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Approximate k-mer Matching using Fuzzy 
Hash Maps 

John Healy and Desmond Chambers 

Abstract— We present a fuzzy technique for approximate k-mer matching that combines the speed of hashing with the 
sensitivity of dynamic programming. Our approach exploits the collision detection mechanism used by hash maps, unifying the 
two phases of “seed and extend” into a single operation that executes in close to O(1) average time. 

Index Terms— Biology and genetics, Fuzzy set. 

——————————   u   —————————— 

1 INTRODUCTION
HE utilisation and exploitation of k-mers is a long es-
tablished motif in bioinformatics, with k-mer centric 

techniques used, among other things, to seed sequence 
alignments [1], screen sequence errors [2], identify repeti-
tive sequences [3] and model genome assembly [4]. A k-
mer is a sequence of k consecutive bases, with k-mer s 
adjacent to k-mer t if there is a (k + 1)-mer in a sequence 
whose first and last k bases are s and t respectively [5]. 

Despite their importance in modelling genome assem-
bly, the ubiquity of k-mer centric techniques in bioinfor-
matics is motivated primarily by the prohibitive space 
and time complexity of using dynamic programming to 
align either long or large numbers of biological sequenc-
es. Although the problem of finding an optimal pairwise 
alignment of two sequences was solved by Smith and 
Waterman [6], their algorithm has a quadratic space and 
time complexity, rendering it unfeasible for use with large 
data sets. Decomposing a sequence into a tiling of k-mers 
is a viable alternative alignment mechanism, as sequences 
with high similarity must share k-mers in their overlap-
ping regions [7]. Moreover, the short length of k-mer se-
quences facilitates their exploitation in efficient hash-
based data structures, vastly reducing the computational 
cost of alignment and assembly. 

As k-mers represent k consecutive characters in a se-
quence, their utility is limited to exact string-matching 
techniques. In the absence of a mechanism for approxi-
mate string matching, exact k-mer alignment represents a 
trade-off between speed and sensitivity. This compromise 
is controlled by the k-mer size, with smaller sizes of k in-
creasing the possibility of detecting a local alignment, but 
also increasing the number of spurious matches. If the 
size of k is too large, an alignment of two sequences will 
miss high-scoring matches that do not have k consecutive 
characters. Furthermore, while larger values of k decrease 
access time to hash-based dictionary structures, smaller k-
mer sizes increase the number of hash collisions, resulting 

in a subsequent escalation in the time complexity of 
search operations. 

To circumvent the loss of sensitivity arising from the 
constraint of exact k-mer matching, hashing techniques 
can be augmented with dynamic programming algo-
rithms to improve sequence alignment. Known as “seed 
and extend”, this approach uses fast exact-matching data 
structures to identify regions of k similarity, which can 
then be extended using approximate string matching al-
gorithms. The “seed and extend” paradigm has a long 
history in sequence alignment and underlies the align-
ment strategies used by BLAST [8], BLAT [9] and, more 
recently, by Mosaik [10].  

Despite the longevity and success of the “seed and ex-
tend” approach with Sanger sequences, the advent of se-
cond generation sequencing (SGS) technologies lead to a 
reappraisal of k-mer alignment techniques. While SGS 
sequences provide ample information to seed an align-
ment, their short length precludes the employment of an 
extension phase to refine and filter seeded regions. In a 
seminal work, Ma et al [11] noted that alignment sensitivi-
ty could be increased by seeding regions of high similari-
ty with non-consecutive k matches, called patterns or 
spaced seeds. Spaced seeds are binary strings, the weight 
of which is determined by the number of 1’s in the seed.  
Spaced seeds are analogous to masks, with 1’s corre-
sponding to a required match and 0’s indicating a “don’t 
care” position. The spaced seed model was later extended 
to support multiple spaced seeds [12], allowing even 
greater sensitivity during the seeding phase of alignment. 
Although they provide higher sensitivity without a loss in 
specificity, the patterns applied in conventional spaced 
seeds assume only polymorphic mutations between ho-
mologous sequences or that indels are widely spaced. 
These limitations of the spaced seed model were ad-
dressed by Noé and Kucherov [13], who suggested the 
use of transition-constrained seeds to accommodate pol-
ymorphisms at 1’s positions and later by Mak et al [14] 
who proposed an indel-spaced seed based on a four-
character alphabet.  

In recent times, there has been a proliferation of align-
ment tools based on the exploitation of multiple spaced 
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seeds [15]. Spaced seed aligners typically use hash-based 
data structures to build an index from either a set of se-
quences or a reference genome [16]. Despite the success of 
this approach with SGS data, spaced seed aligners do not 
perform well for sequence lengths ≥200bp, and permit 
very few mismatches, typically ≤ 2 nucleotides [17]. In 
addition, like exact consecutive k-mer matching tech-
niques, the conventional spaced seeds used by most 
aligners do not permit gaps, limiting the technique in the 
presence of transpositions and indels.  

Fuzzy k-mers combine the speed of hashing with the 
sensitivity of dynamic programming algorithms, permit-
ting rapid and accurate alignments, even in the presence 
of indels and polymorphisms. This paper provides a more 
detailed analysis of fuzzy k-mers previously described by 
the authors [18, 19] and expands the discussion to address 
the impact of the approach on alignment speed, sensitivi-
ty and specificity. The remainder of this paper includes a 
detailed presentation of the fuzzy k-mer model in the next 
section. This is followed by a description of a prototype 
aligner developed to test the model. The results of tests 
on the speed, sensitivity and specificity of the approach 
are then presented and discussed. 

2 FUZZY K-MERS 
One of the most important facets of k-mers, and one that 
is heavily exploited in sequence alignment, is their suita-
bility as keys in a hash table or hash map. Given a uni-
form and random distribution of keys in a hash map, op-
erations for insertion, search and deletion execute in O(1) 
average time [20]. In a chained hash map, a hashing func-
tion is used to compute a bucket index from a search key, 
with each bucket index containing a pointer to a linked 
list. Determining a bucket index from a hash key is a two-
step operation, requiring the computation of an integer 
value from an arbitrary key type and then transforming 
that value into an index in the range [0..m − 1], where m is 
the number of buckets in a map. An integer value is typi-
cally computed from a string S of length n using the 16-bit 
Unicode value of each character at each index position in 
the string: 

  (1) 
  
The 32-bit signed integer returned by (1) can then be 
translated into a bucket index of a hash map T using the 
division method, i.e. T[S] = h(S) mod m. 

During an insertion operation, a collision occurs if two 
keys hash to the same bucket index. Although a good 
hashing function will minimise their occurrence, colli-
sions can be resolved by adding the new key to the head 
of the linked list at a bucket index. A search of a hash 
map operates in a similar manner, with the hashing func-
tion providing O(1) time access to a bucket index, fol-
lowed by the time it takes to search the linked list at that 
index for a hash key.  

The k-spectrum for a reference genome G is the set Gk = 
{G [i : i + k − 1] ⏐ 0 ≤ i < |G| − k + 1}, where G [i : i + k − 1] 
denotes, for a constant k, the substring of consecutive 
characters in G from index i to index i + k − 1. A hash 

map, T, can be constructed from G by inserting each G [i : 
i + k − 1] in Gk as a key in T, along with its positional in-
formation as a value (Fig. 1(a)). The average number of k-
mers stored in the linked list at an index in T is the load 
factor α = |Gk|/m, where m is the capacity or number of 
buckets in the hash map. In a conventional hash map, 
under the assumption of simple uniform hashing, a total 
of Θ(1 + α) time is required for an insertion or search op-
eration [20]. Clearly therefore, a search at a bucket index 
that is not empty will require a minimum of two tests for 
equality – one test based on the hash of a search key and 
one or more tests against the existing keys in the linked 
list. 

The fuzzy k-mer approach is based on the work of 
Topac [21], who showed how fuzzy operations can be 
performed on a hash map by manipulating this two-step 
mechanism. Instead of attempting to design a hashing 
function to avoid possible collisions, the fuzzy approach 
deliberately encourages controlled collisions in a hash 
map, by allowing only part of the search key to be used 

 
Fig. 1. (a) A conventional hash table created from a set of 8-mers. 
Each of the 6 bucket indices available contains a linked list to which k-
mers are added as hash keys. Each k-mer maps to some satellite 
data, in this case an index position in a reference genome. At buckets 
3 and 4, a hash collision has resulted in more than one key being add-
ed to the bucketʼs linked list. (b) A fuzzy hash map created from the 
same 8-mers. Buckets 1, 2 and 4 are empty. A hash is computed only 
on the first four bases in the hash key, with the remaining bases allow-
ing variability. The satellite data attached to each fuzzy hash key is a 
fuzzy set containing approximately matching k-mers.  



AUTHOR ET AL.:  TITLE 3 

 

by a hashing function and permitting a degree of variabil-
ity in the remainder of the key. Unlike conventional 
maps, that provide a surjective mapping of keys to val-
ues, fuzzy hash maps relate fuzzy hash keys to fuzzy sets, 
the latter of which are characterised by a fuzzy set mem-
bership function µ(). For a k-mer S ∈ Gk, we can define a 
fuzzy hash map M:f(S) → A, where f(S) is a fuzzy hash 
key operation on S and A is a fuzzy set with a member-
ship function of µA(S). In contrast with the dichotomy 
implicit in Boolean operations on crisp sets, fuzzy sets are 
characterised by a continuum of real numbers between 0 
and 1 that describe the degree of set membership [22]. For 
a fuzzy hash map M, the degree of membership of the 
fuzzy set A is governed by the fuzzy set membership 
function, µA(S) → [0..1].  

A fuzzy k-mer or fuzzy seed may be defined as f(S) = 
h(S)  µA(S), where h(S) is the subsequence of S used to 
compute a hash code and µA(S) is a membership function 
on a substring of S that permits a degree of variability 
(Fig.1 (b)). The function h(S) maps a fuzzy hash key f(S) to 
the linked list of keys at a bucket index, with the member-
ship function µA(S) used to evaluate the degree of mem-
bership of the fuzzy set associated with a key. The essence 
of the fuzzy k-mer approach is to encourage controlled 
collisions on a subsequence of a k-mer and to use a string 
similarity algorithm to implement the fuzzy set member-
ship function. This approach has the effect of grouping 
together approximately matching k-mers into a single 
fuzzy set, allowing the fuzzy set of k-mers to be accessed 
in a single search operation. During an insertion or a 
search operation, a collision will occur in a fuzzy hash 
map M when: 

 
∃ A ∈ M[h(S)] ⏐#A > 0  (3) 

 
As fuzzy sets permit elements to have a membership de-
gree of zero, a cut-off threshold, β ≤ µA(S) ≤ 1, can be ap-
plied to eliminate elements below the threshold limit. By 
applying a β cut-off threshold, a fuzzy set of matches will 
be detected for a k-mer S during an insertion or search 
operation where: 

 

∃ A ∈ M[h(S)] ⏐ µA(S) → [0, 1], β ≤ µA(S) ≤ 1 (3) 
 

As depicted in Fig. 2, the fuzzy k-mer approach permits 
the use of different seed models to specify the hash indi-
ces to use in h(S) and different string similarity algorithms 
for computing the membership function of the fuzzy set 
A. Specifying a β cut-off threshold of zero for a fuzzy seed 
will return all exact matching k-mers for a given set of 
hash indices, performing no better than a convention con-
secutive or spaced seed. This is logically equivalent to 
extending a seed with an additional set of “don’t care” 
indices. Increasing the β cut-off threshold has the effect of 
concentrating the fuzzy set A, requiring a higher fuzzy 
membership value from the function µA(S). This alters the 
semantics of the fuzzy component of a k-mer from “don’t 
care” to “may care” indices. At the other extreme, setting 
the β cut-off threshold to 1 will require an exact match of 
all indices in a k-mer. The β cut-off threshold therefore 
controls both the sensitivity and specificity of a match, 
with the speed governed primarily by the number of hash 
indices.  

The fuzzy set membership function, µA(S), can be im-
plemented using any approximate string matching algo-
rithm. For example, for the Levenshtein [23] distance d 
computed using a match score of +1 and a mismatch 
score of 0, the membership function µA(S) = 1 − d/|Sij| will 
return a fuzzy measure of similarity for a substring of the 
k-mer S, between indices i and j, for a fuzzy set A.  

Note that no change to the underlying implementation 
of a regular hash map is required to accommodate the 
fuzzy behaviour. This enables the fuzzy approach to re-
tain the O(1) average running time of the basic map oper-
ations and the space complexity of conventional maps. It 
also allows fuzzy hash maps to be stored and retrieved 
like conventional hash maps. Assuming a dynamic pro-
gramming algorithm is used to compute µA(S), the total 
running time for a k-mer search is Θ(1 + α(|Sij|

2)), com-
prised of a constant time operation to compute a bucket 
index using a hash function, followed by the load factor 
of the map multiplied by the time complexity of the algo-
rithm. Using this technique, the number of hash collisions 
is controlled by the number of indices in S used by h(S), 
with the number of fuzzy sets in the linked list at each 
bucket controlled by the β cut-off threshold. Once a fuzzy 
hash map has been constructed from Gk, the running time 
required to align a tiling of k-mers from a query sequence 
will be proportional to the length of the query sequence 
and the size of k, but will remain constant with respect to 
the number of hash keys in the map.  

3 PROTOTYPE IMPLEMENTATION 
We developed a prototype sequence aligner in Java that 
uses the fuzzy k-mer approach to align both Sanger and 
SGS sequences against a reference genome. While the 
mechanics for manipulating collision detection in hash 
structures vary between programming languages, colli-
sions are resolved in Java by the semantics of object 
equality, as implemented in the hashCode() and equals() 
methods [24] common to all objects in the language. The 

 
Fig. 2. Fuzzy seeds can extend existing consecutive and spaced-
seed models with “may care” indices to augment “must match” or 
“donʼt care” positions. The “must match” positions are denoted by 
the “#” symbol, “donʼt care” positions by the “-” symbol and fuzzy 
indices by an asterisk (*). The degree of similarity in “may care” 
fuzzy indices is computed using an approximate string-matching 
algorithm. 



4 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS,  TCBB-2013-06-0181 

 

hashCode() method returns a 32-bit signed integer that is 
translated into a bucket index using the division method 
[20], i.e. h(S) = hashCode() mod m, where m is the capaci-
ty or number of buckets in the hash map. When searching 
a hash map for a given key, if two hashCode() methods 
return the same integer, a collision is detected if the 
linked list at that bucket index is not empty. The collision 
is then resolved by executing the equals() method of the 
search key against each key in the linked list.  

Fuzzy seeds can be defined declaratively, by specify-
ing a seed pattern, a string matching algorithm and the β 
cut-off threshold for matches. For example, the 24-mer 
consecutive seed ###########************* computes a 
bucket index from the first 11 characters in a 24-mer and 
uses the remaining 13 characters to permit a degree of 
variability. The hash indices of seeds are not required to 
be consecutive. The seed ######*************##### gen-
erates a hash integer from the 6 prefix and 5 suffix charac-
ters of a 24-mer and computes the degree of fuzzy simi-
larity from the middle 13 characters. Fuzzy seeds can also 
be created from existing spaced-seed patterns. For exam-
ple, the 33-mer fuzzy spaced-seed ###-#--#-#--##-
###*************** extends the original spaced-seed used 
by PatternHunter [11] with 13 fuzzy indices. In this for-
mulation of a fuzzy k-mer, the spaced-seed contains both 
“don’t care” and “may care” indices, the latter offering 
the potential to redress the problem of low specificity in a 
single spaced-seed. For larger values of k, this is effective-
ly a “spaced-seed and extend” approach, combining the 

two phases of alignment into a single unified operation. 
A number of different string similarity algorithms 

were included in the prototype for computing the mem-
bership function µA(S). The Hamming [25] and Le-
venshtein [23] distance implementations use the formula 
µA(S) = 1 − d/|Sij| to convert the edit distance d of sub-
string Sij into a real number between 0..1. An implementa-
tion of the Smith-Waterman [6] algorithm for local se-
quence alignment was also used. The implementation 
computes µA(S) = score/|Sij| * 2, using a match score of +2, 
a mismatch score of -1 and a gap penalty of -1. As the 
maximum score in the Smith-Waterman dynamic pro-
gramming matrix is sufficient for the computation of a 
fuzzy measure of string similarity, the trace-back step of 
the algorithm was omitted, providing a slight decrease in 
running time. The prototype can be configured with mul-
tiple fuzzy seeds, consecutive, spaced or mixed, for a giv-
en k-mer size and allows different algorithms and β cut-
off thresholds for different seeds.   

The prototype aligns two sequences by first generating 
a tiling of k-mers from a reference genome and then in-
serting each k-mer into a fuzzy hash map, along with its 
positional information, using the specified fuzzy seeds. 
As k-mers are added to the fuzzy hash map, collisions are 
resolved using the equals() method, resulting in approx-
imately matching k-mers being added to the fuzzy set 
associated with a matching seed. Consequently, as illus-
trated in Fig. 3, the constructed fuzzy hash map will con-
sist of a set of fuzzy hash keys that map to fuzzy sets of 
index positions in a reference genome.  

After adding a reference genome to the fuzzy hash 
map, each query sequence is decomposed into a tiling of 
k-mers. The fuzzy hash map is then searched for approx-
imate k-mer matches, using each k-mer as a search key. 
Once the result set for an alignment has been created, the 
set of matching points in the reference genome is further 
processed to remove spurious or weak matches, by apply-
ing an alignment window to the set of matches for a que-
ry sequence. The alignment window imposes distance 
constraints, computed from the alignment indices, the 
query sequence length and the length of the reference 
sequence. This has the effect of grouping together both 
overlapping and non-overlapping k-mer matches that fall 
within the alignment window. As depicted in Fig. 3, each 
of these groups is represented as a binary array, with 1’s 
corresponding to matching positions and 0’s to mis-
matches. An overall alignment score is then computed for 
each group by dividing the sum of all the 1’s in the binary 
array by the length of the query sequence. Finally, user-
defined fuzzy value, corresponding to a percentage iden-
tity constraint, is applied, with alignments scoring under 
the threshold being discarded.  

4 RESULTS AND DISCUSSION 
The results presented in this section were compiled from 
executing the prototype on a Java HotSpot 1.6 64-bit vir-
tual machine on an OSX 10.6.8 platform, with a single 3.2 
GHz Intel Core i3 processor and 16GB of RAM. 

 

 
Fig. 3. Overview of the alignment process. Query sequences are 
decomposed into a tiling of k-mers and then aligned using one or 
more fuzzy k-mer seeds.   
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4.1 Speed Comparison with Exact-match Seeds 
To evaluate the overall impact on running time, of using 
fuzzy k-mers in place of exact matching seeds, we meas-
ured the load times and the multiplicity of hash keys gen-
erated from adding a set of whole genomes to a fuzzy 
hash map, a regular hash map and a tree map. In contrast 
with a fuzzy map, a hash map and a tree map use exact 
matching k-mers for insertion and search operations. 
While the running times of these operations averages 
O(1) in a regular hash map, a tree map guarantees 
O(log(n)) time for insertion and search operations, by 
storing the set of map keys in a binary search tree [26]. 
The results of tests using the 1.95Mbp genome of B.suis 
ATCC are shown in Table 1 and depicted in Fig 4. 

Using an exact matching 24-mer seed resulted in the 
generation of 1.91x106 keys in both a hash map and a tree 
map. This figure represents an approximation of the k-
spectrum set of the B.suis ATCC genome, as hash colli-
sions will result in the bucket address of a hash key con-
taining more than one k-mer. As illustrated in the Fig 4, a 
24-mer fuzzy seed generates fewer keys, with the number 
decreasing rapidly as the hash size is reduced. The shad-
ed area above the fuzzy seed in Fig 4 represents the in-
creased sensitivity of a fuzzy 24-mer seed over an exact 
24-mer seed, in the window of hash sizes from 10 to 13 
bases. The increased sensitivity is due to approximately 
matching k-mers being added to the fuzzy set of an exist-
ing fuzzy hash key. Consistent with exact matching seeds, 
fuzzy k-mer operations are performed on discrete chunks 
of k-sized sequences, with the fuzzy approach permitting 
some variability in k-mer content. The shaded area below 
the fuzzy seed corresponds to the level of increased speci-
ficity over an exact match seed with the same number of 
hash indices. As the complexity of a k-mer increases in the 
order of 4k, an exact matching k-mer at small hash sizes 
will generate a high number of collisions and an accom-
panying high number of candidate matches. It is precisely 
because it is more specific, that the fuzzy approach pro-
duces more keys than an exact-matching seed with the 
same number of hash indices. 

The load times listed in Table 1 show a large disparity 
in running times between fuzzy and exact k-mer keys 
when the number of hash indices is small. At low hash 
sizes, the increased load time of the fuzzy approach is due 
to the necessity of executing an approximate string-
matching algorithm to determine the equality between 
keys after an initial hash collision. At very low hash sizes, 
the linked list at each bucket index will contain a large 
number of fuzzy hash keys. A subsequent insertion into a 
fuzzy hash map will therefore require the insertion key to 
be compared to a relatively large number of existing keys, 
with an accompanying degradation in running time. This 
effect is clearly accentuated at small hash sizes, as the 
running time recovers rapidly when the hash size is in-
creased, matching the O(log(n)) time of a tree map. 

 
Fig. 4. The multiplicity of hash keys produced for the genome of 
B.suis ATCC at different hash sizes, using a β-cutoff threshold of 0.5. 
Fuzzy seeds produce a larger number of hash keys than an exact 
seed with the same number of hash indices. This enables fuzzy k-
mers to achieve a higher level of specificity than an exact seed with-
out reducing sensitivity.   

TABLE 1 
COMPARISON OF LOAD TIMES AND KEY NUMBER FOR B. SUIS ATCC 

 

The Levenshtein distance algorithm, with a β-cutoff threshold of 0.5, was used to compute µA(S) for the fuzzy alignments.  
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4.2 Computation Burden of Approximate String 

Matching 
Given its centrality to the fuzzy k-mer approach, an eval-
uation of the computational overhead associated with the 
use of an approximate string-matching algorithm for a k-
mer search is essential. The most significant factor that 
impacts the running time of map operations is the effec-
tive load factor of a map, α’ = |Gk|/m, where m is the num-
ber of keys. The effective load factor, α’, represents the 
average number of k-mers in the linked list at a non-
empty bucket index. An increase in the effective load fac-
tor corresponds to an increase in the number of hash col-
lisions in a map and degrades the average O(1) running 
time of map operations.  

To assess this aspect of fuzzy k-mers, we aligned a set 
of whole genomes and computed the number of keys 
generated, along with the load and alignment times using 
different string similarity algorithms. The prototype was 
configured with different approximate string-matching 
algorithms and a 24-mer seed, for a range of hash sizes 
decreasing from 20 to 6 hash indices. The β cut-off thresh-
old was held constant at 0.5 for all alignments. For the test 
with an exact-matching seed, the implementation of the 
equals() method of the fuzzy hash key was held constant, 
returning a Boolean false for every invocation, regardless 
of the content of the fuzzy component of a seed. This had 
the effect of forcing the collision detection mechanism of 
the hash map to compare each k-mer search key against 
all of the existing keys in the linked list at a bucket index, 
allowing a measure of the relative running time cost of 
using different similarity algorithms against a guarenteed 
O(1) operation. The results of tests for the alignment of 
B.suis 1330 against the genome of B.suis ATCC are shown 
in Table 2.  

As the two B.suis genomes are highly homologous, the 
strong sequence similarity should induce a high number 
of hash collisions for a k-mer search, with an accompany-
ing escalation in the invocation of the string similarity 
algorithm. The tests demonstrate that, regardless of the 

string similarity algorithm used, the fuzzy approach gen-
erates more hash keys than an exact-matching seed, re-
sulting in a reduction in the effective load factor of the 
map. This effect is accentuated when the number of hash 
indices in a seed is reduced, as approximately matching k-
mers will be grouped together as satellite data of a fuzzy 
hash key. This reduction in load factor has a direct impact 
on the running time of map operations, as the increase in 
the number of hash keys reduces the overall number of 
hash collisions. The reduced load factor also contributes 
to mitigating the computational overhead of executing a 
string similarity algorithm for each k-mer search opera-
tion on the map, as the Θ(1 + α’(|Sij|

n))  running time 
is controlled by the effective load factor (α’), with both the 
fuzzy subsequence (S) of a k-mer and the running time (n) 
of the algorithm remaining constant for a given seed. 

For hash sizes > 13, there is no significant variation in 
the running times of any of the dynamic programming 
algorithms used in the test. Although the alignment run-
ning times converge as the hash size increases, the likeli-
hood of locating an exact or approximate k-mer match 
rapidly decreases. The opposite effect can be observed as 
the hash size is reduced below 11, indicating that, con-
sistent with established best practice, the window from 10 
to 13 indices contains the optimal hash size for a k-mer 
seed. The superior alignment time for Hamming distance 
is not surprising, as the algorithm has a time complexity 
of O(n) [25], in contrast with the O(n2) running time of the 
other measures of string similarity used. While the diver-
gence in running time from that achieved by an exact-
matching seed is significant, the use of dynamic pro-
gramming in a fuzzy k-mer does not place an excessive or 
punitive computation burden on sequence alignment. 
 

4.3 Sensitivity and Selectivity 
To evaluate the sensitivity and specificity of fuzzy k-mers, 
we extracted 800bp sequences at 10X coverage from a set 
of bacterial genomes and recorded the index position of 
each read. We then induced random indels into the syn-
thetic sequences at a rate of 10% and aligned each set of 

TABLE 2 
COMPARISON OF STRING SIMILARITY ALGORITHMS FOR FOR B. SUIS ATCC 

 

α’ = effective load factor, T = time. A β-cutoff threshold of 0.5 was used for all fuzzy alignments.  
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sequences against its original genome. With a priori 
knowledge of the correct index of each read, we were able 
to accurately evaluate the approach by comparing align-
ments with their correct position in the original genome. 
For these tests, we selected only the highest scoring 
alignment for each sequence. A read alignment was con-
sidered a true positive (TP) if its alignment indices 
mapped exactly to their original position and a false posi-
tive (FP) if not. We then computed the level of accuracy as 
sensitivity = TP/(TP + FN) and specificity = TP/(TP + FP).  

We selected BLAT [9] and Mosaik [10] to evaluate the 
fuzzy k-mer approach against the “seed and extend” and 
“spaced-seed and extend” models respectively. The im-
plementation of the “seed and extend” model used in 
BLAT aligns k-mers extracted from sequence reads 
against a set of non-overlapping k-mers from a reference 
genome. BLAT can accommodate a single polymorphism 
at the end of a k-mer by making separate lookups of a 

hash table for each terminating base. The Mosaik aligner 
clusters k-mer matches of reads against a hash table of 
reference positions using spaced seeds, before evaluating 
each cluster with a full Smith-Waterman alignment.   

Table 3 shows the results of the test with sequences 
from the B.suis 1313 genome, using the single 24-mer 
fuzzy seed, ############************, with 12 hash po-
sitions and a requirement for an overall percentage iden-
tity match of 60%. The fuzzy set membership function, 
µA(S), was computed using a variation of the Levenshtein 
distance algorithm. For this comparison, both BLAT and 
Mosaik were configured to use 12 hash positions per seed 
and a similar requirement for a 60% identity match along 
a query sequence. In general, an increase in the β cut-off 
threshold results in a corresponding increase in the level 
of specificity, with no loss of sensitivity below 0.8. Be-
cause it permits a full 24-mer approximate match, the 
fuzzy k-mer seed is significantly more sensitive and more 
specific than an exact matching 12-mer consecutive seed. 
Once the β cut-off threshold is increased above 0.8, the 
sensitivity of the fuzzy approach is reduced to that of a 
full 24-mer exact-matching seed. Despite using a single 
24-mer seed, the fuzzy approach is significantly both 
more sensitive and more specific than the traditional 
“seed and extend” approach used by BLAT, but less spe-
cific than the multiple spaced-seed strategy used by Mo-
saik.  

A further comparison of fuzzy k-mer alignments with 
those produced by BLAT and Mosaik is shown in Table 4.  
The results confirm the superiority of fuzzy k-mer seeds 
over the exact-matching consecutive seeds used by BLAT 
and the greater specificity of the multiple spaced-seed 
approach used by Mosaik. The alignment times also con-
firm that the execution of a string-similarity algorithm for 
every fuzzy k-mer search does not adversely impact over-
all running time. The results further demonstrate that the 
fuzzy approach reduces the effective load factor, enabling 
faster fuzzy search and insertion operations on a hash 
map. This is evidenced by the tests with Y.pestis, where 
the average load factor was reduced from 1.31 to 1.09, 
enabling the overall alignment using fuzzy k-mers to be 
completed in 212 seconds, against the 1123 and 1634 se-

TABLE 4 
COMPARISON WITH BLAT AND MOSAIK 

 

Sn = sensitivity, Sp = specificity. The fuzzy seed ############************ with 12 hash positions, a β-cutoff threshold of 0.5 and an overall sequence per-
centage identity of 90% was used for all fuzzy alignments. BLAT was configured with -tileSize=12 -oneOff=1 -minIdentity=90 and Mosaik with the parameters 
-hs 12 -mm 80 -mmp 0.10 -mhp 100 -act 24 -bw 51. 
 

TABLE 3 
EFFECT OF β-CUTOFF THRESHOLD ON B.SUIS 1330 ALIGNMENT 

 

α’ = effective load factor. The fuzzy seed ############************ with 12 
hash positions and an overall sequence percentage identity of 60% was used. 
BLAT was configured with the parameters -tileSize=12 -oneOff=1 -
minIdentity=60. Mosaik was executed with the switches -hs 12 -mm 80 -mmp 
0.40 -mhp 100 -act 24 -bw 51. 
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conds required by BLAT and Mosaik respectively. A simi-
lar effect can be observed for the alignment of Synecho-
coccus, where a decrease in the effective load factor from 
1.22 to 1.06 reduced the overall alignment time to 86 se-
conds. The alignment times confirm that the computa-
tional burden required for an approximate k-mer match is 
not excessive or punitive, as the difference in running 
times of the various fuzzy alignments is primarily due to 
the overhead of processing a larger number of query se-
quences. This is borne out by a comparison of the results 
for K.pneumoniae and S.epidermidis, where a similar effec-
tive load factor enabled more than twice the number of 
query sequences in the former to be aligned in approxi-
mately double the alignment time for the latter. 

5 CONCLUSION 
We have demonstrated a fuzzy approach that enables 
approximate k-mer matching, without significantly im-
pacting on the overall running time of sequence align-
ment. By manipulating the collision detection mechanism 
and reducing the effective load factor of a hash map, 
fuzzy k-mers combine the sensitivity of small k-mer seeds 
with the speed and specificity of larger seeds. The fuzzy 
k-mer approach is flexible and extensible, allowing differ-
ent seed patterns to be defined with different string simi-
larity algorithms. Given the ubiquity of k-mer centric 
techniques in sequence alignment and genome assembly, 
the techniques described in this paper have the potential 
to be exploited for a variety of alternative uses, including 
read error correction and the accommodation of variabil-
ity in assembly graphs.  
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