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A B S T R A C T   

Digitalization in manufacturing is the conversion of information into digital format, the integration of this digital 
data and technologies into the manufacturing process and the use of those technologies (eg: simulation) to 
change a business model to provide new revenue and value-producing opportunities. Digitalization may be seen 
as the increased generation, analysis, and use of data to improve the efficiency of the overall manufacturing 
system. Simulation in manufacturing is often applied in situations where conducting experiments on a real 
system is impossible or very difficult due to cost or time to carry out the experiment is too long. A key input to the 
simulation model of automated equipment is the acquisition of valid data in relation to cycle time and reliability 
of various workstations on this line. As a consequence of being able to simulate equipment processes and interact 
with this validated simulation model, both the understanding of how the production system will perform under 
varying reliability and cycle time conditions is achieved. The simulation model then enables the experimentation 
of ‘what if scenarios’ that can be tested easily, while also providing a valuable tool to inform the maintenance 
personnel what station reliabilities they need to target in order to sustain a high performing manufacturing line. 
Simulation metamodeling is an approach to line design which is of great interest to design engineers and research 
experts. However, its application in automated medical devices manufacturing line design has never been well 
explored. The author has adopted an open-source simulation tool (JaamSim) to develop a digital model of an 
automated medical devices manufacturing line in the Johnson & Johnson Vision Care (JJVC) manufacturing 
facility. This paper demonstrates with a high level of rigour, fidelity and overall system design/approach, how a 
digital model along with the use of a metamodel can be used for the development of an automated manufacturing 
line in the medical devices industry. The digital model and metamodel can be used by manufacturing engineering 
teams to perform scenario testing during the design and development phase of the line or as part of the 
continuous improvement stage when the line is in full operation. The overall average absolute error when 
comparing the simulation model outputs to the metamodel outputs was 0.87% was achieved with the metamodel 
for the actual industrial application used by the author.   

1. Introduction 

Digital manufacturing technologies such as simulation models, have 
been considered an essential part of the continuous effort towards 
improving the Overall Equipment Efficiency (OEE) of automated 
manufacturing equipment and processes. These digital technologies 
such as a Digital Twin (DT)/Digital Model (DM) have proven to be a 
powerful tool to support the design and evaluation of a manufacturing 
system due to its low cost, quick analysis, low risk and meaningful 
insight that it can provide, thus improving the understanding of the 

influence of each component/system on the automated manufacturing 
line [1]. 

1.1. Digital twin technology 

A Digital Twin is a digital model of real-world physical system. The 
digital twin concept allows manufacturing companies to create models 
of their production systems and processes using real-time data collected 
from smart sensors [2]. The digital twin and the physical system are 
connected through IoT or smart sensors and actuators. A digital twin of a 
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physical system is utilized to increase the performance of the product 
throughout its life cycle. This is done through the employment of data 
driven simulation during the design and planning phase as well as while 
the system is in operation. This process enables the user to optimize the 
performance during the whole lifetime of the product. Given the defi
nition of a digital twin manufacturing system, two main functionalities 
are needed, a virtual representation of the system and an interface to the 
real system allowing synchronization, re-planning and the capability to 
allow process owners to make changes to the digital twin. A Digital Twin 
(DT) enables in-depth analyses to detect potential issues, preventing 
downtime, and testing new manufacturing line opportunities, and 
customize production based on customer requirements. It is recognized 
that computer simulations are an integral part of the digital twin concept 
[3]. 

A recent comprehensive work on digital twins [4] for production 
systems, defined a digital twin as, “a digital representation of an active 
unique product or service or production system that is characterized by 
certain properties or conditions used in order to analyse, understand and 
improve the product, product service system or production”. Such 
models can be parameterized, and they are able to consider several in
fluences including stochastic behaviour [2]. According to [2] a digital 
twin can be a simulation model, but a simulation model may not 
necessarily be a digital twin. Simulations models may have the same 
type of sensor information and controls of a digital twin, but the infor
mation may be generated and manipulated within the simulation. The 
simulation model may replicate what could happen in the real world, 
but not necessarily what is currently happening [5]. Digital models can 
be classified into three (3) subcategories based on their level of data 
integration between the physical and digital counterparts [6]:  

1. Digital model: A digital representation of an existing or planned 
physical object without any form of automated data exchange be
tween the physical and digital objects. Most of the current offline 
simulation models are this kind of digital model.  

2. Digital shadow: A digital model with an automated one-way data 
flow between the physical and digital objects, e.g., a simulation 
model using real-time sensor data as inputs.  

3. Digital twin: A digital model with bi-directional data flow between 
the physical and digital objects, e.g., a simulation model that uses 
real-time sensor data as inputs and updates some of the parameters of 
a manufacturing process or equipment. 

This paper reviews the development of a digital model and meta
model of an industrial use case (Tray Loader System) that can be used 
during both the equipment design stage and continuous improvement/ 
optimization of the actual system. A digital model/simulation model 
was built that simulates product loaded into plastic trays, then processed 
through the various stations on the line. The simulation model is used to 
determine the impact of changing cycle time and reliability of the pro
cess stations whilst at the same time altering the size of various buffers in 
the system. A metamodel was also developed and was also used to 
identify the impact of changes to the system very quickly without the 
need to continuously update the actual simulation model and then 
running that model each time to determine the impact those changes 
have on the line performance. The Metamodel along with the Digital/ 
Simulation model can be used by equipment designers to test different 
equipment designs and determining the resultant response performance 
metrics. Metamodels, commonly known as surrogate models, response 
surfaces, approximate models or emulators are used to approximate the 
input-output behaviour of simulation models [7]. The metamodel is a 
model of the I/O function (or ‘response function’) implied by the un
derlying simulation model. 

The aim of this paper is to propose a mathematical model (formu
lation) and a methodology as a solution to maximize production rate 
(throughput of the Tray Loader system). Many of the previous works on 
this subject are limited as they focus mainly on one line factor only, are 

limited to a small number of workstations/process steps, not based on an 
actual industrial use case, whereas this work focuses on a complete 
section of an actual manufacturing line and also on the combination of 
line factors that drive overall system throughput/performance of this 
automated manufacturing line, these being: reliability, cycle time and 
buffer capacities. Although significant challenges are apparent in 
developing Digital Twin applications they offer the promise of extending 
the use of simulation from traditional stand-alone system design appli
cations to simulation as a core functionality of systems by means of 
seamless assistance across the entire lifecycle from design, engineering, 
operations to service [8]. 

1.2. Overall equipment efficiency (OEE) 

The concept of OEE, introduced by [9], is being used increasingly in 
industry. It looks at the wider manufacturing aspects, not only the 
equipment availability and performance, but the efficiency losses that 
result from rework and yield losses. According to [10] the relationship 
between OEE and losses depends on equipment availability, their per
formance rates, and the quality of the product. OEE monitors the actual 
performance of a machine relative to its performance capabilities under 
optimal manufacturing conditions. According to [11] Manufacturing 
Line efficiency can be expressed, using the OEE metric that depends on 
three factors: availability, performance, and quality. 

OEE = (Availability)x(Performance)x(Quality)

Availability is the ratio of the time spent on the realization of a task 
to the scheduled time. Availability is reduced by disruptions at work and 
machine failures. According to [11] the term of availability contains 
planned work time and unplanned events e.g., the disturbances at work 
and random machine failures. Any unplanned event that causes the 
equipment to be unavailable results in reduced efficiency. The reliability 
of systems or devices such as sensors, robots, conveyors are defined as 
the probability that they will work correctly for a given time under 
defined conditions of work. The most popular method for estimating 
reliability parameters uses the theory of probability to forecast a value of 
MTTF (Mean Time to Failure), MTBF (Mean Time Between Failures) and 
MTTR (Mean Time to Repair). The use of normal, exponential, trian
gular distributions to describe both failure and repair times are often 
used. In practice, for description of reliability, the parameter MTTF is 
normally used, which is the expected value of exponentially distributed 
random variable with failure rate λ. In the case of repairable objects, the 
parameter MTBF and the MTTR are used. 

MTBF = MTTF+MTTR 

Machinery failures affect the availability of means of production and 
may cause severe disturbances in production processes. The average 
availability is given by: 

Availability = MTTF/MTBF  

1.3. Equipment reliability & maintenance of manufacturing lines 

Manufacturing equipment reliability is a significant factor that plays 
an important role in the ability of equipment to perform to the required 
levels in operation. Reliability is a measure of an equipment’s ability to 
operate efficiently within set limits and confines of time [12]. Opti
mizing reliability is paramount for the successful operation of equip
ment and the minimization of costs associated with downtime and 
unexpected breakdowns [13]. Equipment that spends most of its time 
running efficiently under continuous operations, indicates that reli
ability is being achieved due to regular maintenance activities being 
done thus delivering smooth operation. Maintenance is an important 
consideration in the enhancement of equipment reliability. Measures 
such as MTTF, MTBF and MTTR help define the reliability of a given 
station/line [14,15]. Consistent maintenance ensures that 
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manufacturing lines operate to their optimum performance and achieve 
their business targets [16]. MTTR is easily determined using the number 
of repair hours divide by the total number of repairs within that speci
fied period. The higher the MTTR the greater it negatively affects line 
throughput. Another measure of line reliability is MTTF and is deter
mined by dividing the total number of operation hours within a pre
determined period by the number of failures [17]. Mean Time Between 
Failure (MTBF) is the sum of MTTF and MTTR. Maintenance is a set of 
organized activities that are carried out to keep an item in its best 
operational condition with minimum cost acquired. The cost at times 
may appear high in the beginning, but they are intended to keep the 
overall condition of the equipment better and its operating and other 
expenses low (considered over its life span) [18]. It is also important to 
improve equipment reliability throughout an equipment’s life to meet 
the business goals and objectives [13]. 

A goal of high performing manufacturing companies including 
Johnson & Johnson Vision Care (JJVC) are as follows:  

1. Eliminate/reduce the unplanned maintenance activities (station set- 
up after component changeout, minor station adjustments/tweaking 
to improve station performance) by designing out these non-value 
add and sometimes repetitive activities during the original equip
ment design.  

2. Reduce the planned maintenance activities (component changeout) 
to a minimum, and then design the line to require the minimum time 
to replace this component/system with little/no set-up thereafter. 

The equipment design has a significant influence on all these factors. 
More reliable components are selected requiring less frequent mainte
nance and the equipment design is such that it allows components to be 
replaced quickly with minimal/no set-ups post change-out. Simulation is 
a key technology for the development of planning and exploratory 
models to optimize decision making including the design and operation 
of these complex and smart production systems [19]. Simulation and 
Metamodelling was a tool that was used by the author to verify and aid 
in confirming the performance capability of the equipment design 
before it is built. Reducing both the planned and unplanned mainte
nance activities has the effect of increasing the available time that the 
manufacturing line is available to run, thus increasing line efficiency. 
The author has shown how simulation and metamodelling can be used as 
an approach to predict the performance capability of new 
manufacturing lines during the design stage. If the new line is not 
already built/running, the simulation model can use data (station cycle 

times and reliability) from pervious similar equipment designs or actual 
component data supplied by the Original Equipment Supplier (OEM). 

2. Development, verification and validation of the tray loader 
digital model 

2.1. Industrial use case overview 

A digital model of an industrial system (Fig. 1) known as a Tray 
Loading System was developed using JaamSim software. 

This system consists of individual product (p) that arrives from an 
upstream line to a product feeder at defined arrival times. These are then 
grouped into multiples of 10. The group of products are then loaded into 
empty plastic trays that can hold up to 660 parts. Once filled the plastic 
tray moves at a defined cycle time to a tray stacker. The tray stacker 
accumulates the filled trays into groups of 30. This group of 30 trays 
then undergoes a batch process in either Process station 1 or 2 under 
defined conditions. Upon completion of this batch process, the trays of 
product leave Process Station 1 or 2, where a tray unstacking operation 
takes place. Each individual tray of product undergoes a further process 
step (Process Station 3), again under defined conditions. Once a tray is 
finished at Process Station 3, the product is removed from the tray at the 
Tray Unloading station and is then passed to the Star Wheel grouping 
station, where the product is now grouped into batches of 30. These 
groups are then passed to Process Station 4 and 5 for the final finishing 
process. The empty trays from the tray unloading station, are returned to 
the empty tray buffer and finally back to the tray loader operation, to 
repeat the overall process. The digital model developed, will simulate 
this whole operation, considering the following 5 points:  

1. Entities (units of Product) per arrival.  
2. Service times for process stations, travel times forconveyors  
3. Probability distributions for reliability and repair ofstations.  
4. Conditions for process stations to process and pass productto the next 

station.  
5. Queue size and location. 

2.2. Verification of the tray loader digital model 

A detailed verification process was undertaken on the Tray Loader 
digital model following the Logical/mathematical verification, pro
gram/code verification steps outlined by [20] and the detailed knowl
edge of the author of the actual tray loading system. All the Tray Loader 

Fig. 1. Automated Tray Loading System Industrial Case.  
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Objects, Service Times, Steps, Thresholds, Maintenance conditions and 
Threshold condition logic were all verified and confirmed to be correct 
to how the actual line operates. A detailed verification checklist was 
completed on the Tray Loader digital model. As part of the digital model 
verification process it was important to verify that the product flow into 
and out of the various simulation objects (as seen from the JaamSim 
GUI) are identical to what occurs on the tray loader line. This verifica
tion process allowed any additions or changes to the simulation logic to 
be corrected, verified, and visualized immediately. It was through the 

ongoing and iterative model verification and the testing process during 
model development, that a realistic model of the actual dynamic in
teractions was developed and fine-tuned. During this phase of model 
verification, the weak points of the system were discovered and cor
rected. It is extremely advantageous to find these early-stage simulation 
bugs, thus allowing a well-tested and robust system to be developed. 

2.3. Validation of the tray loader digital model 

The approach taken for developing the Tray Loader digital model 
followed the steps described by [21]. Step 5 of this approach deals with 
confirming that the programmed model is valid. The model is run using 
the standard basic settings from the actual tray loader system. The 
simulation model output data for the system was compared with the 
comparable output data collected from the actual system. This is called 
results validation. If the results are consistent with how the system 
should operate, then the simulation model is said to have face validity. 
Sensitivity analyses is performed on the programmed model to see 
which factors have the greatest impact on the performance measures 
and, thus, must be modelled carefully [21]. According to [22], valida
tion is concerned with determining whether the conceptual digital 
model (as opposed to the computer program) is an accurate represen
tation of the system under study. [22] outlines the following three (3) 
steps to validate a simulation model.  

1. Obtaining real-world data from the actual system.  
2. Tests for comparing simulated and real data (namely graphical, 

Schruben-Turing or t tests).  
3. Sensitivity analysis (using statistical design of experiments with 

associated regression analysis). 

The above approach was used to validate the Tray Loader digital 
model, see section 3 for more detail. Actual Tray Loader system data was 
collected from the historian database for all the relevant process stations 
used in the digital model. The data collected included input feed rate, 
yield, throughput and uptime per minute for each process station. Excel 
macros were then developed to calculate the equipment reliability 
metrics namely: Mean Time Between Failures (MTBF) and Mean Time to 
Repair (MTTR) for each of the process stations using the uptime/minute 
data. The Input feed rate, yield, output data and the MTBF/MTTR for 
each process station was analysed, outliers removed, and distributions 
determined along with the distribution parameters. Minitab is used to 
analyse all the data obtained. Minitab is a statistical analysis software 
that assists in the analysis of data collected from any process and pro
vides a simple, effective way to input the data, manipulate that data and 
statistically analyse it. The methodology used to determine the MTTR 
and MTBF for the actual Tray Loader System will be described in section 
3. 

3. Determination of simulation input data 

3.1. JaamSim downtime entity 

Planned maintenance and breakdowns are modelled using the 
DowntimeEntity, which generates random or scheduled events based on 
either working time or calendar time. Normally, a maintenance activity 
is scheduled to occur at regular intervals based on calendar time. 
Breakdowns are normally modelled to occur randomly based on the 
working time for the object. The ‘DowntimeEntity’ object in JaamSim is 
used to generate planned and unplanned maintenance events for various 
types of objects (workstations, buffers, conveyors). The DowntimeEntity 
generates the downtime events and their durations, but the objects that 
use one or more DowntimeEntities must provide their own logic for 
halting. See Table 1 for the list of DowntimeEntity Input parameters used 
in the Tray Loader application. 

In JaamSim a DowntimeEntity object is then dragged and dropped 

Table 1 
JaamSim Downtime Entity Input Parameters.  

Keyword Description 

Description A free form string describing the Entity 
FirstDowntime The calendar or working time for the first planned or 

unplanned maintenance event. If an input is not provided, 
the first maintenance event is determined by the input for 
the Interval keyword. A number, an object that returns a 
number, or an expression can be entered. 

IntervalWorkingEntity The object whose working time determines the 
occurrence of the planned or unplanned maintenance 
events. Calendar time is used if the input is left blank. 

DurationWorkingEntity The object whose working time determines the 
completion of the planned or unplanned maintenance 
activity. Calendar time is used if the input is left blank. 

Interval The calendar or working time between the start of the last 
planned or unplanned maintenance activity and the start 
of the next maintenance activity. A number, an 
expression, or an object that returns a number can be 
entered. 

Duration The calendar or working time required to complete the 
planned or unplanned maintenance activity. A number, 
an expression, or an object that returns a number can be 
entered. 

MaxDowntimesPending The maximum number of downtimes pending for the 
downtime event  

Fig. 2. P_Feeder Object Maintenance Configuration.  

Fig. 3. P_Feeder_DE Parameter Configuration.  
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from the JaamSim Model Builder to the application view window. On 
the Tray Loader digital model, one station called P_Feeder. One of the 
parameter settings to be configured is the ImmediateBreakdownList 
located within the maintenance table ImmediateBreakdownList is 
modelled in the Tray Loader application as it is unplanned, takes the 
production line immediately out of operation and is not accounted for in 
the business plan schedules. A DowntimeEntity object called P_Feeder_DE 
is referenced within the corresponding value cell for the P_Feeder object, 
see Fig. 2. 

ImmediateBreakdownList is a list of DowntimeEntities representing 
unplanned maintenance performed immediately, interrupting any work 
underway at present. Other maintenance types such as Force
dMaintenanceList, ForcedBreakdownList or ImmediateMaintenanceList can 
also be configured depending on the user application to be modelled. A 
DowntimeEntity object is then dragged and dropped from the JaamSim 
Model Builder to the view window. The object is called P_Feeder_DE with 
input parameters configured as shown in Fig. 3. 

The Interval is the working time between the start of the last un
planned downtime activity and the start of the next downtime activity. A 
number, an expression, or an object that returns a number can be 
entered. The Duration is the working time required to complete the 
downtime activity. A number, an expression, or an object that returns a 
number can be entered. In this research, Interval is used to replicate the 
Mean Time Between Failures (MTBF), whereas Duration is used to 
replicate Mean Time to Repair (MTTR) for each object of the model. Two 
Exponential Probability Distribution objects are then dragged and 
dropped from the JaamSim Model Builder to the view window. The 
objects are called P_Feeder_DE_Intrvl_Exp and P_Feeder_DE_Duratn_Exp to 
simulate the MTBF and MTTR respectively for the P_Feeder station. 
Input parameters are configured for both distributions as shown in 
Figs. 4 and 5. 

The UnitType is selected as TimeUnit, RandomSeed is automatically 
selected by JaamSim and MinValue is set to 0 s. A python program was 
developed to automatically take settings/parameters from an excel file 
and populate the values for means into both distributions automatically. 

3.2. Determining the Actual values for MTBF and MTTR 

It is important that the downtime distribution for both Interval 
(MTBF) and duration (MTTR) are correctly set-up for each station and 
are reflective of the reliability from the actual Tray loader system. If 
these distributions, their value’s and/or parameter settings are not 
representative of the actual system, then all results obtained from the 
simulation model will be of little use. In order to determine the actual 
distributions and parameter values for the MTBF and MTTR for the Tray 
loader system, data was collected from the historian database over a 
period of 186 shifts (1 shift = 12hrs). Total uptime for each station was 
recorded every minute over a period of 129,000 min. The cumulative 
total uptime (sec) was recorded for each station of interest from the 
database. Briefly outlining how the data was captured and analysed, 
refer to Table 2 for example of how Mean Time Between Failures (In
terval) and Mean Time to Repair (Duration) is determined for P_Feeder 
station. The cumulative uptime for a particular station is recorded at 
1 min intervals. The uptime/min is then determined for each minute 
over the whole duration. From Table 2, the uptime for 7:05:00 is 155 – 
115 = 40 s. The % uptime between 7:04:00 and 07:05:00 = 40

60 × 100 
= 66.6%. This process is repeated for each minute. For the purpose of 
calculating the MTTF and MTTR, the total uptime is calculated by 
adding the uptime for each minute until the station goes stops (< 60 s 
uptime for that minute). This give the duration that the station was 
running until a stoppage occurs, thus Mean Time To Failure can then be 
calculated. Likewise, the number of seconds that the station was down is 
recorded which is then used to calculate the Mean Time to Repair. Hence 
from Table 2, we can see that between 07:00:00 and 07:10:00, the 

Fig. 4. P_Feeder Station MTBF Configuration.  

Fig. 5. P_Feeder Station MTTR Configuration.  

Table 2 
Sample MTBF and MTTR for P_Feeder Station.  

Station # Time Cumulative Uptime (Sec) Uptime/Min (Sec) Interval -MTTF (Min) Duration -MTTR (Min) Interval -MTBF (Min) 

1 7:01:00  55  55    5   
1 7:02:00  115  60  115    120 
1 7:03:00  115  0       
1 7:04:00  115  0       
1 7:05:00  155  40    140   
1 7:06:00  215  60  100    240 
1 7:07:00  215  0       
1 7:08:00  255  40    80   
1 7:09:00  315  60       
1 7:10:00  375  60       
1 7:11:00  400  25  185    265 
1 7:12:00  400  0       
1 7:13:00  400  0       
1 7:14:00  450  50    165   
1 7:15:00  490  40  90    255 
1 7:16:00  490  0        
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station was down for 5 s, running for 115 s, down for 140 s, running for 
100 s and down for 80 s. MTBF is calculated as the sum of MTTF and 
MTTR. 

The durations/frequencies that this station was running will be used 

to calculate MTBF distribution, similarly the durations/frequencies that 
this station was down will be used to calculate MTTR distribution. This 
whole process is repeated for every station used in the Tray Loader 
JaamSim model over a period of 129,000 min. The Interval (MTBF) and 
Duration (MTTR) data just described above is determined. Excel macros 
were developed to automatically determine the MTTF, MTTR and MTBF 
data in Table 2. This data is then entered into Minitab where outliers are 
removed (See Fig. 6). 

A Minitab outlier test is performed on the data using the Grubbs 
Outlier method (See Fig. 6), where statistical outliers are removed first, 
then followed by any special cause outliers such as planned downtime 
activities. Once outliers were removed, the Grubbs outlier test indicated 
that there was no outlier MTBF data at the 5% level of significance. The 
same process was repeated for the P_Feeder MTTR data. A best fitting 
distribution identification process is then completed on both the MTBF 
and MTTR data again using Minitab. This analysis indicates that an 
Exponential distribution was the most appropriate fit for the P_Feeder 
MTBF data, with a mean (µ) of 72.68 Mins. See Fig. 7 for Exponential 
distribution plot of the P_Feeder MTBF data. 

Likewise, a similar process is repeated for the P_Feeder MTTR data, 
where the data is entered into Minitab, outliers removed, and the most 
appropriate distribution selected. As can be seen in Fig. 8, the Expo
nential distribution with mean (µ) of 4.305 min is the best fit to the 
P_Feeder MTTR data. 

The above process outlined for calculating the actual distributions 
and parameters for P_Feeder MTBF and MTTR is repeated for the 
remaining 7 stations used in the Tray Loader simulation model. 

3.3. Running the tray loader digital model 

The digital model of the Tray Loader was set-up with an initial warm- 
up period of 8hrs. This enables the Tray Loader model to completely fill 
with product before the actual simulation run starts. Each simulation 
run is set to 12 hrs, to replicate the 12hr shift that is used to operate the 
actual Tray Loader system. A simulation test run of 5000 replications 
was executed. The throughput data from each workstation along with 
the reliability data and tray buffer data from the 5000 simulation rep
lications was written to a.csv file. The results from the simulation run 
were then compared with data from the actual Tray Loader system over 
an extended time period. The mean(µ) and standard deviation(σ) from 
the simulation results and actual line data are statistically compared to 
each other to confirm that the simulation model is a true representation 
of the actual Tray Loader system. This statistical analysis is completed 
for the P_Feeder workstation (both throughput and reliability) using a 
hypothesis tests known as a two-sample t-test, See Table 3 for results. 

The summary statistics taken from the comparison of the actual 
P_Feeder throughputs and the simulation results are provided in Table 3 
along with all the station reliability data for actual and simulated results. 
The maximum prediction error for all the mean data is 0.2% and the p- 
values for all the data are significantly greater than 0.05. The prediction 
error for the standard deviation on P_Feeder throughput is 7.72% which 
is expected, as the digital model has less variability/noise. This is not a 
significant factor in the model development and can be explained that 
some additional variability/noise occurs on the actual line due to human 
interactions, external factors such as materials availability, facility/ 
utility system downtimes which have not been included in the model 
generation. Based on the analysis of the simulation model and the high 
level of accuracy with the empirical data gathered from the actual 
production line, the approach gives a high degree of confidence that the 
Tray Loader digital model is valid, accurately represents the real phys
ical and operational production environment and provides a solid basis 
for the further use of this digital model. 

4. Metamodel development 

Metamodeling is the name commonly given to the practice of using a 

Fig. 6. P_Feeder MTBF Grubbs Outlier Test.  

Fig. 7. P_Feeder MTBF Distribution Plot.  

Fig. 8. P_Feeder MTTR Distribution Plot.  
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model to describe another model, which in this instance, is the JaamSim 
Tray Loader model. Metamodeling (literally, “beyond Modelling”) is the 
Modelling of models [23]. A simulation model is a representation of a 
real word system, whereas the term meta-model referred to herein is a 
mathematical approximation of a simulation model. [24]. The re
lationships among a metamodel, simulation model, and problem entity 
are shown in Fig. 9 [24], where w.r.t. means `with respect to’. In this 
research the problem entity is the actual Tray Loader system that is 
being modelled. A simulation model can be a Discrete Event Simulation 
model of the problem entity, this model may be deterministic or sto
chastic. A metamodel approximates the input/output (I/O) trans
formation that is implied by the simulation model, the resulting 
black-box model is known as a response surface. There are different 
types of metamodels, e.g.: polynomial regression models (which are a 
type of linear regression) and neural networks (a type of non-linear 
regression) [25]. 

According to [26] the four (4) reasons to develop and use a regres
sion metamodel are as follows:  

1. Highlight the significant design factors.  
2. Show the interactions between the various factors.  
3. Determine their relative importance.  
4. Quantify their effects on the output performance. 

As outlined a metamodel is a regression model of another model. 
Thus, a regression metamodel is a model of the simulation model itself 
built using regression analysis [27]. As can be seen in Fig. 10, the user 
develops a well-structured simulation model and the relationship be
tween the inputs and the outputs of this simulation model is in turn 
modelled in an analytical form by the regression metamodel [28]. 

Typically, if we assume that the regression metamodel is linear, it 
belongs to one of the following three classes:  

1. First-order polynomial, which consists of main effects only, besides 
an overall or grand mean.  

2. First-order polynomial augmented with interactions between pairs of 
factors,  

3. Second-order polynomial, which includes purely quadratic effects. 

If the response (P_Feeder Output) is well modelled by a linear 
function of the independent variables, then the approximating function 
is the first-order model as per Eq. (1). 

y = β0 + β1x1 + β2x2 +…+ βnxn + e (1) 

First Order Regression Metamodel. 
If the statistical tests on the first-order meta-model are not acceptable 

or satisfactory, a second-order meta-model is then chosen, the approx
imating function is shown by (Eq. 2). 

y = β0 +
∑n

i=1
βixi +

∑n

i=1
βiix

2
i +

∑

i<j

∑
βijxixj + e (2) 

Second Order Regression Metamodelwhere βo = regression inter
cept. βi =main or first-order effect of factor i. xi =value of the factor i. 
βii=quadratic effect of factor i. βij = interaction between the factor i and 
j (i ‡ j), e=fitting error of the regression model. n = the number of 
factors. 

The Equipment Design/Manufacturing Engineer are very interested 
in answering the following questions when designing new equipment or 
deciding on where to make improvements to existing equipment to 
maximize the throughput. These four (4) questions include the 
following: 

1. How sensitive is the line output to changes in the design factors? 
2. Which of these factors and which of the potential interactions 

between them explain the variability in the line output? 
3. What could be expected if a factor is increased/decreased by one 

unit or percent? 
4. Where should their efforts be concentrated first, in-order to 

improve line output performance? 
To address these questions, it is proposed to generate a Metamodel of 

the simulation model, then use sensitivity analysis with this model to 
provide useful insights and help the engineers to gain a better 

Table 3 
Verification data of Tray Loader Digital Model.  

Station Name Data Type Data Source Mean (μ) Prediction Error 2-Sample t test P Value Null Hypothesis Null Hypothesis Result 

P_Feeder Throughput Simulation (μ) 322,733  -0.20%  0.609 Ho: pfsavg – pfaavg = 0 Accept 
Actual (μ) 322,096 
Simulation (σ) 12,401  7.72%  0.281 Ho: pfsstd – pfastd = 0 Accept 
Actual (σ) 13,438 

P_Feeder Reliability Simulation 0.93862  -0.10%  0.352 Ho: pfsavg – pfaavg = 0 Accept 
Actual 0.93769  

Fig. 9. Metamodel, Simulation Model and Problem Entity [24].  

Fig. 10. Regression Metamodeling.  
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understanding on what the impact is of changing the various factor 
settings on the overall behaviour of the Tray Loader system. Sensitivity 
analysis is a method to estimate (quantify) how a change in an input 
factor of a system affects an output performance measure, i.e., how 
sensitive an output is to change in an input [29]. 

4.1. Tray loader metamodel development methodology 

[24] describes an approach to develop a metamodel. A refined 8 step 

methodology to build a Tray loader metamodel is described as follows: 
1. Define the problem. What is the issue to be solved and/or response 

variable to be modelled (P_Feeder Output), factors and buffers to be 
considered? 

2. Define the range of factors (factor settings used and buffer sizes). 
3. Build the simulation model and complete verification and vali

dation of the model. 
4. Specify the form of the metamodel. This is either a first order 

(Linear) or second order regression model. 
5. Develop the Design of Experiment base design where response 

values are recorded for the various factor settings. The simulation model 
is used to generate the response variable data based on the factor 
settings. 

6. Develop the regression metamodel. The metamodel to predict the 
response variable is developed using the factor settings and output data 
from the simulation model. 

7. Verify the metamodel is a valid model to predict the response 
(P_Feeder Output) based on the various factor settings. 

8. If metamodel is not valid, then proceed back to step 4. Otherwise 
metamodel developed is sufficient to use. 

A lack of fit test is used to determine if the model adequately fits the 
simulation model [30] and as such the actual tray loader system. The 
validity of the metamodel with respect to the simulation model is 
determined by examining the model fit diagnostics. A check of the dis
tribution of the residuals leads to the determination of the validity of 
some of the model assumptions. Comparing the simulation output data 
and the metamodel output data is another method to validate the val
idity of the metamodel [26]. 

A metamodel is modified until it is valid for all experimental con
ditions tested, using the specified validity measures and their required 
values. To decide whether to accept a specific metamodel, a useful cri
terion is to determine the absolute error between the simulation model 
and the metamodel. The absolute error (AE) is given by the Eq. 3. 

AE =

⃒
⃒
⃒
⃒
Metamodel Output − Simulation Output

Simulation Output

⃒
⃒
⃒
⃒ x 100 (3) 

Metamodel Absolute Error. 

4.2. Tray loader metamodel development 

The purpose of developing a metamodel is to allow the design/ 
manufacturing engineer to quickly predict what impact a minor or major 
change to the Tray Loader system will have on the throughput from the 
line (P_Feeder Output). As an example, if an engineer has a new design 
for Process Station 3, that will improve the reliability from 93% to 95%, 
while at the same time reduce the cycle time by 10%, whilst increasing 
the Empty Tray buffer storage by 10 trays. They need to quickly deter
mine what the impact of these changes individually and all together has 
on the overall output from the line. The use of a Metamodel will allow 
them to quickly predict the overall improvement from the line because 
of implementing those changes. A critical review of the Actual Tray 
loader system and the simulation model by subject matter experts was 
completed to determine the most critical factors and levels that were 
important in developing a metamodel of overall Tray Loader system. 
The review resulted in 9 factors each with 2 levels being selected and to 
be used for the Metamodel DOE. The factors and levels are shown in 
Table 4. The range in the high and low setting levels for each factor were 
selected to allow the designer to test for significant changes to the 
reliability, cycle time and buffer size for the various stations on the Tray 
loader when using the metamodel. The resultant metamodel could then 
more accurately predict the P_Feeder output over a larger range of factor 
settings. As such if a design engineer needs to test the impact of 
improving the reliability of a particular station from 92% to 94%, then 
he/she could easily determine that impact using this metamodel, as 
those settings are within the range of factor settings used for the 

Table 4 
Metamodel DOE Factors and Settings.  

Factor 
# 

Factor Name Factor 
Type 

# of 
Levels 

High 
Setting 

Centre 
Setting 

Low 
Setting 

1 P_Feeder Reliability  2  98  94  90 
2 T_Pack Reliability  2  98  94  90 
3 Tray Stack Reliability  2  98  94  90 
4 Process3 Reliability  2  95  90  85 
5 Process4 Reliability  2  95  90  85 
6 Process 5 Reliability  2  99  95  91 
7 P_Feeder Cycle 

Time  
2  1.10  0.95  0.80 

8 Process4 
Process5 

Cycle 
Time  

2  3.20  2.70  2.20 

9 Tray Count Reliability  2  120  100  80 
10 P_Feeder_Yield Yield  2  95  90  85  

Table 5 
Linear Model Analysis of Variance for Response.  

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F- 
Value 

P- 
Value 

Regression  10 1.03E+ 11 1.03E+ 10  44.21  0 
P_Feeder Rel  1 3.02E+ 09 3.02E+ 09  12.91  0.001 
T_Pack Rel  1 7.58E+ 08 7.58E+ 08  3.24  0.078 
T_Stack Rel  1 6.59E+ 08 6.59E+ 08  2.82  0.099 
Process 3 Rel  1 2.34E+ 08 2.34E+ 08  1  0.321 
Process 4 Rel  1 2.5E+ 08 2.5E+ 08  1.07  0.306 
P_Feeder CT  1 7.65E+ 10 7.65E+ 10  327.36  0 
Process 4/5 

CT  
1 8.21E+ 08 8.21E+ 08  3.51  0.067 

Tray Count  1 2.7E+ 09 2.7E+ 09  11.56  0.001 
P_Feeder 

Yield  
1 6.64E+ 09 6.64E+ 09  28.41  0 

Process 5 Rel  1 5.12E+ 08 5.12E+ 08  2.19  0.145 
Error  51 1.19E+ 10 2.34E+ 08     
Lack-of-Fit  45 1.19E+ 10 2.65E+ 08  939.88  0 
Pure Error  6 1,690,653 2,81,776     
Total  61 1.15E+ 11      
R2  89.60%        

Fig. 11. Simulation Output vs Metamodel Output (1st Order).  
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metamodel development. 
A Design of Experiments (DOE) was generated (Minitab), using the 

Plackett-Burman design resulting in a 62-run factorial design. This design 
consisted of 48 runs as the base design, 5 runs as centre points and an 
additional 9 runs to replicate a push and pull type production system. The 
base design explored the factor setting at the extremes (High and Low 
Settings), 5 runs with all the factor setting at approximately the midpoint 
of the upper and lower setting and the remaining 9 runs with different 
combination of settings. The Plackett-Burman Design is used to create a 
designed experiment to identify the most important factors early in the 
experimentation process. Plackett-Burman designs can fit 2 – 47 factors 
with each having 2 levels. Normally a Plackett-Burman design is used 

when there are 8 or more factors and where the critical factors need to be 
identified [31]. Each of the experiments was run using the validated Tray 
Loader Jaam Sim (TLJSim) digital model. Each experiment (62 in total) is 
executed with 300 replications being completed, average is taken over the 
300 replications and this value then used as the response for that experi
ment. The simulation runs are performed with a simulated 8 hr warm up 
period followed by a 12 hr production time-period on a PC with an I5 Core 
CPU (1.60 GHz) and 16 GB of RAM, each run taking approximately 
20 min to execute. As per the methodology presented in Section 4.1 (Step 
4), a regression meta-model considering only the main effects of the fac
tors is developed using Minitab. The 1st order linear regression model 
developed is given in Eq. 4: 

Table 6 
Tray Loader 2nd Order Regression Metamodel.  

Source of Variation Degrees of Freedom Sum of Squares Mean Squares F-Value P-Value 

Regression  51 1.25E+ 11 2.45E+ 09  1422.01  0 
P_Feeder Rel  1 8.4E+ 08 8.4E+ 08  487.26  0 
T_Pack Rel  1 63,901,092 63,901,092  37.06  0 
T_Stack Rel  1 1.45E+ 08 1.45E+ 08  84.15  0 
Process 3 Rel  1 7.19E+ 08 7.19E+ 08  416.76  0 
Process 4 Rel  1 7.08E+ 08 7.08E+ 08  410.69  0 
P_Feeder CT  1 8.05E+ 08 8.05E+ 08  466.96  0 
Process 4/5 CT  1 2.61E+ 08 2.61E+ 08  151.33  0 
Tray Count  1 5.05E+ 08 5.05E+ 08  293.14  0 
P_Feeder Yield  1 1.22E+ 08 1.22E+ 08  70.56  0 
Process 5 Rel  1 2.42E+ 08 2.42E+ 08  140.46  0 
P_Feeder CT*P_Feeder Rel  1 5.22E+ 08 5.22E+ 08  302.8  0 
P_Feeder CT*Tray Count  1 1.11E+ 09 1.11E+ 09  643.7  0 
P_Feeder CT*P_Feeder CT  1 1.48E+ 09 1.48E+ 09  858.61  0 
P_Feeder CT*T_Pack Rel  1 2.47E+ 08 2.47E+ 08  143.12  0 
P_Feeder CT*T_Stack Rel  1 3.59E+ 08 3.59E+ 08  208.04  0 
P_Feeder CT*Process 3 Rel  1 3.82E+ 08 3.82E+ 08  221.71  0 
P_Feeder CT*Process 5 Rel  1 5.65E+ 08 5.65E+ 08  327.91  0 
P_Feeder Yield*P_Feeder Rel  1 2.82E+ 08 2.82E+ 08  163.43  0 
P_Feeder Yield*Tray Count  1 2.95E+ 08 2.95E+ 08  170.88  0 
P_Feeder Yield*T_Stack Rel  1 3.25E+ 08 3.25E+ 08  188.47  0 
P_Feeder Yield*Process 3 Rel  1 8.98E+ 08 8.98E+ 08  520.71  0 
P_Feeder Yield*Process 4/5 CT  1 3.49E+ 08 3.49E+ 08  202.14  0 
P_Feeder Yield*Process 5 Rel  1 4.6E+ 08 4.6E+ 08  266.88  0 
P_Feeder Rel*T_Pack Rel  1 4.18E+ 08 4.18E+ 08  242.64  0 
P_Feeder Rel*T_Stack Rel  1 2.98E+ 08 2.98E+ 08  172.69  0 
P_Feeder Rel*Process 4 Rel  1 4.66E+ 08 4.66E+ 08  269.99  0 
P_Feeder Rel*Process 3 Rel  1 7.54E+ 08 7.54E+ 08  437.55  0 
P_Feeder Rel*Process 4/5 CT  1 4.63E+ 08 4.63E+ 08  268.41  0 
P_Feeder Rel*Process 5 Rel  1 73,57,013 73,657,013  42.72  0 
Tray Count*T_Pack Rel  1 1.15E+ 08 1.15E+ 08  66.55  0 
Tray Count*T_Stack Rel  1 6.4E+ 08 6.4E+ 08  370.91  0 
Tray Count*Process 3 Rel  1 5.2E+ 08 5.2E+ 08  301.34  0 
Tray Count*Process 4 Rel  1 5.45E+ 08 5.45E+ 08  315.89  0 
Tray Count*Process 5 Rel  1 1.15E+ 09 1.15E+ 09  666.52  0 
Tray Count*Process 4/5 CT  1 43,715,524 43,715,524  25.35  0 
T_Pack Rel*T_Stack Rel  1 4.5E+ 08 4.5E+ 08  261.07  0 
T_Pack Rel*Process 4 Rel  1 7.57E+ 08 7.57E+ 08  439.25  0 
T_Pack Rel*Process 3 Rel  1 51,762,376 51,762,376  30.02  0 
T_Pack Rel*Process 4/5 CT  1 1.29E+ 08 1.29E+ 08  74.82  0 
T_Pack Rel*Process 5 Rel  1 1.25E+ 08 1.25E+ 08  72.39  0 
T_Stack Rel*Process 4 Rel  1 1.47E+ 08 1.47E+ 08  85.3  0 
T_Stack Rel*Process 3 Rel  1 16,297,646 16,297,646  9.45  0.006 
T_Stack Rel*Process 4/5 CT  1 5.52E+ 08 5.52E+ 08  320.29  0 
T_Stack Rel*Process 5 Rel  1 3.36E+ 08 3.36E+ 08  195.02  0 
Process 4 Rel*Process 3 Rel  1 5.29E+ 08 5.29E+ 08  306.56  0 
Process 4 Rel*Process 4/5 CT  1 6.52E+ 08 6.52E+ 08  377.98  0 
Process 4 Rel*Process 5 Rel  1 7.2E+ 08 7.2E+ 08  417.57  0 
Process 3 Rel*Process 4/5 CT  1 5.61E+ 08 5.61E+ 08  325.5  0 
Process 3 Rel*Process 5 Rel  1 2.46E+ 08 2.46E+ 08  142.42  0 
Process 4/5 CT*Process 5 Rel  1 4.68E+ 08 4.68E+ 08  271.47  0 
T_Stack Rel*T_Stack Rel  1 1.06E+ 08 1.06E+ 08  61.21  0 
Error  20 34,484,462 1,724,223     
Lack-of-Fit  14 32,793,809 2,342,415  8.31  0.008 
Pure Error  6 1,690,653 281,776     
Total  71 1.25E+ 11      
R2  99.97 %        
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Linear Regression MetamodelWhere: y = P_Feeder Output (Response 
variable). x1 =P_Feeder Reliability. x2 =T_Pack Reliability. x3 =T_Stack 
Reliability. x4 =Process3 Reliability. x5 =Process4 Reliability. x6 
=Process5 Reliability. x7 =P_Feeder Cycle Time. x8 =Process 4/5 Cycle 
Time. x9 =Tray Count. x10 =P_Feeder Yield. 

Analysis of Variance (ANOVA) for the response (considering the 
main effects) is presented in Table 5. As can be seen from the R2 value, 
89.6% of the variation can be explained by this linear model that was 
developed. 

In order to test the validity of this linear regression metamodel, we 
use the approach suggested by [26]. The factor settings used in the 62 
experimental runs were used as inputs to the linear metamodel. The 
simulation response output (P_Feeder Output) was then compared to the 
predicted values for these combinations using Eq. 4. A scatterplot 
comparing the simulation output to the metamodel output are shown in 
Fig. 11. The absolute error between the simulated output and the met
amodel output was calculated using Eq. 3. The average absolute error 
between the simulation output and the metamodel output over these 62 
runs was calculated as 3.42%. 

Due to the R2 value of 89.6% (the variation not explained by the model 
being > 10%) along with the higher than absolute error of 3.42% 
(Simulation output vs Metamodel output), it was determined that this 
linear metamodel was not satisfactory to use as a tool to predict the 
P_Feeder output based on varying the input factor settings. As such, based 
on our objectives, the results of using this 1st order linear metamodel as 
shown in Eq. 4 is not appropriate for use. Consequently, a new 2nd order 
regression metamodel is evaluated considering both the main effects of the 
factors and their two-way interactions. See Eq. 5 for the new 2nd order 
regression metamodel developed for the tray loader system.  

2nd Order Tray Loader Regression MetamodelWhere: y = P_Feeder 
Output (Response variable). x1 = P_Feeder Reliability. x2 = T_Pack 
Reliability. x3 = T_Stack Reliability. x4 = Process3 Reliability. x5 
= Process4 Reliability. x6 = Process5 Reliability. x7 = P_Feeder Cycle 
Time. x8 = Process 4/5 Cycle Time. x9 = Tray Count. x10 = P_Feeder 
Yield. 

Again, an Analysis of Variance (ANOVA) for the response (consid
ering the main effects and interactions) is presented in table 7.4. As can 
be seen from the R2 value, 97.91% of the variation can be explained by 
this 2nd order model that was developed. During development of the 
2nd order model all factor interactions with a P value > 0.10 were 
removed from the regression model. Fisher’s F value in Table 6 for 
regression demonstrates a high significance for the regression model (F 
=1422 and P = 0.0). An F-test is a statistical test in which the test sta
tistic has an F-distribution under the null hypothesis. The F statistic is a 
value that is obtained when an ANOVA test or a regression analysis is 
carried out to determine if the means between two populations are 
significantly different. It is most often used when comparing statistical 
models that have been fitted to a data set, to identify the model that best 
fits the population from which the data were sampled. The larger the F 
value, the more important it is, that this factor influenced the response 
variable. 

The validity of this 2nd order regression metamodel is again 
confirmed. The factor settings used in the 62 experimental runs are used 
as inputs to the 2nd order metamodel. The simulation response output 
(P_Feeder Output) is then compared to the predicted values for these 
combinations using Eq. 5. The absolute error between the simulated 
output and the metamodel output is calculated using Eq. 3. A scatterplot 
comparing the simulation output to the metamodel output, see Fig. 12 

Fig. 12. Simulation Output vs Metamodel Output (2nd Order).  Fig. 13. Absolute Error (2nd Order).  

y= − 68560+1885x1+940x2+881x3+417x4 − 429x5+768x6 − 247167x7 − 7730x8+364x9+2280x10 (4)   

y= − 512101+196672x1 − 29360x2 − 154089x3+197641x4 − 152691x5 − 75371x6+6031262x7 − 807672x8 − 24026x9 − 25751x10 − 21556x1x7 − 3006x7x9 

+287.9x6x9 − 18827x2x7 +11440x3x7 +14610x4x7 − 14058x6x7 − 502.6x1x10 +57.63x9x10+386.7x3x10 − 851.9x4x10+3495x8x10 

+521x6x10 − 398.1x1x2 − 393.8x1x3 +439.5x1x5 − 737.9x1x4 − 3225x1x8 − 218.8x1x6+48.44x2x9+223.7x3x9 − 137.83x5x9 − 208.7x4x9 

+196.3x8x9 +384.5x2x3 +879.5x2x5 − 131.8x2x4+1575x2x8 − 272.2x2x6+268.9x3x5 − 52.0x3x4+10939x3x8 − 776.8x3x6 − 521.4x4x5 − 8398x5x8 

+891.6x5x6 − 4261x4x8+359.8x4x6 +7633x6x8 +579.4x2
3 − 1709868x2

7 (5)   
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along with the absolute error are shown in Fig. 13. The average absolute 
error between the simulation output and the metamodel output over 
these 62 runs is calculated as 0.93%. This 2nd order regression meta
model should mainly be used to predict P_Feeder Output (y response) for 
values of the factor settings (x variables) that fall within the range of the 
x variables in the experimental data set. Any predictions of the P_Feeder 
Output (y response) based on values of the x variables that are signifi
cantly outside these values may lead to inaccurate response values. 

Based on the high R2 value of 99.97%, average absolute error of 
0.93% and F test for the regression model at 1422, we can conclusively 
conclude that this metamodel is a very good representation of the data 
generated by the simulation model and as such the actual tray loader 
system. It can then be recommended that this metamodel be used to 
predict P_Feeder Output based on the associated factor settings. A 
normality test for the residuals (difference between simulation model 
and metamodel) was performed using the Anderson-Darling normality 
test, with results shown in Fig. 14. As can be seen from Fig. 14, the re
sidual data set has a P = 0.797 and AD = 0.231 indicating a very good fit 
of the residual data set to a normal distribution (> 95% confidence 
level). The P and AD values indicates that the residual normality about 
the mean is another good model fit diagnostic. 

As per step 7 of the 8 step metamodel development process (section 
4.1) a sensitivity analysis was then completed, whereby a set of 10 ex
periments with different input factor settings are used as inputs to both 
the simulation model and metamodel equation. Each experiment (10 in 
total) is run using the Tray Loader JaamSim model with 300 replications 
being completed, P_Feeder output averages taken over those 300 repli
cations and this result being used as the simulation model output 

response for that experiment. The factor settings are used as inputs to the 
regression metamodel developed, Eq. 5 and the resultant Metamodel 
response for P_Feeder output for each experiment is shown in Table 7. 
The absolute error between the simulation model and the metamodel is 
calculated for each experiment using Eq. 3, see Table 7. The overall 
average absolute error across the 10 runs is 0.87% when using the 
Average simulation Output (over 300 replications per experiment) 
compared to the Metamodel Output. 

A scatterplot comparing the simulation output to the metamodel 
output (Fig. 15) along with the absolute error is shown in Fig. 16. As can 
be seen from these graphs, the metamodel is a close representation of the 
simulation model and as such the actual tray loader system, provided the 
factor setting are within the ranges used for the metamodel 
development. 

5. Conclusions 

As manufacturing capital equipment is expensive, it is necessary that 
the equipment once in operation is reliable and delivers to the business 
plan targets. Simulation along with Metamodeling is an invaluable tool 
to confirm that an automated manufacturing line can produce to the 
required business objectives before and after it goes into operation. 
Implementing the actual changes to equipment to improve reliability 
can be both time consuming and expensive. This paper has shown with a 
systematic approach, analysis and rigour, how a digital/simulation 
model of an actual industrial use case (Tray Loader system) was created, 
verified and validated for use with a high degree of confidence. The 

Table 7 
Tray Loader 2nd Order Regression Metamodel.   

Input Factor Settings Output Responses  

Run 
# 

P_Feeder 
Rel% 

T_Pack 
Rel % 

T_Stack 
Rel % 

Process 
3 Rel % 

Process 
4 Rel % 

Process 
5 Rel % 

P_Feeder 
CT (Sec) 

Process 
4/5 CT 
(Sec) 

Tray 
Count 

P_Feeder 
Yield % 

Simulation 
Model Avg 
Output 

MetaModel 
output 

Absolute 
Error 

1 93 94 94 86 93 94 0.9 2.9 105 90 3,57,211 3,55,555 0.46% 
2 96 97 97 92 95 97 0.8 2.5 110 88 4,07,740 4,03,299 1.09% 
3 95 96 98 92 89 95 1.1 2.6 100 86 2,86,017 2,87,433 0.50% 
4 95 91 94 88 93 95 1 2.5 105 87 3,24,666 3,27,119 0.76% 
5 92 92 94 86 87 90 0.8 2.2 120 95 3,82,515 3,82,708 0.05% 
6 94 93 93 90 94 96 1 2.7 100 85 3,23,913 3,27,613 1.14% 
7 92 93 92 84 88 95 1 2.3 120 88 3,36,134 3,31,223 1.46% 
8 92 90 95 92 95 97.53 1.1 2.5 110 91 2,95,793 2,91,998 1.28% 
9 98 97 98 92 90 96 0.9 2.3 110 91 3,82,459 3,81,280 0.31% 
10 95 96 95 89 91 94 0.8 2.2 120 90 4,09,094 4,02,498 1.61%             

Average 
Error 

0.87%             

Standard 
Dev 

0.0053  

Fig. 15. Sensitivity Analysis of Simulation Model vs Metamodel.  

Fig. 14. Residual Probability Plot.  
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author has shown how a metamodel can be used to accurately predict 
the throughput, including OEE (using cycle time, reliability and yield 
data) from an automated medical devices lines that operates in a sto
chastic behaviour. The author has also shown how a 2nd order meta
model was created that accurately represents the behaviour of both the 
digital model and the actual system. This metamodel can be used to 
rapidly determine the performance impact of the line while changing 
one or more line design/factor parameters. As these medical device 
automated manufacturing lines can cost in excess of $50 mm each, it is 
critical that the line is designed to be capable of achieving these business 
performance objectives once in operation. Simulation and metamodel
ing can thus be used to verify the line design before it is built to ensure 
these business objectives will be achieved. The detailed methodology 
taken by the author in developing, verifying/validating the digital 
model along with the development and testing of the metamodel of an 
automated medical devices manufacturing line can be fully used for 
other types of manufacturing systems. These technologies can be a 
subset of an overall digital manufacturing system that enables the 
optimization of a manufacturing line during the line design stage or 
when the line is put into operation. The use of this technology gives a 
deeper understanding of what can occur on the manufacturing line when 
it is running. A simulation model and/or Metamodel when combined 
with optimization engine, can be used to identify problems before they 
occur and aid in the selection of optimum parameters to run the line 
before it is fully designed or built. Digital model and Metamodeling 
technologies supports other Industry 4.0 technologies such as predictive 
maintenance, OEE improvement, waste reduction, improve batch 
changeover times and to improve product quality [32]. It allows for 
efficient design and development, linking 3D models with simulation 
and emulation of equipment control code. In addition, having a digital 
model enables virtual line analysis, removing the physical restraints of 
expert engineers having to be on your location [33]. The author has 
demonstrated how the development of digital model can be validated 
and subsequently used for the development of a Metamodel which is 
then used for the study of equipment design, maintenance and reliability 
of an automated manufacturing line in the medical devices industry. 
This paper contributes to the body of knowledge by providing a 
framework that assists other practitioners in the development of a digital 
model and metamodel of an automated manufacturing line with a view 
to maximizing the performance (OEE) of the actual system. Further 
research can be done in integrating the metamodel to a Digital Twin and 
an optimization system to aid the user in determining the optimum line 
conditions to maximize (OEE) and/or minimize line downtime. There is 
a need for an overall architecture to enable fast simulation execution 
speed when enabling a Digital Twin and this could be achieved by the 

use of a metamodel that is rigoursly developed and tested. 
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