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Introduction

The cells of the immune system are broadly divided into those that belong to the 

innate arm of immunity and those that belong to the adaptive immune system1 The 

innate immune cells include macrophages, dendritic cells and neutrophils which 

express pattern-recognition receptors such as the toll-like receptors, encoded within 

the germ-line and which are activated by conserved patterns or PAMPs on 

microorganisms. On the adaptive side of immunity, T and B cells are more diverse 

expressing receptors encoded by germ-line rearrangement and VDJ recombination 

which are specifically activated by antigens derived from pathogens. There also 

exists additional subsets of immune cells which cannot easily be categorised2 and 

the division between their involvement in innate and adaptive immunity is less clear 

cut. These cells include B-1 cells, marginal zone B cells, populations of T-cells 

bearing the γδT-cell receptor (TCR), mucosal associated invariant T-cells (MAIT-

cells) and the invariant natural killer T-cells (iNKT-cells).2 These populations of T and 

B cells are more limited in terms of specificity of antigen despite expressing a T or B 

cell receptor which has been generated by VDJ recombination.2 This review will 

focus on the iNKT-cells, on the ligands that activate them and their possible ligand 

recognition and function in multiple sclerosis.

NKT-cells: general properties and functions

NKT-cells are a unique population of T-cells which were originally identified based 

upon the co-expression of natural killer (NK) cell receptors such as CD161.3-6 They 

represent in mouse about 5% of peripheral blood lymphocytes but are enriched in 

liver, accounting for greater than 20% of T-cells in some strains.7,8 There are a 
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number of subsets of NKT-cells now classified into type I and type II.9 The majority of 

NKT-cells in humans express a unique TCR encoded by an invariant Vα24-Jα18 

alpha chain gene segments.5,10,11 Therefore, these are more commonly referred to as 

invariant NKT-cells (iNKT-cells) or type I NKT while the type II NKT-cells lack an 

invariant TCR and are more diverse.9 In addition to CD161, iNKT-cells constitutively 

express the cell surface markers CD25 and CD69 which are also found on memory 

and effector T-cells.

Unlike conventional T-cells which respond to peptide antigens in the context of MHC 

class I or II, iNKT-cells respond  and are activated by glycolipid antigens presented 

by the MHC class Ib related molecule, CD1d.3,11 CD1d is a highly conserved, non-

polymorphic molecule, expressed by many haematopoietic cells (dendritic cells 

(DCs), macrophages, and B cells) which present lipids antigens rather than peptides 

to iNKT-cells.4 The CD1d restriction identifies and defines iNKT-cells from all other T-

cell populations.12,13 Furthermore, development of iNKT-cells in the thymus is 

dependent upon CD1d and mice lacking CD1d or the Jα18 gene segment lack this 

population of innate T-cells.5 After exiting the thymus, iNKT-cells emigrate to the 

spleen, blood, liver and bone marrow, with smaller populations also found in the 

intestine.13 In humans iNKT-cells as identified by CD1d-loaded tetramers account for 

approximately 0.1-0.2% of peripheral blood T-cells although this percentage is 

variable.7,14 The figure is higher in human omentum where iNKT-cells account for up 

to 10% of T-cells in this location with decreased numbers found in obesity.15 

Alterations in the numbers of iNKT-cells have been correlated with severity of 

diseases including multiple sclerosis16,17 and colon cancer.18 The significance of 

quantitative changes in the numbers of iNKT-cells may be directly related to the 

disease pathogenesis or it may simply reflect ongoing immunological activity.

Functions: iNKT-cells are potent and produce an array of cytokines and 

chemokines in addition to exerting potent cytotoxic activity upon activation. The 

cytokines produced include IFNγ, IL-2,-3,-4,-10,-13,-17,-21 and TGFβ.13,19 

Stimulation of iNKT-cells by α-galactosylceramide (α-GalCer)(the most potent known 

ligand found to date) induces production of large amounts of IFNγ and IL-4.13,20 

Moreover the secretion is rapid, with cytokines detectable within minutes to hours of 

stimulation which differs from conventional T-cells where cytokines are usually 
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detected after a few days. Subsets of iNKT-cells can also differ in terms of cytokine 

production: CD4- NKT-cells produce mainly IFNγ (Th1 cytokine profile) upon 

stimulation 7,14 while CD4+ NKT-cells produce a mixed Th1/Th2 cytokine profile. Th17-

like NKT-cells have also been reported: this population of NKT-cells express IL-23R 

and produce IL-17A in response to IL-23 mediated activation.21

iNKT-cells are activated in two ways: (1) directly, through stimulation via the invariant 

TCR by glycolipid antigen in the context of CD1d and (2) indirectly, via cytokines 

produced by antigen presenting cells.22 In the direct mechanism there are a number 

of lipid and glycolipid antigens (discussed below) which specifically bind CD1d and 

activate the semi-invariant TCR on iNKT-cells. iNKT-cells may also however become 

activated by microorganisms which do not contain lipid and glycolipid moieties as 

part of their antigenic structure.19,23 The precise mechanism of indirect iNKT-cell 

activation still remains to be elucidated but it seems that cytokines such as IL-12 

and/or IL-18 produced by the antigen presenting cell and synergised by the 

presentation of self-antigens by CD1d may be important here.23 

iNKT-cells play central roles in bridging the innate and adaptive immune responses 

in microbial infection.11,24 iNKT-cells have been implicated in immunity to a range of 

infectious agents, in some cancers, and for suppressive roles in autoimmunity, 

transplant rejection and graft-versus-host disease.22, 25,26  iNKT-cells have been shown 

to play a protective role during infections caused by microorganisms even in the 

absence of cognate glycolipid antigens. For example during infection with 

Streptococcus pneumoniae, mice lacking iNKT-cells have significantly higher 

bacterial loads in the affected lungs and a lower survival rate compared with wild 

type mice.27 iNKT-cells also contribute to host defence mechanisms against a variety 

of other infections. In viral infections iNKT-cells are protective and become activated 

to produce significant quantities of IFNγ particularly when herpes family viruses are 

involved.28,29 Moreover, IFNγ producing NK cells and IFNγ in blood were markedly 

decreased in CD1d-knockout mice which lack iNKT-cells resulting in lower survival 

rates compared to wild type mice. Nonetheless while there is much evidence to 

support a protective role for iNKT-cells in microbial infection in some contexts, iNKT-

cells may also contribute to the immunopathology associated with some infections. 

Increased numbers of iNKT-cells have been identified in affected individuals with 
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chronic lung disease such as chronic obstructive pulmonary disease (COPD) and 

are believed to have a central role in contributing to the tissue damage here.30

Lipid antigens recognised by iNKT-cells

iNKT-cells can bind to a variety of lipid based antigens complexed with CD1d 

including α-GalCer, exogenous microbial ligands and a growing list of endogenous 

self-antigens.5,11,31-33

-Galactosylceramide ( -GalCer): α α The synthetic α-glycolipid, α-GalCer is widely 

used and is the most well-known lipid antigen used for activating iNKT-cells in vivo 

and in vitro.20 α-GalCer, which is also known as KRN7000 was originally identified for 

its anti-metastatic properties in a marine sponge sample and became the first known 

CD1d presented lipid antigen for iNKT-cells.20,34 α-GalCer has an α-anomeric sugar 

attached to acyl and sphingosine chains and its ligation to the TCR on iNKT-cells 

results in internalisation of the TCR and in rapid production of Th1 and Th2 

cytokines.20,34 For many years, α-GalCer was the only antigen which was capable of 

activating iNKT-cells and its existence in a marine sponge seemed puzzling. Many 

studies have employed the use of α-GalCer as a therapy based upon its 

immunomodulatoryproperties.6 Administration of α-GalCer in mice enhances 

clearance of a variety of infectious pathogens based upon secretion of pro-

inflammatory cytokines by iNKT-cells25 while in autoimmunity, administration of α-

GalCer ameliorates the disease and in this instance is based upon secretion of anti-

inflammatory cytokines like IL-10.6 While previous studies showed that β-

glycosylceramides (see below) were the only endogenous anomeric form which 

induced activation of iNKT-cells, Kain et al.35 more recently demonstrated that murine 

immune cells can produce small quantities of α-glycosylceramides.

Exogenous ligands- the microbial glycolipids: In addition to α-GalCer, a 

number of glycolipids present in the cell walls of bacteria have been identified which 

stimulate the activation of iNKT-cells (Figure 1). Initial studies demonstrated that 
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glycosphingolipids(GSLs) from Sphingomonas spp. bacteria induced CD1d-

dependant activation of iNKT-cells.26,36-39 In addition to GSLs, further studies 

demonstrated that glycodiacylglycerols also derived from the Sphingomonas 

spp37,40,41, and from Ehrlicha, and Borrelia burgdorferi 42 (which causes Lyme 

disease) stimulated iNKT-cells although they varied widely in their antigenic potency. 

The list of microbial lipid antigens also includes diacylglycerol-containing glycolipids 

from Streptococcus pneumoniae, and from Group B Streptococci 42.These are 

clinically important pathogens capable of causing invasive diseases such as 

pneumonia and neonatal sepsis and meningitis.26,43 A tetra-mannosylated form of 

phosphatidylinositol called PIM4 from Mycobacterium bovis44 is another foreign lipid 

antigen capable of activating iNKT-cells. More recently, Change et al.28 identified that 

a cholesteryl-α-glucoside from Helicobacter pylori can stimulate iNKT-cells. 

Therefore it appears that iNKT-cells exhibit a broad range of ligand specificity. The 

main difference between the microbial lipid antigens identified so far which activated 

iNKT-cells and the mammalian lipid antigens is that microbes produce α-linked 

glycolipids whereas mammals generate only β-linked lipid antigens.

There is also other exciting data which suggests that iNKT-cells sense infection and 

respond preferentially to inflammatory stimuli such as cytokines (e.g IL-12) despite 

the presence of known microbial antigens.29,45 Interestingly the response requires the 

conversion of isoglobotrihexosylceramide 4(iGB4) to the self -agonist iGB3 (see 

below) by β-hexosaminidase.46 Overall in microbial infection iNKT-cells have many 

mechanisms therefore by which to respond and become activated bysensing 

microbial infection indirectly through inflammatory cytokine production and possibly 

through the recognition of CD1d restricted self-antigens.

Synthetic lipid antigens: The discovery that α-GalCer had potent iNKT-cell 

activating properties associated with rapid Th1/Th2 cytokine secretion led to several 

subsequent studies investigating the stimulatory effects of alternative synthetic 

analogues (reviewed in Venkataswamy & Porcelli 47; Tyznik et al.48). The aims of 

these investigations were to identify synthetic analogues which were capable of 

inducing either a Th1 or a Th2 cytokine response and which could be administered 
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therapeutically when treating conditions such as cancer, allergy and autoimmunity 

where polarised cytokine responses were implicated in pathogenesis. 

These synthetic ligands identified include the sphingosine-based truncated derivative 

of α-GalCer such as OCH, the N-acyl-derivatives such as C:20, the glycosidic bond 

derivatives  and the carbohydrate-modification-based derivatives.47 OCH induces a 

Th2 response during activation of iNKT-cells in mice as defined by rapid IL-4 

production with no detectable IFNγ.49 Other sphingosine-based compounds have 

been synthesised where the amide of the ceramide base of α-GalCer was replaced 

by a triazole 8 group which in vitro and in vivo was as potent an activator as α-

GalCer.47,50 Other analogues of α-GalCer have been made by altering the length and 

the degree of unsaturation of the N-acyl substitution including C20:2 analogue which 

is also a very potent inducer of Th2 cytokines. 47,51The list of synthetic lipid antigens 

for iNKT-cells is growing and their capacity to induce biased immune responses 

holds great promise therapeutically. 52

The endogenous self-antigens: ligands for iNKT-cells

One of the defining functional characteristics of NKT-cells is autoreactivity or their 

ability to react to self-antigens; a property identified by response to CD1d-expressing 

antigen-presenting-cells in the absence of exogenous antigen.53 While there is still 

much to be learned and much controversy in this area, a variety of self-lipid antigens 

have now been identified as being stimulatory for iNKT-cells. The initial search for an 

endogenous self-antigen using mouse iNKT-cell hybridomas identified β-

glucocosylceramide as being a murine iNKT-cell agonist54 though far less potent than 

α-GalCer. While these self-antigens are mainly glycosphingolipids the list also 

includes a variety of phospholipids. Furthermore as discussed above, the capacity of 

iNKT-cells to sense and respond to bacteria indirectly is also most likely because of 

their recognition of self-antigens during infection.45

The self-glycosphingolipids iGB3 is an isoglobotrihexosylceramide, a lysosomal 

β-linked glycosphingolipid identified by Zhou et al.32 as the first endogenous 

glycolipid activator of human NKT-cells. iGB3 has been shown to activate mouse 
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iNKT-cells via CD1d and mice deficient in iGB3 have defective iNKT-cell 

development.32 The crystal structure of iGB3 bound to CD1d has been elucidated 

and describes the mechanism of how this self-lipid is recognised and is stimulatory 

for NKT-cells.55 Although it is reported as a potent activator of both human and 

mouse iNKT-cells, its significance as a self-antigen for iNKT-cells is contentious and 

remains under debate.56 In murine studies several deficiencies of enzymes involved 

in lipid metabolism were shown to have profound impacts on iNKT-cell 

development57and this includes deficiencies of hexosamidase B which is the enzyme 

involved in synthesis of iGB3. Furthermore in human studies, the functional iGB3 

antigen is not present on mammalian cells58 because the relevant iGB3 synthase 

which generates it is absent.59 Moreover in humans iGB4 can be converted to iGB346 

although its identity as a dominant self-ligand for iNKT-cells is still unclear. In addition 

to iGB3, the ganglioside GD3 which is highly expressed on tumours of 

neuroectodermal cells, is stimulatory for iNKT-cells60 and there are additional 

glycosphingolipids (GSLs) identified within the central nervous system which also are 

stimulatory for iNKT-cells and these are discussed below in the context of 

autoimmunity of the central nervous system.

The self-phospholipids: In addition to the GSLs, other studies have identified 

phospholipids to be stimulatory self-antigens for NKT-cells. These include 

phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine3,47 which 

were shown to activate a small percentage of iNKT-cells from hybridomas in a CD1d-

dependant manner.3 While phospholipids are proposed to be self-antigens for iNKT-

cells, their stimulatory activity and their potency is weak compared with the α-linked 

lipid antigens, and has only been demonstrated for a subset of iNKT-cells

In studies investigating lipids eluted from CD1d, Fox et al.61 identified 

lysophosphatidylcholine as a self-antigen based upon its reactivity for a subset of 

human iNKT-cells. In an earlier study62 lysophosphatidylcholine was isolated from the 

plasma of patients with multiple myeloma and was also shown to stimulate activation 

of iNKT-cells. Lysophosphatidylcholine contains a single fatty acid tail and is known 

to accumulate in human inflammatory conditions such as human autoimmunity, 

asthma and cancers where phospholipases are activated. In contrast to the 

cytokines secreted by NKT-cells such as IFNγ and IL-4 in response to other stimuli, 
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iNKT-cells stimulated by lysophospholipids secreted only GM-CSF.61 More recently, 

lysophospholipids were shown to activate type II NKT-cells which lack the invariant 

TCR as potently as sulphatide and their activity me be important in inflammatory liver 

disease.63 Plasmalogen lysophosphatidylethamolamine (plasmalogen lysoPE) is a 

glycerol-based lipid with a single fatty acid chain which was identified as a self-

antigen for iNKT-cells in studies investigating the nature of lipid antigen involved in 

their thymic selection.64

Lipid antigens and iNKT-cells in Multiple Sclerosis (MS)

iNKT-cells through their rapid secretion of cytokines can exhibit both pro- and anti-

inflammatory properties and this decision is dependent upon how they become 

activated, and the cells and cytokines in the local environment.2,19 iNKT-cells have 

been shown to have either protective or harmful roles in many pathological states 

and it is difficult to predict how these innate lymphocytes will function during an 

immune response. In many autoimmune disorders, defects in the numbers and/or 

the functions of iNKT-cells have been identified.65 In some animal models of 

autoimmunity while NKT-cell-deficiency exacerbates disease, suggesting that iNKT-

cells play a role in suppressing autoimmunity, specific activation of iNKT-cells with 

glycolipid antigens generally protects mice against the development of 

autoimmunity.6 In autoimmunity, iNKT-cells exert their immuno-regulatory functions 

through release of cytokines, activation of immune cells and induction of cytolytic 

activities.66

Multiple Sclerosis (MS): MS is the most common demyelinating disease in 

man and while the main target autoantigen is myelin, other central nervous system 

cells including neurons, their axons, microglia, endothelial cells and pericytes may 

also be affected.67,68 The demyelination in MS is pro-inflammatory with the 

pathological and tissue damaging events being due to activation of Th1 cells and the 

secretion of inflammatory cytokines like IFNγ and TNFα.69 Several immune cell 

abnormalities have been described in MS70 including changes in the numbers of 

iNKT-cells16,17,71,72 although the relative contributions of individual regulatory cell 

subsets remains to be clearly defined. 
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The myelin sheath is a unique, multi-layered membrane which is rich in lipids and 

glycolipids in particular complex glycolipids, such as galactosylceramides, 

gangliosides, sulphatides and phospholipids.73 Previously, we characterized a novel 

mammalian brain GSL series that accounts for 15–35% of total myelin GSL content, 

and which is designated ‘fast-migrating cerebrosides’(FMC) on the basis of TLC 

migration74-76 (See Figure 2). These acetyl-monogalactosyl-GSL include simple and 

more complex compounds ranging from penta-to hexa-acetylated derivatives ofβ-

galactosylceramide (i.e. the‘cerebrosides’). Stimulatory studies indicated that the 

myelin derived polyacetylated β-galactosyl-ceramides (PA-GC) were potent iNKT-cell 

activators in peripheral blood of healthy humans and this was in marked contrast to 

the findings in MS.72 The PA-GC (a mixture of FMC-5 and FMC-7)74-76 and in 

particular, the purified FMC-7 induced proliferation and cytokine secretion as potently 

as α-GalCer.72 FMC-7 is an endogenous mammalian and CNS derived acetyl-

glycolipid that contrasts in its structure from α-GalCer by having a β-linked galactose 

rather than an α-linked galactose bound to ceramide. From our molecular modelling 

the acetylation modifies the conformation of the galactosylceramide that is 

characterized by free rotation of the galactose about the C-1 of ceramide by 

hydrogen bridge formation between the acetylated 3-OH-sphingosine and 

theacetylated 2-OH-galactosyl and this may constrain the C-1 rotation.73 We propose 

that this alters the conformation of the polyacetylated FMC-7 acetyl-galactose head-

group to fit the iTCR and then initiates the activation of the iNKT-cell: a speculation 

consistent with current concepts of ‘glycolipid moulding’ in the CD1-glycolipid-iTCR 

synapse. Thus myelin-derived PA-GC are potentially self- reactive endogenous 

ligands for iNKT-cells amongst freshly isolated peripheral blood lymphocytes from 

healthy control subjects.

Anergy amongst iNKT-cell populations has previously been demonstrated in mice 

employing repeated injections of α-GalCer that induces unresponsiveness to re-

stimulation in vivo or in vitro.77 Hyporesponsivness or anergy of lymphocytes from MS 

patients in remission has previously been reported78 with poor proliferative capacity 

that was broken with CD28 stimulation while regulatory T-cells had unaltered 

suppressive function except for lower IL-7 receptors (CD127). In our studies, using 

PA-GC and FMC-7 as stimulatory ligands, iNKT-cells from MS patients failed to 

respond in vitro to stimulation which was in marked contrast to the broad range of 
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Th1, Th2 and Th17 cell cytokines produced by healthy controls.72 This 

hyporesponsivess of the iNKT-cell population was also observed in response to α-

GalCer stimulation16 and importantly in our study this anergic glycolipid response as 

measured by an expansion in cell number was specific to the iNKT-cell population.72 

The identification of myelin-derived lipid antigens that anergise iNKT-cells which may 

participate as effector cells is central towards developing an understanding the 

complexity of this neurodegenerative disease. We note however that these lipid 

antigens are not present at many sites where iNKT-cells accumulate and therefore it 

is difficult to appreciate fully their role in immunity. In MS, moreover, the 

concentrations of these myelin-derived PA-GC are altered74 raising the possibility 

that these myelin GSLs contribute to an iNKT-cell role in vivo. The mechanisms 

responsible for anergy development in response to stimulation with PA-GC remain to 

be determined although altered signalling mechanisms through the TCR and/or PD-

L1 79.80 may be important. Other studies have demonstrated that tolerance to α-

GalCer does not depend upon IL-10, caspase-3-mediated apoptosis or T regulatory 

cells.81

It may be that in MS continuing destruction of the myelin sheath increases the 

exposure of myelin-derived lipids in context of CD1d thus inducing inactivation or 

anergy of iNKT-cells through mechanisms not yet clarified. These myelin GSLs may 

contribute to iNKT-cell autoreactivity in MS in a fashion similar to the way another 

lipid self-antigen, β-glucosylceramide acts during microbial infection.45 Moreover, the 

synergistic action of cytokines and the TCR stimulation of iNKT-cells by self-antigens 

such as PA-GC and/or foreign lipid antigens may also lead to the anergic phenotype 

of iNKT-cells in MS. This synergistic recognition of self and foreign lipid antigens by 

iNKT-cells has been demonstrated to shape the iNKT-cell compartment during 

microbial infection.22 The relative contribution of several factors including subsets of 

iNKT-cells, cytokines, the PA-GC concentrations as well as possible microbial 

infection and ongoing autoimmune phenomena is likely to be context dependant. 

Nonetheless, unravelling the complexities of iNKT-cell function in MS and the 

possibility of rendering iNKT-cells hyporesponsive to an endogenous glycolipid is a 

novel mechanism for iNKT-cell regulation in disease. This glycolipid ligand-driven 

anergy has substantial implications for MS immunotherapy.
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Conclusions
Recent progress in studies of glycolipid and glycolipid-induced findings in identifying 

the nature of lipid recognition for iNKT-cells in immunity and in determining the 

functional consequences of the lipid-CD1d interaction for this important iNKT-cell 

population opens new avenues of access to the pathogenesis of demyelination in 

MS. The list of relevant lipids and glycolipids including self-antigenic ligands for 

iNKT-cells continues to grow and includes iGb333 and in microbial infection β-

glucosyl-ceramide45 and in human MS, the myelin-derived PA-GC.72 These advances 

lead to a number of outstanding questions pertinent to the functional roles of iNKT-

cells in autoimmune diseases such as MS, and include the following: what 

mechanisms determine whether iNKT-cells will remain self-tolerant versus becoming 

self-reactive and potentially tissue damaging? are there functional differences in 

subpopulations of iNKT-cells in terms of their self-ligand antigenic specificities which 

may be central to autoimmunity? what is the molecular basis for the anergic 

response of iNKT-cells during an autoimmune response? A deeper understanding of 

the endogenous self-antigens targeted by iNKT-cells is likely in the future to foster 

the development of therapeutic strategies aimed at harnessing iNKT-cell activity.
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Figure 1

Chemical structures of various microbial lipids that bind CD1d. These include α-

galactosyldiacylglycerol (αGalDag) from Borrelia burgdorferi, α-glucosyldiacylglycerol 

(α-GlcDAG) from Streptococcus pneumoniae, α-glucuronsylceramide (α-GLcACer), 

α-galacturonosylceramide (α-GalACer), and phosphatidyl-myo-inositol mannoside 

(PIM2). 

Figure 2

Structure of the myelin-derived fast migrating cerebrosides (FMC). The basic 

glycosphingolipid structure shows where the R groups are positioned and includes a 

list of the substitutions giving rise to β-GalCer, FMC-5 and FMC-7 (Adapted from 

Podbielska et al, 2010).
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