

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

ECE: Exactly-Once-Computation for Collaborative

Edge in IoT using Information Centric Networking

Qian Wang, Brian Lee, Niall Murray, and Yuansong Qiao

 Abstract—Exactly-once data processing/delivery can be

guaranteed in traditional big data processing systems, e.g.

Apache Flink. Checkpoint is commonly used as the solution.

Each operator in these systems can restart from the last

successfully saved state whenever a failure happens. It is not

necessary to restore the logical job graph onto the same device(s)

in traditional datacentre scenarios with powerful servers close to

each other. However, the datacentre oriented solutions are not

suitable for IoT collaborative edge computing scenarios. The

logical job graph is tightly coupled to the physical topology in IoT

networks. Data processing task(s) cannot be placed at a random

edge device to recover from a network failure as it needs to

evaluate the benefits of transmitting data versus

processing/aggregating the data. To address the above challenges,

this paper proposes an Information Centric Networking based

solution and correspondent protocols to provide Exactly-once-

computation for the Collaborative Edge in IoT (ECE). It contains

a job execution scheme to deliver IoT jobs with exactly once data

computation guarantee and a recovery procedure to dynamically

change the IoT job execution graph while experiencing link

failures. The protocol also provides a checking procedure on data

state (received/un-received and computed/un-computed) to

prevent any data loss or duplicated data processing due to the

updated job graph. A data identification approach based on the

job graph is devised to support the ECE functionality. A testbed

has been developed on ndnSIM and the simulation results have

verified the feasibility and scalability of ECE design. It also

evaluates the overhead incurred by the ECE protocol to

guarantee exactly once data computation.

Index Terms—Collaborative Edge Computing, Exactly-once-

computation, Internet of Things (IoT), Information Centric

Networking (ICN)

I. INTRODUCTION

HE Internet of Things (IoT) [1] enabled smart

systems thrive in diverse areas. All of them rely on

sensing devices to capture a vast amount of raw data

Manuscript received February 23, 2023; revised April 17, 2023; accepted

April 30, 2020. Date of publication X-2023. This work was supported by the
Technological University of the Shannon under the Staff Development

Programme, and Science Foundation Ireland (SFI) under Grant Number SFI

16/RC/3918, co-funded by the European Regional Development Fund.
(Corresponding author: Yuansong Qiao)

Qian Wang, Brian Lee and Yuansong Qiao are with Software Research

Institute (SRI), Technological University of the Shannon: Midlands Midwest,
Athlone, Co. Westmeath, Ireland (email: qwang@research.ait.ie; blee@ait.ie;

ysqiao@research.ait.ie)

Niall Murray is with Faculty of Engineering and Informatics,
Technological University of the Shannon: Midlands Midwest, Athlone, Co.

Westmeath, Ireland (email: nmurray@research.ait.ie)

Copyright (c) 2023 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be

obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

from the physical world as the first step. Edge computing [2]

[3] proposed to be complementary of Cloud Computing, has

proved its ability to boost IoT Big Data processing by placing

computation at the proximity of data sources. Researchers [4]

further demonstrate that computation-intensive tasks, e.g.

image processing and speech recognition, can benefit from the

synergy of multiple edge devices than offloading to a single

edge server. It is defined as collaborative edge computing [5]

[6] which distributes data computation to multiple edge

devices and coordinates them working together to complete

the whole job(s).

Many complex IoT applications invoke the collaborative

edge computing framework for better performance, such as the

collaborative cross-edge analytics to preprocess training data

for artificial intelligence (AI) IoT [7] and the hierarchical

federated learning system with partial model aggregation

deployed on edge servers [8]. Fruitful studies in this area have

focused on optimizing resource usage and task deployment,

handling network failures during job execution is not the main

concern in their works. In fact, it may result in data loss or

duplicated data transmission and/or processing if a network

failure happens during the edge collaboration, which could

end with wrong processed results or trained models.

This paper addresses the challenge of guaranteeing exactly-

once-computation on the same data in collaborative edge

scenarios. Existing works related to this topic is very scarce.

Initial attempts utilise the checkpoint scheme to save the state

of an IoT task into Docker images [9], concerning task

migration from one edge device to another [10] and

information transfer between different tasks [11]. However,

their works are limited to task execution on a single edge

device. Although checkpoint based solution has been maturely

developed in traditional big data processing frameworks, e.g.

Apache Spark [12] and Apache Flink [13], this paper argues

that the solution is difficult to be applied into IoT scenarios.

Firstly, it is not necessary to restore the logical graph onto the

same device(s) in traditional data centre scenarios with

powerful servers close to each other. In sharp contrast, the

logical job graph is tightly coupled to the physical topology in

IoT edge environment. Data processing task(s) cannot be

placed at a random edge device to replace the previous failed

one as it needs to evaluate the benefits of transmitting data

versus processing/aggregating the data. Secondly, the

traditional checkpoint approach requires the system to take a

snapshot of each operator’s state periodically. Then the snapshots

are normally saved to a durable storage, e.g. Hadoop Distributed

File System (HDFS) [14], which is not widely available in edge

computing environments.

Thus, this paper identifies the following challenges to

achieve exactly once computation in collaborative edge

T

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3275179

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

computing for IoT data processing.

Challenge-1. Backup essential data processing

information in distributed edge nodes. Edge collaboration

can be interrupted by IoT network failures due to unstable

network connections and IoT device mobility. It requires to

decide which information of data processing is essential and

sufficient to be used to recover from the failures. Then it

brings the challenge on how to save the information

efficiently. Unlike the data centre environments, a central

storage for the essential information is not practical in IoT

edge scenarios. As edge computing is proposed to complement

cloud computing to deal with the high volume/velocity/variety

of data produced by massive amounts of IoT devices, it is

preferable to distribute the information storage on the edge.

Challenge-2. Handle network failures during edge

collaboration while guarantee exactly once computation on

the same data. When the network connection between two

edge devices fails, it breaks the original job execution graph

containing the two edge devices. The downstream edge is not

sure if its data has been successfully delivered to its upstream

neighbour. This requires designing a scheme to utilise the

information described in Challenge-1 to repair the job

execution graph to resume normal data processing. It also

needs to check whether any data has been lost or duplicate

processed due to the network failure.

Challenge-3. Limited storage space at edge devices. Only

capable edge devices can participant in the collaborative edge

computing for IoT applications. The burden of edge devices

becomes heavier if they need to process data meanwhile store

relevant information. Thus, the information described in

Challenge-1 cannot be saved on edge devices permanently. As

edge devices cooperate with each other to complete each IoT

job, one edge device randomly deletes some information at its

local storage may affect the whole job processing procedure.

For example, the job cannot be recovered from the failures

described in Challenge-2 if the information saved on edge

devices has been deleted before the failure happens. As a

result, it brings the challenge on how to assess whether the job

state related information is out-of-date/of-no-use and then how

to clean the information distributedly saved on edge devices.

To address the challenges, this paper designs Exactly-once-

computation for Collaborative Edge (ECE) protocol which

consists of a job execution procedure (to solve Challenge-1

and Challenge-3) and a job recovery procedure (to solve

Challenge-2). Some basic concepts are described to facilitate

the introduction of the proposed design. As a continuous work

of our previous one (MR-Edge) [15], the following keeps the

same: (1) a tree topology is adopted as the job execution

graph, with the device issuing jobs as the root, (2) a completed

job state is defined as the final job results correctly computed

by edge devices following the pre-built job tree and received

by the root node, and (3) all communication between devices

is realized in the way based on the Information Centric

Networking (ICN) [16].

ECE job execution procedure is implemented by: (i)

differentiating each (raw or computed) data sample to support

the storage (Challenge-1) and deletion (Challenge-3) of job

processing related information, and (ii) getting a consensus

among devices on who process which data samples and when

to delete which information. ECE devises a data identification

(ID) approach which combines the job ID it belongs to and the

device/node ID that has collected/computed the data.

Specifically, the job ID is set by the root node before job

dissemination. The node ID is uniquely created and updated

along the data computation path on the job tree in a distributed

manner, from the root node to each other node.

With the ID assignment available, ECE defines two types of

information to answer Challenge-1, i.e. the data sample ID and its

corresponding raw/computed content. Each node on the job tree

saves the defined information in a pair as one record after they

process. However, each node knows what data content it has

computed but has no idea of the computation progress at other

nodes and whether the job has completed, which is a reaching

consensus problem in a distributed system. Inspired by the

two-phase commit protocol [17], ECE job execution

procedure contains two phases. The Job Execute Phase

distributes job requests, returns computed data results and

saves essential data processing information. The Job State

Commit Phase is launched periodically by the root node to

notify others on the job tree of the job(s) state, i.e. completed

or uncompleted. Therefore, each device can delete their local

records of specific completed jobs.

ECE job recovery procedure can coexist with the job

execution procedure. It empowers nodes experiencing link

failures to explore an alternative route (to reach the root node)

to replace the failed one. The affected nodes can resume the

job execution procedure on the updated job tree. Afterwards,

the nodes interact with the root node to trace back their

previous data computation path to check whether any data

samples are lost due to link failures. The previous data

computation path is obtained by decomposing the ID of the

node that has just recovered from link failures. If data losses

are found, the recovered nodes re-transmit the lost data

sample(s) to the root node. Otherwise, no re-transmission is

arranged so that duplicated data processing can be avoided.

To the best of the authors’ knowledge, this is the first work

to implement the exactly once data computation in IoT

collaborative edge scenarios. The contributions of this paper

are summarized as below:

(1) A job tree based ID assignment approach is devised to

support the storage and deletion of data processing related

information. The ID format embeds the knowledge of nodes

that collect or compute the data, which assists checking on

data loss or duplicated computation after recovering from

network failures.

(2) A job execution procedure is proposed for nodes on the

job tree to achieve a consensus on data processing plan and

remove of processing related information with the exactly

once data computation guarantee.

(3) A job recovery procedure is designed to handle link

failures happened during the job execution, aiming to

dynamically update the job tree to eliminate failed links. After

the job tree is updated, synchronization on the data delivery

(received or un-received) and computation (processed or un-

processed) state is activated among affected data sources and

edge devices.

(4) Simulation experiments are developed to evaluate and

compare ECE performance with a checkpoint-based

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3275179

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

benchmark solution, in terms of network traffic and job

execution time. It also analyses the overhead associated with

computation records storage and unique ID assignment.

The rest of this paper is organized as following: Section II

presents the related work. Section III describes the protocol

design in detail. The experimental setup and evaluation results

are presented in Section IV. Section V concludes the paper

and discusses the future work.

II. RELATED WORKS

A. Collaborative Edge in IoT

Various IoT applications benefit from the collaborative

edge computing framework, such as less production order

delivery time in industrial IoT [18] by self-organized task

mechanism among multi-robots, a trustworthy framework for

smart cities [19] and an edge assisted data monitoring system

to minimize response latency and reduce cloud workload [20].

Despite the extensive research works on IoT edge

computing, little work has considered guaranteeing exactly

once data delivery and processing.

The solution proposed in [21] improves the message queue

systems, e.g. Kafka [22] and RabbitMQ [23], to ensure exactly

once processing through a consumer side protocol. All

messages are stored in a shared databased and a state

transition graph is introduced on each message to control

access and operation. IoTEF [24] is a federated edge-cloud

architecture based on Docker containers, which deploys one

Kafka cluster in the edge and one in the cloud. It uses Kafka to

buffer data streams in case of network failures and ensure

exactly-once data semantics within a cluster.

As described in the introduction section, checkpoint-based

approach is applied to save the state of an IoT task as a

container image in [10] [11] to facilitate task migration and

restarting. However, the job execution is undertaken by a

single edge device in these works. The traditional big data

processing frameworks, e.g. Apache Spark [12] and Apache

Flink [13], have employed the checkpoint-based schemes to

achieve exactly once processing. However, the solution is not

suitable for IoT edge environments. The main reason is that

the logical job graph is tightly coupled with the physical job

graph in IoT networks. The gain of data processing versus data

transmission should be considered when mapping the logical

job graph into the physical devices.

B. Distributed Consensus Protocol

To achieve exactly once computation in IoT collaborative

edge, it is necessary to obtain a consensus on the data

computation plan among the edge devices. The two-phase

commit protocol [17] [25] is widely used in distributed

systems to coordinate all parties to agree or abort an action.

The two phases are the commit-request phase and the commit

phase. It designates a coordinator node, and the rest of nodes

are participants. The main procedure of the protocol is

summarized as follows. In the commit-request phase, the

coordinator sends a message to all participants asking to

commit. Each participant votes yes or no according to its state.

The commit phase starts when the coordinator receives all

participants’ replies. If all participants vote yes, the

coordinator sends a commit message to all participants. If any

participant replies no, the coordinator sends a rollback

message to all participants to abort the operation. This paper is

inspired by the two-phase commit protocol, which defines a

Job Execute Phase for disseminating and executing jobs (i.e.

the commit-request phase) and a Job State Commit Phase to

commit the job completion state only if all nodes returning

computed job results correctly (i.e. the commit phase).

C. Named Data Networking (NDN) Basics

The proposed design is implemented upon the NDN [26]

architecture to meet the data/information centric nature of IoT

applications. NDN uniquely identifies each data/content with a

specific name and uses the name to retrieve and forward data.

The naming is hierarchically constructed in NDN. For

example, the first reading value of the humidity sensor in

room 1 of the SRI office in the TUS campus can be named as

/TUS/SRI/room1/humidity/reading1.

Communication in NDN is achieved by exchanging two

packets: Interest and Data. A content consumer sends an

Interest carrying the name of the desired data. A matched

data/content is embedded in the Data packet and returned to

the consumer in the reverse path of the Interest. This paper

defines specific Interest naming for different phases of the

protocol to support its functionalities of the respected phase.

NDN routers maintain three tables to facilitate data lookup

and forwarding [27]. The first one is Content Store (CS) which

caches the Data locally. If a matched Data is found in the CS

of a NDN router, the Data is returned by the router directly.

The second is Forwarding Information Base (FIB) which

provides the name-based routing information. When a router

receives an Interest packet, it will first check its CS. If it fails

to find a matched Data, the router looks up its FIB to forward

the Interest to the next hop matching the naming of Interest

packet. The third table is Pending Interest Table (PIT). A

router saves all received Interests waiting for the matched

Data packet in its PIT. Each PIT entry includes the name of

the Interest and all interfaces from which the Interest(s) is

received. When multiple Interests for the same data are

requested, the router only forwards the first one towards the

data source. When a Data arrives, the router finds the

matching PIT entry and returns the Data to the corresponding

interface(s). Afterwards, the router deletes the PIT entry and

caches the Data in its CS.

D. ICN based Edge Computing for IoT

The original design of ICN supports in-network data

forwarding and caching while lacks the in-network processing

functionality. To tackle this issue, the paper [16] assumes all

edge nodes are able to process data and then the final

execution placement depends on the trade-off between the

data transmission and computing resource cost. Edge-ICN

[28] facilitates the deployment of ICN in large network scale

by leveraging SDN technology. The architecture proposed in

[29] explores ICN-featured forwarding strategy to

dynamically deploy edge services based on the service

popularity. The main difference between this paper and the

above works is to ensure the exactly once data computation in

a distributed manner in the ICN style.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3275179

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

III. PROTOCOL DESIGN

This section presents ECE solution and its potential application

scenarios.

A. Target IoT Scenarios

The proposed computing framework can serve many IoT

applications requiring sensory data dispersed across a large area.

While the IoT data is transmitted from data sources to the final

job processor, the intermediate nodes (e.g. edge, network, and

cloud devices) along the path may contribute their resources to

execute computational task over the data passing through them. A

hierarchical edge structure is usually formed to organize edge

nodes with different powers undertaking (sub) tasks that matches

their capabilities. Such as a four-layer fog computing architecture

for big data analytic in smart cities [30], a three-tier edge

computing paradigm for intelligent warehouse system [31] and a

multi-layer IoT-Fog-Cloud continuum [32] with coordinated

management strategies. In these systems, IoT end devices at the

bottom layer could use Zigbee or Wi-Fi [33] to communicate

with the edge server in their area. The communication between

hierarchical edge servers (e.g. base stations and access points) can

be achieved through LTE or 5G [34].

This paper is an improvement of our previous work MR-Edge,

i.e. a MapReduce based computation framework for IoT edge

computing environments [15]. The concerned computation jobs

are those requiring processing the data from multiple static IoT

end devices, such as temperature sensors and speed sensors on the

road. The intermediate nodes that can process the data are called

reducers which run user-defined reduce function on received data,

whereas those cannot process the data but can forward the data

are called forwarders. The stub nodes of IoT edge networks are

called mappers, which connect with multiple sensors. They take

raw sensing data as input and run user-defined map functions on

the data.

B. ECE Protocol Overview and Assumptions

Fig.1 presents the relationship of the five phases in the design.

Normal job operation is not disturbed by recovering from failures.

The definition of each phase is listed as below:

Fig.1. Overview of the ECE Five Phases

• Job Tree Build Phase forms a job tree with each new user

as the root and the user could issue multiple jobs on its job tree.

• Job Execute Phase disseminates jobs requests, returns

computed results and saves intermediate state of job processing.

• Job State Commit Phase periodically clears intermediate

state of completed jobs on edge devices.

• Job Tree Rebuild Phase updates the job tree to eliminate

failed link(s) when network failures happen.

• Job State Sync Phase ensures link failures and the updated

job tree cause neither data losses nor duplicated data

computations.

As ECE is built upon NDN, the communication between

nodes in all phases is achieved by exchanging the NDN

Interest and Data. Different Interest naming schemes have

been designed to facilitate the functionalities at each phase.

The job tree is created using the shortest path algorithm of the

NDN routing protocol. Additional metrics (e.g. link bandwidth

[35], energy-efficiency [36]) can be considered when creating

the job tree to optimize the performance, which is beyond the

scope of this paper. The paper is also aware that the

capabilities of the massive IoT devices are significantly

different. Describing their resources and selecting the

appropriate ones for IoT jobs [37] are not the main concern in

this paper. Moreover, the protocol currently is limited to

execute stateless jobs [38] whose output is solely based on its

input, not the intermediate computational states. Specifically,

the same computation on the same data can be undertaken by

any capable edge devices. The computed result is only related

to the number of input values rather than the order of them. To

this end, the data computation can be recovered from a changed

job tree due to link failures.

The following sections will describe each phase in detail.

C. Job Tree Build Phase

A tree topology is built with a user node (sink node) as the root

node before it issues jobs in the proposed framework. This

procedure is called the Job Tree Build Phase. The job tree is

formed based on the NDN routing table which employs the

shortest path algorithm. Every node has its own table so that it

knows how to reach a specific node from itself. However, a node

may have no idea of the routing information of other nodes. All

nodes need to exchange their information to form a tree, which is

achieved by sending NDN Interest and replying NDN Data

packets.

A BuildJobTree Interest is defined for the Job Tree Build

Phase and written as below:

/NeighborName/BuildJobTree/JobTreeID/UpstreamNodeName (a)

Where: (1) /NeighborName is the name of each neighbour of

the current node. (2) /BuildJobTree is the identifier to trigger

the procedure of building job trees. (3) /JobTreeID is the

combination of the name of the root node and a random

number. (4) /UpstreamNodeName is the name of the current

node, which is used to for the downstream neighbours to

identify the sender of this Interest.

The sink node initiates this phase by creating and sending a

BuildJobTree Interest. The reducers and forwarders modify the

“UpstreamNodeName” part and then forward it to their

neighbours, until reaching the mappers. After received a

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3275179

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

BuildJobTree Interest, each node checks its own routing table

and selects the neighbour on the shortest path to the sink node

as its upstream node on the current job tree. Replying the

BuildJobTree Interest starts from mappers to reducers and

forwarders, and finally to the sink node. The result is that each

node has a record of “JobTreeID – JobNeighbors” locally. The

information is used for disseminating job(s) later. The job tree

construction completes when the sink node receives all replies

from its neighbours. More details of the job tree building steps

can be found in MR-Edge [15] paper.

D. Job Execute Phase

The Job Execute Phase starts when the job tree is ready. It

contains two steps, the first is node ID allocation that is proposed

in this paper to differentiate each data sample. It is the

fundamental support of the exactly once data computation

feature. The second step is job dissemination and execution,

which is the same procedure as in MR-Edge [15]. An

improvement is made during the job execution compared with

MR-Edge, which saves the intermediate state of job

processing on edge devices. The aim of this design is to deal

with link failures happening during job execution.

• ID Allocation and Maintenance

The data content identification is challenging. One may argue

that each data content can be uniquely identified by using a NDN

name as the ID. The problem of directly using NDN names is that

it cannot reveal which node(s) has(ve) computed the data sample.

Thus, it is hard to check the data computation state after

recovering from link failures so that fails to guarantee the exactly

once computation on the same data.

For two nodes connected by the same edge on the job tree, we

call the one closer to the sink node as the upstream node, the other

as the downstream node for clarity in the rest of the paper. When

a link failure happens during the data transmission, the

downstream node may not be sure if the data has been

successfully delivered. After the downstream node rejoins the job

tree by connecting to a different upstream node, it needs to check

if the local cached data had been delivered before retransmission

to ensure exactly once computation. This become more

complicated when the data delivered to the previous upstream

node is still under transmission/processing in the job tree.

ECE embeds the information of data provider and data

computing nodes into the ID of each data content during the job

execution as the solution. To identify each data content in the

network, this paper firstly assigns a global ID for each node based

on the shortest path of the job tree. ID allocation is launched

before issuing any job requests. As mapper nodes are the data

sources in the proposed design, they label each of their returned

data with their node ID plus the job tree ID created by the

user/sink node. Data samples from different nodes can only be

computed by reducers if they have the same job tree ID to ensure

the computation correctness. The ID of a computed data content

consists of its reducer’s global ID plus the job tree ID. Whenever

a link failure happens, the affected node can use the data sample

ID(s) to trace back the computation records of its provided data

content, such that the node can inquire the computation state of its

data content, i.e. whether received and computed correctly.

An AssignID Interest is designed to assign node ID and it is

written as (b). Where, /JobNeighbour is the name of a

neighbour obtained in the Job Tree Build Phase. /JobTreeID is

created by the sink node when sending the job tree building

request. /NodeGlobalID is the actual global ID assigned to the

corresponding job neighbour and it is construed as below.

/JobNeighbour/JobTreeID/NodeGlobalID (b)

The upstream node assigns a unique identifier (e.g. a number)

to each of its downstream nodes as a local ID. The records of

local IDs are only maintained at each upstream node. Since each

node on the job tree has a unique path between itself to the sink

node, a tree-path-based global ID of each node is constructed by

accumulating the local IDs on the path from the sink node to

itself. The sink node assigns the global node ID to its neighbours,

which is the same as the nodes’ local ID as the sink node has no

upstream node. The intermediate reducers and forwarders receive

their global ID from their upstream node and then allocate global

IDs to their downstream nodes, which is done by concatenating

the local ID of a downstream node at the end of the global ID of

the current reducer/forwarder, separated by a hyphen. The

reducers and forwarders assign global IDs to their neighbours

using the AssignID Interest. The mappers are the leaf nodes of the

job tree and consequently they only receive the global ID from

their upstream node. All upstream nodes maintain an ID table to

save the global and local ID of its downstream neighbours. Each

record in the table is for a downstream neighbour, in a tuple

<downstream job neighbour name, its local ID, its global ID>.

The global ID allocation is undertaken hop by hop starting

from the sink node and reaching all the nodes on the job tree. An

ACK message is replied from the mappers, in the reversed

path of ID allocation, and finally returns to the sink node. To

this end, the sink node knows that the ID allocation procedure

is complete and it is ready to issue jobs.

Fig.2 presents an example to explain how the ID allocation

procedure works. An IoT network topology is shown in Fig.2

(a) with the original connections between the nodes. The

numbers inside each circle are used to represent their NDN

name respectively. For instance, “13” is the NDN name of the

node 13 and node 1 uses “13” as the “NeighbourName” when

constructing the BuildJobTree Interest during the Job Tree

Build Phase (described in Section C). The NDN name of a

node keeps the same no matter which role it acts in ECE

protocol.

Assume that node 0 wants to issue a job, it becomes the

sink node or user node in the design. It firstly sends the

BuildJobTree Interest to the network, resulting in the job tree

shown in Fig.2 (b). The solid lines in the figure indicate

original network links currently being used on the job tree.

The nodes with numbers 8 – 14 labelled with a green colour

are the mappers for the current job. Other nodes may act as a

reducer or forwarder according to their computing capabilities

and the number of downstream neighbours. For instance, node

1 becomes a reducer (in red colour) because it receives data

samples from multiple neighbours on the job tree, and it is

currently capable of computing these data. Node 6 is a

forwarder (in yellow colour) because it connects with only one

mapper (node 10). Node 5 does not join the job tree as none of

the nodes selects it as the neighbour for sending data to node

0.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3275179

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Fig.2. Illustration of ID Allocation of ECE Protocol

When the job tree is ready, node 0 as the sink node assigns

the local ID to its job neighbours, i.e., node 1 and node 2.

Recursively, every upstream node assigns a number (for

simplicity, starting from 0) to each of its downstream

neighbour as the local ID. Node 1 receives 0 as its global ID

and node 2 receives 1 as its global ID as illustrated in Fig.2 (b)

with blue text. Node 1 and node 2 continue the global ID

assignment by creating global IDs for their downstream

neighbours. Specifically, node 1 assigns the local ID 0 to node

3 and local ID 1 to node 13. Then node 1 concatenates node

3’s local ID to its own global ID separated by a hyphen

symbol, consequently, the global ID of node 3 is 0-0.

Similarly, node 15 obtains 0-1 as its global ID. Node 2 assigns

local ID 0, 1, 2 to its neighbour node 6, 4, and 16 respectively,

and consequently the corresponding global IDs for node 6, 4

and 16 are 1-0, 1-1 and 1-2 respectively. All the intermediate

reducers and forwarders follow this rule to allocate a global ID

to their neighbours, until all the mappers receive their global

ID. The blue texts in Fig.2 (b) presents each node’s global ID

sent by its upstream node on the job tree.

All the upstream nodes create and maintain an ID table to

save the details of the assigned local and global IDs. To

explain the details, the path on the established job tree in Fig.2

(b) with the nodes: 10/11 -> 3 -> 1 -> 0 is chosen as an

example. Fig.3 (a) shows the respective ID table of the sink

node 0 and reducer 1 and 3. The first column of the ID table

saves the NDN name of each downstream node, abbreviated

as “Nei_node”. The second and last column are the local ID

and global ID of the downstream node. The local ID is only

known between two direct connected nodes (one is the

upstream and the other is the downstream) and is supervised

by the upstream node.

The mappers save their global ID and uses the received job

ID (sent by the sink node) to label each data they produced,

for example, the incremental sequence numbers attached to

node 10 and 11 shown in Fig.3 (a). Only data content and its

ID are returned during the Job Execute Phase. The global ID

of a node is used to check whether the data it has produced or

computed is affected by link failures.

Fig.3. Illustration of ECE Node ID Tables

• Job Dissemination and Execution

When ID allocation is complete, the sink node can send

computation tasks by using the ComputingJob Interest which

is defined and written as (c).

 /JobNei/JobTreeID/JobID/MapFunc/ReduceFunc/ContentFilter (c)

Where, /JobNei is the name of the neighbour obtained in the

Job Tree Build Phase, /JobTreeID is created by the sink node

in the Job Tree Build Phase, which is used to identify the job

and to retrieve the corresponding job neighbours in case

multiple jobs co-existing in the network, /JobID is constructed

by the sink node for each issued job. The sink node can send

multiple jobs on the built job tree. The rest parts of the Interest

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3275179

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

(/MapFunc/ReduceFunc/contentFilter) are defined by each

sink node, which describes the functions to process the data

and the desired data content.

Every job is sent by the sink node, traverses the

intermediate reducers and forwarders and finally reaches the

mappers. The procedure of job execution is in the reverse

direction of job dissemination. The /ContentFilter section

specifies the data that should be computed by the job. The

mappers firstly decompose the ComputingJob Interest to

retrieve the user-defined map function. They run the

/MapFunc to process captured data and then return to their

selected upstream node. All mapper data is further processed

by the reducers at each level of the job tree through the

/ReduceFunc.

For example, a job of counting temperature values in the

range of 20-30 Celsius in the Engineer Building can be written

as:
/map(x=>(x,1))/reduceByKey((y1,

y2)=>(y1+y2))/content(EngineerBuilding/temperatureSensor)

The content filter specifies target data sources for this job,

i.e., all temperature sensors in the Engineer Building. Each

selected sensor acts as a mapper, which runs the Map function

to process its reading and returns the data content in the format

of (temperature-reading, 1). The temperature reading of each

sensor is treated as the key and the value “1” is the appearance

of the temperature reading for this job. Intermediate reducers

receive key-value pairs from its job neighbour. They run the

Reduce function to add values with the same key.

The sink node gets the computed result(s) returned from its

job neighbours and perform the final computation, which

indicates the completion of the current job. The data

processing/computing requirement of an exactly once job is

defined as that all the mapper data requested by the sink node

is retrieved and each data sample is computed exactly once on

the way to the sink node.

Two tables are designed to aid ECE nodes to log the data

computation state of each job in case link failures happen

during executing tasks. The first table is called the Job State

(JS) Table that is managed by the sink node. The table is

useful to check completed job ID(s) in the Job State Commit

Phase to clear corresponding information saved at edge nodes.

The sink node creates a record of each issued job request and

checks the corresponding received computation results. The

job state is saved as a pair of “JobID – State

(Completed/Uncompleted)”. A completed job means that each

edge node on the job tree has finished its processing on the issued

job request and final computed result has been correctly delivered

to the sink node, which ensures the reliability of the data delivery

and computation. More detailed protocol is described in the Job

Tree Build Phase. The second table is the Computation Record

(CR) Table which saves the job tree ID and the data received

from downstream neighbours for the job (abbreviated as

dataContent) with its corresponding ID (abbreviated as

dataID). Each record in the CR Table is in the form of

“JobTreeID – DataID – dataContent”. All reducers, forwarders

and mappers maintain a CR Table locally. Each of them inserts

a record to its CR Table after returning or forwarding the

computed/produced data to its upstream node.

E. Job State Commit Phase

As IoT edge devices are resource-constraint, the intermediate

state (saved in the JS Table and CR Table) of job execution

cannot be stored permanently. Meanwhile, the saved information

can only be cleaned if the correspondent task has completed. The

Job State Commit Phase is designed to achieve the goal.

The sink node notifies its job neighbours of the specific job

ID(s) that have completed in in the Job Execute Phase so that

ECE nodes can clear the corresponding saved information. The

JobCompleted Interest for this phase is defined as (d) and it can

be sent periodically depending on the job requirements, e.g. every

30 seconds or every 10 completed jobs. This paper assumes that

the sink node is aware of the resource constraints of the edge

nodes and then decides the frequency of sending the

JobCompleted Interests accordingly. The sink node creates the

JobCompleted Interest. Intermediate reducers and forwarders

forward this Interest until it reaches mappers.

 /JobNeighbour/JobTreeID/CompletedJobID(s) (d)

Where, /JobNeighbour is the name of a neighbour obtained

in the Job Tree Build Phase. /JobTreeID is created by the sink

node when sending the job tree building request.

/CompletedJobID(s) is the successfully computed job ID(s)

summarized by the sink node to inform others on the job tree.

As a result, all the ECE nodes achieve the consensus of the

completed tasks they have participated and they no longer need to

maintain the history records of the completed job(s), e.g., the

cached computed data content at reducers and the saved

previously captured data samples at mappers. It helps to release

resources and space for the edge devices engaged in the data

processing. In contrast, the intermediate processing state of tasks

should be saved if nodes receive no notifications from the sink

node. An ACK procedure is employed to response the

JobCompleted Interest, which is initiated by the mappers and

traverses in the reverse path of the JobCompleted Interest and

finally reaches the sink node as the end of the Job State Commit

Phase.

F. Job Tree Rebuild Phase

ECE nodes experiencing link failures can initiate the Job

Tree Rebuild Phase to recover. If there is only one neighbour

in the original IoT network, i.e. the current upstream node, the

node must check the link regularly until it recovers. For

instance, as shown in Fig.2 (b), node 13 only has one

neighbour (node 7) on the network. Here we focus on the case

that the nodes have other paths connecting to the sink node

besides the one just failed.

A failed link affects two neighbouring nodes. To help

explain the design, the upstream node is defined as the

Previous-Upstreamer and the downstream node is defined as

Rebuilder. For example, if the link between node 12 and node

6 in Fig.2 (c) is disconnected, node 6 is the Previous-

Upstreamer and node 12 is the Rebuilder. The Job Tree

Rebuild Phase is always initiated by the Rebuilder. This paper

assumes that the link condition is detected by periodically

exchanging HELLO messages between the neighbouring

nodes, which is a widely used scheme in routing protocols.

The following procedure is adopted whenever a link failure is

detected.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3275179

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

The Rebuilder checks if it has other neighbours on the

original IoT network, excluding the Previous-Upstreamer and

its child nodes. Two cases are designed according to the

checking result.

Case 1: Rebuilder has other neighbour(s)

A RebuildJobTree Interest is defined as (e) and (f) with a

slight difference for this case. Interest (e) is sent by the

Rebuilder and Interest (f) is used for the neighbours of the

Rebuilder to forward the rebuilding request when needed. The

meaning of each part of the Interest is: (1) /NeighbourName is

the name of each neighbour of the Rebuilder found in the

original IoT network, (2) /RebuildTree is the identifier for the

Job Tree Rebuild Phase, (3) /RebuilderName is the NDN name

of the Rebuilder, (4) /JobTreeID is to indicate the job tree of

interest, and (5) /UpstreamNodeName is the name of the

upstream neighbour of the Rebuilder.

 /NeighborName/RebuildTree/RebuilderName/JobTreeID (e)

/NeighborName/RebuildTree/UpstreamNodeName/JobTreeID (f)

If the Rebuilder finds any neighbour(s), it sends a

RebuildJobTree Interest (e) to each of its neighbours. A node

receives the RebuildJobTree Interest and parses the content.

Two scenarios may happen after the node extracts the

JobTreeID in the Interest and checks whether it is already on

the job tree.

Scenario-I: the node has joined the job tree with the

requested JobTreeID. The node assigns a local and global ID

to the downstream neighbour that sends the RebuildJobTree

Interest, also inserts the record to its ID table as introduced in

section D. It then replies a “Rebuild-OK” message with the

assigned global ID. If multiple “Rebuild-ok” messages are

received, the Rebuilder node always chooses the first one

received and notifies the other neighbours to withdraw its

rebuilding requests.

Scenario-II: the node is not on the job tree with requested

JobTreeID. The node re-writes the RebuildJobTree Interest as

(f) and forwards it to its neighbours, which repeats the above

procedure to process the Interest. If a node has no neighbours

available, it directly replies “Rebuild-Rejected”. Note that, the

mappers are defined as not responsible for disseminating or

forwarding jobs to others due to their limited resources and

capabilities. Therefore, when a mapper receives a

RebuildJobTree Interest, it refuses the request by replying a

“Rebuild-Rejected” message even though it is working on the

job tree. Finally, if the Rebuilder receives “Rebuild-Rejected”

messages from all its neighbours, it takes the same action as

defined in Case 2.

The Rebuilder can re-enter the Job Execute Phase after

receiving its new global ID. Meanwhile, the Rebuilder

launches the Job State Sync Phase to make sure neither data

losses nor data duplications are caused by the link failure,

which is described in next sub-section. If the Rebuilder is

connecting downstream nodes on the job tree, it needs to

update their global IDs by notifying them with the ChangeID

Interest defined as (g). The interest includes three parts: (1)

/JobNeighbour is the name of a neighbour on the job tree, (2)

/JobTreeID is to specify the affected job tree in case multiple

job trees coexist, and (3) /ChangeID(NodeGlobalID) is to

inform the downstream neighbours the new ID assigned for

the specific job tree.

/JobNeighbor/JobTreeID/changeID(NodeGlobalID) (g)

Case 2: Rebuilder has no other neighbour(s)

If the Rebuilder cannot find any neighbours, it needs to

notify its downstream neighbour(s) to search for a new path to

reach the sink node. This design aims to reduce the number of

nodes affected by link failures as less as possible.

A ChangePath Interest is defined for this case and it is

written as (h). In the Interest, /JobNeighbour is the name of a

neighbour used to disseminate jobs in the Job Execute Phase,

/ChangePath is the identifier to notify the downstream

neighbours to alter the path for reaching the sink node,

/JobTreeID is to specify the affected job tree in case multiple

job trees coexist.

/JobNeighour/changePath/JobTreeID (h)

Each downstream neighbour of the Rebuilder becomes a

new Rebuilder when it receives the ChangePath Interest,

which is named as downstream-Rebuilder for clarity. A new

round of Job Tree Rebuild Phase is initiated for each

downstream-Rebuilder. When the downstream-Rebuilder

successfully finds a new path on the job tree, it should notify

the Rebuilder by replying a “Leave-tree” message. This

notification helps the Rebuilder to maintain its downstream

neighbours for the specific job once it recovers from the link

failure and re-enters the Job Execute Phase. Any downstream-

Rebuilders that have failed to find an alternative path will

regularly checks with the Rebuilder to get updates of the failed

links (whether it is recovered).

Two examples of link failures are illustrated in Fig.2 (c).

The following steps are the rebuilding procedure for the job

tree edge between node 4 and node 2 failed.

Step-1: Node 4 as a Rebuilder finds that no other

neighbours exist except the current upstream node 2 and the

current downstream node 7 on the job tree. It notifies node 7

by sending a ChangePath Interest.

Step-2: Node 7 becomes a downstream-Rebuilder and sends

the RebuildJobTree Interest to its neighbouring node 9 and 16.

Step-3: Node 16 is already on the requested job tree, but it

replies “Rebuild-Rejected” as it is a mapper. As node 9 is not

on the requested job tree, it re-writes the RebuildJobTree

Interest and sends to its neighbours. Node 8 takes the same

action as node 9 and gets a “Rebuild-ok” message from node

2. Node 9 then replies to node 7 after it receives the “Rebuild-

ok” message and its global ID from node 8. Details of the

nodes’ ID table are presented in Fig.3 (b).

Step-4: Node 7 receives its new global ID and notifies its

downstream neighbours on the job tree, i.e., node 13 and node

14, with a corresponding changed global ID by sending the

ChangePath Interest. The ID table of node 7 is updated as

shown in Fig.3 (c). Meanwhile, node 7 notifies node 4 of the

path change result. Node 4 can re-join the job tree by

connecting node 7 as the upstream node if needed.

G. Job State Sync Phase

The Job State Sync Phase aims to prevent any violations of

the exactly once computation requirement due to the job tree

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3275179

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

changes, i.e. to avoid the local cached data in the Rebuilder to

be recomputed if the data has been computed in the previous

upstream node of this Rebuilder. The Rebuilder initiates this

phase after it finds a new path to recover from link failures.

The procedure is to synchronize the data computation state

starting with the sink node, traversing the reducers or

forwarders on the previous path (before link failures), until

reaching the Previous-Upsteamer of the Rebuilder. Note that

the newly arrived data (after the link failure) from the

downstream nodes to the Rebuilder node will be processed as

normal, and therefore, this phase can coexist with the Job

Execute Phase.

A JobSync Interest is defined for the Job State Sync Phase,

as shown in (i). The meaning of each part of the Interest is as

follows. /SinkNodeName is the NDN name of the sink node.

As the sink node gathers all computed results for each job, the

Rebuilder firstly asks the sink node as the starting point.

/JobSync is the identifier for the Job State Sync Phase.

/RebuilderGlobalID is the global ID of the Rebuilder.

/JobTreeID is to indicate the specific job tree in case multiple

job trees running at the same time. /JobID/DataID contains

the ID(s) of data-samples for specific job to be checked.

/SinkNodeName/DataCheck/RebuilderGlobalID/JobTreeID/JobID/DataID (i)

The following steps are undertaken in this phase:

Step-1: The Rebuilder constructs the JobSync Interest and

sends it to the sink node.

Step-2: The sink node parses the JobSync Interest to get the

/JobID. It firstly checks whether the task has completed. If a

task is marked as completed, it means that all the data content

has been correctly computed and received, and consequently

the data-samples to be checked is not affected by the

Rebuilder’s link failure. The sink node can reply a

“DataSample-Received” message to the Rebuilder, which

indicates that the Job State Sync Phase has finished. If the sink

reducer finds that the task state of the JobID is uncompleted, it

means that the corresponding job execution is still ongoing

and the sink node requires more information to answer the

JobSync Interest.

The sink node further extracts the RebuilderGlobalID and

DataID from the JobSync Interest. It searches the

RebuilderGlobalID in its ID table resulting in the two cases

below.

If the RebuilderGlobalID is found, it means that the sink

node is the Previous-Upstreamer of the Rebuilder. The sink

node then checks the DataID in its JS Table. If the data has

been received, the sink node replies a “DataSample-Received”

message to the Rebuilder, which indicates that the Job State

Sync Phase has finished. Otherwise, the sink node replies

“DataSample-Not-Received” and asks the Rebuilder to resend

those data.

If the sink node fails to find the RebuilderGlobalID in its ID

table, it needs to forward the JobSync Interest to the previous

path of the Rebuilder before the link failure. This requires to

decompose the global ID of the Rebuilder to obtain the next

hop node to reach the Previous-Upstreamer of the Rebuilder.

As described in section D, the global ID of a node consists of

its upstream neighbours’ global IDs separated by hyphens.

The sink node is the starting point of each individual path on

the job tree. Therefore, it extracts the first sub-ID (the number

before the first hyphen) to find the next destination node to

forward the Interest. The sink node compares the sub-ID with

all the assigned local IDs in its ID table. The node with a

matched local ID is the next hop node (named as NextHop for

clarity) to forward the JobSync Interest.

As the downstream nodes require further information to

parse the message, the sink node creates a new Interest named

ForwardJobSync, as defined in (j). The Interest is based on the

JobSync Interest with two different components.

/NextHopName is the NDN name of the NextHop. /HopNum is

the hop number of the current node to reach the sink node on

the job tree. This design assists other nodes to parse the

RebuilderGlobalID in the ForwardJobSync Interest.

/NextHopName/DataCheck/RebuilderGlobalID/JobTreeID/JobID/DataID/HopNum (j)

Step-3: The NextHop node extracts the RebuilderGlobalID

and DataID after having received the ForwardJobSync

Interest. It then checks each data sample ID in the DataID in

its CR Table. For each data sample, if it is received, it means

either this node is the Previous-Upstreamer of the Rebuilder or

the upstream node of the Previous-Upstreamer which has

received the processed data content after the link failure. The

NextHop replies a “Data-received” message for each received

data sample to the node (either the sink node or an upstream

NextHop) that has sent the ForwardJobSync Interest.

If the DataID is not found, the NextHop node searches the

RebuilderGlobalID in its ID table. If the RebuilderGlobalID is

found, it means the ForwardJobSync Interest has reached the

Previous-Upstreamer of the Rebuilder. The NextHop node

replies “DataSample-Not-Received”. If the NextHop fails to

find the RebuilderGlobalID in its ID table, it rewrites the

NextHopName and HopNum parts of the ForwardJobSync

Interest and forwards it to the downstream NextHop. Suppose

that the HopNum is n in the received ForwardJobSync Interest,

the current NextHop node knows that the hop number of its

upstream node is n so that its own hop number equals to n+1,

which means the current NextHop node extract the (n+1)th

sub-ID as the local ID of the next destination node. It then

finds the neighbour with the matched local ID, replacing the

NextHopName by the neighbour’s name. Repeating step-3

until a NextHop node finds the RebuilderGlobalID matching

one of the neighbours’ global ID in its ID table.

Step-4: If a NextHop node is neither the Previous-

Upstreamer of the Rebuilder nor the one found the matched

DataID content in its CR Table, it simply forwards received

reply message.

Step-5: The sink node receives the replied message. If the

message content is “DataSample-Received”, the sink node

forwards this message to the Rebuilder, which means the Job

State Sync Phase has finished. If the message content is

“DataSample-Not-Received”, the sink node asks the Rebuilder

to resend those data. The Job State Sync Phase is complete

when the sink node receives all the missed data-samples from

the Rebuilder.

Fig.4 presents an example for the Job State Sync Phase.

Node 12 finds a new upstream node (node 5) after the link

between itself and node 6 fails. The green lines with arrows in

the figure indicate the normal data computation flow in the

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3275179

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Job Execute Phase. Steps of the Job State Sync Phase are the

blue lines with arrows, labelled as steps (1) – (6). To explain

in detail:

(1) Node 12 as the Rebuilder sends the JobSync Interest to

node 0.

(2) Node 0 as the sink node checks the task ID, node global

ID and data ID embedded in the Interest and does not find the

corresponding records. Therefore, it constructs the

ForwardJobSync Interest and sends to the next hop neighbour.

(3) Node 2 as the NextHop parses the received Interest and

checks the embedded node global ID and the data sequence

numbers. As it does not find matched information, it revises

the ForwardJobSync Interest and continues the forwarding

process.

(4) Node 6 as the NextHop of node 2 receives the

ForwardJobSync Interest. It finds that the RebuilderGlobalID

within the Interest matches one of its downstream neighbour’s

global ID. To this end, Node 6 is the Previous-Upsteamer of

node 12. It checks the corresponding data computation records

and then replies.

(5) Node 2 as the intermediate NextHop forwards the reply

from node 6 to node 0.

(6) Node 0 replies to node 12 according to its received

message content.

Fig.4. Procedure of ECE Job State Sync Phase

H. Overhead Analysis of ECE

The overhead incurred by ECE design includes two parts,

one is the computation records saved at each ECE node and

the other is the network traffic generated to handle link

failures and ensure the exactly once data computation.

• Network Traffic

The network traffic transmitted in the Job Tree Build Phase

and the Job Execute Phase is defined as the actual job traffic,

which sends job requests and returns computed job results in

the formed job tree. Extra cost besides the actual job traffic is

exchanged to deal with link failures and guarantee the exactly

once computation on the same data, which includes the Job

Tree Rebuild Phase, the Job State Sync Phase and the Job

State Commit Phase, abbreviated as ECE-RSC phases. For

clarity and simplicity, let 𝑋𝑅𝑆𝐶−𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 and 𝑋𝑅𝑆𝐶−𝐷𝑎𝑡𝑎 denotes

the corresponding size of the Interest and Data packets used in

the ECE-RSC phases, including the RebuildJobTree, the

ChangePath, the JobCompleted, the JobSync and the

ForwardJobSync Interests introduced in previous sub-sections.

In the Job Tree Rebuild Phase, at most three procedures

contribute to the overhead traffic. The first is that the

Rebuilder searches the alternative path(s) to find an upper

stream neighbour which is already on the job tree in order to

re-join the job tree. For example, in Fig.2 (c) node 3 is the

upper stream neighbour of node 12. We call this upper stream

neighbour as Joint-Upstream for clarity and use 𝐷𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟
𝐽𝑜𝑖𝑛𝑡−𝑈𝑝

 to

represent the path distance between the Rebuilder to the Joint-

Upstream. The second procedure is the notification of ID

change. After the Rebuilder finds a new path to re-join the job

tree, it receives a new global ID. If the Rebuilder is a mapper

node, the second procedure can be ignored as mapper nodes

have no downstream neighbour in ECE design. Otherwise, the

Rebuilder then needs to update the global ID of all its

downstream neighbours and notify them of the change.

Suppose 𝑁𝑐ℎ𝑖𝑙𝑑 denotes the total number of nodes on the sub-

tree with the Rebuilder as the root. The number of edges

traversing by the ChangePath Interest equals to the number of

nodes (i.e. 𝑁𝑐ℎ𝑖𝑙𝑑) on the sub-tree. The third procedure is

optional. More traffic is generated when the Job Tree Rebuild

Phase involves node(s) acting as downstream-Rebuilder(s).

For example, node 7 as a downstream-Rebuilder

communicates with node 4 which is the Rebuilder in Fig.2 (c).

Suppose 𝑁𝑑𝑜𝑤𝑛 is the total number of downstream-Rebuilder

connected to the Rebuilder and 𝐷𝑑𝑜𝑤𝑛(𝑖)
𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟 is the path distance

between the downstream − Rebuilder 𝑖 and the Rebuilder.

To simply the overhead expression, the cost of each IoT

network link is assumed to be the same and labelled as 𝐶𝑙. The

total overhead occurred in the Job Tree Rebuild Phase (𝑂𝑅)

can be written as (k).

𝑂𝑅 = 𝐶𝑙*(𝐷𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟
𝐽𝑜𝑖𝑛𝑡−𝑈𝑝 + 𝑁𝑐ℎ𝑖𝑙𝑑 + ∑ 𝐷𝑑𝑜𝑤𝑛(𝑖)

𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟𝑁𝑑𝑜𝑤𝑛
𝑖=1)*

(𝑋𝑅𝑆𝐶−𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 + 𝑋𝑅𝑆𝐶−𝐷𝑎𝑡𝑎) (k)

The overhead traffic in the Job State Sync Phase also

includes three procedures at most. The first is the

communication between the Rebuilder and the sink node. Let

𝐷𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟
𝑆𝑖𝑛𝑘 denotes the path distance from the Rebuilder to the

sink. If the sink node has already received the data sample(s)

matched the ID(s) in the JobSync Interest, this phase is

finished and the rest two procedures can be omitted.

Otherwise, the second procedure is the enquiry between the

sink node and Previous-Upstreamer of the Rebuilder or the

upstream node of the Previous-Upstreamer which has received

the processed data content after the link failure. Suppose

𝐷𝑆𝑖𝑛𝑘
𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚

 is the path distance between the sink node and the

upstream node which can answer the ForwardJobSync

Interest. The third procedure is optional. It is for data re-

transmission if finding any data samples missing in the

previous procedures. The Rebuilder re-sends the specific data

samples to the sink node. Thus, the overhead traffic in the Job

State Sync Phase (𝑂𝑆) can be written as (l).

𝑂𝑆 = 𝐶𝑙(𝐷𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟
𝑆𝑖𝑛𝑘 +𝐷𝑆𝑖𝑛𝑘

𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚
+𝐷𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟

𝑆𝑖𝑛𝑘)(𝑋𝑅𝑆𝐶−𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡+𝑋𝑅𝑆𝐶−𝐷𝑎𝑡𝑎) (l)

In the Job State Commit Phase, the sink node sends the

notification to all other nodes on the job tree periodically.

Suppose if 𝑁𝑡𝑜𝑡𝑎𝑙 is the number of nodes on the job tree, there

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3275179

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

are (𝑁𝑡𝑜𝑡𝑎𝑙-1) edges to transmit the Interest and Data packets

in this phase. Let 𝑇𝑡𝑜𝑡𝑎𝑙 denotes the time length of the current

sink node issuing jobs on the job tree and 𝑡𝑐𝑜𝑚𝑚𝑖𝑡 as the

frequency for the sink node to send the JobCompleted Interest.

The overhead traffic in the Job State Commit Phase (𝑂𝐶) can

be written as (m).

𝑂𝐶 = 𝐶𝑙(𝑁𝑡𝑜𝑡𝑎𝑙-1) (𝑋𝑅𝑆𝐶−𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡+𝑋𝑅𝑆𝐶−𝐷𝑎𝑡𝑎)(𝑇𝑡𝑜𝑡𝑎𝑙/𝑡𝑐𝑜𝑚𝑚𝑖𝑡) (m)

The network traffic overhead of ECE altogether is

calculated as 𝑂𝑅+𝑂𝑆+𝑂𝐶 . Observing equations (k), (l) and (m)

can conclude three factors that affect the overhead. The first is

the job tree size. Both the depth and width of the job tree

decide the number of nodes required by current job(s). The

deeper and wider the job tree, the bigger the variable 𝑁𝑡𝑜𝑡𝑎𝑙 in

equation (m), which increases the overhead traffic. The second

factor is the pre-defined frequency for the sink node to send

notifications, i.e. 𝑡𝑐𝑜𝑚𝑚𝑖𝑡 in equation (m). For the same job

running the same time on the job tree, the smaller the value of

𝑡𝑐𝑜𝑚𝑚𝑖𝑡 , the more rounds of the Job State Commit Phase are

invoked. It results in a bigger value of 𝑂𝐶 which contributes to

the whole overhead of ECE. The last factor is the node that

experiences a link failure, i.e. the Rebuilder in ECE. The

overhead traffic 𝑂𝑅 in equation (k) is tightly related to the

number of messages that the Rebuilder sent in the Job Tree

Rebuild phase, i.e. to find a new upstream node (𝐷𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟
𝐽𝑜𝑖𝑛𝑡−𝑈𝑝), to

notify downstream neighbours of ID change (𝑁𝑐ℎ𝑖𝑙𝑑) and the

previous upstream neighbour of path change (∑ 𝐷𝑑𝑜𝑤𝑛(𝑖)
𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟𝑁𝑑𝑜𝑤𝑛

𝑖=1).

In addition, the distance between the Rebuilder and the sink

node directly affects the overhead 𝑂𝑆 in equation (l). The

longer the distance, the more messages exchanged to finish the

Job State Sync Phase.

• Computation Record Storage

The intermediate state of job execution is saved at each ECE

node, i.e. the sink node maintains the JS Table and others have

their corresponding CR Table. Let 𝑊𝑖 represent the number of

records for 𝑛𝑜𝑑𝑒𝑖 to insert to its local TS/CR Table per second

and 𝑇𝑐𝑙𝑒𝑎𝑟 is the time length for waiting the notification of

clearing records from the sink node. The number of records

saved by all ECE nodes for each clear-record-cycle (𝑊𝐸𝐶𝐸)

can be calculated as (n). It is easy to summarize that the

overhead of ECE computation record storage is decided by

𝑇𝑐𝑙𝑒𝑎𝑟 . The smaller the 𝑇𝑐𝑙𝑒𝑎𝑟 value, the less records

maintained by each node. However, it is worth to mention that

a smaller 𝑇𝑐𝑙𝑒𝑎𝑟 results in entering the Job State Commit Phase

more frequent, which increases the network traffic overhead.

It is up to the sink node or IoT applications to decide the best

𝑇𝑐𝑙𝑒𝑎𝑟 value.

𝑊𝐸𝐶𝐸 = ∑ (𝑊𝑖
𝑁𝑡𝑜𝑡𝑎𝑙
𝑖=1 ∗ 𝑇𝑐𝑙𝑒𝑎𝑟) (n)

IV. EVALUATION AND ANALYSIS

This section presents tests to verify the feasibility of ECE

and evaluate its performance under different link failure

scenarios. As ECE relies on a job-tree-based ID and a

multiple-phase job execution scheme to assure the exactly

once data computation, overhead analysis is conducted in

terms of ID allocation (varying according to the tree depth),

the job maintenance (occurred in ECE-RSC phases), and

intermediate state of job processing save at edge nodes.

Due to no existing approaches targeting the same problem

as studied in this paper, a benchmark solution is developed

based on the checkpoint scheme. It is abbreviated as CP-

Benchmark for clarity and its main idea is summarized as

below:

Step-1. The sink node has the information of processing-

capable devices in the network. It generates a job execution

plan/graph before issuing computation tasks, which randomly

picks the processing nodes and then splits the data sources into

subgroups accordingly. The sink node notifies each selected

processing node of the generated job graph.

Step-2. During the job execution, the sink node sends a

checkpoint message periodically to all nodes on the job graph.

Each node returns its current state to the sink node (to mimic

the central and durable storage for checkpoint snapshots) as

the reply for the checkpoint message. The checkpoint is

successfully saved if the states of all nodes are normal.

Otherwise, the sink node initiates a recovery procedure to fix

the failure/error.

Step-3. The sink node randomly picks another device to

replace the failed one and migrates the computation tasks on

the new-picked node.

Step-4. The sink node asks all nodes on current job graph to

rollback to last checkpoint to restart. The system jumps to

Step-2 to repeat.

All tests are implemented on ndnSIM [39] which is a

simulator specially designed for NDN. The following settings

are applied to all tests: the sink/user node sends one task

Interest per second. ECE mappers/CP-Benchmark data sources

return a Data packet per received task Interest. Edge nodes

process data samples every five seconds, which facilitates the

ndnSIM simulator to capture link failure events. It can be

flexibly set to meet the requirements of IoT applications. The

network traffic is calculated by accumulating the number of

transmitted Interest and Data packets by all nodes involved in

the job tree/graph.

Two types of data transmission speed (bandwidth + delay)

are set for the simulation: 250 Kbits per second + 10

milliseconds based on the Zigbee protocol between a mapper

and a reducer/forwarder of ECE, and between a data source

and a processing node of CP-Benchmark. 54 Mbits per second

+ 1 millisecond using the IEEE 802.11 parameter between

reducers and forwarders of ECE, and between processing

nodes of CP-Benchmark.

A. Feasibility of ECE

To verify if ECE functions correctly as described in the

protocol design section, the network topology shown in Fig.2

(a) is created in ndnSIM. Node 0 is configured as the user

node and node 10-16 are set as mappers. Node 1-9 may act as

a reducer or a forwarder or do not participate in data

processing depending on their situations. The user node has a

job request which consecutively issues 100 computational

tasks. It also sends a JobCompleted Interest every 20

committed tasks to notify other nodes on the job tree to clear

the corresponding history job records.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3275179

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Fig.5. Job Tree Built and Updated by ECE

Fig.6. Traffic on ECE Nodes

The cost of all links is set to the same. The job tree is built

according to the NDN routing protocol utilizing the shortest

path algorithm. Link failures are defined to happen during the

job execution at different moments: the first failed link is

between node 6 (a forwarder) and node 12 (a mapper) and the

second is between node 2 (a reducer) and node 4 (a

forwarder).

Fig.5 shows different job trees during the simulation: (a) is

the initial job tree built with node 0 as the root, (b) is the

updated job tree after the link between node 6 and 12 fails and

(c) is the job tree after the second link failure happens

(between node 2 and 4). In the figures, each node is shown as

a red dot, and the green lines indicate the edges on the job tree

while the black ones are not currently used by the tree. The

updated job trees prove that ECE protocol can deal with link

failures without suspending normal job execution procedure.

Moreover, the final job result is received correctly neither with

data lost nor duplicated processing.

Fig.6 reflects the transmitted traffic at each node during the

test. The figures of node 10, 11, 15 and 16 have the same

curve pattern, which are stable and repeat regularly. Because

the four nodes are not affected by any network failures. They

act as mappers to receive task requests and return data content.

The peaks in their figures represent the periodic JobCompleted

Interest sent in the Job State Commit Phase, i.e. every 20

committed tasks.

After the first link failure happens, it causes more traffic for the

following nodes. Firstly, the highest peak in the figure of node 12

is the extra messages of ECE-RSC to handle the first link failure.

Secondly, as node 6 only has one job neighbour (node 12) and

after the link between them fails, it neither receives nor returns

job data. Consequently, its curve stays at 0 after the first link

failure. Thirdly, node 5 is the updated upstream job neighbour of

node 12, it starts to transmit Interest and Data packets because of

the rebuilt job tree. Lastly, the number of transmitted packets of

node 3 increases after the first link failure because it adds one

more job neighbour (node 5) and therefore it needs to send more

ComputingJob Interests and reply with more computed job

results.

The second link failure forces node 4 to leave the job tree as

it has no backup routes reaching the sink node, resulting its

curve turning to 0. Meanwhile, node 4 notifies the link failure

situation to its child neighbour node 7 so that node 7 can try to

find an alternative route without being affected by the link

failure. The rebuilt job tree enables node 7 to continue

working on the job tree by adding node 8 and 9 as forwarders

on the new path. Thus, the curve in the figure of node 8 and 9

respectively shows transmitted packets after the second link

failure. Furthermore, the number of transmitted packets by

node 7 grows as labelled by the red oval in its figure, which is

the procedure initiated by node 7 to search alternative paths.

The global ID of node 7 changes because its upstream

neighbours on the job tree has been updated. It also changes

the global ID of the child nodes of node 7. The highest peak in

the figure of node 13 and 14 shows the increased number of

messages for the notification of updated global ID.

B. Network Traffic Comparison and Analysis

ECE network traffic overhead is evaluated by comparing

with the CP-Benchmark. Two network topologies are created

(a) Initial Built Job Tree (b) Job Tree Updated after 1st Link Failure (c) Job Tree Updated after 2nd Link Failure

X

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3275179

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

to show the performance. A job in the tests is defined as

consecutively executing and completing 100 computational

tasks. The sink node sends a JobCompleted Interest every 20

committed tasks in ECE test case. As more network traffic is

incurred by a higher checkpoint frequency, two checkpoint

intervals are deployed for the CP-Benchmark tests, i.e. every 5

seconds and every 20 seconds.

• Toy-Topology in Fig.2 (a)

The network topology in Fig.2 (a) is created in ndnSIM for

tests. Two failures are set during the job execution for ECE

and CP-Benchmark respectively. Node 0 is the user node and

node 10-16 are data sources. Other nodes act as edge devices

and whether an edge node joins data processing depends on

the job tree/graph generated by the protocol. CP-Benchmark

randomly picks three edge nodes to undertake data processing

and therefore the data sources are randomly separated into

three groups.

Fig.7. Network Traffic Comparison: ECE Vs. CP-Benchmark

Fig.7 shows the test results, i.e. the black curve represents

ECE and CP-Benchmark with checkpoint interval in 5 seconds

and 20 seconds is in blue (CP_5) and red (CP_20)

respectively. At the beginning of the simulation, the highest

peak of ECE is the number of messages exchanged by all

nodes in the Job Tree Build Phase. The job tree is built once

for every new user node, which brings the most overhead in a

round of job execution. As the sink node is assumed to have

the information of network resources in advance for the CP-

Benchmark solution, the initial cost of generating job graph is

lower than that of ECE.

When the job execution starts, it is easy to observe that the

network traffic of CP-Benchmark is always above ECE no

matter the setting of checkpoint interval. The main reason is

CP-Benchmark takes no consideration of the physical

topology when generating the logical job plan. In this test, the

job graph generated by the CP-Benchmark is selecting node 1

to process data samples from node 10, 13, 14 and 16, node 5

to be responsible for node 11 and 12, and node 7 to manage

node 15. The cost of transmitting raw data to edge nodes is

larger than the gain of data computation or aggregation. In

most cases, the distance between a data source and a

processing node is longer than the path of directly sending

data samples from the data source to the sink node.

The peaks with a dot on the top of CP-Benchmark curves

are the moments to handle link failures. It produces more

traffic than the job execution procedure because the sink node

needs to pick another edge node to recover and notify all

nodes on the job graph to rollback to last checkpoint state. The

network traffic of CP-Benchmark with 5-second checkpoint

interval (blue curve) is higher than it with 20-second interval

(red curve) because checkpoint messages are transmitted more

frequent during the job execution. The benefit is that the

system can detect and recover from failures more quickly,

which reduces job execution latency. The time cost of CP-

Benchmark with 20-second checkpoint interval is

approximately 30s longer than both its 5-second interval and

ECE by observing the x-axis of Fig.7.

An enlarged view of ECE curve is added in Fig.7 to show

more details. The peaks with a dot on the top indicate the two

link failures. According to the equation (k) and (l) described in

previous section, more messages are exchanged to rebuild the

job tree, sync job states and retransmit lost data if any. The

peaks with a square on the top are the moments of the

JobCompleted Interest traversing all nodes on the job tree to

clear history job data, as described in equation (m). The job

completion time of ECE is the same as CP-Benchmark with 5-

second checkpoint interval.

• BRITE-Topology

To test the scalability of ECE protocol, a network topology

consisting of 100 nodes is generated by using BRITE [40]

topology generator with RouterWaxman model. It is called

BRITE-Topology for clarity. Node-0 is configured as the

sink/user node. For the rest 99 nodes, 69 nodes (node number

31-99) act as mappers/data sources and 30 nodes are edge

nodes. Five link failures are set during the simulation for ECE

and CP-Benchmark respectively.

Fig.8 (a) and (b) are the corresponding job graph generated

by ECE and CP-Benchmark. The red dots represent nodes,

green lines with arrows are links used on the job graph and

black lines are original network links that are not used by

current job. ECE builds the job tree with node-0 as the root.

CP-Benchmark randomly selects five edge nodes to undertake

data computation tasks. All data sources are split into five

groups and the number of nodes in each group is random in

the range from 5 to 15.

Fig.9 (a) presents the test results of ECE to complete the

same job with/without failures. ECE-Exec (red curve) is the

test case that no failures happen during the job execution.

ECE-RSC (black curve) shows the network traffic varying

with ECE to handle five failures during the job execution.

Both curves have the highest peak at the initial of the test

ECE CP_5 CP_20

ECE-Enlarged

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3275179

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

because of ECE nodes exchanging the routing information to

build the job tree.

(a) ECE Job Tree

(b) CP-Benchmark Job Graph

Fig.8. Job Graph on BRITE-Topology

The ECE-Exec curve goes up and down every five seconds

during the whole test, which keeps the same as the frequency

of reducers to process data every five seconds. The network

traffic increases when the reducers return the Data packets

after processing. The black curve overlaps with the red curve

most time of the simulation, which proves limited extra cost

incurred by ECE to achieve exactly once data computation.

The peaks with a blue diamond on the top above the black

curve represent the sink node sending JobCompleted Interests

in the Job State Commit Phase. These peaks also contain the

network traffic for ECE handling link failures, which explains

the first two peaks are higher than others in the zoomed view

of Fig.9 (a). Observing the network traffic, the black curve is

lower than the red one from approximately 50th second of the

test. As link failures result in updated job trees, the number of

Interest and Data packets decreases because of nodes changing

their role during the job execution to aggregate multiple

packets into one. For example, the number of Data packets can

reduce if a node that was not on the job tree becomes a reducer

to aggregate multiple job data content into one Data packet.

The network traffic comparison between ECE and CP-

Benchmark is shown in Fig.9 (b). CP-Benchmark with 5-

second and 20-second checkpoint interval are respectively

presented as the blue (CP_5) and red (CP_20) curve. ECE

curve is in black, which is the same as the ECE-RSC shown in

Fig.9 (a) if need to see more details. As more nodes are

included in the BRITE-Topology, the cost of ECE to build the

job tree grows consequently. It also results in the network

traffic of CP-Benchmark increasing significantly, which

always transmits more packets than ECE to complete the same

job.

(a) ECE Overhead Analysis

(b) ECE Vs. CP-Benchmark

Fig.9. Network Traffic Comparison on BRITE-Topology

With the network size increases in IoT, data transmission

from data sources to processing nodes contributes a lot to the

total network traffic if ignoring their physical topology during

job assignment, such as CP-Benchmark randomly grouping

data sources with edge nodes. In addition, it causes noticeable

delay to finish the same job when using checkpoint based

ECE-Exec ECE-RSC

CP_5 CP_20 ECE

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3275179

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

scheme to guarantee exactly once data computation, which

could even double the job execution time if observing the red

curve in Fig.9 (b).

C. Overhead of ECE Computation Record Storage

For the evaluation purpose, the Clear-Record-Frequency

(CRF) is defined as the number of completed tasks to clear all

history records once. The job tree built in Fig.5 (a) is applied.

A job in this simulation is defined as consecutively executing

and completing 200 tasks. The sink node sends a

JobCompleted Interest with CRF = 50/20/10 respectively for

the same job.

Fig.10. Overhead of Job Computation Records Storage

Fig.10 shows the number of records saved at each ECE

node with different CRF settings. The red curves represent

CRF = 50, the green curves are for CRF = 20 and the blue

ones for CRF = 10. The black lines in the figure track the

network traffic for the job tree building and job execution

processes, which are the same as the ECE-Exec results

discussed in previous section. As node 5, 8 and 9 are not on

the job tree, they neither transmit job data nor save

computation records.

The number of saved records varying with CRFs can be

separated into two types. One is the test results of mappers

(node 10-16). In the case of CRF = 50, the red curve repeats in

a period of increasing from 0 to 50 and dropping to 0.

Similarly, the green curve rises from 0 to 20 and downs to 0

with CRF = 20 and the blue curve is in a cycle of 0 to 10 to 0

with CRF = 10. The curves of mappers grow smoothly for all

CRF settings because mappers reply each received

ComputingJob Interest immediately. A job computation record

is added after returning each Data packet. The number of

transmitted packets for executing actual jobs stays at 2 no

matter the CRF settings, i.e. one Data packet plus one received

Interest packet per second in the Job Execute Phase.

The rest of the ECE nodes, i.e. node 0 as the sink node and

node 1-4, 6 and 7 as a reducer or a forwarder, present another

type of test results. All curves grow every five seconds due to

the pre-defined data processing frequency of reducers and

forwarders. The number of save job computation records is

cleared every 10/20/50 completed jobs with corresponding

CRF settings. The curves of job execution packets keep the

same, which is not affected by CRF changes. The test results

follow the same conclusion of the equation (n) in the previous

section that the bigger CRF value the more records maintained

by all ECE nodes. It depends on the specific IoT applications

to decide the best CRF setting.

Fig.11. ECE ID affected by Job Tree Depth

D. Overhead of ECE ID Allocation and Update

As the ECE node ID is constructed based on the path of the

job tree, the depth of a job tree directly affects the cost of the

initial ID allocation and as well as the ID update whenever a

network failure happens. Two network topologies are created

in Fig.11 as a comparative study of the cost of the ECE ID

allocation and update affected by the job tree depth. The only

difference between the 2 initial job trees, i.e. Job-Tree-A and

Job-Tree-B, is the number of intermediate nodes between the

sink node and the mappers.

The simulation runs on each job tree for 100 seconds. Three

link failures are configured at 32nd, 62nd and 82nd second

respectively during the simulation. For Job-Tree-A, the failed

links in temporal order are the link between node 2 and m3,

the link between node 3 and m4 and the link between node 1

and m2. For Job-Tree-B, the link failures happened in order

are the links between node 8 and m3, node 9 and m4 and node

7 and m2. The two updated job trees after the three link

failures are also shown in Fig.11 with red dashed lines to

indicate the failed links.

The number of transmitted packets by each node varying

with the simulation time is presented in Fig.12 (a) and the total

network traffic is shown in Fig.12 (b). The black curves

ECE-Exec

CRF=50 CRF=20

CRF=10

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3275179

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

represent the test data generated on the Job-Tree-A and the red

curves are for Job-Tree-B. For node 4-9, they only have

transmitted packets for Job-Tree-B.The curves of mapper m1

and m5 are the same for both tree topologies as the link

failures have no effect on their job execution procedure. There

is a slight difference in the number of packets in the figures of

mapper m2-m4. Because changing from Job-Tree-A to Job-

Tree-B only generates more traffic in the Job State Sync Phase

with more intermediate nodes involving to forward Interest

and Data packets. The transmitted packets by mapper m2-m4

in other ECE phases keep the same.

 Job-Tree-A Job-Tree-B

(a) Cost at each node to update ID

(b) Total Cost of ECE Nodes to update ID

Fig.12. Overhead of ECE ID Update

For node 1-3, they disseminate less job requests on Job-

Tree-B than that on Job-Tree-A because they are only

responsible for one downstream neighbour on Job-Tree-B.

The ComputingJob Interest in the Job Execute Phase is sent

per job node so that more downstream neighbours introduce

more traffic, which is doubled with returned job Data.

The total cost of the whole job tree is shown in Fig.12 (b).

The number of transmitted packets almost increases two times

when changing from Job-Tree-A to Job-Tree-B. The

formulated equation (k) in the previous section can also apply

here. Besides the above reasons, the cost on Job-Tree-B also

involves nodes leaving (re-joining) the job tree due to no

downstream neighbours (connecting new downstream

neighbour(s)), indicated by the variable 𝐷𝑑𝑜𝑤𝑛(𝑖)
𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟 in equation

(k). For instance, when the link between node 8 and m3 fails,

m3 finds a new path via node 7 on the job tree. When node 8

finds no job neighbours available after losing m3, it leaves the

job tree by notifying node 5 the situation. The same actions

are taken by both node 5 and 2. When the second link failure

between node 9 and m4 happens, m4 sends re-join request to

node 8. To this end, node 8, 5 and 2 need to initiate the re-join

tree procedure one by one until getting the reply from the sink

node, indicated by the variable 𝐷𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟
𝐽𝑜𝑖𝑛𝑡−𝑈𝑝

 in equation (k).

Thus, the number of packets transmitted to allocate and update

ECE ID is closely related to the tree topology as well as the

specific node that experiences the link failure.

V. CONCLUSION

Collaborative edge computing is a data processing paradigm

which employs multiple edge devices cooperating with each

other to execute jobs for IoT applications. To achieve exactly

once data computation in collaborative edge computing

scenarios, one of the challenges to be addressed is the network

connections between edge devices may fail during the job

execution. This may result in data losses or duplicated data

transmission/computations, and consequently violates the

exactly once computation guarantee.

This paper proposes the ECE protocol as a solution. It

consists of five phases and is built upon the novel ICN

architecture. The Job Tree Build Phase is launched before

running any jobs and forms a tree based job graph with the

sink/user node as the root of the tree. The Job Execute Phase

disseminates job requests and returns the computed job results

in the form of NDN Interest and Data packets. Whenever a

network failure happens during the job execution, the Job Tree

Rebuild Phase and the Job State Sync Phase are invoked to

update the job graph and ensure no data is affected by the

failures. Finally, the Job State Commit Phase is designed to

notify all the nodes on the job tree on the completed jobs. A

set of tests have been performed to show the feasibility and

scalability of the ECE protocol and the overhead associated

with ID assignment and computation information storage is

analyzed.

Future work includes improving ECE with a device

capability aware algorithm to build/maintain the job tree for

different IoT applications considering the resource constraints,

device heterogeneity, energy consumption and mobility of

edge devices. As the proposed design is built upon ICN, the

naming scheme and/or name resolution may be improved to

Job-Tree-A

Job-Tree-B

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3275179

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

support more types of IoT jobs, e.g. filtering data sources

and/or selecting edge devices.

ACKNOWLEDGMENT

This work has emanated from research conducted with the

financial support of the Technological University of the

Shannon under the Staff Development Programme, and

Science Foundation Ireland (SFI) under Grant Number SFI

16/RC/3918, co-funded by the European Regional

Development Fund.

REFERENCES

[1] S. Balaji, K. Nathani, and R. Santhakumar, “IoT Technology,

Applications and Challenges: A Contemporary Survey,” Wirel. Pers.
Commun., vol. 108, no. 1, pp. 363–388, Sep. 2019, doi: 10.1007/s11277-019-

06407-w.

[2] W. Yu et al., “A Survey on the Edge Computing for the Internet of
Things,” IEEE Access, vol. 6, pp. 6900–6919, 2018, doi:

10.1109/ACCESS.2017.2778504.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision and
Challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016,

doi: 10.1109/JIOT.2016.2579198.

[4] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collaborative
Mobile Edge Computing in 5G Networks: New Paradigms, Scenarios, and

Challenges,” IEEE Commun. Mag., vol. 55, no. 4, pp. 54–61, Apr. 2017, doi:

10.1109/MCOM.2017.1600863.

[5] Y. Sahni, J. Cao, and L. Yang, “Data-Aware Task Allocation for

Achieving Low Latency in Collaborative Edge Computing,” IEEE Internet

Things J., vol. 6, no. 2, pp. 3512–3524, Apr. 2019, doi:

10.1109/JIOT.2018.2886757.

[6] Q. Wang, Q. Wang, H. Zhu, and X. Wang, “Enabling Collaborative

Computing Sustainably Through Computational Latency-Based Pricing,”
IEEE Trans. Sustain. Comput., vol. 5, no. 4, pp. 541–551, Oct. 2020, doi:

10.1109/TSUSC.2020.2980133.

[7] H. Jin, L. Jia, and Z. Zhou, “Boosting Edge Intelligence With
Collaborative Cross-Edge Analytics,” IEEE Internet Things J., vol. 8, no. 4,

pp. 2444–2458, Feb. 2021, doi: 10.1109/JIOT.2020.3034891.

[8] L. Liu, J. Zhang, S. H. Song, and K. B. Letaief, “Client-Edge-Cloud
Hierarchical Federated Learning,” in ICC 2020 - 2020 IEEE International

Conference on Communications (ICC), Jun. 2020, pp. 1–6. doi:

10.1109/ICC40277.2020.9148862.

[9] “Overview,” Docker Documentation, Apr. 14, 2023.

https://docs.docker.com/get-started/ (accessed Apr. 14, 2023).

[10] P. Karhula, J. Janak, and H. Schulzrinne, “Checkpointing and Migration
of IoT Edge Functions,” in Proceedings of the 2nd International Workshop on

Edge Systems, Analytics and Networking, in EdgeSys ’19. New York, NY,

USA: Association for Computing Machinery, Mar. 2019, pp. 60–65. doi:

10.1145/3301418.3313947.

[11] F. Aïssaoui, G. Cooperman, T. Monteil, and S. Tazi, “Smart scene

management for IoT-based constrained devices using checkpointing,” in 2016

IEEE 15th International Symposium on Network Computing and Applications

(NCA), Oct. 2016, pp. 170–174. doi: 10.1109/NCA.2016.7778613.

[12] “Structured Streaming Programming Guide - Spark 3.3.0

Documentation.” https://spark.apache.org/docs/latest/structured-streaming-

programming-guide.html (accessed Jul. 19, 2022).

[13] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K.

Tzoumas, “Apache FlinkTM: Stream and Batch Processing in a Single Engine,”

Bull. IEEE Comput. Soc. Tech. Comm. Data Eng., vol. 36, no. 4, pp. 28–38,

2015.

[14] “HDFS Architecture Guide.”

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html (accessed Jan. 26,

2023).

[15] Q. Wang, B. Lee, N. Murray, and Y. Qiao, “MR-Edge: a MapReduce-

based Protocol for IoT Edge Computing with Resource Constraints,” in 2019

16th IEEE Annual Consumer Communications & Networking Conference

(CCNC), Jan. 2019, pp. 1–6. doi: 10.1109/CCNC.2019.8651855.

[16] O. Ascigil, S. Reñé, G. Xylomenos, I. Psaras, and G. Pavlou, “A

keyword-based ICN-IoT platform,” in Proceedings of the 4th ACM

Conference on Information-Centric Networking, in ICN ’17. New York, NY,
USA: Association for Computing Machinery, Sep. 2017, pp. 22–28. doi:

10.1145/3125719.3125733.

[17] “Two-phase commit protocol,” Wikipedia. Mar. 24, 2022. Accessed: Jul.
22, 2022. [Online]. Available:

https://en.wikipedia.org/w/index.php?title=Two-

phase_commit_protocol&oldid=1078983413

[18] B. Chen, J. Wan, A. Celesti, D. Li, H. Abbas, and Q. Zhang, “Edge

Computing in IoT-Based Manufacturing,” IEEE Commun. Mag., vol. 56, no.

9, pp. 103–109, Sep. 2018, doi: 10.1109/MCOM.2018.1701231.

[19] B. Wang, M. Li, X. Jin, and C. Guo, “A Reliable IoT Edge Computing

Trust Management Mechanism for Smart Cities,” IEEE Access, vol. 8, pp.

46373–46399, 2020, doi: 10.1109/ACCESS.2020.2979022.

[20] Z. Cai and T. Shi, “Distributed Query Processing in the Edge-Assisted

IoT Data Monitoring System,” IEEE Internet Things J., vol. 8, no. 16, pp.

12679–12693, Aug. 2021, doi: 10.1109/JIOT.2020.3026988.

[21] F. Sun et al., “Recovery-oriented Big Data Computing for Exactly Once

Message Processing,” in 2019 IEEE International Conference on Big Data

(Big Data), Dec. 2019, pp. 2923–2930. doi:

10.1109/BigData47090.2019.9006585.

[22] “Apache Kafka,” Apache Kafka.

https://kafka.apache.org/0102/documentation/streams/architecture (accessed

Feb. 01, 2023).

[23] “Messaging that just works — RabbitMQ.”

https://www.rabbitmq.com/#features (accessed Apr. 17, 2023).

[24] A. Javed, J. Robert, K. Heljanko, and K. Främling, “IoTEF: A Federated

Edge-Cloud Architecture for Fault-Tolerant IoT Applications,” J. Grid

Comput., vol. 18, no. 1, pp. 57–80, Mar. 2020, doi: 10.1007/s10723-019-

09498-8.

[25] “Two-phase-commit-concepts,” Oct. 21, 2022. https://prod.ibmdocs-

production-dal-6099123ce774e592a519d7c33db8265e-0000.us-

south.containers.appdomain.cloud/docs/en/informix-

servers/14.10?topic=protocol-precommit-phase (accessed Jan. 26, 2023).

[26] L. Zhang et al., “Named data networking,” ACM SIGCOMM Comput.

Commun. Rev., vol. 44, no. 3, pp. 66–73.

[27] “Named Data Networking: Motivation & Details,” Named Data

Networking (NDN). https://named-data.net/project/archoverview/ (accessed

Jan. 26, 2023).

[28] N. Fotiou, V. A. Siris, G. Xylomenos, G. C. Polyzos, K. V. Katsaros,

and G. Petropoulos, “Edge-ICN and its application to the Internet of Things,”
in 2017 IFIP Networking Conference (IFIP Networking) and Workshops, Jun.

2017, pp. 1–6. doi: 10.23919/IFIPNetworking.2017.8264880.

[29] Z. Fan, W. Yang, F. Wu, J. Cao, and W. Shi, “Serving at the Edge: An
Edge Computing Service Architecture Based on ICN,” ACM Trans. Internet

Technol., vol. 22, no. 1, p. 22:1-22:27, Oct. 2021, doi: 10.1145/3464428.

[30] B. Tang, Z. Chen, G. Hefferman, T. Wei, H. He, and Q. Yang, “A

Hierarchical Distributed Fog Computing Architecture for Big Data Analysis

in Smart Cities,” in Proceedings of the ASE BigData & SocialInformatics

2015, in ASE BD&SI ’15. New York, NY, USA: Association for

Computing Machinery, Oct. 2015, pp. 1–6. doi: 10.1145/2818869.2818898.

[31] Y. Wang, K. L. Man, K. Lee, D. Hughes, S.-U. Guan, and P. Wong,
“Application of Wireless Sensor Network Based on Hierarchical Edge

Computing Structure in Rapid Response System,” Electronics, vol. 9, no. 7,

Art. no. 7, Jul. 2020, doi: 10.3390/electronics9071176.

[32] X. Masip-Bruin et al., “mF2C: towards a coordinated management of the

IoT-fog-cloud continuum,” in Proceedings of the 4th ACM MobiHoc

Workshop on Experiences with the Design and Implementation of Smart
Objects, in SMARTOBJECTS ’18. New York, NY, USA: Association for

Computing Machinery, Jun. 2018, pp. 1–8. doi: 10.1145/3213299.3213307.

[33] L. Davoli, L. Belli, A. Cilfone, and G. Ferrari, “From Micro to Macro
IoT: Challenges and Solutions in the Integration of IEEE 802.15.4/802.11 and

Sub-GHz Technologies,” IEEE Internet Things J., vol. 5, no. 2, pp. 784–793,

Apr. 2018, doi: 10.1109/JIOT.2017.2747900.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3275179

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

[34] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A Survey on

Mobile Edge Computing: The Communication Perspective,” IEEE Commun.
Surv. Tutor., vol. 19, no. 4, pp. 2322–2358, 2017, doi:

10.1109/COMST.2017.2745201.

[35] Y.-K. Huang, A.-C. Pang, P.-C. Hsiu, W. Zhuang, and P. Liu,
“Distributed Throughput Optimization for ZigBee Cluster-Tree Networks,”

IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 3, pp. 513–520, Mar. 2012,

doi: 10.1109/TPDS.2011.192.

[36] K. Dev, P. K. R. Maddikunta, T. R. Gadekallu, S. Bhattacharya, P.

Hegde, and S. Singh, “Energy Optimization for Green Communication in IoT

Using Harris Hawks Optimization,” IEEE Trans. Green Commun. Netw., vol.

6, no. 2, pp. 685–694, Jun. 2022, doi: 10.1109/TGCN.2022.3143991.

[37] M. Li, F. R. Yu, P. Si, W. Wu, and Y. Zhang, “Resource Optimization

for Delay-Tolerant Data in Blockchain-Enabled IoT With Edge Computing: A
Deep Reinforcement Learning Approach,” IEEE Internet Things J., vol. 7, no.

10, pp. 9399–9412, Oct. 2020, doi: 10.1109/JIOT.2020.3007869.

[38] C. Cicconetti, M. Conti, and A. Passarella, “A Decentralized Framework
for Serverless Edge Computing in the Internet of Things,” IEEE Trans. Netw.

Serv. Manag., vol. 18, no. 2, pp. 2166–2180, Jun. 2021, doi:

10.1109/TNSM.2020.3023305.

[39] “ndnSIM Documentation — ndnSIM documentation.”

https://ndnsim.net/current/ (accessed Sep. 27, 2022).

[40] “BRITE: Boston university Representative Internet Topology

gEnerator.” https://www.cs.bu.edu/brite/ (accessed Jan. 12, 2023).

Qian Wang is a Ph.D. candidate with the

Software Research Institute (SRI) at

Technological University of the Shannon:

Midlands Midwest, Ireland. She received her

B.Sc. in Electronic Information Science and

Technology from Shaanxi University of

Science, China and Technology in 2012 and

M.Sc. in Ubiquitous Computing from

Trinity College Dublin, Ireland in 2013. Her

research interests include Internet of Things,

Edge Computing and Information Centric Networking.

Brian Lee is the director of the Software

Research Institute (SRI) at Technological

University of the Shannon: Midlands

Midwest, Ireland. He is a Science

Foundation Ireland (SFI) Funded

Investigator in the SFI CONFIRM Smart

Manufacturing Centre. He received his

Ph.D. in Computer Science from Trinity

College Dublin in 2004. He is a member of

IEEE (Communications, Computer and

Robotics and Automation societies) and

ACM). His research interests include Computer Security (Access

Control, Network Security, Security Analytics) and Programmable

Networking and Edge Computing.

Niall Murray (Member, IEEE) is currently

a Senior Lecturer with the Faculty of

Engineering and Informatics,

Technological University of the Shannon:

Midlands Midwest, Ireland. He is also the

Founder, in 2014, and the Principal

Investigator (PI) in the truly Immersive and

Interactive Multimedia Experiences

(tIIMEx) Research Group in AIT. He is a

Science Foundation Ireland (SFI) Funded Investigator (FI) with the

Confirm Centre for Smart manufacturing and an FI with the SFI

Adapt Centre for AI enabled Digital Content. He is an Associate PI

with the Enterprise Ireland Funded Technology Gateway COMAND.

His current research interests include immersive and multisensory

multimedia communication and applications, multimedia signal

processing, quality of experience, and wearable sensor systems

(further information available at: www.niallmurray.info).

Yuansong Qiao is a Senior Research

Fellow in the Software Research Institute

(SRI) at Technological University of the

Shannon: Midlands Midwest, Ireland. He

is a Science Foundation Ireland (SFI)

Funded Investigator in the SFI CONFIRM

Smart Manufacturing Centre. He received

his Ph.D. in Computer Applied

Technology from the Institute of Software,

Chinese Academy of Sciences, Beijing,

China, in 2008. He is a member of IEEE (Robotics and Automation

Society and Blockchain Community) and ACM (SIGCOMM and

SIGAI). His research interests include Future Internet Architecture,

Blockchain Systems, Robotic Control and Coordination, and Edge

Computing Intelligence.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3275179

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

