
IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, TCBB-2013-06-0181 1

Approximate k-mer Matching using Fuzzy
Hash Maps

John Healy and Desmond Chambers

Abstract— We present a fuzzy technique for approximate k-mer matching that combines the speed of hashing with the
sensitivity of dynamic programming. Our approach exploits the collision detection mechanism used by hash maps, unifying the
two phases of “seed and extend” into a single operation that executes in close to O(1) average time.

Index Terms— Biology and genetics, Fuzzy set.

—————————— u ——————————

1 INTRODUCTION
HE utilisation and exploitation of k-mers is a long es-
tablished motif in bioinformatics, with k-mer centric

techniques used, among other things, to seed sequence
alignments [1], screen sequence errors [2], identify repeti-
tive sequences [3] and model genome assembly [4]. A k-
mer is a sequence of k consecutive bases, with k-mer s
adjacent to k-mer t if there is a (k + 1)-mer in a sequence
whose first and last k bases are s and t respectively [5].

Despite their importance in modelling genome assem-
bly, the ubiquity of k-mer centric techniques in bioinfor-
matics is motivated primarily by the prohibitive space
and time complexity of using dynamic programming to
align either long or large numbers of biological sequenc-
es. Although the problem of finding an optimal pairwise
alignment of two sequences was solved by Smith and
Waterman [6], their algorithm has a quadratic space and
time complexity, rendering it unfeasible for use with large
data sets. Decomposing a sequence into a tiling of k-mers
is a viable alternative alignment mechanism, as sequences
with high similarity must share k-mers in their overlap-
ping regions [7]. Moreover, the short length of k-mer se-
quences facilitates their exploitation in efficient hash-
based data structures, vastly reducing the computational
cost of alignment and assembly.

As k-mers represent k consecutive characters in a se-
quence, their utility is limited to exact string-matching
techniques. In the absence of a mechanism for approxi-
mate string matching, exact k-mer alignment represents a
trade-off between speed and sensitivity. This compromise
is controlled by the k-mer size, with smaller sizes of k in-
creasing the possibility of detecting a local alignment, but
also increasing the number of spurious matches. If the
size of k is too large, an alignment of two sequences will
miss high-scoring matches that do not have k consecutive
characters. Furthermore, while larger values of k decrease
access time to hash-based dictionary structures, smaller k-
mer sizes increase the number of hash collisions, resulting

in a subsequent escalation in the time complexity of
search operations.

To circumvent the loss of sensitivity arising from the
constraint of exact k-mer matching, hashing techniques
can be augmented with dynamic programming algo-
rithms to improve sequence alignment. Known as “seed
and extend”, this approach uses fast exact-matching data
structures to identify regions of k similarity, which can
then be extended using approximate string matching al-
gorithms. The “seed and extend” paradigm has a long
history in sequence alignment and underlies the align-
ment strategies used by BLAST [8], BLAT [9] and, more
recently, by Mosaik [10].

Despite the longevity and success of the “seed and ex-
tend” approach with Sanger sequences, the advent of se-
cond generation sequencing (SGS) technologies lead to a
reappraisal of k-mer alignment techniques. While SGS
sequences provide ample information to seed an align-
ment, their short length precludes the employment of an
extension phase to refine and filter seeded regions. In a
seminal work, Ma et al [11] noted that alignment sensitivi-
ty could be increased by seeding regions of high similari-
ty with non-consecutive k matches, called patterns or
spaced seeds. Spaced seeds are binary strings, the weight
of which is determined by the number of 1’s in the seed.
Spaced seeds are analogous to masks, with 1’s corre-
sponding to a required match and 0’s indicating a “don’t
care” position. The spaced seed model was later extended
to support multiple spaced seeds [12], allowing even
greater sensitivity during the seeding phase of alignment.
Although they provide higher sensitivity without a loss in
specificity, the patterns applied in conventional spaced
seeds assume only polymorphic mutations between ho-
mologous sequences or that indels are widely spaced.
These limitations of the spaced seed model were ad-
dressed by Noé and Kucherov [13], who suggested the
use of transition-constrained seeds to accommodate pol-
ymorphisms at 1’s positions and later by Mak et al [14]
who proposed an indel-spaced seed based on a four-
character alphabet.

In recent times, there has been a proliferation of align-
ment tools based on the exploitation of multiple spaced

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

T

————————————————
• John Healy, Dept. of Computing & Mathematics, Galway-Mayo Institute

of Technology, Galway, Ireland. E-mail: john.healy@gmit.ie
• Desmond Chambers, Dept. of Information Technology, National University

of Ireland Galway, Ireland. E-mail: des.chambers@nuigalway.ie

2 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, TCBB-2013-06-0181

seeds [15]. Spaced seed aligners typically use hash-based
data structures to build an index from either a set of se-
quences or a reference genome [16]. Despite the success of
this approach with SGS data, spaced seed aligners do not
perform well for sequence lengths ≥200bp, and permit
very few mismatches, typically ≤ 2 nucleotides [17]. In
addition, like exact consecutive k-mer matching tech-
niques, the conventional spaced seeds used by most
aligners do not permit gaps, limiting the technique in the
presence of transpositions and indels.

Fuzzy k-mers combine the speed of hashing with the
sensitivity of dynamic programming algorithms, permit-
ting rapid and accurate alignments, even in the presence
of indels and polymorphisms. This paper provides a more
detailed analysis of fuzzy k-mers previously described by
the authors [18, 19] and expands the discussion to address
the impact of the approach on alignment speed, sensitivi-
ty and specificity. The remainder of this paper includes a
detailed presentation of the fuzzy k-mer model in the next
section. This is followed by a description of a prototype
aligner developed to test the model. The results of tests
on the speed, sensitivity and specificity of the approach
are then presented and discussed.

2 FUZZY K-MERS
One of the most important facets of k-mers, and one that
is heavily exploited in sequence alignment, is their suita-
bility as keys in a hash table or hash map. Given a uni-
form and random distribution of keys in a hash map, op-
erations for insertion, search and deletion execute in O(1)
average time [20]. In a chained hash map, a hashing func-
tion is used to compute a bucket index from a search key,
with each bucket index containing a pointer to a linked
list. Determining a bucket index from a hash key is a two-
step operation, requiring the computation of an integer
value from an arbitrary key type and then transforming
that value into an index in the range [0..m − 1], where m is
the number of buckets in a map. An integer value is typi-
cally computed from a string S of length n using the 16-bit
Unicode value of each character at each index position in
the string:

 (1)

The 32-bit signed integer returned by (1) can then be
translated into a bucket index of a hash map T using the
division method, i.e. T[S] = h(S) mod m.

During an insertion operation, a collision occurs if two
keys hash to the same bucket index. Although a good
hashing function will minimise their occurrence, colli-
sions can be resolved by adding the new key to the head
of the linked list at a bucket index. A search of a hash
map operates in a similar manner, with the hashing func-
tion providing O(1) time access to a bucket index, fol-
lowed by the time it takes to search the linked list at that
index for a hash key.

The k-spectrum for a reference genome G is the set Gk =
{G [i : i + k − 1] ⏐ 0 ≤ i < |G| − k + 1}, where G [i : i + k − 1]
denotes, for a constant k, the substring of consecutive
characters in G from index i to index i + k − 1. A hash

map, T, can be constructed from G by inserting each G [i :
i + k − 1] in Gk as a key in T, along with its positional in-
formation as a value (Fig. 1(a)). The average number of k-
mers stored in the linked list at an index in T is the load
factor α = |Gk|/m, where m is the capacity or number of
buckets in the hash map. In a conventional hash map,
under the assumption of simple uniform hashing, a total
of Θ(1 + α) time is required for an insertion or search op-
eration [20]. Clearly therefore, a search at a bucket index
that is not empty will require a minimum of two tests for
equality – one test based on the hash of a search key and
one or more tests against the existing keys in the linked
list.

The fuzzy k-mer approach is based on the work of
Topac [21], who showed how fuzzy operations can be
performed on a hash map by manipulating this two-step
mechanism. Instead of attempting to design a hashing
function to avoid possible collisions, the fuzzy approach
deliberately encourages controlled collisions in a hash
map, by allowing only part of the search key to be used

Fig. 1. (a) A conventional hash table created from a set of 8-mers.
Each of the 6 bucket indices available contains a linked list to which k-
mers are added as hash keys. Each k-mer maps to some satellite
data, in this case an index position in a reference genome. At buckets
3 and 4, a hash collision has resulted in more than one key being add-
ed to the bucketʼs linked list. (b) A fuzzy hash map created from the
same 8-mers. Buckets 1, 2 and 4 are empty. A hash is computed only
on the first four bases in the hash key, with the remaining bases allow-
ing variability. The satellite data attached to each fuzzy hash key is a
fuzzy set containing approximately matching k-mers.

AUTHOR ET AL.: TITLE 3

by a hashing function and permitting a degree of variabil-
ity in the remainder of the key. Unlike conventional
maps, that provide a surjective mapping of keys to val-
ues, fuzzy hash maps relate fuzzy hash keys to fuzzy sets,
the latter of which are characterised by a fuzzy set mem-
bership function µ(). For a k-mer S ∈ Gk, we can define a
fuzzy hash map M:f(S) → A, where f(S) is a fuzzy hash
key operation on S and A is a fuzzy set with a member-
ship function of µA(S). In contrast with the dichotomy
implicit in Boolean operations on crisp sets, fuzzy sets are
characterised by a continuum of real numbers between 0
and 1 that describe the degree of set membership [22]. For
a fuzzy hash map M, the degree of membership of the
fuzzy set A is governed by the fuzzy set membership
function, µA(S) → [0..1].

A fuzzy k-mer or fuzzy seed may be defined as f(S) =
h(S) µA(S), where h(S) is the subsequence of S used to
compute a hash code and µA(S) is a membership function
on a substring of S that permits a degree of variability
(Fig.1 (b)). The function h(S) maps a fuzzy hash key f(S) to
the linked list of keys at a bucket index, with the member-
ship function µA(S) used to evaluate the degree of mem-
bership of the fuzzy set associated with a key. The essence
of the fuzzy k-mer approach is to encourage controlled
collisions on a subsequence of a k-mer and to use a string
similarity algorithm to implement the fuzzy set member-
ship function. This approach has the effect of grouping
together approximately matching k-mers into a single
fuzzy set, allowing the fuzzy set of k-mers to be accessed
in a single search operation. During an insertion or a
search operation, a collision will occur in a fuzzy hash
map M when:

∃ A ∈ M[h(S)] ⏐#A > 0 (3)

As fuzzy sets permit elements to have a membership de-
gree of zero, a cut-off threshold, β ≤ µA(S) ≤ 1, can be ap-
plied to eliminate elements below the threshold limit. By
applying a β cut-off threshold, a fuzzy set of matches will
be detected for a k-mer S during an insertion or search
operation where:

∃ A ∈ M[h(S)] ⏐ µA(S) → [0, 1], β ≤ µA(S) ≤ 1 (3)

As depicted in Fig. 2, the fuzzy k-mer approach permits
the use of different seed models to specify the hash indi-
ces to use in h(S) and different string similarity algorithms
for computing the membership function of the fuzzy set
A. Specifying a β cut-off threshold of zero for a fuzzy seed
will return all exact matching k-mers for a given set of
hash indices, performing no better than a convention con-
secutive or spaced seed. This is logically equivalent to
extending a seed with an additional set of “don’t care”
indices. Increasing the β cut-off threshold has the effect of
concentrating the fuzzy set A, requiring a higher fuzzy
membership value from the function µA(S). This alters the
semantics of the fuzzy component of a k-mer from “don’t
care” to “may care” indices. At the other extreme, setting
the β cut-off threshold to 1 will require an exact match of
all indices in a k-mer. The β cut-off threshold therefore
controls both the sensitivity and specificity of a match,
with the speed governed primarily by the number of hash
indices.

The fuzzy set membership function, µA(S), can be im-
plemented using any approximate string matching algo-
rithm. For example, for the Levenshtein [23] distance d
computed using a match score of +1 and a mismatch
score of 0, the membership function µA(S) = 1 − d/|Sij| will
return a fuzzy measure of similarity for a substring of the
k-mer S, between indices i and j, for a fuzzy set A.

Note that no change to the underlying implementation
of a regular hash map is required to accommodate the
fuzzy behaviour. This enables the fuzzy approach to re-
tain the O(1) average running time of the basic map oper-
ations and the space complexity of conventional maps. It
also allows fuzzy hash maps to be stored and retrieved
like conventional hash maps. Assuming a dynamic pro-
gramming algorithm is used to compute µA(S), the total
running time for a k-mer search is Θ(1 + α(|Sij|

2)), com-
prised of a constant time operation to compute a bucket
index using a hash function, followed by the load factor
of the map multiplied by the time complexity of the algo-
rithm. Using this technique, the number of hash collisions
is controlled by the number of indices in S used by h(S),
with the number of fuzzy sets in the linked list at each
bucket controlled by the β cut-off threshold. Once a fuzzy
hash map has been constructed from Gk, the running time
required to align a tiling of k-mers from a query sequence
will be proportional to the length of the query sequence
and the size of k, but will remain constant with respect to
the number of hash keys in the map.

3 PROTOTYPE IMPLEMENTATION
We developed a prototype sequence aligner in Java that
uses the fuzzy k-mer approach to align both Sanger and
SGS sequences against a reference genome. While the
mechanics for manipulating collision detection in hash
structures vary between programming languages, colli-
sions are resolved in Java by the semantics of object
equality, as implemented in the hashCode() and equals()
methods [24] common to all objects in the language. The

Fig. 2. Fuzzy seeds can extend existing consecutive and spaced-
seed models with “may care” indices to augment “must match” or
“donʼt care” positions. The “must match” positions are denoted by
the “#” symbol, “donʼt care” positions by the “-” symbol and fuzzy
indices by an asterisk (*). The degree of similarity in “may care”
fuzzy indices is computed using an approximate string-matching
algorithm.

4 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, TCBB-2013-06-0181

hashCode() method returns a 32-bit signed integer that is
translated into a bucket index using the division method
[20], i.e. h(S) = hashCode() mod m, where m is the capaci-
ty or number of buckets in the hash map. When searching
a hash map for a given key, if two hashCode() methods
return the same integer, a collision is detected if the
linked list at that bucket index is not empty. The collision
is then resolved by executing the equals() method of the
search key against each key in the linked list.

Fuzzy seeds can be defined declaratively, by specify-
ing a seed pattern, a string matching algorithm and the β
cut-off threshold for matches. For example, the 24-mer
consecutive seed ###########************* computes a
bucket index from the first 11 characters in a 24-mer and
uses the remaining 13 characters to permit a degree of
variability. The hash indices of seeds are not required to
be consecutive. The seed ######*************##### gen-
erates a hash integer from the 6 prefix and 5 suffix charac-
ters of a 24-mer and computes the degree of fuzzy simi-
larity from the middle 13 characters. Fuzzy seeds can also
be created from existing spaced-seed patterns. For exam-
ple, the 33-mer fuzzy spaced-seed ###-#--#-#--##-
###*************** extends the original spaced-seed used
by PatternHunter [11] with 13 fuzzy indices. In this for-
mulation of a fuzzy k-mer, the spaced-seed contains both
“don’t care” and “may care” indices, the latter offering
the potential to redress the problem of low specificity in a
single spaced-seed. For larger values of k, this is effective-
ly a “spaced-seed and extend” approach, combining the

two phases of alignment into a single unified operation.
A number of different string similarity algorithms

were included in the prototype for computing the mem-
bership function µA(S). The Hamming [25] and Le-
venshtein [23] distance implementations use the formula
µA(S) = 1 − d/|Sij| to convert the edit distance d of sub-
string Sij into a real number between 0..1. An implementa-
tion of the Smith-Waterman [6] algorithm for local se-
quence alignment was also used. The implementation
computes µA(S) = score/|Sij| * 2, using a match score of +2,
a mismatch score of -1 and a gap penalty of -1. As the
maximum score in the Smith-Waterman dynamic pro-
gramming matrix is sufficient for the computation of a
fuzzy measure of string similarity, the trace-back step of
the algorithm was omitted, providing a slight decrease in
running time. The prototype can be configured with mul-
tiple fuzzy seeds, consecutive, spaced or mixed, for a giv-
en k-mer size and allows different algorithms and β cut-
off thresholds for different seeds.

The prototype aligns two sequences by first generating
a tiling of k-mers from a reference genome and then in-
serting each k-mer into a fuzzy hash map, along with its
positional information, using the specified fuzzy seeds.
As k-mers are added to the fuzzy hash map, collisions are
resolved using the equals() method, resulting in approx-
imately matching k-mers being added to the fuzzy set
associated with a matching seed. Consequently, as illus-
trated in Fig. 3, the constructed fuzzy hash map will con-
sist of a set of fuzzy hash keys that map to fuzzy sets of
index positions in a reference genome.

After adding a reference genome to the fuzzy hash
map, each query sequence is decomposed into a tiling of
k-mers. The fuzzy hash map is then searched for approx-
imate k-mer matches, using each k-mer as a search key.
Once the result set for an alignment has been created, the
set of matching points in the reference genome is further
processed to remove spurious or weak matches, by apply-
ing an alignment window to the set of matches for a que-
ry sequence. The alignment window imposes distance
constraints, computed from the alignment indices, the
query sequence length and the length of the reference
sequence. This has the effect of grouping together both
overlapping and non-overlapping k-mer matches that fall
within the alignment window. As depicted in Fig. 3, each
of these groups is represented as a binary array, with 1’s
corresponding to matching positions and 0’s to mis-
matches. An overall alignment score is then computed for
each group by dividing the sum of all the 1’s in the binary
array by the length of the query sequence. Finally, user-
defined fuzzy value, corresponding to a percentage iden-
tity constraint, is applied, with alignments scoring under
the threshold being discarded.

4 RESULTS AND DISCUSSION
The results presented in this section were compiled from
executing the prototype on a Java HotSpot 1.6 64-bit vir-
tual machine on an OSX 10.6.8 platform, with a single 3.2
GHz Intel Core i3 processor and 16GB of RAM.

Fig. 3. Overview of the alignment process. Query sequences are
decomposed into a tiling of k-mers and then aligned using one or
more fuzzy k-mer seeds.

AUTHOR ET AL.: TITLE 5

4.1 Speed Comparison with Exact-match Seeds
To evaluate the overall impact on running time, of using
fuzzy k-mers in place of exact matching seeds, we meas-
ured the load times and the multiplicity of hash keys gen-
erated from adding a set of whole genomes to a fuzzy
hash map, a regular hash map and a tree map. In contrast
with a fuzzy map, a hash map and a tree map use exact
matching k-mers for insertion and search operations.
While the running times of these operations averages
O(1) in a regular hash map, a tree map guarantees
O(log(n)) time for insertion and search operations, by
storing the set of map keys in a binary search tree [26].
The results of tests using the 1.95Mbp genome of B.suis
ATCC are shown in Table 1 and depicted in Fig 4.

Using an exact matching 24-mer seed resulted in the
generation of 1.91x106 keys in both a hash map and a tree
map. This figure represents an approximation of the k-
spectrum set of the B.suis ATCC genome, as hash colli-
sions will result in the bucket address of a hash key con-
taining more than one k-mer. As illustrated in the Fig 4, a
24-mer fuzzy seed generates fewer keys, with the number
decreasing rapidly as the hash size is reduced. The shad-
ed area above the fuzzy seed in Fig 4 represents the in-
creased sensitivity of a fuzzy 24-mer seed over an exact
24-mer seed, in the window of hash sizes from 10 to 13
bases. The increased sensitivity is due to approximately
matching k-mers being added to the fuzzy set of an exist-
ing fuzzy hash key. Consistent with exact matching seeds,
fuzzy k-mer operations are performed on discrete chunks
of k-sized sequences, with the fuzzy approach permitting
some variability in k-mer content. The shaded area below
the fuzzy seed corresponds to the level of increased speci-
ficity over an exact match seed with the same number of
hash indices. As the complexity of a k-mer increases in the
order of 4k, an exact matching k-mer at small hash sizes
will generate a high number of collisions and an accom-
panying high number of candidate matches. It is precisely
because it is more specific, that the fuzzy approach pro-
duces more keys than an exact-matching seed with the
same number of hash indices.

The load times listed in Table 1 show a large disparity
in running times between fuzzy and exact k-mer keys
when the number of hash indices is small. At low hash
sizes, the increased load time of the fuzzy approach is due
to the necessity of executing an approximate string-
matching algorithm to determine the equality between
keys after an initial hash collision. At very low hash sizes,
the linked list at each bucket index will contain a large
number of fuzzy hash keys. A subsequent insertion into a
fuzzy hash map will therefore require the insertion key to
be compared to a relatively large number of existing keys,
with an accompanying degradation in running time. This
effect is clearly accentuated at small hash sizes, as the
running time recovers rapidly when the hash size is in-
creased, matching the O(log(n)) time of a tree map.

Fig. 4. The multiplicity of hash keys produced for the genome of
B.suis ATCC at different hash sizes, using a β-cutoff threshold of 0.5.
Fuzzy seeds produce a larger number of hash keys than an exact
seed with the same number of hash indices. This enables fuzzy k-
mers to achieve a higher level of specificity than an exact seed with-
out reducing sensitivity.

TABLE 1
COMPARISON OF LOAD TIMES AND KEY NUMBER FOR B. SUIS ATCC

The Levenshtein distance algorithm, with a β-cutoff threshold of 0.5, was used to compute µA(S) for the fuzzy alignments.

6 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, TCBB-2013-06-0181

4.2 Computation Burden of Approximate String

Matching
Given its centrality to the fuzzy k-mer approach, an eval-
uation of the computational overhead associated with the
use of an approximate string-matching algorithm for a k-
mer search is essential. The most significant factor that
impacts the running time of map operations is the effec-
tive load factor of a map, α’ = |Gk|/m, where m is the num-
ber of keys. The effective load factor, α’, represents the
average number of k-mers in the linked list at a non-
empty bucket index. An increase in the effective load fac-
tor corresponds to an increase in the number of hash col-
lisions in a map and degrades the average O(1) running
time of map operations.

To assess this aspect of fuzzy k-mers, we aligned a set
of whole genomes and computed the number of keys
generated, along with the load and alignment times using
different string similarity algorithms. The prototype was
configured with different approximate string-matching
algorithms and a 24-mer seed, for a range of hash sizes
decreasing from 20 to 6 hash indices. The β cut-off thresh-
old was held constant at 0.5 for all alignments. For the test
with an exact-matching seed, the implementation of the
equals() method of the fuzzy hash key was held constant,
returning a Boolean false for every invocation, regardless
of the content of the fuzzy component of a seed. This had
the effect of forcing the collision detection mechanism of
the hash map to compare each k-mer search key against
all of the existing keys in the linked list at a bucket index,
allowing a measure of the relative running time cost of
using different similarity algorithms against a guarenteed
O(1) operation. The results of tests for the alignment of
B.suis 1330 against the genome of B.suis ATCC are shown
in Table 2.

As the two B.suis genomes are highly homologous, the
strong sequence similarity should induce a high number
of hash collisions for a k-mer search, with an accompany-
ing escalation in the invocation of the string similarity
algorithm. The tests demonstrate that, regardless of the

string similarity algorithm used, the fuzzy approach gen-
erates more hash keys than an exact-matching seed, re-
sulting in a reduction in the effective load factor of the
map. This effect is accentuated when the number of hash
indices in a seed is reduced, as approximately matching k-
mers will be grouped together as satellite data of a fuzzy
hash key. This reduction in load factor has a direct impact
on the running time of map operations, as the increase in
the number of hash keys reduces the overall number of
hash collisions. The reduced load factor also contributes
to mitigating the computational overhead of executing a
string similarity algorithm for each k-mer search opera-
tion on the map, as the Θ(1 + α’(|Sij|

n)) running time
is controlled by the effective load factor (α’), with both the
fuzzy subsequence (S) of a k-mer and the running time (n)
of the algorithm remaining constant for a given seed.

For hash sizes > 13, there is no significant variation in
the running times of any of the dynamic programming
algorithms used in the test. Although the alignment run-
ning times converge as the hash size increases, the likeli-
hood of locating an exact or approximate k-mer match
rapidly decreases. The opposite effect can be observed as
the hash size is reduced below 11, indicating that, con-
sistent with established best practice, the window from 10
to 13 indices contains the optimal hash size for a k-mer
seed. The superior alignment time for Hamming distance
is not surprising, as the algorithm has a time complexity
of O(n) [25], in contrast with the O(n2) running time of the
other measures of string similarity used. While the diver-
gence in running time from that achieved by an exact-
matching seed is significant, the use of dynamic pro-
gramming in a fuzzy k-mer does not place an excessive or
punitive computation burden on sequence alignment.

4.3 Sensitivity and Selectivity
To evaluate the sensitivity and specificity of fuzzy k-mers,
we extracted 800bp sequences at 10X coverage from a set
of bacterial genomes and recorded the index position of
each read. We then induced random indels into the syn-
thetic sequences at a rate of 10% and aligned each set of

TABLE 2
COMPARISON OF STRING SIMILARITY ALGORITHMS FOR FOR B. SUIS ATCC

α’ = effective load factor, T = time. A β-cutoff threshold of 0.5 was used for all fuzzy alignments.

AUTHOR ET AL.: TITLE 7

sequences against its original genome. With a priori
knowledge of the correct index of each read, we were able
to accurately evaluate the approach by comparing align-
ments with their correct position in the original genome.
For these tests, we selected only the highest scoring
alignment for each sequence. A read alignment was con-
sidered a true positive (TP) if its alignment indices
mapped exactly to their original position and a false posi-
tive (FP) if not. We then computed the level of accuracy as
sensitivity = TP/(TP + FN) and specificity = TP/(TP + FP).

We selected BLAT [9] and Mosaik [10] to evaluate the
fuzzy k-mer approach against the “seed and extend” and
“spaced-seed and extend” models respectively. The im-
plementation of the “seed and extend” model used in
BLAT aligns k-mers extracted from sequence reads
against a set of non-overlapping k-mers from a reference
genome. BLAT can accommodate a single polymorphism
at the end of a k-mer by making separate lookups of a

hash table for each terminating base. The Mosaik aligner
clusters k-mer matches of reads against a hash table of
reference positions using spaced seeds, before evaluating
each cluster with a full Smith-Waterman alignment.

Table 3 shows the results of the test with sequences
from the B.suis 1313 genome, using the single 24-mer
fuzzy seed, ############************, with 12 hash po-
sitions and a requirement for an overall percentage iden-
tity match of 60%. The fuzzy set membership function,
µA(S), was computed using a variation of the Levenshtein
distance algorithm. For this comparison, both BLAT and
Mosaik were configured to use 12 hash positions per seed
and a similar requirement for a 60% identity match along
a query sequence. In general, an increase in the β cut-off
threshold results in a corresponding increase in the level
of specificity, with no loss of sensitivity below 0.8. Be-
cause it permits a full 24-mer approximate match, the
fuzzy k-mer seed is significantly more sensitive and more
specific than an exact matching 12-mer consecutive seed.
Once the β cut-off threshold is increased above 0.8, the
sensitivity of the fuzzy approach is reduced to that of a
full 24-mer exact-matching seed. Despite using a single
24-mer seed, the fuzzy approach is significantly both
more sensitive and more specific than the traditional
“seed and extend” approach used by BLAT, but less spe-
cific than the multiple spaced-seed strategy used by Mo-
saik.

A further comparison of fuzzy k-mer alignments with
those produced by BLAT and Mosaik is shown in Table 4.
The results confirm the superiority of fuzzy k-mer seeds
over the exact-matching consecutive seeds used by BLAT
and the greater specificity of the multiple spaced-seed
approach used by Mosaik. The alignment times also con-
firm that the execution of a string-similarity algorithm for
every fuzzy k-mer search does not adversely impact over-
all running time. The results further demonstrate that the
fuzzy approach reduces the effective load factor, enabling
faster fuzzy search and insertion operations on a hash
map. This is evidenced by the tests with Y.pestis, where
the average load factor was reduced from 1.31 to 1.09,
enabling the overall alignment using fuzzy k-mers to be
completed in 212 seconds, against the 1123 and 1634 se-

TABLE 4
COMPARISON WITH BLAT AND MOSAIK

Sn = sensitivity, Sp = specificity. The fuzzy seed ############************ with 12 hash positions, a β-cutoff threshold of 0.5 and an overall sequence per-
centage identity of 90% was used for all fuzzy alignments. BLAT was configured with -tileSize=12 -oneOff=1 -minIdentity=90 and Mosaik with the parameters
-hs 12 -mm 80 -mmp 0.10 -mhp 100 -act 24 -bw 51.

TABLE 3
EFFECT OF β-CUTOFF THRESHOLD ON B.SUIS 1330 ALIGNMENT

α’ = effective load factor. The fuzzy seed ############************ with 12
hash positions and an overall sequence percentage identity of 60% was used.
BLAT was configured with the parameters -tileSize=12 -oneOff=1 -
minIdentity=60. Mosaik was executed with the switches -hs 12 -mm 80 -mmp
0.40 -mhp 100 -act 24 -bw 51.

8 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, TCBB-2013-06-0181

conds required by BLAT and Mosaik respectively. A simi-
lar effect can be observed for the alignment of Synecho-
coccus, where a decrease in the effective load factor from
1.22 to 1.06 reduced the overall alignment time to 86 se-
conds. The alignment times confirm that the computa-
tional burden required for an approximate k-mer match is
not excessive or punitive, as the difference in running
times of the various fuzzy alignments is primarily due to
the overhead of processing a larger number of query se-
quences. This is borne out by a comparison of the results
for K.pneumoniae and S.epidermidis, where a similar effec-
tive load factor enabled more than twice the number of
query sequences in the former to be aligned in approxi-
mately double the alignment time for the latter.

5 CONCLUSION
We have demonstrated a fuzzy approach that enables
approximate k-mer matching, without significantly im-
pacting on the overall running time of sequence align-
ment. By manipulating the collision detection mechanism
and reducing the effective load factor of a hash map,
fuzzy k-mers combine the sensitivity of small k-mer seeds
with the speed and specificity of larger seeds. The fuzzy
k-mer approach is flexible and extensible, allowing differ-
ent seed patterns to be defined with different string simi-
larity algorithms. Given the ubiquity of k-mer centric
techniques in sequence alignment and genome assembly,
the techniques described in this paper have the potential
to be exploited for a variety of alternative uses, including
read error correction and the accommodation of variabil-
ity in assembly graphs.

REFERENCES
[1] W. Pearson and D. Lipman, "Improved tools for biological se-

quence comparison," Proceedings of the National Academy of
Sciences, vol. 85, p. 2444, 1988.

[2] X. Yang, K. S. Dorman, and S. Aluru, "Reptile: representative
tiling for short read error correction," Bioinformatics, vol. 26,
pp. 2526-2533, 2010.

[3] X. Li and M. S. Waterman, "Estimating the Repeat Structure and
Length of DNA Sequences Using l-Tuples," Genome research,
vol. 13, pp. 1916-1922, 2003.

[4] R. Idury and M. Waterman, "A new algorithm for DNA se-
quence assembly," Journal of Computational Biology, vol. 2, pp.
291-306, 1995.

[5] J. Butler, I. MacCallum, M. Kleber, I. Shlyakhter, M. Belmonte,
E. Lander, C. Nusbaum, and D. Jaffe, "ALLPATHS: De novo as-
sembly of whole-genome shotgun microreads," Genome Re-
search, vol. 18, p. 810, 2008.

[6] T. Smith and M. Waterman, "Identification of common molecu-
lar subsequences," Journal of Molecular Biology, vol. 147, pp.
195-197, 1981.

[7] J. R. Miller, S. Koren, and G. Sutton, "Assembly algorithms for
next-generation sequencing data," Genomics, vol. 95, pp. 315-
327, 2010.

[8] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, "Basic
local alignment search tool," Journal of Molecular Biology, vol.
215, pp. 403-410, 1990.

[9] W. Kent, "BLAT - the BLAST-like alignment tool," Genome
Research, vol. 12, p. 656, 2002.

[10] Lee W-P, Stromberg MP, Ward A, Stewart C, Garrison EP, et al.
(2014) MOSAIK: A Hash-Based Algorithm for Accurate Next-
Generation Sequencing Short-Read Mapping. PLoS ONE 9(3):
e90581. doi:10.1371/journal.pone.0090581.

[11] B. Ma, J. Tromp, and M. Li, "PatternHunter: faster and more
sensitive homology search," Bioinformatics, vol. 18, p. 440, 2002.

[12] M. Li, B. Ma, D. Kisman, and J. Tromp, "Patternhunter II: highly
sensitive and fast homology search," Journal of Bioinformatics
and Computational Biology, vol. 2, p. 417, 2004.

[13] L. Noé and G. Kucherov, "YASS: enhancing the sensitivity of
DNA similarity search," Nucleic acids research, vol. 33, pp.
W540-W543, 2005.

[14] D. Mak, Y. Gelfand, and G. Benson, "Indel seeds for homology
search," Bioinformatics, vol. 22, pp. e341-e349, 2006.

[15] H. Li and N. Homer, "A survey of sequence alignment algo-
rithms for next-generation sequencing," Briefings in bioinfor-
matics, vol. 11, pp. 473-483, 2010.

[16] P. Flicek and E. Birney, "Sense from sequence reads: methods
for alignment and assembly," Nature Methods, vol. 6, pp. S6-
S12, 2009.

[17] S. Misra, A. Agrawal, W. Liao, and A. Choudhary, "Anatomy of
a hash-based long read sequence mapping algorithm for next
generation DNA sequencing," Bioinformatics, vol. 27, pp. 189-
195, 2011.

[18] J. Healy and D. Chambers, "Fast and Accurate Genome Anchor-
ing Using Fuzzy Hash Maps," in 5th International Conference
on Practical Applications of Computational Biology & Bioin-
formatics (PACBB 2011), 2011, pp. 149-156.

[19] J. Healy and D. Chambers, "De Novo Draft Genome Assembly
Using Fuzzy K-mers," in BIOTECHNO 2011, The Third Interna-
tional Conference on Bioinformatics, Biocomputational Systems
and Biotechnologies, 2011, pp. 104-109.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Intro-
duction to algorithms: MIT press, 2001.

[21] V. Topac, "Efficient fuzzy search enabled hash map," 2010, pp.
39-44.

[22] K. Tanaka and T. Niimura, An introduction to fuzzy logic for
practical applications: Springer, 1997.

[23] V. Levenshtein, "Binary codes capable of correcting deletions,
insertions, and reversals," 1966.

[24] J. Gosling, B. Joy, G. Steele, and G. Bracha, Java (TM) Language
Specification, The (Java (Addison-Wesley)): Addison-Wesley
Professional, 2005.

[25] R. Hamming, "Error detecting and error correcting codes," Bell
System Technical Journal, vol. 29, pp. 147-160, 1950.

[26] Oracle, "The Java Collections Framework," Java Language Ap-
plication Programming Interface, 2011.

John Healy has been a faculty member at the Department of Math-
ematics & Computing at the Galway-Mayo Institute of Technology
since 2000. He holds a B.Sc., a M.Sc. and a Ph.D. from the National
University of Ireland, Galway.

Desmond Chambers is a faculty member at the Department of
Information Technology, National University of Ireland, Galway. He
holds a B.Eng. in Electronic Engineering from the University of Lim-
erick, a M.Sc. in Computer Systems Design from Trinity College
Dublin and a Ph.D. from the National University of Ireland, Galway.

