theo-
retical paper by Schnute (1987). Model performance was compared across
an extensive simulation-testing framework, as well as the white-bellied an-
glerfish in the Celtic Sea and Bay of Biscay. Results from the simulation-
testing demonstrated that the biomass-based delay-difference (Schnute) models
could estimate close to the true values of stocks in certain scenarios, however
performance and convergence were sensitive to selectivity assumptions and
growth/mean weight configurations. Overall, CSA was more robust to selec-
tivity assumptions, converging consistently with reasonable accuracy, but had
inherently higher uncertainty than Schnute models. CSA estimates of stock
numbers for the real anglerfish stock were remarkably close to the estimates
from the official age-based assessment. This work was presented as a working
document at the ICES Working Group for Bay of Biscay and Iberian Waters
Ecoregion (WGBIE) (Supplementary Appendix E) and has been published
(Batts et al., 2022).

An R package (‘sbar’) was developed to enable easy application of the stage-
based assessment models implemented in Chapter 3. The ‘sbar’ package is
available on github and the manual can be found in Appendix F. Chapter 4
is a vignette that documents key functions and demonstrates the different
models to users, including the various settings and variants of the models that
could be implemented. Details on the Schnute model versions that were not
tested in Chapter 3 are given, outlining how the user can adjust the relative
importance of recruits or previously-exploited biomass, as well run a more
classical version of the model. The case study stock for this vignette was the
black-bellied anglerfish stock for the Celtic Seas and Bay of Biscay, providing
preliminary results on estimated stock size and fishing mortality trends for
this stock, which has not been analytically assessed before.

Chapter 5 uses a management strategy evaluation (MSE) framework to in-
vestigate the impact of biased age-slicing of length-based data on fisheries
stock assessment and management over time. The operating model was a life-
history based simulated stock with similar characteristics to the white-bellied
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anglerfish stock in the Celtic Seas and Bay of Biscay. A biased age-slicing
procedure was applied to both survey and and catch observations, generat-
ing biased age-composition data in the operating error model (OEM). Two
different management procedures (MPs) were tested within the simulation
framework. An MP based upon a statistical catch-at-age model (a4a) and
an MP based upon a stage-based model (CSA). A procedure for estimating
non-proxy reference points for CSA was also developed in order to implement
a harvest control rule based on the output of the CSA assessment. Results
demonstrated that biased age-composition data impacted the contrasting
MPs in opposite ways. Age-based assessment models were affected directly,
with biased age-composition data altering the perception and in turn the
management of the stock. The stage-based assessment model was robust to
biased age-composition, with perception of the stock similar across age-slicing
scenarios. However, bias did enter indirectly into the CSA MP through the
use of biased mean weights-at-age in the reference point estimation and the
implementation of the harvest control rule.

In the following sections, the methods developed in this thesis are discussed in
the context of their application to future fisheries stock assessments, as well
as the wider implications of the findings on stock assessment and management
over time.

6.2 Applications to fisheries stock assessment

6.2.1 Acquiring reliable growth information from length
frequency data

Often it is the reliability and availability of data that determines the choice
of stock assessment model for fisheries (Hilborn and Walters, 1992). In many
fisheries, due to the extensive use of age-based stock assessment models (Punt
et al., 2013), reliable age-composition data is an essential component (Hoggarth,
2006; Maunder et al., 2016). Typically, age-composition data is generated
by converting length-structured data into age-structured data through an
age-length key (ALK) (Fridriksson, 1934; Hoenig and Heisey, 1987; Maunder
and Piner, 2015). Age-estimates are needed to build an ALK, however there
are often situations in fisheries where age-estimates are not reliable (e.g.
unclear incremental growth rings) or collection is not feasible (e.g. lack of
resources or time) (Hilborn and Walters, 1992). If an age-structured stock
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assessment model is the desired approach, an alternative method for estimating
growth and generating age-composition data is needed. Length frequency
analysis is one well-known method for estimating fish growth and processing
numbers-at-length data prior to running an assessment model (Hasselblad,
1966; Bhattacharya, 1967; Fournier et al., 1990; Taylor and Mildenberger,
2017; Batts et al., 2019). Growth variability in fish is also an extensive
area of research (Quinn and Deriso, 1999; Wang, 1999; Eveson et al., 2015;
Morrongiello and Thresher, 2015; Cadigan et al., 2016), however there have
been few studies that have modelled growth variability from length frequency
data (Fournier et al., 1998; Roa-Ureta, 2010; Lloyd-Jones et al., 2016).

There was much scope for development of a new method of length frequency
analysis for fisheries survey data as part of this thesis. Chapter 2 introduced an
alternative approach to estimating growth parameters from length frequency
data, in addition to modelling variability in fish growth. Whilst widely-used
analyses, such as MULTIFAN (Fournier et al., 1990) and ELEFAN (Taylor
and Mildenberger, 2017) are reliable and useful procedures in their own right,
there could be circumstances where the LFEM method may be preferred. For
example, in situations where the user wanted more flexibility in the set up of
the model, LFEM may be useful, as the method does not require the fixing of
L∞ or binning of fish lengths prior to running the procedure.

Another situation where LFEM could prove effective would be where there
are notable differences in the structure of periodic length frequency data,
possibly caused by growth variability between fish cohorts or years. Taking
advantage of the functionality of the automatic differentiation framework
TMB (Kristensen et al., 2016), the basic LFEM model was extended into
a hierarchical framework, which estimated growth variability with bivariate
random effects. The LFEM hierarchical model inherently tracks cohorts,
accounting for growth variability, without explicitly modelling the changes in
mixing proportions of the mixture models. This approach differs somewhat to
that used in the integrated assessment MULTIFAN-CL to account for growth
variability, where density dependence is incorporated into the model to track
cohorts (Fournier et al., 1998). This is a useful attribute of MULTIFAN-CL,
however because it is an integrated assessment it is difficult to disentangle the
fitting of length frequency data from the population dynamics. On the contrary,
the LFEM approach is useful because it doesn’t include explicit cohort strength
tracking. Numbers-at-age can be examined after length frequency analysis to
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determine good cohort tracking.

Accounting for variability in cohort growth was an important aspect of LFEM
and is particularly useful in the wider context of fisheries stock assessment,
where cohort specific growth curves could be used to improve the quality of
age-composition data by tailoring the age-composition data to differences in
the growth of cohorts (Whitten et al., 2013). In other situations, estimated
growth parameters from the slowest and fastest growing cohorts could be a
useful guide for bounds of growth parameters estimated in assessment models
or tested within a simulation framework such as an MSE. It may also be
possible to expand the methodology into an assessment method and this is
discussed in section 6.4.

Although LFEM could be considered less subjective than other length frequency
conversion methods, consideration needs to be given to the age of the first
component (‘age0’ in the model), which is needed to run the model. This
input is used internally by the model to convert the estimated parameters into
the classical von Bertalanffy growth parameters and, as such, it has no bearing
on the estimated means of the components of the mixture model. However,
care should be taken (supported by expert knowledge) in situations where the
user is not certain of age0, as estimated parameters would differ depending on
the value defined by the user. While age-estimation might be difficult for a
species, this issue could be addressed through tag-recapture studies (Hamel
et al., 2014) or daily increment analysis (Hislop et al., 2001; Brophy et al.,
2021) to validate age0. It is worth noting here, the value of age0 may not be
that important in the main class of assessment models investigated in Chapters
3-5.

A notable limitation of LFEM was that the iterative procedure is relatively
slow and the automatic differentiation of TMB was used to improve the
maximisation. LFEM was also somewhat sensitive to starting parameter values,
occasionally estimating growth parameters that were biologically unrealistic.
The EM algorithm is a well-known procedure for fitting mixture models and
obtaining latent variables (i.e. latent variable in this case being the component
of the length-frequency data that a fish of a given length is likely to belong to)
(McLachlan and Peel, 2004). Convergence of the EM algorithm is generally
slow but stable (Varadhan and Roland, 2008) and is also known to be sensitive
to the choice of starting parameters (Biernacki et al., 2003), which could
explain the sensitivity of LFEM. Correlation of growth parameters could also
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be the cause, as this issue arises in other length frequency models and is
typically dealt with by initially fixing L∞ (Fournier et al., 1990; Taylor and
Mildenberger, 2017). To counteract this sensitivity for LFEM, the procedure
outlined in Chapter 2 was recommended, where a set of sensitivity runs were
used in combination with the model selection criteria (Batts et al., 2019).

Finally, it may be the case that LFEM is somewhat dependent on reasonably
defined components in the length frequency data. Lack of clear components in
larger length classes may lead to higher uncertainty in the growth estimates.
In these cases, LFEM can still be useful, as the variability (i.e. mean of the
normal distribution) of the first component in length frequency data, which
is usually well-defined, can still be modelled with the hierarchical extension.
This analytical method for identifying the recruitment stage in yearly survey
data could provide improved stage-composition data, which in turn could be
used in stage-based assessment models such as those developed in Chapter 3
(Batts et al., 2022).

6.2.2 Stage-based assessment models: a diverse and
useful middle ground

Many different stage-based assessment models have been developed in various
different forms (biomass-based and numbers-based) and varying levels of
complexity (Deriso, 1980; Collie and Sissenwine, 1983; Schnute, 1985, 1987;
Ibaibarriaga et al., 2008; Zhou et al., 2011; Kienzle et al., 2014; Cook and Heath,
2018; Li et al., 2019). Many of these models are tailored to particular stocks or
only tested on single stocks, but these studies show that stage-based models,
whilst comparatively under-utilised, can be reliable stock assessment models.
In addition to demonstrating the ability of stage-based models to perform well
on the real stock of white-bellied anglerfish in Celtic Sea and Bay of Biscay,
Chapter 3 has also given further insight into how well stage-based models
perform more generally. The comprehensive simulation-testing framework in
Chapter 3 (Batts et al., 2022) demonstrated that implementations of CSA and
the Adapted Schnute Observation Error model could estimate stock size to a
good degree of accuracy and fishing mortality to a lesser extent across a range
of simulated stock scenarios.

Chapter 3 gave an opportunity to compare two theoretically different stage-
based assessment models (numbers-based or biomass-based), however, it was
difficult say which model was the ‘best’ overall. The answer was not simple,
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as the Adapted Schnute Observation Error model was the min-max solution
in more scenarios than CSA, whereas CSA was much more consistent in
its convergence and accuracy. As is common in the field of fisheries stock
assessment, the preferred assessment model is dependent on the attributes
of the stock. As CSA was more robust, it lends itself to situations where
little tailoring is needed in the implementation of the assessment model. The
Adapted Schnute Observation Error model requires more thought into the
validity of the growth/mean weight configuration, but the reward is lower
uncertainty in estimates and no estimation of yearly recruitment parameters.
Notwithstanding, the closeness of the CSA stock estimates to the estimates
from the official age-based assessment for white-bellied anglerfish stock adds
extra weight to the argument for CSA.

The combination of traditional age-based assessment models with methods
such as LFEM is one approach to assessing fisheries where age-estimates are
unreliable (e.g. biased) or not possible, however, other forms of stock assess-
ment model with different data requirements are often preferred instead (Smith
and Addison, 2003; Punt et al., 2013). Stage-based models offer an alternative
middle ground between aggregate and compositional models, incorporating
information on recruitment but with simpler population dynamics, suiting
situations where data is lacking or subject to a high degree of uncertainty.
They are also likely to be more robust to assumption violations in comparison
to more complex models. Validation of CSA, specifically to its robustness to
cohort uncertainty in the form of biased age-composition data, was demon-
strated in Chapter 5. Here, fitting of the CSA assessment model to either true
or biased age-composition data resulted in almost exactly the same estimates
of the stock. The CSA assessment model was not affected by changes in
age-composition due to the simplified internal structure of the model.

In general, findings in Chapter 3 indicated that the stage-based models could
be used for assessments on real stocks in the future. Not only on anglerfish
stocks, but in situations where age-composition data is not reliable and where
there is not sufficient data or expertise to apply more complex integrated
assessments such as Stock Synthesis (Methot and Wetzel, 2013). The stage-
based assessment models tested here are a form of relatively simple model that
are likely to be robust to assumption violations and issues with uncertainty
or bias in the data. In addition, they are comparatively easy to run and
check diagnostics. Stage-based assessment models also make good candidates
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for secondary assessment models, which can be used to validate a primary
assessment that is likely to have more complex population dynamics and
assumptions (Mesnil, 2003). However, conducting an extra assessment in the
often time-constrained fisheries stock assessment and advice process may be a
luxury that is not always feasible. There are also likely to be some potential
barriers to the immediate adoption of these models for stock assessment: the
lack of development and testing of biological reference points (although this
is somewhat addressed for CSA in Chapter 5), the fact these models are not
state-space models, and the assumption that the fishery is fully selected. If
these points could be addressed in the further development of this class of
assessment models then there would likely be a wider take-up.

To the author’s knowledge this is the first time the approach found in the
theoretical paper by Schnute (1987) has been implemented. The population
dynamics of this model were intriguing as this approach allowed accurate mod-
elling of the stock without estimating recruitment parameters or assumptions
on the spawning proportion of the stock. However, a caveat for this type of
population dynamics is it is heavily dependent on the stage mean fish weights
and their reliability. Evidence of this impact could be seen with the effect the
growth/mean weight configuration had on both the convergence and accuracy
of the Adapted Schnute Observation Error model. Whilst further investigation
into growth/mean weight configuration is needed, the recommended configura-
tion is growth parameters estimated from a linear regression on stage mean
fish weights paired with sampled stage mean fish weights that are unlikely to
be heavily skewed by selectivity pattern (e.g. mean weights from a survey).

An important point to note was that self-tests indicated that the implemen-
tation of the Original Schnute Process Error model was not a consistent or
reliable assessment model and was intrinsically biased (Deroba et al., 2015).
This was unfortunate and cause for concern, particularly because the model
showed signs of divergence even when there was no observation error on the
survey index or catch biomass. As recommended in Deroba et al. (2015), the
first step was to thoroughly check the code, although no issues were found.
This evidence suggests that the model (or more specifically this interpreta-
tion and implementation of the theoretical model of Schnute (1987)) simply
may not be an adequate assessment model due to underlying structural un-
certainty (Deroba et al., 2015). The importance of self-tests is highlighted
here, as the Original Schnute Process Error model performed reasonably well
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in some instances across the simulation-testing framework and on the real
anglerfish stock, but due to the evidence from the self-tests, the model cannot
be recommended for use in its current form.

In Chapter 4, an R package and vignette for implementing the stage-based
assessment models from Chapter 3 were developed. Both the vignette and
package are a key development, as they enable ease of use of the stage-based
assessment models that were developed for Chapter 3 and also encourage other
users to test the models with different case study fish stocks (Lortie et al.,
2020). Assessment models would be more likely to be adopted for real stocks
if there is accessible documentation and examples of the assessment models in
use.

The vignette demonstrates the stage-based assessment models on the black-
bellied anglerfish stock in the Celtic Seas and Bay of Biscay, which is an
important stock currently managed with survey trends (ICES, 2018). These
preliminary implementations, in Chapter 4, demonstrate that these assessment
models could be used in the future to assess the size and trends of the stock.
Comparing the historical exploitation pattern and stock abundance trends
between the white and black-bellied anglerfish stocks in the Celtic Seas and
Bay of Biscay indicates that for both species the fishing pressure has been
decreasing in recent years and this has lead to a gradual increase in stock
levels (ICES, 2021a,b; Batts et al., 2022).

Furthermore, the vignette offered a convenient space to explore the Schnute
model and its structure in more detail. In Chapter 3 (Batts et al., 2022),
one version of the the theoretical model proposed by Schnute (1987) was
focused upon: that which derives future biomass from surviving biomass using
population dynamics based on stage mean fish weights (Schnute, 1987). Two
other versions proposed in Schnute (1987) were also implemented, which are
outlined and discussed in the vignette. Testing found that the other two
versions were more difficult to optimise with standard optimisers and suggest
using a genetic algorithm for optimisation, such as that found in the ‘GA’ R
package (Scrucca, 2017), may resolve this issue.

6.2.3 Applications to anglerfish stock assessment

This thesis has addressed key challenges facing stock assessment of anglerfish
fisheries that arise from uncertainties in data observation and processing

198



6. General Discussion

(Perez et al., 2005; Farina et al., 2008; Maguire et al., 2008; Richards, 2016;
ICES, 2018). LFEM is a useful tool in stock assessment for estimating and
understanding growth of anglerfish, as demonstrated by the use of the model
in the generation of age-composition data for the white-bellied anglerfish stock
in the Celtic Seas and Bay of Biscay (ICES, 2018). For other anglerfish stocks
where there is uncertainty in growth parameters LFEM could be used in a
similar fashion, perhaps in conjunction with other length frequency analysis
such as ELEFAN (Mildenberger et al., 2017; Taylor and Mildenberger, 2017)
to validate the results. Furthermore, as demonstrated here, anglerfish survey
data typically have a very defined recruit component (Batts et al., 2019),
which would suit a hierarchical LFEM model to objectively define the recruit
stage in yearly length frequency data, before using the stage-composition data
in a stage-based assessment model.

The ability of CSA to fit the white-bellied anglerfish stock in Chapter 3,
estimating both stock numbers and fishing mortality very similar to the
official age-based assessment, demonstrates that CSA is a suitable candidate
assessment model for Lophius species despite the limitations (e.g. assumptions
on selectivity). Chapter 4 further supports this, indicating that stocks such as
the black-bellied anglerfish stock in the Celtic Seas and Bay of Biscay, which
is currently not managed with an assessment model (ICES, 2021a), can be
assessed with the relatively simple stage-based assessment models implemented
in the ‘sbar’ R package.

6.3 Applications to fisheries stock assessment
and management over time

Age-slicing is a common method for obtaining age-composition data for stock
assessments (Hilborn and Walters, 1992; Ailloud et al., 2015). In addition
to accounting for uncertainty and bias in age-estimates or age-composition
data with the methods discussed in Chapters 2-4, it was also important to
understand the impact that age-slicing with a biased growth curve could have
on fisheries stock assessment and management over time. Specifically, Chapter
5 investigated this impact with respect to either an age-based or stage-based
assessment management procedure (MP). Management strategy evaluation
(MSE) is a full feedback system evaluation framework in which these impacts
could be assessed.
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Other knowledge gaps were also addressed in Chapter 5, where CSA and
age-based assessment MPs were generally tested for performance in an MSE
framework and an OM with similar characteristics to white-bellied anglerfish
was used. Here, the development of non-proxy reference points for CSA was
also an important aspect of this research, providing for future stock assessment
and management with CSA. Comparison of the performance statistics outlining
risk and trade-offs of the two contrasting MPs was particularly informative in
highlighting the differences in each MP’s impact on management of a stock.

6.3.1 Implications of biased age-composition data for
management advice and performance

Age-based and stage-based assessment and management were affected by
biased age-composition data in different ways. The perception of the stock
by the age-based assessment model was directly impacted by the shifting
density of age-composition in observations when the growth curve used for
age-slicing was biased. Changes in the ratio between younger and older fish in
observations resulted in the age-based assessment overestimating stock size
and underestimating fishing mortality when the growth rate was biased low
(i.e. more older fish and less younger fish than in reality), and vice versa for
the biased high growth model. Other studies have also found that assumed
faster growth could lead to the larger SSB (and landings) into the future of a
fishery, due the underestimation of the stock (Lai and Gunderson, 1987; Tyler
et al., 1989; Bertignac and De Pontual, 2007). On the other hand CSA was
impacted indirectly by its use of mean weights-at-age in the implementation of
management, moreover, it was impacted in the opposite way to the age-based
MPs. These findings have considerable implications on the sustainability and
potential overexploitation of a stock, suggesting due consideration should be
given to whether an assumed growth model is potentially biased and what
stock assessment model is more suitable.

6.3.2 Performance of stage-based management proce-
dures

To the author’s knowledge, stage-based assessment models have not been
tested within an MSE framework. In addition, development of non-proxy
biological reference points for CSA was a fundamental challenge achieved
in the research in Chapter 5. Results showed that overall the stage-based

200



6. General Discussion

assessment model/reference points combination performed well, if somewhat
more precautionary than the age-based approach (possibly due to general
underestimation of the stock). The challenge was to develop reference points
for a model with numbers-based outputs but still incorporate shifts in catch
biomass-at-equilibrium with changing fishing mortality. In the approach
developed, assumptions on growth, age range and length-weight parameters
were needed, as using catch numbers-at-equilibrium was heavily influenced by
recruits numbers and skewed the estimated Fmsy. Here, CSA reference points
avoid recruitment overfishing (Myers et al., 1994) but cannot, in isolation, say
anything about growth overfishing. This is a reversal of the historical approach
where yield-per-recruit was used to avoid growth overfishing, whereas most
developed countries now construct their fisheries management process around
preventing recruitment overfishing (Hilborn and Walters, 1992; Ben-Hasan
et al., 2021).

The findings outlined above further advance the prospect of using CSA for
stock assessment and fisheries management. However, despite using mean-
weights-at-age to calculate catch biomass-at-equilibrium in the procedure
outlined in Chapter 5, it is important to consider whether numbers-based
biological reference points are a valid and robust approach. Numbers-based
reference points may be susceptible to a mis-match between biomass and stock
numbers at high levels of fishing mortality (low biomass but high numbers).
Also worth mentioning here is the development of reference points for the
Schnute model may be simpler, as it is biomass-based and assumptions of
growth and mean fish weights are implicit in the model already.

6.3.3 Performance of age-based management proce-
dures

Management strategy evaluation essentially links monitoring, advice and policy,
and a key factor of a true MSE is stakeholder engagement (Butterworth, 2007;
Punt et al., 2014). Generally, engagement facilitates open dialogue and aids
identifying key management goals important to the industry (Rademeyer et al.,
2007). Representatives of the Irish fishing industry that exploits the anglerfish
stocks in the Celtic Seas and Bay of Biscay were engaged to inform them
about the research and gain their perspectives on management for the stocks.
Their interest in the project lay in an initial assessment of the status quo (i.e.
whether the ICES advice rule and the MSY approach was a reasonable way
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to manage the stock). Although the operating model used in the MSE was a
simulated population with characteristics based upon white-bellied anglerfish,
the findings indicate that an age-based assessment and the ICES Advice rule
as a combination of assessment and management was reasonable in terms
of yield and sustainability in comparison to another approach (CSA MP) in
non-biased age-composition scenarios. Unfortunately, external circumstances
meant that further planned meetings with stakeholders during the development
of the MSE did not occur, however it is important that the presentation of
these results is followed up in the near future. Continuing the dialogue with
the industry is important to keep the industry informed and maintain a good
relationship between fisheries scientists and the fishing industry. A meeting
of the Irish Fisheries Science Research Partnership (IFSRP) would be an
appropriate setting for this.

6.4 Future directions

There are multiple areas that would be worthwhile pursuing with the LFEM
model. LFEM source code and brief directions for use are readily available,
however development of a LFEM R package for easy implementation of
the model would encourage wider use and testing. Further development of
the LFEM procedure could include extending the model into an integrated
assessment model, similar to MULTIFAN-CL (Fournier et al., 1998), where
LFEM would be integrated with an age-structured population model. The
hierarchical version of such an assessment would be particularly interesting to
develop. In this regard, researchers at Memorial University in Newfoundland
have been in contact to say they are currently developing something along
these lines. Another worthwhile way to extend the hierarchical LFEM model
would be to generally focus on modelling the mixing proportions of the mixture
models and possibly incorporating density-dependence, in order to model the
abundance of a cohort through time. Finally, length frequency distribution
derived cohort growth parameter estimates could also be used to investigate
environmental covariates such as sea temperature (Baudron et al., 2014; Barrow
et al., 2018).

State-space assessment models are common in modern stock assessment, pro-
viding a flexible framework that accounts for both process error and observation
error in the model (Schnute, 1991; Pella, 1993; Gudmundsson, 1994; Freeman
and Kirkwood, 1995; Nielsen and Berg, 2014; Aeberhard et al., 2018). Ex-
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tending the stage-based assessment models implemented in Chapter 3 and 4
would be a sensible progression in the development of the models. Providing
both model process and observation uncertainty can be accounted for in the
extended models, the flexibility would likely improve the models overall, as well
as increasing the likelihood of the stage-based models being used as primary
assessments. Biomass-based (Meyer and Millar, 1999) and numbers-based (Li
et al., 2019) stage-based assessment models have previously been implemented
with a state-space framework within a Bayesian framework. It is also worth
noting that the original implementation of CSA by Collie and Sissenwine (1983)
used a penalised likelihood that could be thought of as an early state-space
model. On the contrary, NOAA (2019) state that their CSA model does not
allow the estimation of process errors as they can be difficult to estimate given
the structure of the model. Exploration of whether this is the case for the
CSA implementation for this thesis would be constructive.

Following the implementation and testing of the Schnute model in this thesis,
there are many possibilities for further extensions, developments and test-
ing for the model. Priority should be given to additional examination of
the growth/mean weight configuration and whether the recommended con-
figuration (see above) can improve the model estimation under logistic or
dome-shaped selectivity scenarios. The good performance of the Adapted
Schnute Observation Error model coupled with the population dynamics where
the relative importance of the biomass of each stage can be changed suggests
that developing a hybrid model, with some aspects of CSA, may be worthwhile.
For example, if the option for stage-specific indices were incorporated into the
model, an interesting question would be whether entire biomass of a stock
could be estimated from solely a recruit index. Such questions could further
stock assessment research hypotheses and testing.

Obtaining suitable reference points is often key for successful fisheries assess-
ment and management (Hilborn and Walters, 1992; Punt, 2006; Kvamsdal
et al., 2016; Hilborn et al., 2020; Silvar-Viladomiu et al., 2021; Zhang and Fong,
2021). Linking the work of Chapters 3-5 was the stage-based stock assessment
model CSA. In Chapter 5, a procedure for estimating biological reference
points was developed, which could be used in combination with an ICES
style harvest control rule to manage a stock with CSA. Further development
and comprehensive testing of this procedure, as well as consideration of other
options (such as using theory on stage mean fish weights from Schnute (1987))
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would be a worthwhile pursuit, particularly considering the potential issue in
high exploitation scenarios.

The MSE framework used to investigate bias in age-slicing was a compre-
hensive full-feedback system evaluation based on life history theory, fishery
understanding, and incorporated widespread uncertainty. This is an impor-
tant development for this particular fishery and the framework can be easily
extended to improve our knowledge of anglerfish assessment and management
more generally. Three such extensions that should be prioritised are: 1) im-
plementation of an alternative OM that is based upon the ICES assessment
model fit for white-bellied anglerfish; 2) investigate other key uncertainties of
anglerfish, such as separation of species in the catch; and 3) further engagement
with the industry. Development of multiple OMs is common practice in MSEs
(Punt et al., 2014) and including one based on the real anglerfish assessment
is a logical step that would provide extra insights into the performance of the
management procedures under different stock dynamics. Regarding suggested
extension 2, as described in the Introduction of the thesis, anglerfish stock
assessment and management are somewhat impeded by a number of issues
and not just age estimation/growth uncertainty. It is important to address
these other uncertainties in an MSE framework, in order to better understand
the impact of those uncertainties and potentially prioritise future research.
The frameworks developed within this thesis could contribute to that effort.
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Analysis of length frequency distributions from surveys is one well-known method for obtaining growth parameter estimates where direct age

estimates are not available. We present a likelihood-based procedure that uses mixture models and the expectation–maximization algorithm

to estimate growth parameters from length frequency data (LFEM). A basic LFEM model estimates a single set of growth parameters that pro-

duce one set of component means and standard deviations that best fits length frequency distributions over all years and surveys. The hierar-

chical extension incorporates bivariate random effects into the model. A hierarchical framework enables inter-annual or inter-cohort

variation in some of the growth parameters to be modelled, thereby accommodating some of the natural variation that occurs in fish growth.

Testing on two fish species, haddock (Melanogrammus aeglefinus) and white-bellied anglerfish (Lophius piscatorius), we were able to obtain

reasonable estimates of growth parameters, as well as successfully model growth variability. Estimated growth parameters showed some sensi-

tivity to the starting values and occasionally failed to converge on biologically realistic values. This was dealt with through model selection

and was partly addressed by the addition of the hierarchical extension.

Keywords: anglerfish Lophius piscatorius, bivariate random effects, EM algorithm, haddock Melanogrammus aeglefinus, LFEM, von Bertalanffy

growth

Introduction
Fish growth is a widely studied aspect of fish biology (Pardo

et al., 2013), reflecting its importance for understanding life his-

tories (Denney et al., 2002), the effects of changing environmental

conditions (Jobling, 2002; Baudron et al., 2014) as well as ecosys-

tem and population dynamics (Quinn and Deriso, 1999; Travers

et al., 2007; Smith et al., 2015). Growth parameters are a funda-

mental component of fisheries stock assessments (Quinn and

Deriso, 1999) and their accurate estimation can be key to ensur-

ing that assessments are reliable (Hilborn and Walters, 1992).

Estimation of other important population dynamics parameters

such as fishing mortality and selectivity depend on the accurate

estimation of growth (Hoggarth, 2006; Maunder et al., 2016).

For teleost fish, growth information is usually obtained by esti-

mating age from incremental growth layers laid down within the

otoliths (fish ear bones), scales or fin rays. When age estimation

using calcified structures is too costly to implement, not practical

or is suspected to give unreliable estimates then other methods

such as tagging or length frequency analysis provide an alternative

means of obtaining growth estimates (Hilborn and Walters,

1992). Clear, unambiguous growth increments are often lacking

in the calcified structures of tropical or deep sea species that are

not exposed to marked seasonal temperature changes, while di-

rect ageing of crustaceans using hard parts still requires further

validation (Kilada and Driscoll, 2017). As a consequence, assess-

ments of fisheries for these species often rely on alternative meth-

ods for estimating age (Sparre and Venema, 1998; Chang et al.,

2012).

The most widely used fish growth model is the von Bertalanffy

growth function (VBGF), which relates length to age using three

parameters; L1 (asymptotic mean length), K (rate of approach to

asymptote), and t0 (the theoretical time at which fish length

VC International Council for the Exploration of the Sea 2019. All rights reserved.
For permissions, please email: journals.permissions@oup.com

ICES Journal of Marine Science (2019), doi:10.1093/icesjms/fsz103

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ic
e
s
jm

s
/a

d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/ic

e
s
jm

s
/fs

z
1
0
3
/5

5
2
8
1
4
8
 b

y
 G

a
lw

a
y
-M

a
y
o
 In

s
titu

te
 o

f T
e
c
h
n
o
lo

g
y
 u

s
e
r o

n
 0

6
 A

u
g
u
s
t 2

0
1
9



equals zero) (von Bertalanffy, 1938). Various modifications of the

traditional VBGF appear in the literature. For example, Schnute

and Fournier (1980) re-parameterized the VBGF to include more

biologically intuitive parameters (i.e. the mean lengths of the first

and last ages of the sampled population and a parameter that

controls growth between ages). Another example is the incorpo-

ration of seasonal oscillation into the VBGF (Pitcher and

MacDonald, 1973; Lloyd-Jones et al., 2016). Other growth func-

tions that have been used to model fish growth include the

Gompertz (Winsor, 1932), allometric (Quinn and Deriso, 1999),

logistic (Cormon et al., 2016), and bi-phasic models (Minte-Vera

et al., 2016); the most appropriate choice of model depends on

the species (Katsanevakis and Maravelias, 2008). Here, the re-

parameterized VBGF was chosen as the underlying model because

of the widespread use of the VBGF and its appropriateness for

length frequency analysis (Schnute and Fournier, 1980).

Growth can often vary spatially, temporally, between cohorts,

between individuals, and within individuals (Quinn and Deriso,

1999; Wang, 1999; Morrongiello and Thresher, 2015). Cohort

effects can vary to a lesser or greater extent depending on the

species and have been linked to environmental changes

(Baudron et al., 2014; Morrongiello and Thresher, 2015).

Accounting for cohort growth variability can also improve stock

assessment models (Whitten et al., 2013). Methods for account-

ing for individual growth variation in length-at-age data have

also been explored, for example Pilling et al. (2002) used a non-

linear random effects model to model growth parameter vari-

ability between individuals length-at-age data. Cadigan and

Campana (2016) developed a hierarchical mixed-effects model

to account for between stock and between individual variability

in length-at-age data. Growth models incorporating random

effects have also been applied to analysis of tagging data, where

between-individual growth variability is often considerable

(Eveson et al., 2015).

In situations where fish cannot be aged directly, length fre-

quency analysis offers an alternative means of estimating fish

growth parameters, provided there is a distinct spawning season

(Hasselblad, 1966; Bhattacharya, 1967; Fournier et al., 1990;

Taylor and Mildenberger, 2017). Perhaps the most prominent

length frequency method in the literature is the robust maximum

likelihood-based estimation procedure MULTIFAN, which is

now incorporated into a length-based statistical catch at age stock

assessment model (Fournier et al., 1990, 1998). The non-

parametric ELEFAN procedure (Pauly, 1987) is also widely used

and has recently been extended into the R environment where

modern optimization algorithms are used to improve its perfor-

mance (Mildenberger et al., 2017; Taylor and Mildenberger,

2017).

Currently available approaches to length frequency analysis

present some limitations. Both MULTIFAN and ELEFAN require

that length bins are defined prior to the analysis, potentially in-

troducing subjectivity to the identification of cohorts. For

ELEFAN it is recommended that L1 be fixed in the initial analysis

and is then re-calculated post-optimization. Both models are also

largely constrained to a single growth curve and do not incorpo-

rate inter-annual or inter-cohort variability in growth (although

this is addressed to some extent in the development of

MULTIFAN-CL) (Fournier et al., 1998). Current limitations

could be addressed by developing a model that uses an expect-

ation–maximization (EM) algorithm to estimate growth parame-

ters (Dempster et al., 1977). This approach would remove the

need to predefine length classes and offers the flexibility to in-

clude variability in growth.

Whilst the EM algorithm is widely used to model length fre-

quency distributions, it has rarely been used to estimate mixture

model parameters with an incorporated von Bertalanffy growth

structure. However, the methodology of MULTIFAN is similar to

the EM algorithm in its application of maximum likelihood the-

ory (Fournier et al., 1990). The “mixdist” package in the R envi-

ronment enables the user to fit a mixture model with component

means constrained to a growth curve and this utilizes an EM al-

gorithm (Macdonald and Du, 2011). In addition, a recent paper

by Lloyd-Jones et al. (2016) used a minorization–maximization

(MM) algorithm (the EM algorithm is a form of MM algorithm)

to estimate seasonally oscillating von Bertalanffy growth over a

year on monthly length frequency data of a crab species

(Lloyd-Jones et al., 2016), where L1 is considered a random vari-

able, although it is not modelled explicitly. These examples leave

much scope for expanding this area of research further.

This study aims to develop a new method, based on the EM al-

gorithm, to model fish growth from length frequency data whilst

incorporating von Bertalanffy growth structure and accounting

for variability in growth between cohorts or years. Gaussian mix-

ture models are developed and fit to length frequency distribu-

tions, where means of components within a cohort (represented

by normal distributions in the mixture models) are restricted to

von Bertalanffy growth. First, a basic version (analogous to

MULTIFAN) of the methodology is introduced and tested using

length frequency data for two fish species; haddock

Melanogrammus aeglefinus and white-bellied anglerfish Lophius

piscatorius. Second, hierarchical models that introduce various bi-

variate random effects, are introduced and tested with the inten-

tion of modelling some of the variation in the recruitment and

growth of the fish species. The overall aim of the study is to intro-

duce an alternative approach to obtaining a range of credible esti-

mates of growth parameters from length frequency data and

account for variability in growth by cohort or year.

Methods
A description of the growth function used within the model is

first introduced, followed by a description of the length frequency

expectation-maximization (LFEM) model itself. A summary of

model parameters, inputs, and outputs is then given, as well as a

description of the model selection criteria and software used for

development. Finally, the two data sources that the LFEM model

is applied to are described.

Growth function

Length frequency distributions were modelled using mixture

models, where the means of the cohorts (normal distributions

within the mixture models) follow a VBGF. Schnute and

Fournier (1980) re-parameterized the classical von Bertalanffy

growth (CVBG) equation into one more appropriate to length

frequency analysis, represented by

li ¼ l þ ðL � lÞ
1� ki�1

1� kM�1
; i ¼ 1; . . .;M ; (1)

where li is the mean length of fish at age ai; l and L are the first

and final component or cohort mean lengths, i.e. l1 and lM,

where M is the maximum age class; k is equivalent to expð�KÞ

2 L. Batts et al.
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and controls the distance between two successive component

means [Equation (1)]. The CVBG parameters can then be calcu-

lated from these parameters using

L1 ¼
L � lkM�1

1� kM�1
; (2)

K ¼ �lnðkÞ; (3)

t0 ¼ a1 �
1

lnðkÞ
ln

L � l

L � lkM�1

� �

; (4)

where L1 is the asymptotic length of the fish, K controls the rate

at which the asymptote is approached, and t0 is the theoretical

time when an individual would have length zero. a1 is the as-

sumed age of the l component. Standard deviation (SD) of the

normal distribution of the component (ri) is either estimated as

constant (CSD) or a linear (LSD) function of component means

(Schnute and Fournier, 1980). The equation for LSD is

ri ¼ s þ ðS � sÞ
li � l

L � l
; i ¼ 1; . . .;M ; (5)

where s is the SD of the first component and S is the SD of the fi-

nal component.

LFEM model and algorithm

This methodology summarizes the basic model developed in this

study where a single set of growth parameters that produce one

set of component means and SDs are estimated (i.e. if l, L, and k

are identical for every cohort then component means in each an-

nual mixture for a particular survey model are identical).

Based on the observed data log-likelihood for a single mixture

model (McLachlan and Peel, 2004), the observed data log-

likelihood for a set of finite mixture models on length frequency

distributions of fish where cohort component means are re-

stricted to the re-parameterized VBGF (RVBG) is

lnLðWÞ ¼
X

V

v¼1

X

R

r¼1

X

nvr

j¼1

lnf
X

M

i¼1

kvrifvriðyjvr ; hvri; a1vÞg; (6)

fvriðyjvr ; hvri; a1vÞ ¼ Nðyjvr ;lvri;rvri; a1vÞ; (7)

lvri ¼ lv þ ðLv � lvÞ
1� ki�1

1� kM�1
; i ¼ 1; . . .;M ; v ¼ 1; . . .;V ; (8)

where the components of the mixture models are normally dis-

tributed [Equation (7)] and their means, lvri, are given by

Equation (8). Component SDs are either assumed constant or

constrained by Equation (5). Indices denote survey (v), year (r),

component (i), and observation (j). W is a vector that contains all

unknown parameters in the model, V is the number of surveys, R

is the number of years, M is the number of components, and nvr
is the total number of fish in any given survey and year. kvri is the

mixing proportion for the ith component in the vth survey in the

rth year, yjvr is the length of fish j in the vth survey in the rth year,

and hvri is the parameters of the ith component in the vth survey

in the rth year. a1v determines the assumed age of first compo-

nent of the vth survey and is used to incorporate surveys of differ-

ing timings by back or forward projecting component means

using Equations (2)–(4).

The complete data log-likelihood can be given as

log LcðWÞ ¼
X

V

v¼1

X

R

r¼1

X

M

i¼1

X

nvr

j¼1

zjvrif log kvri þ log fvriðyjvr ; hvri; a1vÞg;

(9)

where Equations (7) and (8) apply. zjvr is a data label vector dis-

tributed according to a multinomial distribution of length of M

with zjvri ¼ ðzjvrÞi ¼ 1 or 0, according to whether that particular

fish or yj belongs to the ith component in the vth survey in the

rth year (McLachlan and Peel, 2004). However, as we do not

know what component each fish belongs to the EM algorithm

was used to treat zjvri as missing data and estimate W iteratively.

Direct estimation of the observed log-likelihood is possible but

not practical in this case and the EM algorithm offered a

simple framework to implement the model in Minto et al.

(2018). For details on the EM algorithm see Supplementary

Appendix S1.

Hierarchical extensions

Hierarchical models were developed, incorporating bivariate ran-

dom effects and allowing inter-annual or inter-cohort variation

to be modelled. In contrast to the basic model that applies a sin-

gle set of component means to the data, these models allow

cohorts to be modelled through years and surveys. For the hierar-

chical models both “CSD and LSD” models were implemented.

To avoid over-parameterization these hierarchical models were

not extended beyond bivariate random effects and in each model

either the key parameter for the asymptotic length (L) or the

growth parameter (k) is random, not both. The logic behind this

is also discussed by Eveson et al. (2007) and Lloyd-Jones et al.

(2016), suggesting that a random effect on either K or L1 incor-

porates sufficient variability and has less bias than if both parame-

ters were random.

Hierarchical models were fitted using the same number of

components as the best fitting basic model (based on the model

selection criteria described below). Three different hierarchical

model structures were tested: (i) bivariate random effects on co-

hort specific l and L; (ii) bivariate random effects on cohort spe-

cific l and k; (iii) bivariate random effects on cohort specific

l and yearly k. Correlation between the bivariate random effects

in each scenario is also modelled. A random effect on l was spe-

cifically chosen to account for variability in the mean length of

the first component in each cohort. Other random effects were

chosen to investigate and incorporate growth variability. For

details on the model formulation see Supplementary Appendix

S1.

Model parameters, inputs, and outputs

A wide range of starting values for parameters of the basic model

were tested (Table 1, see Table 2 for parameter descriptions),

amounting to over 1000 model runs for each species and each SD

type. To test the suitability of the model selection criteria for

identifying the number of identifiable age classes in the length fre-

quency data, the number of components tested ranged from 3 to

14 for haddock and 6 to 14 for white-bellied anglerfish. SDs for

the random effects of l and k for the haddock hierarchical model

were fixed at expð�5Þ to give the model stability but still retain

the random effect. More information on model stability in the

haddock hierarchical models and general model inputs can found

in Supplementary Appendix S1.

Estimating growth parameters and growth variability 3
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Model selection criteria and standard errors

Through exploratory simulation analysis it was found that Akaike

information criterion (AIC) performed best from a range of

model selection criteria. Model selection for this study was per-

formed by selecting the model with highest observed log-

likelihood value for each “number of components” tested. A vari-

ation on AIC we call “sub-AIC” was used to select the best fitting

model. “sub-AIC” is similar to AIC, however the observed log-

likelihood used is only contributed to by a subset of the length

frequency data where reasonable numbers of fish were observed

(i.e. haddock < ¼ 40 cm& anglerfish <¼ 100 cm). This method

ensures model selection is based on the majority of the data and

not confounded by low fish numbers at high lengths. A similar

method where model deviance is calculated from a subset of

length classes when numbers in some length classes are low was

used in model selection for fish selectivity curves (Millar and

Fryer, 1999).

The EM algorithm does not directly provide estimates of un-

certainty of parameters (McLachlan and Peel, 2004). Standard

errors were approximated by first fitting the model to conver-

gence with the EM algorithm, then using the maximum

likelihood parameter estimates to optimize the observed data log-

likelihood function [Equation (6)] (Minto et al., 2018). Standard

errors were approximated via the delta method with the R pack-

age “TMB” (Kristensen et al., 2016).

Validation for haddock

Age data on the North Sea International Bottom Trawl Survey

(NS-IBTS) are collected on a length-stratified basis. To obtain

unbiased length-at-age data for haddock the length-stratified age

data was used to construct annual age length keys (ALKs).

Annual length frequency distributions (i.e. the same used in the

length frequency analysis) were applied to their respective ALKs

using the method described by Isermann and Knight (2005),

resulting in an assigned age for each individual fish of the length

frequency distribution. To enable comparison to the growth

parameters estimated from the length frequency data alone, a

VBGF was fit to this length-at-age data using maximum likeli-

hood and mean length-at-age was also calculated.

Software

We develop a hybrid EM algorithm that uses the R package

“TMB” within the “maximization” step (Kristensen et al., 2016).

Specifically, complete data log-likelihood functions were written

in Cþþ using the TMB library class, compiled and automatically

differentiated (Kristensen et al., 2016). These objective functions,

including gradients, were then optimized at each iteration with

the statistical software R using the nlminb function within base R

(R Core Team, 2018). The remaining computations of the algo-

rithm and other analysis were conducted with R (R Core Team,

2018). The “FSA” R package (Ogle, 2018) was used to apply ALKs

to the un-aged length frequency data, using the semi-random

method from Isermann and Knight (2005).

Data

Haddock was chosen to validate the method as otolith age readings

and growth parameters derived from lengths at age are reliable.

White-bellied anglerfish was chosen because age readings are consid-

ered unreliable (ICES, 2011) and there is need for a cohort analysis

to build an assessment model on. Both species are characterized by

relatively fast growth and a discrete recruitment season, leading to

Table 1. Summary of the starting values tested for the model

parameters of the basic model.

Species Parameter

Starting values tested

From To By

Haddock l 10 10 NA

L 40 70 10

k 0.6 0.9 0.1

s 6 6 NA

S or r 10 10 NA

No. components 3 14 1

ki 1/No. components NA NA

White-bellied

anglerfish

l 16 16 NA

L 100 130 10

k 0.7 0.99 0.1

s 6 6 NA

S or r 10 10 NA

No. components 6 14 1

ki 1/No. components NA NA

Table 2. Summary of model parameters, and other relevant inputs/

outputs of models.

Notation Type Description

Basic model

L Parameter Mean of final component

l Parameter Mean of first component

k Parameter Controls rate of growth

s Parameter SD of first component

S Parameter SD of final component

j Index Individual fish length

i Index Component number

v Index Survey number

r Index Number of year

kvri Parameter(s) Mixing proportion of ith component in

survey(v) and year(r)

li Output Mean of ith component

ri Output SD ith component

L1 Output CVBG parameter

K Output CVBG parameter

t0 Output CVBG parameter

a1v Input Used to calculate t0
M Input Number of components/ages assumed

present in length frequency data

nvr Input Number of observations(fish) in a given

survey(v) and year(r)

Hierarchical models

Lc Parameter Mean of final component of a cohort

lc Parameter Mean of first component of a cohort

kc Parameter Mean of random effect that controls rate of

growth for a cohort

kr Parameter Mean of random effect that controls rate of

growth for a particular year

rL Parameter SD of random effect on L

rl Parameter SD of random effect on l

rk Parameter SD of random effect on k

qlk Parameter Correlation of bivariate random effects on l, k

for example

lvri Output Mean of ith component in survey(v) and

year(r)

Not all hierarchical model parameters are used in each model.

4 L. Batts et al.
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distinct length cohorts that can be tracked over time. Combined sex

data was used for both species as is convention for haddock and

white-bellied anglerfish in the most recent ICES assessment of the

stock (ICES, 2018c). Survey catch data were obtained from the ICES

DATRAS database (ICES, 2018b). Haddock length frequency data

were from standard roundfish area one of the NS-IBTS (Figure 1).

Only data collected in the third quarter of the year (Q3) were used.

The corresponding age–length key for this area and time of year was

also extracted from DATRAS. Length frequency data for white-

bellied anglerfish were obtained from three surveys that cover the

anglerfish stock in ICES areas 7.b-k, 8.a-b, and 8.d; the French

EVHOE groundfish survey, the Irish groundfish survey (IE-IGFS)

and the Spanish Porcupine groundfish survey (SP-PORC)

(Figure 1). The French and Irish surveys were conducted mainly in

the fourth quarter of the year and the Spanish survey in September.

A Grande Ouverture Verticale fishing gear was used on all surveys

with the exception of the Spanish Porcupine bank survey which

used “porcupine baca” fishing gear (ICES, 2018a).

Results
Haddock

Haddock basic LFEM model

The basic model (single set of growth parameters estimated) was

sensitive to starting parameters. Some of the model runs tended to

converge on k parameter values very close to 1. Whilst these gave

good or even the best model fits according to the sub-AIC model

selection criteria, the classical VBGF parameters were biologically

unreasonable (i.e. L1 tending to very large values). Some model

runs were discarded (406 of 1488 CSD models and 42 of 1488 LSD

models) due to this issue and were identified by choosing an arbi-

trary value of 500 as the cut off for “biologically unreasonable” L1
estimates. To further filter out any spurious models the results were

further refined by identifying and removing any models that had a

second component mean <¼ 15cm. An example of why refining

is important when a wide range of starting parameters are tested

can be found in Supplementary Appendix S2.

A nine component model was the best fitting (lowest sub-AIC)

for CSD and no models above nine components had reasonable fits

for this SD type. LSD models gave generally lower sub-AIC values

than CSD models and the best fitting model overall had 12 compo-

nents and LSD (Table 3). Within both SD types, but particularly in

LSD models, parameter estimates, and component means were con-

sistent across the range of number of components tested (Tables 3

and 4). When compared to the VBGF estimated from length-at-age

data (K̂ ¼ 0:499; L̂1 ¼ 39:5; and t̂0 � 0), the VBGF from the

best fitting basic LSD model is similar, although it does slightly un-

derestimate early age mean lengths (Figure 2). The best fitting basic

CSD model follows a similar growth pattern until the fifth

45

50

55

60

−15 −10 −5 0 5

Longitude

L
a

ti
tu

d
e

haddock

white−bellied anglerfish

Figure 1. Areas of survey coverage from where length frequency data were obtained for haddock (standard roundfish area one of the NS-
IBTS) and white-bellied anglerfish (EVHOE, IE-IGFS, and SP-PORC).

Estimating growth parameters and growth variability 5

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ic
e
s
jm

s
/a

d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/ic

e
s
jm

s
/fs

z
1
0
3
/5

5
2
8
1
4
8
 b

y
 G

a
lw

a
y
-M

a
y
o
 In

s
titu

te
 o

f T
e
c
h
n
o
lo

g
y
 u

s
e
r o

n
 0

6
 A

u
g
u
s
t 2

0
1
9



component, the following component means then appeared to

overestimate the mean length of fish in comparison to the LSD

model and the length-at-age estimated model fit (Figure 2).

Estimated SD was very similar within SD types (Table 4).

Haddock hierarchical LFEM model with cohort specific l and k

Overall CVBG parameters for the hierarchical CSD model (K̂ ¼
0.241, L̂1 ¼ 52.9 cm, and t̂0 ¼ �0.31) were similar to those given

by the basic CSD model and followed a similar trajectory.

Hierarchical LSD model parameters (K̂ ¼ 0.394, L̂1 ¼ 42.1 cm�
and t̂0 ¼ �0.06) were also similar to estimates from its corre-

sponding basic model (Table 3 and Figure 2).

The performance of the hierarchical l and k LSD model (cor-

responding to the best fitting basic model) was examined in

more detail. Ranges of the cohort specific L1 estimates were

41.8–42.5 cm for L̂1 and 0.334–0.463 for K̂ . Correlation

Table 3. von Bertalanffy growth parameters from (lowest sub-AIC) model runs on haddock length frequency data after refining valid model

runs.

SD type No. components

RVBG parameters CVBG parameters

sub-AICl̂ (cm) L̂ (cm) k̂ L̂1 (cm) K̂ t̂0

CSD 3 10.5 (0.008) 32.4 (0.007) 0.816 (0.0012) 76 0.20 �0.10 6 167 506

4 10.3 (0.006) 37.1 (0.011) 0.780 (0.0007) 61 0.25 �0.12 6 031 048

5 10.3 (0.005) 39.7 (0.014) 0.754 (0.0006) 53 0.28 �0.13 5 989 126

6 10.3 (0.005) 41.8 (0.018) 0.750 (0.0005) 51 0.29 �0.15 5 974 158

7 10.3 (0.005) 43.0 (0.021) 0.752 (0.0005) 50 0.29 �0.18 5 957 923

8 10.4 (0.004) 44.0 (0.022) 0.761 (0.0004) 49 0.27 �0.23 5 946 292

9 10.4 (0.004) 45.0 (0.026) 0.773 (0.0004) 50 0.26 �0.27 5 941 101

LSD 3 10.1 (0.003) 31.3 (0.008) 0.854 (0.0013) 88 0.16 �0.14 5 982 480

4 10.1 (0.003) 34.9 (0.012) 0.720 (0.0007) 49 0.33 �0.07 5 918 972

5 10.1 (0.003) 37.0 (0.015) 0.689 (0.0006) 44 0.37 �0.06 5 901 698

6 10.1 (0.003) 37.5 (0.016) 0.665 (0.0005) 41 0.41 �0.06 5 889 986

7 10.1 (0.003) 38.4 (0.018) 0.661 (0.0005) 40 0.41 �0.06 5 886 624

8 10.1 (0.003) 39.0 (0.020) 0.658 (0.0004) 40 0.42 �0.06 5 885 749

9 10.1 (0.003) 39.5 (0.021) 0.658 (0.0004) 40 0.42 �0.06 5 885 240

10 10.1 (0.003) 40.0 (0.023) 0.661 (0.0004) 40 0.41 �0.06 5 885 145

11 10.1 (0.003) 40.4 (0.024) 0.663 (0.0004) 40 0.41 �0.07 5 885 031

12 10.1 (0.003) 40.6 (0.025) 0.665 (0.0004) 40 0.41 �0.07 5 885 004

13 10.1 (0.003) 40.8 (0.026) 0.666 (0.0004) 41 0.41 �0.07 5 885 005

14 10.1 (0.003) 40.9 (0.027) 0.667 (0.0004) 41 0.41 �0.07 5 885 023

Number of components is the number of ages assumed to be present in the data. Rows highlighted in grey are the models with the lowest sub-AIC model selec-

tion criteria values. Estimated standard errors for the corresponding RVBG parameters are given in parentheses. RVBG parameter estimates are given to 3 s.f.

and CVBG to 2 s.f.

Table 4. Component/cohort means and their SD parameters for haddock, corresponding to the basic models presented in Table 3.

SD type No. components

Component

ŝ Ŝ1 2 3 4 5 6 7 8 9 10 11

CSD 3 10.5 22.6 32.4 3.66

4 10.3 21.5 30.2 37.1 2.89

5 10.3 21.0 29.0 35.1 39.7 2.65

6 10.3 20.6 28.4 34.2 38.5 41.8 2.50

7 10.3 20.2 27.7 33.3 37.5 40.7 43.0 2.39

8 10.3 19.8 27.0 32.4 36.6 39.8 42.2 44.0 2.29

9 10.4 19.4 26.4 31.9 36.1 39.3 41.8 43.8 45.3 2.21

LSD 3 10.0 21.5 31.3 1.63 4.93

4 10.1 21.1 29.1 34.9 1.65 4.59

5 10.1 20.9 28.3 33.5 37.0 1.66 4.42

6 10.1 20.7 27.7 32.4 35.5 37.5 1.67 4.28

7 10.1 20.6 27.5 32.1 35.1 37.1 38.4 1.67 4.23

8 10.1 20.6 27.4 32.0 34.9 36.9 38.2 39.0 1.68 4.22

9 10.1 20.5 27.4 31.9 34.9 36.8 38.1 39.0 39.5 1.68 4.21

10 10.1 20.5 27.4 31.9 34.9 36.9 38.2 39.1 39.6 40.0 1.68 4.20

11 10.1 20.5 27.3 31.9 34.9 36.9 38.3 39.1 39.7 40.1 40.4 1.68 4.19

12 10.1 20.4 27.3 31.9 34.9 37.0 38.3 39.2 39.8 40.2 40.4 40.6 1.68 4.18

13 10.1 20.4 27.3 31.9 34.9 37.0 38.3 39.2 39.8 40.2 40.5 40.7 40.8 1.68 4.18

14 10.1 20.4 27.3 31.9 35.0 37.0 38.3 39.3 39.9 40.3 40.5 40.7 40.8 40.9 1.69 4.18

In the case of CSD models S ¼ s but values are only given in the final (S) column.

6 L. Batts et al.
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parameter q̂ for the random effects l and k was estimated as

�0.23. Cohort-specific random effects gave the model flexibility

in its estimated growth trajectories for each cohort. When exam-

ining the cohorts that were observed at least until the ninth

component over the period analysed (2000–2009) the estimated

cohort growth curves from this study’s hierarchical model ap-

pear to fit reasonably well in some cohorts (e.g. cohorts 2002,

2003, and 2004) and very well in others (e.g. cohorts 2000, 2005,

and 2009) (Figure 3). When cross-referenced with Figure 4 the

hierarchical model cohort curves that are very similar to length-

at-age estimated cohort curves are those cohorts where a strong

signal can be seen through a number of years (i.e. cohort 2000)

(Figures 3 and 4). Deviations (difference between LFEM model

length-at-age and ML estimated length-at-age) of these cohorts

showed that in the early ages of some cohorts the hierarchical

LFEM model underestimated the mean length-at-age in com-

parison to the ML fit on the length-at-age data (Supplementary

Appendix S2). In the later years of the length frequency distribu-

tions the hierarchical model begins to severely underestimate

growth (Figure 4). Also of note is the flexibility the random ef-

fect on the mean of the first component (l) gives when model-

ling the shifting position of the first component over the years,

such as in 2006 or 2013 (Figure 4).

White-bellied anglerfish

White-bellied anglerfish basic LFEM model

As with haddock, the basic LFEM model was sensitive to starting

parameters, particularly k and some of the model runs tended to

converge on k parameter values very close to 1. These models

often gave good or even the best model fits according to the sub-

AIC model selection criteria, however the classical VBGF parame-

ters were biologically unreasonable (i.e. L1 tending to very large

values). A large number of model runs was discarded (720 of

1080 CSD models and 740 of 1080 LSD models) due to this issue

and were identified by choosing an arbitrary value of 500 as the

cut off for “biologically unreasonable” L1 estimates.

Overall, the nine component model for LSD was best fitting

(lowest sub-AIC) and LSD models consistently had lower sub-

AIC values than their counterpart CSD models. For LSD models

as the number of components assumed was increased the final

component means (L) increased, as did the CVBG parameter K,

while L1 decreased. CSD models showed no such pattern

(Tables 5 and 6).

Component means were consistent between and within SD

types up to the fourth component particular for models with an

assumed number of components of 11 or above. LSD model

component means did not change with increasing number of

components assumed and the best fitting model across all models

(LSD, nine components) had very similar component means to

the best fitting CSD model (Table 6). When plotted on the raw

length frequency data the best fitting basic model appears to fit

the data reasonably well in some years but not in others and co-

hort progression can be seen up until the seventh component in

some cohorts (Figure 6a).

The growth curve of the parameters estimated from the best

fitting basic LFEM model differs somewhat from the growth

curves estimated in a previous study (Landa et al., 2013). Growth

curves were reasonably similar up to age six, although this study’s

VBGF shows marginally faster growth. After age six the growth

curves begin to diverge more, with this study estimates of length-

at-age markedly higher (Figure 5a).

Figure 2. Length-at-age data and estimated von Bertalanffy growth
curves for haddock. Showing mean length-at-age, the von Bertalanffy
model fit (maximum likelihood estimated) on the length-at-age
data, growth curves from best fitting basic length frequency models,
and overall growth curves (i.e. means of RE parameters) from
hierarchical l/k models. Ages are jittered for visualization.

Figure 3. Length-at-age data and estimated von Bertalanffy growth
curves for cohorts of haddock observed up to at least their 9th
component. Showing mean length-at-age, the von Bertalanffy model
fit (maximum likelihood estimated) on the length-at-age data of the
cohort and cohort-specific growth curves estimated within the LSD
hierarchical model that varies l and k. Ages are jittered for
visualization.

Estimating growth parameters and growth variability 7

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ic
e
s
jm

s
/a

d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/ic

e
s
jm

s
/fs

z
1
0
3
/5

5
2
8
1
4
8
 b

y
 G

a
lw

a
y
-M

a
y
o
 In

s
titu

te
 o

f T
e
c
h
n
o
lo

g
y
 u

s
e
r o

n
 0

6
 A

u
g
u
s
t 2

0
1
9



White-bellied anglerfish hierarchical LFEM model with cohort

specific l and L

Overall CVBG parameters for the hierarchical LSD model with co-

hort specific l and L corresponding to the best fitting basic model

(K̂ ¼ 0.089, L̂1 ¼ 215.2 cm, and t̂0 ¼ -0.14) differed from those

given by the basic model. K̂ was increased and L̂1 reduced dramat-

ically, t̂0 was also slightly reduced. The resulting VBGF curve was

different from the basic model curve as well as the growth curves

from a previous study (Landa et al., 2013). The hierarchical model

showed faster growth than the other curves and estimated compo-

nent means somewhat different from the best fitting basic LFEM

model (Figure 5a). Cohort-specific growth curves from the hierar-

chical LFEM model showed a range of trajectories and cohort L̂1
estimates ranged from 184.9 to 246.6 cm (Figure 5b). The slowest

growing cohort with the lowest estimated L1 (2014 cohort) fol-

lowed a similar trajectory to the basic LFEM model (Figure 5).

There was a negative correlation estimated (q̂ ¼ �0.69) be-

tween the bivariate random effects l and L of each cohort

(Figure 7). The bivariate cohort-specific random effects show a

moderate degree of variation over a few centimetres for l̂ and

�30 cm for L̂. There is also a negative trend in L (Figure 7b).

There is a high degree of uncertainty around estimates of L for

the last few cohorts (Figure 7b).

Other white-bellied anglerfish hierarchical models

Hierarchical models with a cohort specific k or yearly varying k

were also fit to the anglerfish data. In both cases the RVBG

parameter K varies to a large extent between cohorts, however L1
also varies and the resulting cohort curves differ but not dramati-

cally. Parameter estimates can be found in Supplementary

Appendix S3.

Discussion
Overview of LFEM

This study aimed to improve upon currently available approaches

for growth estimation of fish through length frequency analysis.

A basic method utilizing the EM algorithm and analogous to

MULTIFAN (Fournier et al., 1990) was produced. The methodol-

ogy was then extended further to incorporate bivariate random

effects to capture some of the growth variation in length fre-

quency data.

Few studies have modelled growth variation in length fre-

quency data (Fournier et al., 1998; Roa-Ureta, 2010; Lloyd-Jones

et al., 2016). The approach of using a VBGF to constrain mixture

model component means through a time series (i.e. along a co-

hort) whilst explicitly estimating cohort or year specific random

effects on two growth parameters is a worthwhile extension to

this area of research [see Lloyd-Jones et al. (2016) for an alter-

native]. The aim of this integrated approach was to aid identifica-

tion of growth parameters in variable length frequency

distributions obtained from multiple annual surveys.

Furthermore, the associated uncertainty of the parameter esti-

mates is also approximated. Overall both versions of the method-

ology produced reasonable estimates of von Bertalanffy growth

parameters and their variability between cohorts/years. However,
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Figure 4. Length frequency distributions of haddock with fitted distributions from: (a) the lowest sub-AIC basic model (12 components and
LSD) and (b) the corresponding hierarchical model with bivariate random effects on cohort specific l and k. Also shown is the progression of
the cohort mean values. Note that the maximum length of fish was 72 cm but only fish up 45 cm were plotted here as there was little data
above this length, all estimated cohorts are displayed.
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there were problems with convergence to biologically unreason-

able estimates of CVBG parameters particularly in the basic mod-

els, as well as issues with model stability in the hierarchical

models where information was intermittently sparse (i.e. weak or

low abundance cohorts).

Haddock

Basic and overall hierarchical parameter estimates for haddock

were within or close to previously reported ranges (K � 0.1–0.5

and L1 � 45– 55 cm) (Baudron et al., 2011). Parameter estimates

from the best fitting basic model (12 components and LSD) and

overall parameter estimates from the l/k hierarchical LSD model

gave very similar growth curves to that of a maximum likelihood

fit on length-at-age data for fish from the same region and time

of year (Figure 2). CSD models overestimated growth somewhat

in older fish indicating the importance of identifying the correct

SD. When applying their method to data for pike and abalone

Schnute and Fournier (1980) also found that SD treatment was

important when deriving growth from observed length frequen-

cies. The number of components identified by the best fitting ba-

sic LFEM model (12 components) is close to the number of ages

present in the ALK (11 ages). The model selection criterion was

also particularly useful for identifying the more suitable SD type.

The effect of misidentifying component number is also negated

somewhat by the consistency of the component means with dif-

fering number of components (Table 4).

From the hierarchical model (random effects on l and k) we

can see a similar variation in cohort-specific growth parameters

as Baudron et al. (2011) found in their study. Hierarchical

Table 5. von Bertalanffy growth parameters from LFEM model runs that gave the lowest sub-AIC value on white-bellied anglerfish length

frequency data.

SD type No. components

RVBG parameters CVBG parameters

sub-AICl̂ (cm) L̂ (cm) k̂ L̂1 (cm) K̂ t̂0

CSD 8 17.1 (0.090) 114.4 (0.572) 0.966 (0.003) 469 0.035 �0.20 99 430

9 17.0 (0.087) 118.6 (0.621) 0.945 (0.003) 294 0.057 �0.17 99 397

10 17.0 (0.085) 119.9 (0.621) 0.930 (0.003) 232 0.072 �0.17 99 419

11 16.6 (0.082) 125.3 (0.653) 0.974 (0.002) 489 0.026 �0.45 99 341

12 16.6 (0.081) 128.4 (0.699) 0.969 (0.002) 401 0.031 �0.48 99 367

13 16.6 (0.080) 130.1 (0.734) 0.951 (0.002) 267 0.050 �0.40 99 419

14 16.5 (0.078) 126.8 (0.653) 0.940 (0.002) 215 0.062 �0.41 99 444

LSD 8 16.5 (0.076) 107.3 (0.919) 0.941 (0.005) 276 0.061 �0.13 99 112

9 16.3 (0.075) 108.7 (0.997) 0.967 (0.005) 412 0.033 �0.34 99 102

10 16.3 (0.076) 113.1 (0.999) 0.974 (0.004) 471 0.027 �0.45 99 110

11 16.4 (0.076) 114.9 (1.017) 0.951 (0.004) 264 0.051 �0.39 99 173

12 16.4 (0.076) 116.3 (0.992) 0.938 (0.003) 213 0.064 �0.37 99 237

13 16.4 (0.076) 120.1 (1.022) 0.930 (0.003) 195 0.072 �0.34 99 312

14 16.4 (0.076) 122.1 (1.077) 0.921 (0.003) 177 0.082 �0.31 99 393

Number of components is the number of ages assumed to be present in the data. Parameters l and L are those estimated for the surveys that occurred in the

fourth quarter of the year (EVHOE and IE-IGFS). Estimated standard errors for the corresponding RVBG parameters are given in parentheses. RVBG parameters

estimates are given to 3 s.f. and CVBG to 2 s.f. (with the exception of L1). The Spanish survey estimates of can be found in Supplementary Appendix S3.

Table 6. Component/cohort means and their SD parameters for white-bellied anglerfish, corresponding to the basic models presented in

Table 5.

SD type No. components

Component

ŝ Ŝ1 2 3 4 5 6 7 8 9 10 11 12 13 14

CSD 8 17.1 32.5 47.3 61.7 75.5 88.9 101.9 114.4 4.91

9 17.0 32.4 46.9 60.6 73.6 85.8 97.4 108.3 118.6 4.75

10 16.9 32.0 45.9 58.9 71.0 82.3 92.7 102.5 111.5 119.9 4.62

11 16.6 28.8 40.7 52.3 63.5 74.5 85.2 95.6 105.8 115.7 125.3 4.34

12 16.6 28.4 39.8 50.9 61.7 72.1 82.3 92.1 101.6 110.8 119.7 128.4 4.23

13 16.6 28.9 40.6 51.7 62.2 72.3 81.9 90.9 99.6 107.8 115.6 123.0 130.1 4.20

14 16.5 28.5 39.8 50.4 60.3 69.7 78.5 86.7 94.5 101.8 108.6 115.1 121.1 126.8 4.12

LSD 8 16.5 32.0 46.5 60.2 73.1 85.2 96.6 107.3 3.96 11.15

9 16.3 29.3 41.8 53.9 65.6 76.9 87.9 98.5 108.7 3.83 12.03

10 16.3 28.2 39.9 51.2 62.2 72.9 83.4 93.5 103.5 113.1 3.85 9.90

11 16.3 28.6 40.2 51.3 61.8 71.8 81.4 90.4 99.0 107.2 114.9 3.86 9.28

12 16.4 28.6 40.1 50.9 61.1 70.5 79.4 87.8 95.6 103.0 109.9 116.3 3.87 8.55

13 16.4 28.9 40.5 51.3 61.3 70.6 79.3 87.4 94.9 101.9 108.4 114.5 120.1 3.90 7.72

14 16.4 29.1 40.8 51.6 61.5 70.6 79.1 86.8 94.0 100.5 106.6 112.2 117.3 122.1 3.91 7.60

In the case of CSD models S ¼ s but values are only given in the final (S) column.
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model and length-at-age estimated cohort growth curves were

similar in cohorts observed up until the ninth component.

However outside of these cohorts growth was often underesti-

mated, indicating the effect of the lack of information in later

ages. Cohort growth curves that showed the most similar fits to

the data between the two methods also tended to be for cohorts

where strong signals were present in sequential years (Figure 3

and 4).

0 2 4 6 8 10

0

20

40

60

80

100

120

140

Age

L
e

n
g

th
(c

m
)

Landa et al. (2013) − illicia
Landa et al. (2013) − MPA
Basic LSD model
Hierarchical LSD model

0 2 4 6 8 10

0

20

40

60

80

100

120

140

Age

L
e

n
g

th
(c

m
)

Landa et al. (2013) − illicia
Cohorts from hierarchical LSD model

(a) (b)

Figure 5. von Bertalanffy growth curves estimated for white-bellied anglerfish from: (a) the best fitting basic model and overall parameters
from the corresponding hierarchical model with a cohort-specific random effect on l and L, as well as growth curves [estimated from illicia
and modal progression analysis (MPA)] from a previous study (Landa et al., 2013), (b) estimated cohort growth curves from the hierarchical
LSD model with cohort-specific random effects on l and L.
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Figure 6. Length frequency distributions of white-bellied anglerfish from the quarter four IE-IGFS with fitted distributions from: (a) the
lowest sub-AIC basic LFEM model (9 components and LSD) and (b) the corresponding hierarchical model with bivariate random effects on
cohort specific l and L. Also shown is the progression of the cohort mean values (black solid lines). Similar plots for the Spanish Porcupine
Bank survey (SP-PORC) on the French groundfish survey (EVHOE) can be found in Supplementary Appendix S3.
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White-bellied anglerfish

Parameter estimates for white-bellied anglerfish (both sexes com-

bined) were broadly similar to those in the literature, although

differences are more pronounced in the later ages and estimates

of L1 from this study were consistently higher than previously

reported (Farina et al., 2008; Landa et al., 2013).

The basic and hierarchical models produced different growth

curves, despite having the same starting parameters. The 2014 co-

hort from the hierarchical model follows a similar trajectory to

the best fitting basic LFEM model growth curve, indicating that

2014–2016 (the years 2014 cohort is observed) may be dominat-

ing in the estimation of the basic model. Flexibility within the hi-

erarchical model estimated a slower growth for the 2014 cohort,

whilst estimating a slightly faster growth for other cohorts.

Further investigations showed that when years 2014–2016 (these

years had a higher number of fish than other years) were removed

from the data the basic LFEM model component means were

more alike to the hierarchical model estimates for the majority of

years. Subjectively, fitted distributions of the hierarchical model

seem to fit better than the basic LFEM model (Figure 6).

Estimated growth curves predicted faster growth particularly in

the older fish compared to anglerfish age validation studies

(Figure 5) (Farina et al., 2008; Landa et al., 2013). Faster growth

in the later ages was less pronounced in models that assumed a

higher number of components, however these were not selected

as the best fitting model (Table 5).

Model selection based on sub-AIC indicated that a nine compo-

nent model with LSD provided the best fit to the data. Although L.

piscatorius is thought to live frequently to over ten years of age

(Farina et al., 2008), fish of this age are not sufficiently well repre-

sented in the length frequency data to support the selection of a

large number of components. The nine component model pro-

duced a higher estimate of L1 and a lower estimate of K compared

to other studies (Farina et al., 2008; Landa et al., 2013), however,

the estimates of components means and SDs fit the length fre-

quency distributions reasonably well (Figure 6).

As with haddock SD treatment was important. Including a lin-

ear increasing component SD produced components with very

(a)

(b)

Figure 7. Estimated random effects on first (l) and last (L) component means of cohorts from a nine component hierarchical LSD model on
length frequency distributions of white-bellied anglerfish. Shaded area denotes 2*standard error of the random effect estimates and dashed
lines denote the mean of the random effect. Parameter estimates are for quarter four surveys (EVHOE and IE-IGFS).
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wide length distributions and mixing proportions appeared to be

biased towards a single component in some cases. CSD allowed

for more overlap between components and more balanced mixing

proportions but not necessarily a better fitting model (Table 5).

Overall, discrepancies between parameter estimates from this

study and those from studies that use direct ageing methods may

reflect modelling challenges with the data or the difficulties of

obtaining reliable age estimates for anglerfish (ICES, 2011).

Landa et al. (2013) used length frequency analysis techniques to

validate direct ageing of illicia and found good agreement be-

tween the parameter estimates produced by both methods.

However, that study was based on survey data from the

Porcupine Bank while this study also included data from two

other surveys as model inputs. Further difficulty in estimating

growth may have been introduced here by combining data for

males and females as white-bellied anglerfish show sexual dimor-

phism in growth (Farina et al., 2008).

Caveats

The EM algorithm is an accepted method for estimating latent

variables but is sensitive to the choice of starting parameters

(Biernacki et al., 2003), as was evident from the model outputs

presented here. This was accounted for by conducting sensitivity

runs on some of the main parameters (k, L and number of com-

ponents), producing a wide range of values for each parameter es-

timate. Some other starting parameters were fixed, such as the

mean of the first component (l) and the starting mixing propor-

tions, which was arbitrarily set as 1=No: components. It is likely

that the starting mixing proportions in conjunction with a k

growth rate parameter drove the variation in parameter estimates

at convergence. Lloyd-Jones et al. (2016) modelled length fre-

quency distributions using a methodology similar to the one

employed here, but used a MM algorithm to estimate parameters.

The number of sensitivity runs was large for this study (>1000

for each SD type) and a wide range of starting parameter values

was used. Many k parameter starting values were very different

from known estimates, which may partially account for the num-

ber of model runs that were excluded before further analysis. This

study’s approach to parameter sensitivity by multiple model runs

followed by exclusion of models with “biologically unreasonable”

parameter estimates is a robust method for dealing with the sensi-

tivity, although caution should be used when setting a threshold

(e.g. this study used a L1 of 500 cm, so as not to introduce sub-

jectivity into model selection). Haddock required a further refin-

ing of models by identifying and removing any models with a

second component mean <¼15 cm. Second component means

<¼15 cm were caused by certain (slow growth) starting parame-

ters and the second component mixing proportion tending to

zero.

In this study, the sub-AIC model selection criteria appeared to

work reasonably well (details of sub-AIC are given in “Model se-

lection criteria and standard errors” section). sub-AIC was chosen

as the model selection criteria in part due to the performance of

AIC in exploratory simulation analysis with the LFEM model.

AIC was able to identify the correct number of components when

the SD of components was small (�1), as did Bayesian informa-

tion criterion (BIC). With increasing SD of length frequency data

AIC was more robust, still under-fitting the data somewhat but

much less severely than other model selection criteria. However,

model selection is often problematic in studies such as this, hence

should be conducted cautiously using expert knowledge of the

species in question (Schnute and Fournier, 1980; Fournier et al.,

1990; Taylor and Mildenberger, 2017).

Correlation between parameters could contribute to the ob-

served variation in parameter estimates. CVBG parameters (K

and L1) have been shown to covary strongly (Gallucci and

Quinn, 1979; Pilling et al., 2002). Here, the re-parameterized von

Bertalanffy growth parameters appeared strongly correlated, with

many combinations of k and L parameters resulting in very simi-

lar model fits. The same issue arises with other length frequency

analysis methods such as MULTIFAN and ELEFAN and is usually

dealt with by fixing either K or L1 in the initial stages of the

analysis (Fournier et al., 1990; Taylor and Mildenberger, 2017).

Variation in estimated maximum likelihood parameters could

also be driven by the substantial variability that exists in the input

data.

Hierarchical models appeared to be less sensitive to the choice

of starting parameters, although due to computational demands

these models were not subjected to the same level of sensitivity

testing. Model testing using the haddock data showed that when

length frequency data indicates very variable recruitment (i.e. in

some years the first component is almost not present) the hierar-

chical model initially struggled to estimate these components,

shifting the first component to the second component position

and thus confounding estimates of cohort progression. It seemed

that there was not sufficient information within the estimated dis-

tribution of the random effect to prevent this. This issue is a form

of the label switching problem that is well known in mixture

models (Yao, 2015). Fixing the SD of the bivariate random effects

at a suitably low value [i.e. exp(�5)] as detailed in “Model selec-

tion criteria and standard errors” section, retained enough flexi-

bility in the model to estimate variable random effects but

sufficient constraint to keep l and k random effects estimates

within reasonable bounds, thus preventing label switching.

Further work

A comprehensive comparison of the basic and hierarchical mod-

els with other methodologies such as MULTIFAN, the updated

ELEFAN procedure, and the more subjective Bhattacharya

method would be a useful avenue for further research

(Bhattacharya, 1967; Fournier et al., 1990; Taylor and

Mildenberger, 2017). In MULTIFAN-CL density dependence can

be included in the structure of the model as abundance of a co-

hort can effect growth rate in some fish species (Fournier et al.,

1998). The hierarchical model presented in this study is currently

designed to model growth variability between cohorts indepen-

dently of cohort abundance but could be modified to include co-

hort abundance as a covariate, increasing complexity and

modelling the connection between mixing probabilities of a

cohort. Laslett et al. (2004) and Roa-Ureta (2010) devised stage-

based approaches to model fitting. A comparison of these stage-

based approaches with hierarchical model presented here would

be useful to the assess the effectiveness of integrating constraints

and random effects into the mixture model parameter estimation.

Currently, the components of the mixture models are assumed

to be normally distributed. Further development of the method

could enable the user to specify alternative distributions such as

log normal, gamma, or other, thus allowing non-normality and

skewness to be modelled (Macdonald and Pitcher, 1979; Lloyd-

Jones et al., 2016).

12 L. Batts et al.
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Conclusions
Use of length frequency analysis to obtain growth parameters is a

well-developed area of research (Hasselblad, 1966; Fournier et al.,

1990, 1998; Taylor and Mildenberger, 2017). These techniques

provide growth information when age of individuals cannot be

determined otherwise. Parameter estimates, their associated un-

certainty and model fits presented here demonstrate the useful-

ness of our method for obtaining growth information from

length frequency data.

Growth parameters are estimated whilst simultaneously fitting

finite mixture models using the EM algorithm. The use of the EM

algorithm removes the need to define length bins, allowing a

more objective set up of the modelling procedure. Models can

take inputs from multiple surveys from different times of year

and offer an alternative framework to other well-known

approaches for estimating growth parameters from length fre-

quency data. Furthermore, within the hierarchical framework we

explicitly model bivariate random effects on growth parameters,

successfully modelling growth variability and allowing trends to

be identified in the estimates.

Where age data are not readily available modelling cohort

growth variability through this study’s methodology can improve

information available for stock assessments (i.e. cohort-specific

growth curves for age slicing). In addition, estimates from these

length frequency models give useful credible estimates of the

boundaries of growth parameters that could be tested for stock

assessments in a simulation context, such as in a management

strategy evaluation (Punt et al., 2013). Finally, length frequency

distribution derived cohort growth parameter estimates could

also be used to investigate environmental covariates such as sea

temperature (Baudron et al., 2014; Barrow et al., 2018).

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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Supplementary Appendix
MS: Estimating fish growth parameters and growth variability from length frequency

data using hierarchical mixture models

Luke Batts, Hans Gerritsen, Deirdre Brophy and Cóiĺın Minto

June 4, 2019

Code and examples of model runs can be found at https://github.com/lbatts/LFEM

1 S1 - Additional methodology

1.1 Model and algorithm

The EM algorithm is a commonly used iterative method for finding the maximum likelihood

parameters of a mixture model, when the model depends on latent variables (Dempster et al.,

1977). In this case the EM algorithm can be used to fit the finite mixture models that are used

to model length frequency distributions of fish. Latent variables are the data labels associated

with each fish length that determine which component of the mixture model the fish belongs to

(i.e. a proxy for age group).

An EM algorithm is made up of two steps; the expectation (E) step and the maximisation

(M) step. The E step requires the calculation of the conditional expectation given the current

estimate of the parameters at the kth iteration (in the first step this is according to some

reasonable starting parameters).

Q(Ψ; Ψ(k)) = EΨ(k){logLc(Ψ)|y} (1.1.1)

Computation of the expected value or posterior probability that each data point (yjvr) belongs

to each component of the mixture model given the observed data (y) and current estimate of

parameters (Ψ(k)) is needed.

EΨ(k)(Zjvri|y) = pr
(k)
Ψ {Zjvri = 1|y} (1.1.2)

= τvri(yjvr; Ψ(k)) (1.1.3)
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Where

τvri(yjvr; Ψ(k)) = λ
(k)
vrifvri(yjvr; θ

(k)
vri)/

M∑

h=1

λ
(k)
vrhfvrh(yjvr; θ

(k)
vrh) (1.1.4)

Using these posterior probabilities in the M step, new estimates of the parameters are found by

maximising the conditional expectation in the following form

Q(Ψ; Ψ(k)) =
V∑

v=1

R∑

r=1

M∑

i=1

nvr∑

j=1

τvri(yjvr; Ψ(k)){logλvri + logfvri(yjvr; θvri, a1v)} (1.1.5)

where.

fvri(yj ; θvri) = N(yjvr;µvri, σvri, a1v) (1.1.6)

µvri = lv + (Lv − lv)
1− ki−1

1− kM−1
; i = 1, ....,M.; v = 1, .., V (1.1.7)

New parameter estimates are then used in the successive E step and so on until the difference

between L(Ψ(k+1)) and L(Ψ(k)) is suitably small (See (Dempster et al., 1977) for details on the

EM algorithm).

1.2 Hierarchical models

Note that random effects are only estimated on the timing of the first survey (v=1), lvr and Lvr

(if present in model) where v > 1 are re- calculated from equations in section 2.5 of the article

and a1v of the survey.

1.2.1 Cohort specific l and L

The observed data log-likelihood for this model for the kth iteration of the algorithm is given

by

logL(Ψ(k)) =

nvr∑

j=1

∫

lc

∫

Lc

log{
V∑

v=1

R∑

r=1

M∑

i=1

λvrifvri(yjvr; θvri, a1v)

+ f(lc;u) + f(Lc;U)dlc dLc} (1.2.1)
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where

f(lc;u) = N(µl, σl) (1.2.2)

f(Lc;U) = N(µL, σL) (1.2.3)

µvri = lvc + (Lvc − lvc)
1− ki−1

1− kM−1
; i = 1, ....,M ; v = 1, .., V ; r = 1, ..R (1.2.4)

and c denotes the cohort, given by

c = r − (i− 1) (1.2.5)

Random effects are modelled on the first (l) and final (L) component means for each observed

cohort. Cohorts of fish increase in length every year according to the cohort specific random

effects on the means of the first and final components and an overall growth parameter (k).

Correlation between cohort specific random effects are accounted for with a correlation param-

eter.

1.2.2 Cohort specific l and k

The observed data log likelihood for this model for the kth iteration of the algorithm is given

by

logL(Ψ(k)) =

nvr∑

j=1

∫

lc

∫

kc

log{
V∑

v=1

R∑

r=1

M∑

i=1

λvrifvri(yjvr; θvri, a1v

+ f(lc;u) + f(kc;U)dlc dkc} (1.2.6)

where

f(lc;u) = N(µl, σl) (1.2.7)

f(k(c);U) = N(µk, σk) (1.2.8)

µvri = lvc + (Lv − lvc)
1− ki−1

c

1− kM−1
c

; i = 1, ....,M ; v = 1, .., V ; r = 1, ..R (1.2.9)

where kc denotes the cohort specific k random effect. Random effects are modelled on the

first (l) component mean and growth parameter (k) for each observed cohort. Cohorts of fish

increase in length every year according to the cohort specific random effects on the mean of the

first component and and growth parameter (k). Correlation between cohort specific random

effects are accounted for with a correlation parameter.
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1.2.3 Cohort specific l and yearly k

The observed data log likelihood for this model for the kth iteration of the algorithm is given

by

logL(Ψ(k)) =

nvr∑

j=1

∫

lc

∫

kr

log{
V∑

v=1

R∑

r=1

M∑

i=1

λvrifvri(yjvr; θvri, a1v)

+ f(lc;u) + f(kr;U)dlc dkr} (1.2.10)

where

f(lc;u) = N(µl, σl) (1.2.11)

f(k(r);U) = N(µk, σk) (1.2.12)

µvri = lvc + (Lv − lvc)
1− ki−1

r

1− kM−1
r

; i = 1, ....,M ; v = 1, .., V ; r = 1, ..R (1.2.13)

Random effects are modelled on the first (l) component for each observed cohort and a yearly

growth parameter (k) . Cohorts of fish increase in length every year according to the cohort

specific random effects on the mean of the first component and and growth parameter (k).

Correlation between cohort specific random effects are accounted for with a correlation param-

eter.

1.3 Hierarchical model stability

In some years of the haddock data there is very little information for the first component of the

mixture model. This created issues with the hierarchical models as the random effects for these

years were able to vary too much, sometimes confounding the fitting of many of the mixture

models around these years. Like with any length frequency analysis method, data or lack of

it can be key. Fixing the SD for the random effects to a suitably small value still allowed

the flexibility of the random effect but restricted it enough that we do not obtain confounding

results. Another way to improve the stability of the hierarchical models for haddock would be

to include more data, either from another survey or other area for example.

1.4 Model inputs etc.

Both versions of the model allow surveys from different periods of the year to be introduced

through the a1v argument, where a1v is the assumed age of the first component. This argument

allows for surveys from different periods of the year to be entered into the models, as long as

a reasonable a1v is assigned to it. For example, assuming a birth date of January 1st, haddock

from the North Sea International Bottom Trawl Survey, which takes place in the third quarter

of the year have an a1v of 0.625 (i.e. the proportion of the year that has passed by the middle

of Quarter 3). Similarly, a1v inputs for white-bellied anglerfish for each survey were as follows:

EVHOE (Q4) = 0.875 (middle of Q4); IE-IGFS (Q4) = 0.875; SP-PORC (Q4) = 0.73 (middle

4



of September).

2 S2 - haddock additional results

2.1 Model selection and inference

Due the wide array of starting parameters that were tested within the sensitivity analysis some

models converged on “biologically unreasonable” L∞ values and occasionally strange models

where the second component mean µ2 was in between the first actual components and converged

to a very very small mixing proportion. This was dealt with by subsetting the models out of

the final model selection.
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(c) Trimmed model runs 2

Figure 1: Final von Bertalanffy parameter estimates and sub-AIC values for best fitting (i.e. lowest sub-AIC values) basic LSD models on haddock
from: (a) the full set of model runs; (b) the trimmed set of model runs with models L∞ < 500 removed and (c) a trimmed set of model runs with
models L∞ < 500 and µ2 <= 15 removed.
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2.2 Deviations

Deviations (i.e. cohort specific means estimated with hierarchical LFEM model - cohort specific

means estimated by ML on length -age-data) indicate some under-estimation in the early years

in some of the observed cohorts.
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Figure 2: Deviations for cohorts of haddock observed at least up to the ninth component. Show-
ing the difference between mean length-at-age from the von Bertalanffy model fit (maximum
likelihood estimated) on the length-at-age data of the cohort and cohort specific mean lengths
estimated within the linear SD hierarchical LFEM model that varies l and k.
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3 S3 - white-bellied anglerfish additional results

3.1 Spanish Porcupine Bank survey for best fitting basic model

Results presented here are for the Spanish Porcupine Bank survey (SP-PORC) which is con-

ducted at a slightly different time of year to the other surveys, hence why component means

differ.

Table 1: Component means and their standard deviation for white-bellied anglerfish for the
Spanish Porcupine Bank survey, corresponding to the model runs presented in the main article

SD type No. components
Component

s S
1 2 3 4 5 6 7 8 9 10 11 12 13 14

CSD

8 14.81 30.27 45.20 59.63 73.57 87.03 100.04 112.60 4.91
9 14.71 30.21 44.85 58.68 71.74 84.08 95.73 106.74 117.13 4.75
10 14.68 29.86 43.98 57.12 69.34 80.70 91.27 101.11 110.25 118.76 4.62

CSD 11 14.84 27.08 38.99 50.60 61.91 72.93 83.67 94.13 104.31 114.24 123.91 4.34
12 14.81 26.69 38.20 49.36 60.17 70.65 80.81 90.66 100.20 109.45 118.42 127.11 4.23
13 14.76 27.14 38.91 50.10 60.75 70.87 80.50 89.65 98.35 106.63 114.50 121.99 129.11 4.20
14 14.73 26.83 38.20 48.88 58.92 68.36 77.22 85.55 93.38 100.74 107.65 114.15 120.26 125.99 4.12

LSD

8 14.20 29.80 44.48 58.28 71.26 83.48 94.96 105.77 3.96 11.15
9 14.42 27.41 39.99 52.15 63.91 75.29 86.30 96.95 107.25 3.83 12.03
10 14.55 26.53 38.19 49.55 60.61 71.38 81.87 92.09 102.03 111.72 3.85 9.90
11 14.52 26.86 38.59 49.74 60.34 70.42 80.00 89.11 97.77 106.01 113.83 3.86 9.28
12 14.52 26.91 38.52 49.41 59.63 69.21 78.19 86.62 94.52 101.93 108.88 115.40 3.87 8.55
13 14.53 27.12 38.84 49.74 59.88 69.32 78.09 86.26 93.86 100.93 107.51 113.63 119.32 3.90 7.72
14 14.51 27.35 39.18 50.07 60.11 69.36 77.88 85.72 92.96 99.62 105.75 111.41 116.61 121.41 3.91 7.60
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3.2 EVHOE fitted distributions for best fitting basic model and

corresponding hierarchical l/L model
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(a) basic LFEM fit on EVHOE
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(b) corresponding hierarchical LFEM model fit to (a) with bivariate random
effects on l and L on EVHOE

Figure 3: Length frequency distributions of white-bellied anglerfish from the quarter four French groundfish survey (EVHOE) with fitted distri-
butions from: (a) the lowest sub-AIC basic LFEM model (9 components and LSD) and (b) the corresponding hierarchical model with bivariate
random effects on cohort specific l and L. Also shown is the progression of the cohort mean values (black solid lines). A similar plot for the Irish
groundfish survey (IE-IGFS) can be found in section 3.2 of the main manuscript.
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3.3 SP-PORC fitted distributions for best fitting basic model and

corresponding hierarchical l/L model
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(b) corresponding hierarchical LFEM model fit to (a) with bivariate random
effects on l and L on SP-PORC

Figure 4: Length frequency distributions of white-bellied anglerfish from the quarter three Spanish Porcupine Bank survey (SP-PORC) with fitted
distributions from: (a) the lowest sub-AIC basic LFEM model (9 components and LSD) and (b) the corresponding hierarchical model with bivariate
random effects on cohort specific l and L. Also shown is the progression of the cohort mean values (black solid lines). A similar plot for the Irish
groundfish survey (IE-IGFS) can be found in section 3.2 of the main manuscript.

12



3.3.1 White-bellied anglerfish hierarchical model with cohort specific l and

k

Overall CVBG parameters for the hierarchical LSD model with cohort specific l and k corre-

sponding to the best fitting basic model (K̂ = 0.093, L̂∞ = 207.7 cm and t̂0 = -0.006) showed a

similar pattern to the previous hierarchical model in that parameter estimates differed to those

given by the basic model. The resulting growth curve was very similar to the l/L hierarchical

model but differed somewhat from the best fitting basic LFEM model. There was also a cor-

relation estimated for cohort l and k random effects (ρ̂ = 0.66). Cohort specific L̂∞ estimates

ranged from 156.9 - 362.7 cm and K̂ estimates ranged from = 0.04 - 0.16. However, as L̂∞ and

K̂ strongly covary these parameters only equate to a couple of centimetres difference in growth

each year between cohorts. Patterns in the cohort specific random effect on k showed marked

variation between cohorts (Figure 5).
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Figure 5: Estimated random effects on cohort specific growth rate parameter (k) from a nine
component hierarchical LSD model on length frequency distributions of white-bellied anglerfish.
Shaded area denotes 2*standard error of the random effect estimates and the dashed line denotes
the mean of the random effect. Parameter estimates are for quarter four surveys (EVHOE and
IE-IGFS).
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3.3.2 White-bellied anglerfish hierarchical model with cohort specific l and

yearly k
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Figure 6: Estimated random effects on year specific growth rate parameter (k) from a nine
component hierarchical LSD model on length frequency distributions of white-bellied anglerfish.
Shaded area denotes 2*standard error of the random effect estimates and the dashed line denotes
the mean of the random effect. Parameter estimates are for quarter four surveys (EVHOE and
IE-IGFS)

Overall CVBG parameters for the hierarchical LSD model with cohort specific l and yearly

k corresponding to the best fitting basic model (K̂ = 0.10, L̂∞ = 194.1 cm and t̂0 ≈0) were

different from those estimated from the basic model but similar to other hierarchical models.

There was a correlation estimated for cohort l and yearly k random effects (ρ̂ = 0.58). L̂∞
estimates ranged from 187.0 - 204.6 cm and yearly K̂ estimates ranged from = 0.03 - 0.18.

Variation in the year specific random effect on k̂ were similar to those of the cohort specific k̂

(Figure 6).
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An alternative method for length frequency analysis and its

application to monkfish

Luke Batts, Cóiĺın Minto, Hans Gerritsen and Deidre Brophy

October 3, 2017

1 Introduction

Much work has been conducted on European anglerfish (Lophius piscatorius and Lophius bude-
gassa) life history traits over the years and much of this has focused on growth patterns
[Farina et al., 2008]. These studies have predominantly used calcified structures with annual
rings to age fish and produce growth estimates, however there has been well documented dif-
ficulties with ageing anglerfish this way [Woodroffe et al., 2003, Farina et al., 2008]. A notable
exception in recent years where age and growth estimation from illicia has been further vali-
dated with various length frequency analyses is Landa et al.s (2013) study on L. piscatorius on
the Porcupine Bank. Using modal progression analysis on length frequency distributions over a
number of years Landa et al. (2013) were able to track a cohort of L. piscatorius through eight
successive years of the Spanish Porcupine Bank survey. Thus providing support for the aging
by illicia that had also been conducted in the study.

Fisheries surveys are an important aspect of fisheries research and offer fishery independent
estimates of abundance and structure of fish populations. Length frequency distributions from
surveys have been used across many marine species to produce growth estimates. With this in
mind this work has looked at developing an alternative approach to mixture models to estimate
modes of cohorts across years and surveys. The intention is to both estimate credible growth
parameters, as well as explore the differences between surveys and the possibility of combining
them.
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2 Methods

2.1 Data

Length frequency data of both Lophius species was used from the three surveys that cover the
anglerfish stock in ICES areas 7.b-k, 8.a-b and 8.d; the French EVHOE survey, the Spanish
Porcupine Bank survey and the Irish Groundfish survey. Preliminary results shown here were
conducted on mixed sex distributions of each species.

2.2 Model and Algorithm

The length frequency distributions were modelled using mixture models, where the means of
the components (distributions within the mixture model) were constrained to follow a von
Bertalanffy growth function, commonly represented by

L(t) = L∞{1− exp[−K(t− T0)]}. (2.2.1)

Where L∞ is the asymptotic length of the fish, K controls the curvature or growth rate, t is the
time step and T0 is the theoretical time when an individual would have length zero. In terms of
length frequency distributions of fish and the components of a mixture model this can be better
represented by

µi = L∞{1− exp[−K(ai − T0)]}. (2.2.2)

Where µi is the mean length of fish at age ai and i = 1, .....,maximum age class(M). Schnute and
Fournier (1980) re-parametrised this equation into one more appropriate to length frequency
analysis and this is represented by

µi = l + (L− l) 1− ki−1
1− kM−1 ; i = 1, ....,M. (2.2.3)

Where l and L are the first and final mean lengths of observed fish cohorts, i.e. µ1 and µM . k is
equivalent to exp(−K) and is a fraction that controls the distance between two successive mean
lengths. The classical von Bertalanffy parameters can then be calculated from these parameters
(see [Schnute and Fournier, 1980] for details).

The parameters of a mixture model (i.e. the mixing proportions of the components as well
as their means and standard deviations) can easily be estimated with maximum likelihood if
the specific component that a measurement belongs to is known. However, this is rarely the
case when analysing length frequency distributions and this study has used the EM algorithm
as the basis for estimating the parameters. The EM algorithm is a commonly used iterative
method for finding the maximum likelihood parameters of a mixture model, when the model
depends on latent variables [Dempster et al., 1977]. The EM algorithm is made up of two steps;
the expectation (E) step and the maximisation (M) step. The E step essentially calculates the
posterior probability for each data point in each component (in the first step some reasonable
starting values for the components are needed in order for these can be calculated). Using this
posterior probability in the M step, we can use maximum likelihood to gain new estimates of
the parameters by maximising the conditional expectation. This study uses an adapted M step,
where the means of the mixture model’s components are constrained to the re-parametrised
von Bertalanffy growth function within the conditional expectation. This process is iterated
many times over, calculating new posterior probabilities from the new parameter estimates,
then re-estimating those parameters and so on until the algorithm converges.
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3 Results and discussion

These results are preliminary and for the moment the model only allows a constant standard
deviation for the components and no yearly effects to be modelled. Multiple surveys and years
are incorporated into the model, here we have assumed that the data from the three surveys
catches nine cohorts/components of the monkfish species. Also of note is that for the calculation
of T0 from l, L, k and number of components/cohorts captured in the survey data, it is assumed
the age of the first cohort is 0. However this can be easily changed in the R function, under the
argument ”age0”.

Table 3.1: von Bertalanffy growth parameters for monkfish species

Species
re-parameterised VBG parameters classical VBG parameters

l(cm) L(cm) k L∞(cm) K T0

L.piscatorius 16.78 117.08 0.929912 244.31 0.072665 -0.979066
L.budegassa 11.07 77.74 0.888131 119.84 0.118635 –0.816986

Table 3.2: Component/cohort means and their standard deviation for monkfish species, assum-
ing surveys capture nine cohorts

Species
Component/cohort

SD
1 2 3 4 5 6 7 8 9

L.piscatorius 16.78 32.72 47.55 61.34 74.17 86.09 97.18 107.49 117.08 4.796
L.budegassa 11.07 23.24 34.04 43.64 52.17 59.74 66.46 72.43 77.76 3.165

Figures 1-3 show length frequency distributions for L.piscatorius through the years of the
surveys, with the components/cohorts modelled by the mixture model overlaid. Figures 4-6
show length frequency distributions for L.budegassa through the years of the surveys, with the
components/cohorts modelled by the mixture model overlaid.

The main advantage of this method has over other length frequency analyses is that it is
completely objective. Issues such as selecting the correct bin size, although may alter how the
data is plotted, has no bearing on the computation of the parameters as the algorithm uses the
individual lengths of each fish. As mentioned previously the model is still being developed and
it is hoped that a variable standard deviation can be incorporated as well as some process for
allowing component means to vary somewhat between years. This may then allow the model to
deal with slight differences in spawning and growth, in addition to ”anomalous” length frequency
distributions such as that in Fig. 5 in the year 2014 or peaks in the distribution before the
first modelled component/cohort. The sensitivity of the algorithm to different numbers of
components will also be tested.
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Figure 1: Length frequency distributions of L.piscatorius across 13 years of survey data from
the French survey (EVHOE), with the fitted normally distributed components of the mixture
model

Figure 2: Length frequency distributions of L.piscatorius across 13 years of survey data from
the Irish Groundfish survey (IE-IGFS), with the fitted normally distributed components of the
mixture model
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Figure 3: Length frequency distributions of L.piscatorius across 13 years of survey data from the
Spanish Porcupine Bank survey (SP-PORC), with the fitted normally distributed components
of the mixture model

5



Figure 4: Length frequency distributions of L.budegassa across 14 years of survey data from
the French survey (EVHOE), with the fitted normally distributed components of the mixture
model

Figure 5: Length frequency distributions of L.budegassa across 14 years of survey data from
the Irish Groundfish survey (IE-IGFS), with the fitted normally distributed components of the
mixture model
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Figure 6: Length frequency distributions of L.budegassa across 14 years of survey data from the
Spanish Porcupine Bank survey (SP-PORC), with the fitted normally distributed components
of the mixture model
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Supplementary Appendices1

MS: Numbers or mass? Comparison of two theoretically different2

stage-based stock assessment models and their ability to model simulated3

and real- life stocks4

Luke Batts, Cóiĺın Minto Hans Gerritsen and Deirdre Brophy5

February 4, 20226

Code and examples of model runs can be found at https://github.com/lbatts/sim sbar. An7

R package was also developed and can be found at: https://github.com/lbatts/sbar8

1 Additional methods9

1.1 Schnute10

1.1.1 Population dynamics11

In this weight structured population model the number of fish in a population can be12

described as a density (as weight is continuous), the integrals for population number (Nt)13

and biomass (N∗
t ) respectively are14

Nt =

∫ V ∞

V

N(w, t)dw(1)

N∗
t =

∫ V ∞

V

wN(w, t)dw(2)

Given the entire fully selected population is comprised of two stages (as described in the15

main text), recruits (numbers Rt and biomass R∗
t ) and previously exploited population16

(numbers Pt and biomass P ∗
t ), these stages can also be represented as such with the17

specific subscripts and superscripts of the stage’s integral18

Rt =

∫ V
′

V

R(w, t)dw(3)

R∗
t =

∫ V
′

V

wR(w, t)dw(4)

Pt =

∫ V ∞

V ′
P (w, t)dw(5)

P ∗
t =

∫ V ∞

V ′
wP (w, t)dw(6)
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It is important to note here that as time is not continuous in this model, there is an19

implicit assumption that growth occurs at the end of the year. Total survival of the20

population from one year to the next is also assumed to be weight-independent (analogous21

to age-structured delay-difference models (Schnute, 1985)). These fundamentals lead to22

the key dynamic equation for a weight structured population model described in Schnute23

(1987) as24

∫ w
′
2

w
′
1

N(w, t)dw = τt

∫ w2

w1

N(w, t)dw(7)

where τt is the fraction of the population that survives total mortality (natural and25

fishing) during year t. This equation states that any fish in the arbitrary weight interval26

[w1, w2] that survives to the next year will reach the weight interval [w
′
1, w

′
2].27

1.1.2 Deterministic equations28

The basic delay-difference equation can be simply described as predicting biomass at29

time t+1 from three basic components: recruitment biomass at t+1, surviving biomass30

from time t and growth of the surviving fish (Deriso, 1980; Schnute, 1985; Hilborn and31

Walters, 1992). Schnute (1987) represents this process with the equation32

N∗
t+1 −R∗

t+1 = τt

(
X

′
t

Xt

)
N∗

t = P ∗
t+1(8)

which states that the biomass in year t + 1 minus recruitment, or previously exploited33

biomass P ∗
t+1, is derived from the surviving biomass from year t multiplied by a growth34

factor of
X

′
t

Xt
as defined in the main text. This implies that the growth of biomass from35

one year to the next depends solely on average weights (growth parameters applied to36

calculate X
′
t are estimated from average weights).37

Schnute (1987) introduces catch C(w, t), spawning stock S(w, t)and the population index38

I(w, t) as similar density functions to equation 1. Three timing parameters were also39

introduced, in addition to multiplying the density functions by w and integrating each40

from V to V∞, to give the key biomass equations41

τtN
∗
t = σ[N∗

t − µC∗
t ]− (1− µ)C∗

t(9)

S∗
t = (1− ν)N∗

t + ντtN
∗
t(10)

I∗t = q[(1− θ)N∗
t + θτtN

∗
t ](11)

where σ is the survival from natural mortality, q is the index catchability and the timing42

parameters are defined as µ fraction of catch removed before natural mortality, ν timing43

of spawning or fraction of total mortality prior to spawning and θ timing of the index44

or fraction of total mortality prior to indexing the population (Schnute, 1987). A key45
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assumption here is that catchability is constant for the survey and is equivalent to the46

fully selected catch.47

Following on from the biomass equations above, τt can be removed from equations 10 and48

11 using 949

S∗
t = [1− ν(1− σ)]N∗

t + ν[1− µ(1− σ)]C∗
t(12)

I∗t = q

(
[1− θ(1− σ)]N∗

t − θ[(1− σ)]C∗
t

)
(13)

Equation 13 predicts a total biomass index from N∗
t , which is comprised of R∗

t and P ∗
t .50

BothR∗
t and P ∗

t are calculated from the biomass in the previous yearN∗
t−1. Schnute (1987)51

also proposes two alternative equations for predicting the population index, making use52

of all three time series of mean weights (X, Z and Y ). ωt is defined as the fraction of53

total biomass in year t due to newly recruited fish and its derivation is detailed in the54

main text.55

ωt values can then used to compute estimates of N∗
t using only either the recruit stage56

R∗
t or the previously exploited population stage P ∗

t .57

N∗
t =

R∗
t

ωt

=
P ∗
t

1− ωt

(14)

We implement this model version that estimates N∗
t from P ∗

t (P ∗
t being calculated from58

N∗
t−1) at each time step.59

1.1.3 Recruitment60

When using a size-structured model, recruits reaching the critical size V are potentially61

different ages depending on the number of years it takes for fish to reach V (Schnute,62

1987). Assumptions within the model hold because regardless of the variable ages within63

the recruits size class [V, V
′
), all fish within this size class will in theory grow on to be64

part of previously exploited biomass in the following year, providing the recruit stage has65

been correctly defined.66

1.1.4 Estimation67

If information on growth is available and weights-at-age are available these can be used68

(as is common for delay-difference models) to estimate growth parameters with a linear69

model. This was the unbiased mean weight/ growth configuration,70

w̄a+1 = W + ρw̄a(15)

where w̄a is the estimated weight-at-age and w̄a+1 is the weight-at-age a year older from71

sampling.72
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Another option, the (potentially) skewed mean weight/ growth configuration, suggested73

as a check by Schnute (1987), can be used to estimate growth parameters through esti-74

mation of a linear model on overall mean weights and previously-exploited stage mean75

weights from catch sampling:76

X
′
t = W + ρX̄t = Z̄t+1(16)

This equation states that the entire population sampled mean weight (X̄) in time t, after a77

year of growth, will be equivalent to the sampled mean weight of the previously-exploited78

population (Z̄) in time t+1. This relationship enables the estimation of the parameters79

W and ρ prior to assessment model by fitting a simple linear model where X̄t and Z̄t+180

are generally calculated from the chosen weight intervals applied to the catch data. When81

fitting these linear models prior to running the assessments, residuals were assumed to82

be normally distributed.83

Table 1: Summary of the starting values for key parameters in the Schnute (1987) as-
sessment model. A hat denotes estimated parameters in the model.

Notation
Starting value

simulated (large demersal/small pelagic) large demersal

σ e−0.25/e−0.7 (fixed) e−0.25 (fixed)
q̂s 1E-08 1E-08, 1E-05, 2E-08

δ̂s 0.1 0.1
λ 0.1 (fixed) 0.2 (fixed)

N̂∗
1 5 x maximum C∗

t age-based assessment value + 1E+04

F̂t 0.5 0.3
ν 0 (fixed) 0 (fixed)
θs 0 (fixed) 0.875, 1, 0.875 (fixed)

1.2 CSA Estimation84

Table 2: Summary of the starting values for key parameters in CSA assessment model.
Hat operator denotes estimated parameters in the model.

Notation
Starting value

simulated (large demersal/small pelagic) large demersal

M 0.25/0.7 (fixed) 0.25 (fixed)
q̂s 1E-08 1E-06,1E-05,2E-06
τ̂s 0.1 0.1
ω 0.1 (fixed) 0.2 (fixed)
θs 0 (fixed) 0.875, 1, 0.875 (fixed)

P̂1 4 x maximum Ct age-based estimated value + 1E+04

R̂t 2 x maximum Ct age-based estimated value + 1E+03

F̂t 0.5 0.3
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1.3 Simulated stocks data generation85

Initial small pelagic fish parameters (von Bertalanfy growth parameters and weight-length86

parameters, weight = aLengthb) were means taken across all entries for Clupea harengus87

harengus from the online Fishbase database (Froese et al., 2021) (L∞ = 30.8 cm, k =88

0.35, t0 = -0.87, a = 6.27E-06, b = 3.09473). Values for length and age where 50% of89

the population are mature were taken from a spring-spawning herring stock assessment90

for Skagerak, Kattegat and western Baltic (L50 = 21.4 cm and a50 = 2.5) (ICES, 2019c).91

Steepness of the stock-recruit function was estimated for the genus using the “Fishlife”92

package in R (Thorson, 2019) and set at 0.73. An value for virgin stock biomass was93

approximated from the spring-spawning herring stock assessment for Skagerak, Kattegat94

and western Baltic and set at approximately the maximum spawning stock biomass the95

assessment estimated (ICES, 2019a). Age range was from 0-8 and natural mortality M96

= 0.7. Natural mortality was constant, estimated through life-history theory (Griffiths97

and Harrod, 2007).98

Initial large demersal fish parameters were those used in the official assessment of the99

Lophius pisctorius stock in ICES areas 7.b-k, 8.a-b and 8.d (L∞ = 171.0 cm, k = 0.1075,100

t0 = -1E-06, a = 3.03E-05, b = 2.82, L50 = 65.6 cm and a50 = 4.5) (ICES, 2019d,b).101

Steepness of the stock-recruit function was estimated for the genus using the “Fishlife”102

package in R (Thorson, 2019) and set at .95. A value for virgin stock biomass was103

approximated by taking the product of spawners-per-recruit at fishing mortality = 0104

and mean recruitment from the 2019 assessment. Age range was from 0-20 and natural105

mortality M = 0.25. Natural mortality was constant and set at the value used in the106

age-based assessment (ICES, 2019b).107

Fishing mortality was set at 0.5 x Fmsy for the entire time series for stocks set up with108

constant harvest dynamics. Fishing mortality for stocks set up with the one-way trip109

harvest dynamics had a steadily increasing fishing mortality from 0.5 x Fmsy towards110

0.8 x Fcrash over the time period. The rate of the increase depended on the length of111

the time series. Finally, stocks set up with the roller-coaster harvest dynamics had an112

increasing fishing mortality from 0.5 x Fmsy to 0.8 x Fcrash for the first third of the time113

series, then stayed at this fishing mortality rate for five years. Fishing mortality was then114

steadily decreased to Fmsy at the end of the time series. Here, Fcrash is the level of fishing115

mortality that will drive the stock to extinction and Fmsy is the level of fishing mortality116

that provides maximum sustainable yield. Values for Fmsy and Fcrash are calculated117

according to the deterministic equations of the simulation model used within FLR (Kell,118

2018).119

Stock-recruitment model for the simulated stocks was a Beverton-Holt function:120

Rt+1 =
aS∗

t

b+ S∗
t

(17)

where S∗
t is spawning stock biomass and Rt is recruit numbers. a and b are the parameters121

of the stock-recruitment curve, equivalent to the maximum or asymptotic number of122

recruits (a) and the spawning stock biomass needed to produce recruitment equal to a/2123

on average (Beverton and Holt, 1957). The S-R function was parameterised for virgin124

biomass and steepness, which were defined for each life-history strategy125
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a =
4 · vb · h

spr0 (5 · h− 1.0)
(18)

b =
vb (1.0− h)

5 · h− 1.0
(19)

where vb is virgin biomass, h is steepness and spr0 is the spawners-per-recruit when126

fishing mortality is zero.127

1.3.1 Selectivity patterns for simulated stocks128
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(a) small pelagic logistic selectivity
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(b) small pelagic dome-shaped selectivity
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(c) large demersal logistic selectivity
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(d) large demersal dome-shaped selectivity

Figure 1: Selectivity patterns for logistic and dome-shaped scenarios for large demersal
and small pelagic life-history strategies
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2 Additional results129

2.1 Simulated stock convergence130

All factors of the simulated stock scenarios, except selectivity pattern, did not not af-131

fect the ability of assessment models to converge with identifiable parameters. This is132

indicated by the approximately equal percentages across factor levels, for each factor, for133

each assessment model (Table 3).134

Table 3: Percentage (to two decimal points) Convergence of assessment runs across the
five assessments and all factors from the simulation framework except selectivity.

Assessment Classifcation
HD LH TS SR AR

c ow rc large demersal small pelagic short long recsd0.1 recsd0.4 nocor 0.6rho

CSA
All parameters are estimable 99.85 100.00 100.00 99.99 99.92 99.90 100.00 99.96 99.94 99.97 99.93
Converged but not all parameters identifiable 0.06 0.04 0.04 0.01 0.03 0.01 0.03
Did not converge 0.08 0.01 0.04 0.06 0.03 0.03 0.01 0.04

S1c

All parameters are estimable 33.33 33.33 36.92 35.72 33.33 35.72 33.33 33.69 35.36 34.60 34.46
Converged but not all parameters identifiable 8.15 6.81 9.40 8.89 7.35 5.76 10.47 7.58 8.65 7.75 8.49
Did not converge 58.52 59.85 53.69 55.39 59.32 58.51 56.19 58.72 55.99 57.65 57.06

S1waa

All parameters are estimable 100.00 100.00 99.60 99.74 100.00 99.74 100.00 99.83 99.90 99.88 99.86
Converged but not all parameters identifiable
Did not converge 0.40 0.26 0.26 0.17 0.10 0.12 0.14

S0c

All parameters are estimable 33.33 33.33 33.65 33.54 33.33 33.54 33.33 33.33 33.54 33.38 33.50
Converged but not all parameters identifiable 66.52 65.90 66.35 65.85 66.67 65.85 66.67 66.51 66.00 66.44 66.07
Did not converge 0.15 0.77 0.61 0.61 0.15 0.46 0.18 0.43

S0waa

All parameters are estimable 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Converged but not all parameters identifiable
Did not converge

2.2 Time series plots for 20 year time series135

Generally, recruitment error, recruitment autocorrelation and time-series length scenarios136

had little effect on the ability of each model to estimate population trends and abundance.137

However, CSA was somewhat affected by differing recruitment scenarios, which was par-138

ticularly evident in stocks set up with constant fishing mortality (HD: c) (Figures 2, 3,139

4, 5, 6, 7).140
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Figure 2: Median estimated stock numbers, as well the corresponding real values for large
demersal life history strategy (A, C, E) and small pelagic life history strategy (B, D, F)
life history strategies for simulated stock scenarios over a short time series (20 years) for
knife-edged (A, B), logistic (C, D) and dome-shaped (E, F) selection patterns. Estimates
from five different assessment models (CSA, S1c, S1waa, S0c and S0waa) over a number
of factors from the simulation framework (i.e. harvest dynamics (HD), recruitment vari-
ability (SR) and recruitment autocorrelation (AR)) are given. As the majority of S1c
and S0c did not converge or could not identify all parameters in logistic or dome-shaped
selection scenarios these models are not shown for these scenarios. A small amount of
runs that did identify parameters for these models were omitted, as estimated values were
very large and prevented comparison of other models.
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Figure 3: Median estimated fishing mortality, as well the corresponding real values for
large demersal (A, C, E) and small pelagic (B, D, F) life history strategies for simulated
stock scenarios over a short time series (20 years) for knife-edged (A, B), logistic (C, D)
and dome-shaped (E, F) selection patterns. Estimates from three different assessment
models (CSA, S1c and S1waa) over a number of factors from the simulation framework (i.e.
harvest dynamics (HD), recruitment variability (SR) and recruitment autocorrelation
(AR)) are given. As the majority of S1c did not converge or could not identify all
parameters in logistic or dome-shaped selection scenarios these models are not shown for
these scenarios. A small amount of runs that did identify parameters for these models
were omitted, as estimated values were very large and prevented comparison of other
models.
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2.3 Time series plots for 40 year time series141
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Figure 4: Median estimated stock numbers, as well the corresponding real values for large
demersal (A, C, E) and small pelagic (B, D, F) life history strategies for simulated stock
scenarios over a long time series (40 years) for knife-edged (A, B), logistic (C, D) and
dome-shaped (E, F) selection patterns. Estimates from five different assessment models
(CSA, S1c, S1u, S0c and S0u) over a number of factors from the simulation framework (i.e.
harvest dynamics (HD), recruitment variability (SR) and recruitment autocorrelation
(AR)) are given. As the majority of S1c and S0c did not converge or could not identify
all parameters in logistic or dome-shaped selection scenarios these models are not shown
for these scenarios. A small amount of runs that did identify parameters for these models
were omitted, as estimated values were very large and prevented comparison of other
models.
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Figure 5: Median estimated fishing mortality, as well the corresponding real values for
large demersal (A, C, E) and small pelagic (B, D, F) life history strategies for simulated
stock scenarios over a long time series (40 years) for knife-edged (A, B), logistic (C, D) and
dome-shaped (E, F) selection patterns. Estimates from three different assessment models
(CSA, S1c and S1u) over a number of factors from the simulation framework (i.e. harvest
dynamics (HD), recruitment variability (SR) and recruitment autocorrelation (AR)) are
given. As the majority of S1c did not converge or could not identify all parameters in
logistic or dome-shaped selection scenarios these models are not shown for these scenarios.
A small amount of runs that did identify parameters for these models were omitted, as
estimated values were very large and prevented comparison of other models.
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2.4 Violin plots for all selectivity patterns, SR and AR scenar-142

ios143
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Figure 6: Distribution of relative error (A, B) and relative standard error (C, D) of the
stock numbers in the current year for large demersal (A, C) and small pelagic (B, D)
life history strategies for simulated stock scenarios with a knife-edged selectivity pat-
tern. Median relative error and median relative standard error is also shown by the
diamond points. Shape of violin plots represent the kernel probability density of the
data. Estimates from five different assessment models (CSA, S1c, S1waa, S0c and S0waa)
over a number of factors from the simulation framework (i.e. harvest dynamics (HD),
recruitment variability (SR) and recruitment autocorrelation (AR)) are given. As the
majority of S1c and S0c did not converge or could not identify all parameters in logistic
or dome-shaped selection scenarios these models are not shown for these scenarios. A
small amount of runs that did identify parameters for these models were omitted, as
estimated values were very large and prevented comparison of other models.
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Figure 7: Distribution of relative error (A, B) and relative standard error (C, D) of fishing
mortality at the start (F1) and end (Fend) of a time series for large demersal (A, C) and
small pelagic (B, D) life history strategies for simulated stock scenarios with a knife-
edged selectivity pattern. Median relative error and median relative standard error is
also shown by the diamond points. Shape of violin plots represent the kernel probability
density of the data. Estimates from three different assessment models (CSA, S1c and
S1waa) over a number of factors from the simulation framework (i.e. harvest dynamics
(HD), recruitment variability (SR) and recruitment autocorrelation (SR)) are given. As
the majority of S1c did not converge or could not identify all parameters in logistic or
dome-shaped selection scenarios these models are not shown for these scenarios. A small
amount of runs that did identify parameters for these models were omitted, as estimated
values were very large and prevented comparison of other models.
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Figure 8: Distribution of relative error (A, B) and relative standard error (C, D) of the
stock numbers in the current year for large demersal (A, C) and small pelagic (B, D) life
history strategies for simulated stock scenarios with a logistic selectivity pattern. Median
relative error and median relative standard error is also shown by the diamond points.
Shape of violin plots represent the kernel probability density of the data. Estimates
from three different assessment models (CSA, S1u and S0u) over a number of factors
from the simulation framework (i.e. harvest dynamics (HD), recruitment variability (SR)
and recruitment autocorrelation (SR)) are given. As the majority of S1c and S0c did
not converge or could not identify all parameters in logistic or dome-shaped selection
scenarios these models are not shown for these scenarios. A small amount of runs that
did identify parameters for these models were omitted, as estimated values were very
large and prevented comparison of other models.
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Figure 9: Distribution of relative error (A, B) and relative standard error (C, D) of fish-
ing mortality at the start (F1) and end (Fend) of a time series for large demersal (A,
C) and small pelagic (B, D) life history strategies for simulated stock scenarios with a
logistic selectivity pattern. Median relative error and median relative standard error is
also shown by the diamond points. Shape of violin plots represent the kernel probability
density of the data. Estimates from assessment models CSA and S1u over a number of
factors from the simulation framework (i.e. harvest dynamics (HD), recruitment vari-
ability (SR) and recruitment autocorrelation (AR)) are given.As the majority of S1c did
not converge or could not identify all parameters in logistic or dome-shaped selection
scenarios these models are not shown for these scenarios. A small amount of runs that
did identify parameters for these models were omitted, as estimated values were very
large and prevented comparison of other models.
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Figure 10: Distribution of relative error (A, B) and relative standard error (C, D) of the
stock numbers in the current year for large demersal (A, C) and small pelagic (B, D) life
history strategies for simulated stock scenarios with a dome-shaped selectivity pattern.
Median relative error and median relative standard error is also shown by the diamond
points. Shape of violin plots represent the kernel probability density of the data. Es-
timates from three different assessment models (CSA, S1u and S0u) over a number of
factors from the simulation framework (i.e. harvest dynamics (HD), recruitment vari-
ability (SR) and recruitment autocorrelation (AR)) are given. A very small number of
runs categorised as ”realistic estimates” for S1c in dome-shaped selection scenarios were
omitted as estimated values were very large and prevented comparison of other models.
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Figure 11: Distribution of relative error (A, B) and relative standard error (C, D) of
fishing mortality at the start (F1) and end (Fend) of a time series for large demersal
(A, C) and small pelagic (B, D) life history strategies for simulated stock scenarios with
a dome-shaped selectivity pattern. Median relative error and median relative standard
error is also shown by the diamond points. Shape of violin plots represent the kernel
probability density of the data. Estimates from assessment models CSA and S1u over a
number of factors from the simulation framework (i.e. harvest dynamics (HD), recruit-
ment variability (SR) and recruitment autocorrelation (AR)) are given. As the majority
of S1c did not converge or could not identify all parameters in logistic or dome-shaped
selection scenarios these models are not shown for these scenarios. A small amount of
runs that did identify parameters for these models were omitted, as estimated values were
very large and prevented comparison of other models.
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2.5 Self-tests for white-bellied anglerfish case study144
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Figure 12: Estimated population numbers (N̂) and ”self-test” replicates for three as-
sessment models; CSA, (A), S0waa (B) and S1waa (C) on on the white-bellied anglerfish
stock in ICES areas 7.b-k, 8.a-b and 8.d. Estimate from actual data (bold black line)
and re-estimated stock numbers from conditional simulations (thin grey lines).
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1 Introduction

Stage-based assessment models offer an alternative middle ground between aggregate and com-

positional models (Hilborn and Walters, 1992; Li et al., 2019). Two well known but theoreti-

cally different approaches to stage-based assessment models are: biomass-based delay-difference

models, first described by Deriso (1980) and developed by Schnute (1985, 1987); Fournier and

Doonan (1987); and numbers-based depletion models, the most well-known of which is the

Catch-Survey Analysis (CSA) (Collie and Sissenwine, 1983; Smith and Addison, 2003). Here

we compare parameter estimation of these distinct approaches.

Schnute (1987) describes a size-based delay-difference model linking population size structure

and mean weights. In the most simple form this consists of two stages of biomass (recruits

and previously exploited biomass) and assumed deterministic growth of all individuals in the

exploited stock. The model also offers flexibility for alternative processes to estimating to-

tal biomass from different assumptions regarding the relative importance of recruitment and

previously exploited biomass.

CSA is a relatively simple two-stage model (numbers of recruits and post-recruits), which has

changed somewhat from the original model first described in Collie and Sissenwine (1983). The

most recent version can be found in the NOAA Fisheries Integrated Toolbox (FIT), where

population dynamics centre on Baranov’s catch equation and estimation is through maximum

likelihood.

We implemented both Schnute (1987) and CSA within the “TMB” framework in R, taking

advantage of automatic differentiation of the likelihood for optimisation. The assessments’

capabilities in accurately modelling both Lophius piscatorius and Lophius budegassa stocks in

the Celtic Sea and Northern Bay of Biscay were investigated.
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2 Methods

2.1 Data

Data for the white-bellied anglerfish stock in ICES areas 7.b-k, 8.a-b and 8.d was collated

from the 2019 ICES stock assessment. This consisted of catch data and three survey indices

that cover the anglerfish stock; a combined index of the French EVHOE survey (Q4) and Irish

Groundfish survey (IGFS, Q4) spanning 2003-2018, Spanish Porcupine Groundfish survey (SP-

PORC, Q3/Q4) spanning 2001-2018, Irish Anglerfish and Megrim Survey (IAMS, Q1) in years

2007-2008 and 2016-2018 .

Data for the black-bellied anglerfish stock in ICES areas 7.b-k, 8.a-b and 8.d was collated from

the 2020 ICES stock assessment. This consisted of catch data and two survey indices that cover

the anglerfish stock; a combined index of the French EVHOE survey (Q4) and Irish Groundfish

survey (IGFS, Q4) spanning 2003-2019 and the Irish Anglerfish and Megrim Survey (IAMS,

Q1) in years 2007-2008 and 2016-2019 .

2.2 key assumptions and things of note

• Both models assume all stages are fully selected, although this can be relaxed in CSA

within the input if external data on selectivity is available (but was not done so here).

• For both species of anglerfish the number of ages to which each survey indices is trimmed

to is quite specific for the a4a assessments, i.e. ages 0-2 for IBTS combined survey, 1-5 for

IAMS and 2-6 for SP-PORC. Schnute and CSA do not allow for this subtlety, although

CSA does allow indices to be classified as “recruit”, “post-recruit” or “whole” population

indices. Schnute inputs are only entire biomass indices.

• For both assessments and species the natural mortality was not estimated and was fixed

at 0.25, as is the case for the age-based assessments. There is ongoing work on whether

these assessments can estimate natural mortality under certain conditions.

• Recruits and previously exploited biomass/post-recruits were crudely split by length;

white-bellied anglerfish recruits were ≤ 25cm, black-bellied recruits were ≤ 15cm (Figure

1).

2.2.1 Schnute

• By using of a time series of mean weights within the model Schnute (1987) provides a

model framework where the entire biomass of the population can be calculated either solely

from the recruitment biomass, solely from the previously-exploited population biomass or

both. All runs presented here were with Schnute version 2, where biomass in a given year

is computed from the previously exploited biomass. This version has the advantage that

no estimation of stock-recruitment parameters is necessary.

• Recruitment biomass at each time step is calculated through a relationship between mean

weights and biomass of each stage.
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Figure 1: Length distributions of survey data aggregated over years. Red line indicates where
cut off length was decided upon for each species
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2.2.2 CSA

• In order to mimic the conditions of the a4a assessments as much as possible IAMS and SP-

PORC (for white-bellied) were only input as post-recruit indices. CSA requires at least

one survey to be split into recruits and post-recruits, IBTS combined survey provided

these two indices.

• Recruitment numbers at each time step are latent states/parameters estimated within the

model.
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3 Results

3.1 white-bellied anglerfish

3.1.1 Schnute model fit
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Figure 2: Model fits of observations in catch (kg) and survey indices (CPUE = kg per unit effort)
compared to predicted values and their uncertainty for white-bellied anglerfish. Surveys are the
combined index for the Irish groundfish and French EVHOE surveys (IE-IGFS/EVHOE), the
Irish monkfish and megrim survey (IE-IAMS) and the Spanish Porcupine bank survey (SP-
PORC). Shaded grey area is 2*standard error of the predicted values of the catch/indices.

5



Biomass

2005 2010 2015

1.2e+08

1.6e+08

2.0e+08

2.4e+08

P
op

ul
at

io
n 

bi
om

as
s 

(k
g)

Numbers

2005 2010 2015

7.50e+07

1.00e+08

1.25e+08

1.50e+08

P
op

ul
at

io
n 

ab
un

da
nc

e
Biomass

2005 2010 2015
8.0e+07

1.2e+08

1.6e+08

2.0e+08

P
re

vi
ou

sl
y 

ex
pl

oi
te

d 
bi

om
as

s 
(k

g) Numbers

2005 2010 2015

6.0e+07

8.0e+07

1.0e+08

1.2e+08
P

re
vi

ou
sl

y 
ex

pl
oi

te
d 

ab
un

da
nc

e

Biomass

2005 2010 2015

2e+06

4e+06

6e+06

8e+06

R
ec

ru
itm

en
t b

io
m

as
s 

(k
g)

Numbers

2005 2010 2015

2.5e+07

5.0e+07

7.5e+07

Year

R
ec

ru
itm

en
t a

bu
nd

an
ce

Biomass

2005 2010 2015

0.2

0.3

0.4

Year

F
is

hi
ng

 m
or

ta
lit

y

Schnute 2 estimates

Age−based model estimates

Figure 3: Comparison of the Schnute assessment and a4a assessment estimated values for white-
bellied anglerfish. Total biomass and numbers, previously-exploited biomass and numbers, re-
cruitment biomass and numbers, and fishing mortality are shown. Shaded grey area is 2*stan-
dard error of the estimated time series.
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3.1.2 CSA model fit

SP−PORC post−recruits (CPUE)
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Figure 4: Model fits of observations in catch (numbers) and survey indices (CPUE = numbers
per unit effort) compared to predicted values and their uncertainty for white-bellied anglerfish.
Surveys are the combined index for the Irish groundfish and French EVHOE surveys (IE-
IGFS/EVHOE), the Irish monkfish and megrim survey (IE-IAMS) and the Spanish Porcupine
bank survey (SP-PORC). Shaded grey area is 2*standard error of the predicted values of the
catch/indices.
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Figure 5: Comparison of the CSA assessment and a4a assessment estimated values for white-
bellied anglerfish. Fishing mortality, total numbers, post-recruit numbers and recruitment num-
bers are shown. Shaded grey area is 2*standard error of the estimated time series.
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3.2 Black-bellied anglerfish
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Figure 6: Model fits of observations in catch (kg) and survey indices (CPUE = kg per unit
effort) compared to predicted values and their uncertainty for black-bellied anglerfish. Surveys
are the combined index for the Irish groundfish and French EVHOE surveys (IE-IGFS/EVHOE)
and the Irish monkfish and megrim survey (IE-IAMS) . Shaded grey area is 2*standard error
of the predicted values of the catch/indices.

9



Biomass

2005 2010 2015

4.0e+07

8.0e+07

1.2e+08

1.6e+08

P
op

ul
at

io
n 

bi
om

as
s 

(k
g)

Numbers

2005 2010 2015

5.0e+07

1.0e+08

1.5e+08

2.0e+08

2.5e+08

P
op

ul
at

io
n 

ab
un

da
nc

e
Biomass

2005 2010 2015

4.0e+07

8.0e+07

1.2e+08

1.6e+08

P
re

vi
ou

sl
y 

ex
pl

oi
te

d 
bi

om
as

s 
(k

g) Numbers

2005 2010 2015

5.0e+07

1.0e+08

1.5e+08

P
re

vi
ou

sl
y 

ex
pl

oi
te

d 
ab

un
da

nc
e

Biomass

2005 2010 2015

1e+06

2e+06

R
ec

ru
itm

en
t b

io
m

as
s 

(k
g)

Numbers

2005 2010 2015
0.0e+00

4.0e+07

8.0e+07

1.2e+08

1.6e+08

Year

R
ec

ru
itm

en
t a

bu
nd

an
ce

Biomass

2005 2010 2015

0.1

0.2

0.3

0.4

Year

F
is

hi
ng

 m
or

ta
lit

y

Schnute 2 estimates

Age−based model estimates

Figure 7: Comparison of the Schnute assessment and a4a assessment estimated values for black-
bellied anglerfish. Total biomass and numbers, previously-exploited biomass and numbers, re-
cruitment biomass and numbers, and fishing mortality are shown. Shaded grey area is 2*stan-
dard error of the estimated time series.
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Figure 8: Comparison of the Schnute assessment and a4a assessment estimated values for
black-bellied anglerfish. Total biomass and fishing mortality for each assessment are shown
individually. Shaded grey area is 2*standard error of the estimated time series.
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3.2.1 CSA model fit
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Figure 9: Model fits of observations in catch (numbers) and survey indices (CPUE = numbers
per unit effort) compared to predicted values and their uncertainty for black-bellied anglerfish.
Surveys are the combined index for the Irish groundfish and French EVHOE surveys (IE-
IGFS/EVHOE) and the Irish monkfish and megrim survey (IE-IAMS) . Shaded grey area is
2*standard error of the predicted values of the catch/indices.
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Figure 10: Comparison of the CSA assessment and a4a assessment estimated values for black-
bellied anglerfish. Fishing mortality, total numbers, post-recruit numbers and recruitment num-
bers are shown. Shaded grey area is 2*standard error of the estimated time series.
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Figure 11: Comparison of the CSA assessment and a4a assessment estimated values for black-
bellied anglerfish. Fishing mortality and total numbers for each assessment are shown. Shaded
grey area is 2*standard error of the estimated time series.
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4 Key points and discussion

4.1 Performance

• The Schnute model fits reasonably closely to both the white-bellied and black-bellied

anglerfish catch/survey indices. However the CSA fit for white-bellied anglerfish is better

in terms of closeness of fit.

• The CSA assessment also out performs the Schnute assessment for white-bellied angler-

fish in terms of closeness to the age-based assessment estimates, however the Schnute

assessment is not that far off, particularly when the biomass estimates are divided by

their relevant mean weights to give numbers in the population. This discrepancy between

biomass estimated in Schnute and biomass estimated in the age-based assessment may be

due to differences in mean weights or differences in numbers of older fish.

• Both assessments gave similar results for the black-bellied anglerfish, estimating biomass/numbers

at quite different absolute values to the a4a assessment. However, the overall trend in es-

timated time series was similar.

4.2 Survey class and selectivity

• It is worth considering that the Schnute model only takes entire biomass indices, whereas

CSA can take total numbers, post-recruit and recruit indices. a4a is even more specific

in its tailoring of indices for the assessment. Schnute still performs reasonably well even

though significantly less information is given to the model and trends are very different

between total biomass and recruit/post-recruit/age range specific indices. CSA performs

very well and this is likely due to its flexibility in fitting to different stages.

• Selectivity is also a key consideration. Both assessments performed assume each stage is

fully selected within the fishery (although differences can be entered as an input in CSA).

Within the a4a assessment difference in selectivity can be taken into account within the

model. We know that neither species is fully selected, particularly black-bellied anglerfish

as the recruits at age 0 are somewhat smaller than white -bellied anglerfish recruits. This

is likely to have an effect on the estimates from each of the assessments but particularly

black-bellied anglerfish.

• CSA is a simpler model than a4a but still has the flexibility to emulate estimated values

from a tailored age-based model, despite relaxed assumptions around selectivity in white-

bellied anglerfish.

• Selectivity may be more of an issue for black-bellied anglerfish. Preliminary results (not

shown in WD) indicate that if fish less than 15cm are removed from the data completely

and 15cm ≥ recruits ≤ 30cm, the Schnute model gives similar similar absolute estimates

to the a4a assessment.
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4.3 Overall

• Currently both these assessment do not include process error but in the future this could

be incorporated.

• Forecasting from these assessments would be possible. Both assessments give yearly re-

cruits to which a S-R model could be fitted or average taken. Yearly fishing mortality is

estimated within both assessments.

• These simpler stage based assessments offer a credible alternative to more complex models.

Taking into account the caveats discussed above, both stage-based methods perform sur-

prisingly well considering the simpler model framework and are likely to be less influenced

by ageing/growth uncertainty.
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Package ‘sbar’
January 30, 2022

Title Stage-based Assessments in R

Version 0.0.0.9000

Description
c(Implementations of the stage-based fisheries assessment models CSA and Schnute (1987). Mod-
els are those detailed and implemented in a manuscript currently under review.)

License GPL (>= 3)

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

URL https://github.com/lbatts/sbar

BugReports https://github.com/lbatts/sbar/issues

Depends R (>= 2.10)

Imports TMB (>= 1.7.18),
reshape2,
ggplot2,
abind,
TMBhelper

LinkingTo TMB

Remotes github::kaskr/TMB_contrib_R/TMBhelper

Suggests rmarkdown,
knitr

VignetteBuilder knitr

R topics documented:
ank78 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
csa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
makesbarclass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
plot.sbarclass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
schnute_obserror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
schnute_orig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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2 csa

Index 13

ank78 ank78

Description

Catch and survey data for black-bellied anglerfish stock in the Celtic Sea and oorthern Bay of Biscay

Usage

ank78

Format

a list of vectors and dataframes

Author(s)

Hans Gerritsen

Examples

data(ank78)
summary(ank78)

csa Prepare an object for a CSA assessment to be used in optimiser

Description

Create list with a TMB framework, including data, gradients and NLL function for a CSA assess-
ment that can be optimised.

Usage

csa(
catch_no,
indices_no,
indices_att,
ts,
selrec = 1,
start_q = 1e-08,
start_surveycv = 0.1,
start_prec0,
start_rec,
start_nmort = 0.2,



csa 3

start_f_calc = 0.3,
start_catchcv = 0.1,
fix_nmort = TRUE,
fix_prec0 = FALSE,
fix_surveycv = FALSE,
fix_catchcv = TRUE

)

Arguments

catch_no numeric vector of catch numbers over time period of assessment

indices_no matrix of survey indices (numbers) of dimensions: no. of indices x no.years

indices_att matrix of survey indices attributes of dimensions: no. of indices x 2. First
column defines survey and second column defines survey type (1 = recruit index,
2 post-recruit index, 3 = whole asessed population index). For example the
minimum needed to run CSA is one survey split into a recruit index and a post-
recruit index, the attribute matrix should look like:

survey type
1 1
1 2

ts numeric. Survey timing parameters

selrec matrix of selection proportions of the recruit indices (in comparison to the post-
recruit index) if known. Dimensions: no. of recruit indices x no. years. Defaults
to 1 for all years (i.e. no difference between recruit and post-recruit indices of a
survey)

start_q Starting values for survey catchability parameters. Default is 1e-6

start_surveycv Starting values for survey cv parameters. Default is 0.1

start_prec0 Starting parameter value for post-recruit numbers at first time step. Default is
4*max(catch.no).

start_rec Starting parameter values for estimated recruit numbers. Default is 2*max(catch.no).

start_nmort Starting parameter value for natural mortality. Default is 0.2

start_f_calc Starting parameter values for estimated fishing mortality. Default is 0.3.

start_catchcv Starting parameter value for catch cv. Default is 0.1

fix_nmort logical. Should natural mortality be fixed in the model

fix_prec0 logical. Should post-recruit numbers in the first time step be fixed in the model.

fix_surveycv logical. Should survey CV be fixed in the model.

fix_catchcv logical. Should catch CV be fixed in the model.



4 csa

Details

csa is simply a wrapper function that gives the output from MakeADFun from TMB, i.e. an objective
function with derivatives, hessian etc. Otimisation and extraction of values from the assessment
models has been kept separate to allow flexibility with optimisation methods as well as easy access
to MakeADFun outputs such as the hessian, gradients etc. See http://kaskr.github.io/adcomp/
_book/Introduction.html and TMB documentation for details. Users should refer to the sbar
vignette by running vignette("intro_to_sbar","sbar") for details on the csa function.

The table below gives the outputs and description of the values that can be extracted from this
assessment model after optimisation and summary(TMB::sdreport(x)) of the csa object.

Output Description
logitqhat logit transformed survey catchability
logphat1 log transformed post-rec numbers at first time step
logrhat log transformed recruitment numbers
logf_calc log transformed fishing mortality
log_surveycv log transformed survey CV
log_catchcv log transformed catch CV
lognmort log transformed natural mortality
phat post-recruit numbers
rhat recruit numbers
bhat total numbers
lnphat log transformed post-rec numbers
lnbhat log transformed total numbers
lnc log transformed catch numbers
c_calc catch numbers
logpred_survey log transformed predicted survey indices
sdsurv Survey index standard deviation
f_calc fishing mortality
phat1 post-rec numbers at first time step
nmort natural mortality
qhat survey catchability

Value

List with components for optimiser in R. This output is that of the function MakeADFun from TMB

Access (transformed) starting values of parameters to be estimated with x$par (where x is the csa
object) to see what parameters are to be estimated.

Examples

## Not run: obj <- csa(catch_n = catch.no, indices_no = obs,
indices_att = indices_att, ts = #'timing, #'start_nmort = nm)
## End(Not run)



makesbarclass 5

makesbarclass Convert sdreport summary into an object of for plotting with class:
sbarclass

Description

Create an object with class:’sbarclass’, which can then be used to quickly plot fit and stock predic-
tions from an sbar assessment

Usage

makesbarclass(x = matrix(), survey_names, cat, ind, years)

Arguments

x the matrix output from summary(sdreport(x)) , where x is an optimised sbar
stock assessment model.

survey_names character vector of survey names

cat numeric vector of catch that was used in the sbar assessment. Used to plot the
fit of the assessment

ind matrix of survey indices that were used in the sbar assessment. Used to plot the
fit of the assessment

years numeric vector of years

Details

See vignette for a detailed example of this function in use.

Value

An object of class:sbarclass

See Also

plot.sbarclass to plot a sbar assessment after using this function.

Examples

## Not run: survnames<- c("IBTS recruits (CPUE)","IBTS post-recruits (CPUE)")
x <- makesbarclass(obs.srep,survnames,catch.no,obs,years)
## End(Not run)



6 plot.sbarclass

plot.sbarclass Plot object of with class ’sbarclass’

Description

Plot an object with class:’sbarclass’, plot fit or stock predictions with ggplot functions

Usage

## S3 method for class 'sbarclass'
plot(x, out = "fit", ...)

Arguments

x object of class:sbarclass

out a character that specifies whether the "fit" or "stock" should be plotted

... No specific usage

Details

See vignette for a detailed example of this function in use.

Value

list

See Also

makesbarclass for to conversion into an object that can be used by this function.

Examples

## Not run:
plot(x,out="fit")

plot(x,out="stock")
## End(Not run)
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schnute_obserror Prepare an object for Schnute Adapted Observation Error Model as-
sessment for an optimiser

Description

Create an object with TMB framework, including data, gradients and NLL function for a Schnute
adapted observation error assessment that can be optimised.

Usage

schnute_obserror(
version = 2,
catch_b,
indices_b,
ts,
mwts,
tsp = 0,
rho,
W,
ind_l_wt = 1,
start_q = 1e-08,
start_indexsigma = 0.1,
start_B0,
start_sigma = exp(-0.2),
start_f_calc = 0.3,
start_rec_a,
start_rec_b,
spawn_prop = 1,
start_catchsigma = 0.1,
fix_sigma = TRUE,
fix_B0 = FALSE,
fix_indexsigma = FALSE,
fix_catchsigma = TRUE,
adrep = FALSE

)

Arguments

version numeric, either 1, 2 or 3. This controls what deterministic equations in the
model are used to derive population biomass. 1 and 2 use the fraction of of total
biomass in a given year due to newly recruited fish. This fraction is derived
from mean weights and detailed in the schnute vignette. version = 3 is the
more classical population dynamics.

1 whole biomass derived from recruit biomass
2 whole biomass derived from previously exploited biomass



8 schnute_obserror

3 whole biomass is a combination of recruit biomass and previously exploited biomass

catch_b numeric vector of catch biomass over time period of assessment

indices_b matrix of biomass surveys (CPUE) of dimensions: no. of surveys x no.years

ts numeric. Survey timing parameters

mwts matrix of mean weights from sampling with dimensions: 3 x no. years. re-
cruit mean weights Ȳ (first row), previously exploited biomass mean weights Z̄
(second row) and entire assessed biomass mean weight X̄ (third row).

tsp numeric. Timing of spawning. Default to 0 (start of year).

rho numeric. Growth parameter, slope of linear growth model.

W numeric. Growth parameter, intercept of linear growth model.

ind_l_wt numeric. Survey weighting in the likelihood. Defaults to 1 fro each survey, ie.e.
equal weighting

start_q Starting values for survey catchability parameters. Default is 1e-6
start_indexsigma

Starting values for survey sd parameters. Default is 0.1

start_B0 Starting parameter value for biomass at first time step. Default is 5*max(catch_b)

start_sigma Starting parameter value fraction of population that survives natural moratlity.
Default is e0.2

start_f_calc Starting parameter values for estimated fishing mortality. Default is 0.3.

start_rec_a Starting parameter value for the ’a’ parameter of the Beverton-Holt stock-recruit
function. The asymptotic biomass of recruits. Default is 1/5*max(catch_b).

start_rec_b Starting parameter value for the ’b’ parameter of the Beverton-Holt stock-recruit
function. The spawning stock biomass needed to produce a/2 on average. De-
fault is 4*max(catch_b).

spawn_prop proportion of biomass that is mature. Defaults to 1 for each year.
start_catchsigma

Starting parameter value for catch sd. Default is 0.1

fix_sigma logical. logical. Should survival be fixed in the model

fix_B0 logical. Should biomass in the first time step be fixed in the model

fix_indexsigma logical. Should survey standard deviation be fixed in the model

fix_catchsigma logical. Should catch standard deviation be fixed in the model

adrep logical. Whether the user would like the ADreport variables (and their deriva-
tives) reported for starting parameters.

Details

schnute_obserror is simply a wrapper function that gives the output from MakeADFun from TMB,
i.e. an objective function with derivatives, hessian etc. Otimisation and extraction of values
from the assessment models has been kept separate to allow flexibility with optimisation meth-
ods as well as easy access to MakeADFun outputs such as the hessian, gradients etc. See http:
//kaskr.github.io/adcomp/_book/Introduction.html and TMB documentation for details.
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Users should refer to the sbar vignette by running vignette("intro_to_sbar","sbar") for de-
tails on the schnute_obserror function.

The table below gives the outputs and description of the values that can be extracted from this
assessment model after optimisation and summary(TMB::sdreport(x)) of the schnute_obserror
object.

Output Description
logitq logit transformed survey catchability
logB0 log transformed biomass in the first time step
logitsigma logit transformed survival of natural mortality
logindex_sigma log transformed survey standard deviation
logcatch_sigma log transformed catch standard deviation
logf_calc log transformed fishing mortality
lnb log transformed total biomass
lnpr log transformed previously-exploited biomass
lnr log transformed recruit biomass
lnN log transformed total numbers
lnPR log transformed previously-exploited or post-recruit numbers
lnR log transformed recruit numbers
lnC log transformed predicted catch numbers
biomass total biomass
B0 total biomass in the first time step
N total numbers
ssb spawning biomass
post_rec previously-exploited or post-recruit biomass
PR previously-exploited or post-recruit numbers
rec_bio recruit biomass
rec_no recruit numbers
C predicted catch numbers
catch_pred predicted catch biomass
logpred_survey log transformed predicted survey indices
omega fraction of total biomass in a given year due to newly recruited fish
mu fraction of the catch removed before natural mortality
index_sigma Survey indices standard deviation
catch_sigma catch standard deviation
sigma survival of natural mortality
logrec_param log transformed recruit parameters from a Beverton-Holt SR function if estimated in versions 1 or 3
rec_param the two recruit parameters fro a Beverton-Holt SR functionif estimated in versions 1 or 3
qhat survey catchability

Value

List with components for optimiser in R. This output is that of the function MakeADFun from TMB

Access (transformed) starting values of parameters to be estimated with x$par (where x is the
schnute_obserror object) to see what parameters are to be estimated.

Examples

## Not run: obj <- schnute_obserror(catch_b = catch_biomass, indices_b = obs,
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ts = timing, mwts = mwts, rho = rho1, W = W1, start_sigma = sigma)
## End(Not run)

schnute_orig Prepare list for Schnute Original Process Error Model assessment in
an optimiser

Description

Create an object with TMB framework, including data, gradients and NLL function for a Schnute
Original Process Error Model assessment that can be optimised.

Usage

schnute_orig(
version = 2,
catch_b,
indices_b,
ts,
mwts,
tsp = 0,
mu = 0.5,
rho,
W,
ind_l_wt = 1,
start_q = 1e-08,
start_indexsigma = 0.1,
start_sigma = exp(-0.2),
start_rec_a,
start_rec_b,
spawn_prop = 1,
fix_sigma = TRUE,
fix_indexsigma = FALSE,
adrep = FALSE

)

Arguments

version numeric, either 1, 2 or 3. This controls what deterministic equations in the
model are used to derive population biomass. 1 and 2 use the fraction of of total
biomass in a given year due to newly recruited fish. This fraction is derived
from mean weights and detailed in the schnute vignette. version = 3 is the
more classical population dynamics.

1 whole biomass derived from recruit biomass
2 whole biomass derived from previously exploited biomass
3 whole biomass is a combination of recruit biomass and previously exploited biomass
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catch_b numeric vector of catch biomass over time period of assessment

indices_b matrix of biomass surveys (CPUE) of dimensions: no. of surveys x no.years

ts numeric. Survey timing parameters

mwts matrix of mean weights from sampling with dimensions: 3 x no. years. re-
cruit mean weights Ȳ (first row), previously exploited biomass mean weights Z̄
(second row) and entire assessed biomass mean weight X̄ (third row).

tsp numeric. Timing of spawning. Default to 0 (start of year).

mu numeric. proportion of catch taken before natural mortality.

rho numeric. Growth parameter, slope of linear growth model.

W numeric. Growth parameter, intercept of linear growth model.

ind_l_wt numeric. Survey weighting in the likelihood. Defaults to 1 fro each survey, ie.e.
equal weighting

start_q Starting values for survey catchability parameters. Default is 1e-6
start_indexsigma

Starting values for survey sd parameters. Default is 0.1

start_sigma Starting parameter value fraction of population that survives natural moratlity.
Default is e0.2

start_rec_a Starting parameter value for the ’a’ parameter of the Beverton-Holt stock-recruit
function. The asymptotic biomass of recruits. Default is 1/5*max(catch_b).

start_rec_b Starting parameter value for the ’b’ parameter of the Beverton-Holt stock-recruit
function. The spawning stock biomass needed to produce a/2 on average. De-
fault is 4*max(catch_b).

spawn_prop proportion of biomass that is mature. Defaults to 1 for each year.

fix_sigma logical. logical. Should survival be fixed in the model

fix_indexsigma logical. Should survey standard deviation be fixed in the model

adrep logical. Whether the user would like the ADreport variables (and their deriva-
tives) reported for starting parameters.

Details

schnute_orig is simply a wrapper function that gives the output from MakeADFun from TMB,
i.e. an objective function with derivatives, hessian etc. Otimisation and extraction of values
from the assessment models has been kept separate to allow flexibility with optimisation meth-
ods as well as easy access to MakeADFun outputs such as the hessian, gradients etc. See http:
//kaskr.github.io/adcomp/_book/Introduction.html and TMB documentation for details.
Users should refer to the sbar vignette by running vignette("intro_to_sbar","sbar") for for
details on the schnute_orig function.

The table below gives the outputs and description of the values that can be extracted from this as-
sessment model after optimisation and summary(TMB::sdreport(x)) of the schnute_orig object.

#’

Output Description
logitq logit transformed survey catchability
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logitsigma logit transformed survival of natural mortality
logindex_sigma log transformed survey standard deviation
lnb log transformed total biomass
lnpr log transformed previously-exploited biomass
lnr log transformed recruit biomass
lnN log transformed total numbers
lnPR log transformed previously-exploited or post-recruit numbers
lnR log transformed recruit numbers
lnC log transformed observed catch numbers
biomass total biomass
N total numbers
ssb spawning biomass
post_rec previously-exploited or post-recruit biomass
PR previously-exploited or post-recruit numbers
rec_bio recruit biomass
rec_no recruit numbers
C observed catch numbers
logpred_survey log transformed predicted survey indices
omega fraction of total biomass in a given year due to newly recruited fish
index_sigma Survey indices standard deviation
sigma survival of natural mortality
logrec_param log transformed recruit parameters from a Beverton-Holt SR function if estimated in versions 1 or 3
rec_param the two recruit parameters fro a Beverton-Holt SR functionif estimated in versions 1 or 3
qhat survey catchability

Value

List with components for optimiser in R. This output is that of the function MakeADFun from TMB

Access (transformed) starting values of parameters to be estimated with x$par (where x is the
schnute_orig object) to see what parameters are to be estimated.

Examples

## Not run: obj <- schnute_orig(catch_b = catch_biomass, indices_b = obs_fill,
ts = timing, mwts = mwts, rho = rho1, W = W1, start_sigma = sigma)
## End(Not run)
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1 Appendix 1: Methods

1.1 Operating model

Stock-recruitment model for the operating model was a Beverton-Holt function:

Rt+1 =
aS∗

t

b+ S∗
t

(1)

where S∗
t is spawning stock biomass and Rt is recruit numbers. a and b are the parameters of the

stock-recruitment curve, equivalent to the maximum or asymptotic number of recruits (a) and
the spawning stock biomass needed to produce recruitment equal to a/2 on average (Beverton
and Holt, 1957). The S-R function was parameterised for virgin biomass and steepness, which
were defined for each life-history strategy

a =
4 · vb · h

spr0(5 · h− 1.0)
(2)

b =
vb(1.0− h)

5 · h− 1.0
(3)

where vb is virgin biomass, h is steepness and spr0 is the spawners-per-recruit when fishing
mortality is zero.
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1.2 Age-slicing bias
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Figure 1: Effect of bias on von Bertalanfy growth curves, numbers-at-length density distribution
(step 1 of age-slicing) and re-sliced numbers-at-age density distribution (step 2 of age-slicing)
for a typical catch-at-age sample in a given year (biased high = 1.2Kc and biased low =0.8Kc).
Age densities were calculated using a relatively large bandwidth to show larger shifts in density.
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Figure 2: Effect of extreme bias on von Bertalanfy growth curves, numbers-at-length density
distribution (step 1 of age-slicing) and re-sliced numbers-at-age density distribution (step 2 of
age-slicing) for a typical catch-at-age sample in a given year (biased high = 1.5Kc and biased
low =0.6Kc). Age densities calculated with a relatively small bandwidth.

1.2.1 Fmsy and Nmsy

To derive Fmsy and Nmsy for a CSA assessment, we first assumed a Beverton-Holt stock-recruit
function (B-H) for recruitment numbers at equilibrium R∗,

R∗ =
aN∗

b+N∗ (4)

where N∗ is stock numbers at equilibrium and and R∗ is recruit numbers at equilibrium. a and
b are the parameters of the stock-recruitment curve, equivalent to the maximum or asymptotic
number of recruits (a) and the stock numbers needed to produce recruitment equal to a/2 on
average (b) (Beverton and Holt, 1957).

Given CSA assumes the stock is fully selected and natural mortalityM is constant stock numbers
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at equilibrium was derived:

N∗ = N∗e−(F+M) +R∗ (5)

R∗ = N∗ −N∗e−(F+M) (6)

N∗ =
R∗

1− e−(F+M)
(7)

where F is a a given fishing mortality for entire stock, M is natural mortality and N∗ is stock
numbers at equilibrium at a given value of F . Substituting equation 4 into equation 7,

N∗ =
aN∗
b+N∗

1− e−(F+M)
(8)

and solving equation 8 for stock numbers at equilibrium,

N∗ =
a− b(1− e−(F+M))

1− e−(F+M)
(9)

gives stock numbers at equilibriumN∗ as a function of B-H recruit parameters, natural mortality
M of the stock and a given fishing mortality F . Catch numbers at equilibrium were estimated
using the Baranov catch equation,

C∗
n =

F

M + F

(
1− e−M−F

)
N∗ (10)

where C∗
n is catch numbers at equilibrium. Initially we explored whether catch numbers could be

used to estimate a maximum sustainable fishing mortality and maximum sustainable numbers.
These preliminary investigations concluded that a completely numbers-based procedure was not
possible as catch numbers at equilibrium was heavily weighted by recruitment, thus estimating
Fmsy much too high.

1.2.2 Mean weight at equilibrium

In order to estimate yield or catch biomass at a range of fishing mortality values mean catch
weight:

C∗ = C∗
n · w̄ (11)

where C∗ is catch biomass at equilibrium and w̄ is mean catch weight. Mean weight changes
with level of fishing mortality, so to account for this we introduce assumptions on age and
growth. Again, assuming all fish are fully selected, equilibrium numbers-at-age can be written
as:

N∗ = R∗e−(F+M)(a−ar) (12)

(13)
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where a is a vector of the ages of fish in stock and ar is the age at recruitment. Mean weight of
the recruited stock at equilibrium can be given as:

w̄s =

∑amax
ar

N∗
aw

s
a∑amax

ar
N∗

a

(14)

=

∑amax
ar

(R∗e−(F+M)(a−ar))ws
a∑amax

ar
R∗e−(F+M)(a−ar)

(15)

=

∑amax
ar

(e−(F+M)(a−ar))ws
a∑amax

ar
e−(F+M)(a−ar)

(16)

Equation 16 shows that the proportion of each age that survives at equilibrium and the stock
weight-at-age ws

a determines the mean recruited stock weight w̄s. Using this methodology, sub-
stituting mean stock weight-at-age with catch mean weight-at-age, we can calculate mean catch
weight w̄ and as a result catch biomass at equilibrium for a given value of fishing mortality.
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2 Appendix 2: Results

2.1 a4a initial assessment
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Figure 3: Summary of estimated stock numbers numbers at age, catch numbers at age and total
mortality at age from a4a assessments on initial data years (2:41) of correct, biased high and
biased low simulated stocks.)
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2.2 a4a MSE
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Figure 4: Results of MSEs using a4a as the estimator within the MP and EqSim estimated
BRPs for the original stock (”No slicing”) and the stock sliced but with no bias on the growth
parameter K. Solid lines are the median values across replicates, light shading represents 90%
quantiles and dark shading 75% quantiles.
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2.3 CSA MSE
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Figure 5: Results of MSEs using CSA as the estimator within the MP and the new methodology
for estimating CSA BRPs for the original stock (”No slicing”) and the stock sliced but with
no bias on the growth parameter k. Solid lines are the median values across replicates, light
shading represents 90% quantiles and dark shading 75% quantiles.

8



2.4 Performance statistics
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