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 Abstract—Exactly-once data processing/delivery can be 

guaranteed in traditional big data processing systems, e.g. 

Apache Flink. Checkpoint is commonly used as the solution. 

Each operator in these systems can restart from the last 

successfully saved state whenever a failure happens. It is not 

necessary to restore the logical job graph onto the same device(s) 

in traditional datacentre scenarios with powerful servers close to 

each other. However, the datacentre oriented solutions are not 

suitable for IoT collaborative edge computing scenarios. The 

logical job graph is tightly coupled to the physical topology in IoT 

networks. Data processing task(s) cannot be placed at a random 

edge device to recover from a network failure as it needs to 

evaluate the benefits of transmitting data versus 

processing/aggregating the data. To address the above challenges, 

this paper proposes an Information Centric Networking based 

solution and correspondent protocols to provide Exactly-once-

computation for the Collaborative Edge in IoT (ECE). It contains 

a job execution scheme to deliver IoT jobs with exactly once data 

computation guarantee and a recovery procedure to dynamically 

change the IoT job execution graph while experiencing link 

failures. The protocol also provides a checking procedure on data 

state (received/un-received and computed/un-computed) to 

prevent any data loss or duplicated data processing due to the 

updated job graph. A data identification approach based on the 

job graph is devised to support the ECE functionality. A testbed 

has been developed on ndnSIM and the simulation results have 

verified the feasibility and scalability of ECE design. It also 

evaluates the overhead incurred by the ECE protocol to 

guarantee exactly once data computation. 

 
Index Terms—Collaborative Edge Computing, Exactly-once-

computation, Internet of Things (IoT), Information Centric 

Networking (ICN) 

I. INTRODUCTION 

HE Internet of Things (IoT) [1] enabled smart 

systems thrive in diverse areas. All of them rely on 

sensing devices to capture a vast amount of raw data 
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from the physical world as the first step. Edge computing [2] 

[3] proposed to be complementary of Cloud Computing, has 

proved its ability to boost IoT Big Data processing by placing 

computation at the proximity of data sources. Researchers [4] 

further demonstrate that computation-intensive tasks, e.g. 

image processing and speech recognition, can benefit from the 

synergy of multiple edge devices than offloading to a single 

edge server. It is defined as collaborative edge computing [5] 

[6] which distributes data computation to multiple edge 

devices and coordinates them working together to complete 

the whole job(s). 

Many complex IoT applications invoke the collaborative 

edge computing framework for better performance, such as the 

collaborative cross-edge analytics to preprocess training data 

for artificial intelligence (AI) IoT [7] and the hierarchical 

federated learning system with partial model aggregation 

deployed on edge servers [8]. Fruitful studies in this area have 

focused on optimizing resource usage and task deployment, 

handling network failures during job execution is not the main 

concern in their works. In fact, it may result in data loss or 

duplicated data transmission and/or processing if a network 

failure happens during the edge collaboration, which could 

end with wrong processed results or trained models. 

This paper addresses the challenge of guaranteeing exactly-

once-computation on the same data in collaborative edge 

scenarios. Existing works related to this topic is very scarce. 

Initial attempts utilise the checkpoint scheme to save the state 

of an IoT task into Docker images [9], concerning task 

migration from one edge device to another [10] and 

information transfer between different tasks [11]. However, 

their works are limited to task execution on a single edge 

device. Although checkpoint based solution has been maturely 

developed in traditional big data processing frameworks, e.g. 

Apache Spark [12] and Apache Flink [13], this paper argues 

that the solution is difficult to be applied into IoT scenarios. 

Firstly, it is not necessary to restore the logical graph onto the 

same device(s) in traditional data centre scenarios with 

powerful servers close to each other. In sharp contrast, the 

logical job graph is tightly coupled to the physical topology in 

IoT edge environment. Data processing task(s) cannot be 

placed at a random edge device to replace the previous failed 

one as it needs to evaluate the benefits of transmitting data 

versus processing/aggregating the data. Secondly, the 

traditional checkpoint approach requires the system to take a 

snapshot of each operator’s state periodically. Then the snapshots 

are normally saved to a durable storage, e.g. Hadoop Distributed 

File System (HDFS) [14], which is not widely available in edge 

computing environments. 

Thus, this paper identifies the following challenges to 

achieve exactly once computation in collaborative edge 

T 
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computing for IoT data processing. 

Challenge-1. Backup essential data processing 

information in distributed edge nodes. Edge collaboration 

can be interrupted by IoT network failures due to unstable 

network connections and IoT device mobility. It requires to 

decide which information of data processing is essential and 

sufficient to be used to recover from the failures. Then it 

brings the challenge on how to save the information 

efficiently. Unlike the data centre environments, a central 

storage for the essential information is not practical in IoT 

edge scenarios. As edge computing is proposed to complement 

cloud computing to deal with the high volume/velocity/variety 

of data produced by massive amounts of IoT devices, it is 

preferable to distribute the information storage on the edge.  

Challenge-2. Handle network failures during edge 

collaboration while guarantee exactly once computation on 

the same data. When the network connection between two 

edge devices fails, it breaks the original job execution graph 

containing the two edge devices. The downstream edge is not 

sure if its data has been successfully delivered to its upstream 

neighbour. This requires designing a scheme to utilise the 

information described in Challenge-1 to repair the job 

execution graph to resume normal data processing. It also 

needs to check whether any data has been lost or duplicate 

processed due to the network failure. 

Challenge-3. Limited storage space at edge devices. Only 

capable edge devices can participant in the collaborative edge 

computing for IoT applications. The burden of edge devices 

becomes heavier if they need to process data meanwhile store 

relevant information. Thus, the information described in 

Challenge-1 cannot be saved on edge devices permanently. As 

edge devices cooperate with each other to complete each IoT 

job, one edge device randomly deletes some information at its 

local storage may affect the whole job processing procedure. 

For example, the job cannot be recovered from the failures 

described in Challenge-2 if the information saved on edge 

devices has been deleted before the failure happens. As a 

result, it brings the challenge on how to assess whether the job 

state related information is out-of-date/of-no-use and then how 

to clean the information distributedly saved on edge devices. 

To address the challenges, this paper designs Exactly-once-

computation for Collaborative Edge (ECE) protocol which 

consists of a job execution procedure (to solve Challenge-1 

and Challenge-3) and a job recovery procedure (to solve 

Challenge-2). Some basic concepts are described to facilitate 

the introduction of the proposed design. As a continuous work 

of our previous one (MR-Edge) [15], the following keeps the 

same: (1) a tree topology is adopted as the job execution 

graph, with the device issuing jobs as the root, (2) a completed 

job state is defined as the final job results correctly computed 

by edge devices following the pre-built job tree and received 

by the root node, and (3) all communication between devices 

is realized in the way based on the Information Centric 

Networking (ICN) [16]. 

ECE job execution procedure is implemented by: (i) 

differentiating each (raw or computed) data sample to support 

the storage (Challenge-1) and deletion (Challenge-3) of job 

processing related information, and (ii) getting a consensus 

among devices on who process which data samples and when 

to delete which information. ECE devises a data identification 

(ID) approach which combines the job ID it belongs to and the 

device/node ID that has collected/computed the data. 

Specifically, the job ID is set by the root node before job 

dissemination. The node ID is uniquely created and updated 

along the data computation path on the job tree in a distributed 

manner, from the root node to each other node. 

With the ID assignment available, ECE defines two types of 

information to answer Challenge-1, i.e. the data sample ID and its 

corresponding raw/computed content. Each node on the job tree 

saves the defined information in a pair as one record after they 

process. However, each node knows what data content it has 

computed but has no idea of the computation progress at other 

nodes and whether the job has completed, which is a reaching 

consensus problem in a distributed system. Inspired by the 

two-phase commit protocol [17], ECE job execution 

procedure contains two phases. The Job Execute Phase 

distributes job requests, returns computed data results and 

saves essential data processing information. The Job State 

Commit Phase is launched periodically by the root node to 

notify others on the job tree of the job(s) state, i.e. completed 

or uncompleted. Therefore, each device can delete their local 

records of specific completed jobs.  

ECE job recovery procedure can coexist with the job 

execution procedure. It empowers nodes experiencing link 

failures to explore an alternative route (to reach the root node) 

to replace the failed one. The affected nodes can resume the 

job execution procedure on the updated job tree. Afterwards, 

the nodes interact with the root node to trace back their 

previous data computation path to check whether any data 

samples are lost due to link failures. The previous data 

computation path is obtained by decomposing the ID of the 

node that has just recovered from link failures. If data losses 

are found, the recovered nodes re-transmit the lost data 

sample(s) to the root node. Otherwise, no re-transmission is 

arranged so that duplicated data processing can be avoided. 

To the best of the authors’ knowledge, this is the first work 

to implement the exactly once data computation in IoT 

collaborative edge scenarios. The contributions of this paper 

are summarized as below: 

(1) A job tree based ID assignment approach is devised to 

support the storage and deletion of data processing related 

information. The ID format embeds the knowledge of nodes 

that collect or compute the data, which assists checking on 

data loss or duplicated computation after recovering from 

network failures.  

(2) A job execution procedure is proposed for nodes on the 

job tree to achieve a consensus on data processing plan and 

remove of processing related information with the exactly 

once data computation guarantee.  

(3) A job recovery procedure is designed to handle link 

failures happened during the job execution, aiming to 

dynamically update the job tree to eliminate failed links. After 

the job tree is updated, synchronization on the data delivery 

(received or un-received) and computation (processed or un-

processed) state is activated among affected data sources and 

edge devices. 

(4) Simulation experiments are developed to evaluate and 

compare ECE performance with a checkpoint-based 
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benchmark solution, in terms of network traffic and job 

execution time. It also analyses the overhead associated with 

computation records storage and unique ID assignment. 

The rest of this paper is organized as following: Section II 

presents the related work. Section III describes the protocol 

design in detail. The experimental setup and evaluation results 

are presented in Section IV. Section V concludes the paper 

and discusses the future work. 

II. RELATED WORKS 

A. Collaborative Edge in IoT 

Various IoT applications benefit from the collaborative 

edge computing framework, such as less production order 

delivery   time in industrial IoT [18] by self-organized task 

mechanism among multi-robots, a trustworthy framework for 

smart cities [19] and an edge assisted data monitoring system 

to minimize response latency and reduce cloud workload [20]. 

Despite the extensive research works on IoT edge 

computing, little work has considered guaranteeing exactly 

once data delivery and processing. 

The solution proposed in [21] improves the message queue 

systems, e.g. Kafka [22] and RabbitMQ [23], to ensure exactly 

once processing through a consumer side protocol. All 

messages are stored in a shared databased and a state 

transition graph is introduced on each message to control 

access and operation. IoTEF [24] is a federated edge-cloud 

architecture based on Docker containers, which deploys one 

Kafka cluster in the edge and one in the cloud. It uses Kafka to 

buffer data streams in case of network failures and ensure 

exactly-once data semantics within a cluster. 

As described in the introduction section, checkpoint-based 

approach is applied to save the state of an IoT task as a 

container image in [10] [11] to facilitate task migration and 

restarting. However, the job execution is undertaken by a 

single edge device in these works. The traditional big data 

processing frameworks, e.g. Apache Spark [12] and Apache 

Flink [13], have employed the checkpoint-based schemes to 

achieve exactly once processing. However, the solution is not 

suitable for IoT edge environments. The main reason is that 

the logical job graph is tightly coupled with the physical job 

graph in IoT networks. The gain of data processing versus data 

transmission should be considered when mapping the logical 

job graph into the physical devices. 

B. Distributed Consensus Protocol 

To achieve exactly once computation in IoT collaborative 

edge, it is necessary to obtain a consensus on the data 

computation plan among the edge devices. The two-phase 

commit protocol [17] [25] is widely used in distributed 

systems to coordinate all parties to agree or abort an action. 

The two phases are the commit-request phase and the commit 

phase. It designates a coordinator node, and the rest of nodes 

are participants. The main procedure of the protocol is 

summarized as follows. In the commit-request phase, the 

coordinator sends a message to all participants asking to 

commit. Each participant votes yes or no according to its state. 

The commit phase starts when the coordinator receives all 

participants’ replies. If all participants vote yes, the 

coordinator sends a commit message to all participants. If any 

participant replies no, the coordinator sends a rollback 

message to all participants to abort the operation. This paper is 

inspired by the two-phase commit protocol, which defines a 

Job Execute Phase for disseminating and executing jobs (i.e. 

the commit-request phase) and a Job State Commit Phase to 

commit the job completion state only if all nodes returning 

computed job results correctly (i.e. the commit phase). 

C. Named Data Networking (NDN) Basics 

The proposed design is implemented upon the NDN [26] 

architecture to meet the data/information centric nature of IoT 

applications. NDN uniquely identifies each data/content with a 

specific name and uses the name to retrieve and forward data. 

The naming is hierarchically constructed in NDN. For 

example, the first reading value of the humidity sensor in 

room 1 of the SRI office in the TUS campus can be named as 

/TUS/SRI/room1/humidity/reading1.  

Communication in NDN is achieved by exchanging two 

packets: Interest and Data. A content consumer sends an 

Interest carrying the name of the desired data. A matched 

data/content is embedded in the Data packet and returned to 

the consumer in the reverse path of the Interest. This paper 

defines specific Interest naming for different phases of the 

protocol to support its functionalities of the respected phase. 

NDN routers maintain three tables to facilitate data lookup 

and forwarding [27]. The first one is Content Store (CS) which 

caches the Data locally. If a matched Data is found in the CS 

of a NDN router, the Data is returned by the router directly. 

The second is Forwarding Information Base (FIB) which 

provides the name-based routing information. When a router 

receives an Interest packet, it will first check its CS. If it fails 

to find a matched Data, the router looks up its FIB to forward 

the Interest to the next hop matching the naming of Interest 

packet. The third table is Pending Interest Table (PIT). A 

router saves all received Interests waiting for the matched 

Data packet in its PIT. Each PIT entry includes the name of 

the Interest and all interfaces from which the Interest(s) is 

received. When multiple Interests for the same data are 

requested, the router only forwards the first one towards the 

data source. When a Data arrives, the router finds the 

matching PIT entry and returns the Data to the corresponding 

interface(s). Afterwards, the router deletes the PIT entry and 

caches the Data in its CS. 

D. ICN based Edge Computing for IoT 

The original design of ICN supports in-network data 

forwarding and caching while lacks the in-network processing 

functionality. To tackle this issue, the paper [16] assumes all 

edge nodes are able to process data and then the final 

execution placement depends on the trade-off between the 

data transmission and computing resource cost. Edge-ICN 

[28] facilitates the deployment of ICN in large network scale 

by leveraging SDN technology. The architecture proposed in 

[29] explores ICN-featured forwarding strategy to 

dynamically deploy edge services based on the service 

popularity. The main difference between this paper and the 

above works is to ensure the exactly once data computation in 

a distributed manner in the ICN style. 
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III. PROTOCOL DESIGN 

This section presents ECE solution and its potential application 

scenarios. 

A. Target IoT Scenarios 

The proposed computing framework can serve many IoT 

applications requiring sensory data dispersed across a large area. 

While the IoT data is transmitted from data sources to the final 

job processor, the intermediate nodes (e.g. edge, network, and 

cloud devices) along the path may contribute their resources to 

execute computational task over the data passing through them. A 

hierarchical edge structure is usually formed to organize edge 

nodes with different powers undertaking (sub) tasks that matches 

their capabilities. Such as a four-layer fog computing architecture 

for big data analytic in smart cities [30], a three-tier edge 

computing paradigm for intelligent warehouse system [31] and a 

multi-layer IoT-Fog-Cloud continuum [32] with coordinated 

management strategies. In these systems, IoT end devices at the 

bottom layer could use Zigbee or Wi-Fi [33] to communicate 

with the edge server in their area. The communication between 

hierarchical edge servers (e.g. base stations and access points) can 

be achieved through LTE or 5G [34]. 

This paper is an improvement of our previous work MR-Edge, 

i.e. a MapReduce based computation framework for IoT edge 

computing environments [15]. The concerned computation jobs 

are those requiring processing the data from multiple static IoT 

end devices, such as temperature sensors and speed sensors on the 

road. The intermediate nodes that can process the data are called 

reducers which run user-defined reduce function on received data, 

whereas those cannot process the data but can forward the data 

are called forwarders. The stub nodes of IoT edge networks are 

called mappers, which connect with multiple sensors. They take 

raw sensing data as input and run user-defined map functions on 

the data. 

B. ECE Protocol Overview and Assumptions 

Fig.1 presents the relationship of the five phases in the design. 

Normal job operation is not disturbed by recovering from failures. 

The definition of each phase is listed as below: 

  

Fig.1. Overview of the ECE Five Phases 

• Job Tree Build Phase forms a job tree with each new user 

as the root and the user could issue multiple jobs on its job tree. 

• Job Execute Phase disseminates jobs requests, returns 

computed results and saves intermediate state of job processing. 

• Job State Commit Phase periodically clears intermediate 

state of completed jobs on edge devices.  

• Job Tree Rebuild Phase updates the job tree to eliminate 

failed link(s) when network failures happen. 

• Job State Sync Phase ensures link failures and the updated 

job tree cause neither data losses nor duplicated data 

computations. 

As ECE is built upon NDN, the communication between 

nodes in all phases is achieved by exchanging the NDN 

Interest and Data. Different Interest naming schemes have 

been designed to facilitate the functionalities at each phase. 

The job tree is created using the shortest path algorithm of the 

NDN routing protocol. Additional metrics (e.g. link bandwidth 

[35], energy-efficiency [36]) can be considered when creating 

the job tree to optimize the performance, which is beyond the 

scope of this paper. The paper is also aware that the 

capabilities of the massive IoT devices are significantly 

different. Describing their resources and selecting the 

appropriate ones for IoT jobs [37] are not the main concern in 

this paper. Moreover, the protocol currently is limited to 

execute stateless jobs [38] whose output is solely based on its 

input, not the intermediate computational states. Specifically, 

the same computation on the same data can be undertaken by 

any capable edge devices. The computed result is only related 

to the number of input values rather than the order of them. To 

this end, the data computation can be recovered from a changed 

job tree due to link failures. 

The following sections will describe each phase in detail.  

C. Job Tree Build Phase 

A tree topology is built with a user node (sink node) as the root 

node before it issues jobs in the proposed framework. This 

procedure is called the Job Tree Build Phase. The job tree is 

formed based on the NDN routing table which employs the 

shortest path algorithm. Every node has its own table so that it 

knows how to reach a specific node from itself. However, a node 

may have no idea of the routing information of other nodes. All 

nodes need to exchange their information to form a tree, which is 

achieved by sending NDN Interest and replying NDN Data 

packets. 

A BuildJobTree Interest is defined for the Job Tree Build 

Phase and written as below: 

/NeighborName/BuildJobTree/JobTreeID/UpstreamNodeName   (a) 

Where: (1) /NeighborName is the name of each neighbour of 

the current node. (2) /BuildJobTree is the identifier to trigger 

the procedure of building job trees. (3) /JobTreeID is the 

combination of the name of the root node and a random 

number. (4) /UpstreamNodeName is the name of the current 

node, which is used to for the downstream neighbours to 

identify the sender of this Interest.  

The sink node initiates this phase by creating and sending a 

BuildJobTree Interest. The reducers and forwarders modify the 

“UpstreamNodeName” part and then forward it to their 

neighbours, until reaching the mappers. After received a 
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BuildJobTree Interest, each node checks its own routing table 

and selects the neighbour on the shortest path to the sink node 

as its upstream node on the current job tree. Replying the 

BuildJobTree Interest starts from mappers to reducers and 

forwarders, and finally to the sink node. The result is that each 

node has a record of “JobTreeID – JobNeighbors” locally. The 

information is used for disseminating job(s) later. The job tree 

construction completes when the sink node receives all replies 

from its neighbours. More details of the job tree building steps 

can be found in MR-Edge [15] paper. 

D. Job Execute Phase 

The Job Execute Phase starts when the job tree is ready. It 

contains two steps, the first is node ID allocation that is proposed 

in this paper to differentiate each data sample. It is the 

fundamental support of the exactly once data computation 

feature. The second step is job dissemination and execution, 

which is the same procedure as in MR-Edge [15]. An 

improvement is made during the job execution compared with 

MR-Edge, which saves the intermediate state of job 

processing on edge devices. The aim of this design is to deal 

with link failures happening during job execution. 

• ID Allocation and Maintenance 

The data content identification is challenging. One may argue 

that each data content can be uniquely identified by using a NDN 

name as the ID. The problem of directly using NDN names is that 

it cannot reveal which node(s) has(ve) computed the data sample. 

Thus, it is hard to check the data computation state after 

recovering from link failures so that fails to guarantee the exactly 

once computation on the same data.  

For two nodes connected by the same edge on the job tree, we 

call the one closer to the sink node as the upstream node, the other 

as the downstream node for clarity in the rest of the paper. When 

a link failure happens during the data transmission, the 

downstream node may not be sure if the data has been 

successfully delivered. After the downstream node rejoins the job 

tree by connecting to a different upstream node, it needs to check 

if the local cached data had been delivered before retransmission 

to ensure exactly once computation. This become more 

complicated when the data delivered to the previous upstream 

node is still under transmission/processing in the job tree. 

ECE embeds the information of data provider and data 

computing nodes into the ID of each data content during the job 

execution as the solution. To identify each data content in the 

network, this paper firstly assigns a global ID for each node based 

on the shortest path of the job tree. ID allocation is launched 

before issuing any job requests. As mapper nodes are the data 

sources in the proposed design, they label each of their returned 

data with their node ID plus the job tree ID created by the 

user/sink node. Data samples from different nodes can only be 

computed by reducers if they have the same job tree ID to ensure 

the computation correctness. The ID of a computed data content 

consists of its reducer’s global ID plus the job tree ID. Whenever 

a link failure happens, the affected node can use the data sample 

ID(s) to trace back the computation records of its provided data 

content, such that the node can inquire the computation state of its 

data content, i.e. whether received and computed correctly. 

An AssignID Interest is designed to assign node ID and it is 

written as (b). Where, /JobNeighbour is the name of a 

neighbour obtained in the Job Tree Build Phase. /JobTreeID is 

created by the sink node when sending the job tree building 

request. /NodeGlobalID is the actual global ID assigned to the 

corresponding job neighbour and it is construed as below. 

/JobNeighbour/JobTreeID/NodeGlobalID                     (b) 

The upstream node assigns a unique identifier (e.g. a number) 

to each of its downstream nodes as a local ID. The records of 

local IDs are only maintained at each upstream node. Since each 

node on the job tree has a unique path between itself to the sink 

node, a tree-path-based global ID of each node is constructed by 

accumulating the local IDs on the path from the sink node to 

itself. The sink node assigns the global node ID to its neighbours, 

which is the same as the nodes’ local ID as the sink node has no 

upstream node. The intermediate reducers and forwarders receive 

their global ID from their upstream node and then allocate global 

IDs to their downstream nodes, which is done by concatenating 

the local ID of a downstream node at the end of the global ID of 

the current reducer/forwarder, separated by a hyphen. The 

reducers and forwarders assign global IDs to their neighbours 

using the AssignID Interest. The mappers are the leaf nodes of the 

job tree and consequently they only receive the global ID from 

their upstream node. All upstream nodes maintain an ID table to 

save the global and local ID of its downstream neighbours. Each 

record in the table is for a downstream neighbour, in a tuple 

<downstream job neighbour name, its local ID, its global ID>. 

The global ID allocation is undertaken hop by hop starting 

from the sink node and reaching all the nodes on the job tree. An 

ACK message is replied from the mappers, in the reversed 

path of ID allocation, and finally returns to the sink node. To 

this end, the sink node knows that the ID allocation procedure 

is complete and it is ready to issue jobs. 

Fig.2 presents an example to explain how the ID allocation 

procedure works. An IoT network topology is shown in Fig.2 

(a) with the original connections between the nodes. The 

numbers inside each circle are used to represent their NDN 

name respectively. For instance, “13” is the NDN name of the 

node 13 and node 1 uses “13” as the “NeighbourName” when 

constructing the BuildJobTree Interest during the Job Tree 

Build Phase (described in Section C). The NDN name of a 

node keeps the same no matter which role it acts in ECE 

protocol.  

Assume that node 0 wants to issue a job, it becomes the 

sink node or user node in the design. It firstly sends the 

BuildJobTree Interest to the network, resulting in the job tree 

shown in Fig.2 (b). The solid lines in the figure indicate 

original network links currently being used on the job tree. 

The nodes with numbers 8 – 14 labelled with a green colour 

are the mappers for the current job. Other nodes may act as a 

reducer or forwarder according to their computing capabilities 

and the number of downstream neighbours. For instance, node 

1 becomes a reducer (in red colour) because it receives data 

samples from multiple neighbours on the job tree, and it is 

currently capable of computing these data. Node 6 is a 

forwarder (in yellow colour) because it connects with only one 

mapper (node 10). Node 5 does not join the job tree as none of 

the nodes selects it as the neighbour for sending data to node 

0. 
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Fig.2. Illustration of ID Allocation of ECE Protocol 

When the job tree is ready, node 0 as the sink node assigns 

the local ID to its job neighbours, i.e., node 1 and node 2. 

Recursively, every upstream node assigns a number (for 

simplicity, starting from 0) to each of its downstream 

neighbour as the local ID. Node 1 receives 0 as its global ID 

and node 2 receives 1 as its global ID as illustrated in Fig.2 (b) 

with blue text. Node 1 and node 2 continue the global ID 

assignment by creating global IDs for their downstream 

neighbours. Specifically, node 1 assigns the local ID 0 to node 

3 and local ID 1 to node 13. Then node 1 concatenates node 

3’s local ID to its own global ID separated by a hyphen 

symbol, consequently, the global ID of node 3 is 0-0. 

Similarly, node 15 obtains 0-1 as its global ID. Node 2 assigns 

local ID 0, 1, 2 to its neighbour node 6, 4, and 16 respectively, 

and consequently the corresponding global IDs for node 6, 4 

and 16 are 1-0, 1-1 and 1-2 respectively. All the intermediate 

reducers and forwarders follow this rule to allocate a global ID 

to their neighbours, until all the mappers receive their global 

ID. The blue texts in Fig.2 (b) presents each node’s global ID 

sent by its upstream node on the job tree. 

All the upstream nodes create and maintain an ID table to 

save the details of the assigned local and global IDs. To 

explain the details, the path on the established job tree in Fig.2 

(b) with the nodes: 10/11 -> 3 -> 1 -> 0 is chosen as an 

example. Fig.3 (a) shows the respective ID table of the sink 

node 0 and reducer 1 and 3. The first column of the ID table 

saves the NDN name of each downstream node, abbreviated 

as “Nei_node”. The second and last column are the local ID 

and global ID of the downstream node. The local ID is only 

known between two direct connected nodes (one is the 

upstream and the other is the downstream) and is supervised 

by the upstream node.  

The mappers save their global ID and uses the received job 

ID (sent by the sink node) to label each data they produced, 

for example, the incremental sequence numbers attached to 

node 10 and 11 shown in Fig.3 (a). Only data content and its 

ID are returned during the Job Execute Phase. The global ID 

of a node is used to check whether the data it has produced or 

computed is affected by link failures. 

 
Fig.3. Illustration of ECE Node ID Tables 

• Job Dissemination and Execution 

When ID allocation is complete, the sink node can send 

computation tasks by using the ComputingJob Interest which 

is defined and written as (c).  

 /JobNei/JobTreeID/JobID/MapFunc/ReduceFunc/ContentFilter      (c) 

Where, /JobNei is the name of the neighbour obtained in the 

Job Tree Build Phase, /JobTreeID is created by the sink node 

in the Job Tree Build Phase, which is used to identify the job 

and to retrieve the corresponding job neighbours in case 

multiple jobs co-existing in the network, /JobID is constructed 

by the sink node for each issued job. The sink node can send 

multiple jobs on the built job tree. The rest parts of the Interest 
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(/MapFunc/ReduceFunc/contentFilter) are defined by each 

sink node, which describes the functions to process the data 

and the desired data content. 

Every job is sent by the sink node, traverses the 

intermediate reducers and forwarders and finally reaches the 

mappers. The procedure of job execution is in the reverse 

direction of job dissemination. The /ContentFilter section 

specifies the data that should be computed by the job. The 

mappers firstly decompose the ComputingJob Interest to 

retrieve the user-defined map function. They run the 

/MapFunc to process captured data and then return to their 

selected upstream node. All mapper data is further processed 

by the reducers at each level of the job tree through the 

/ReduceFunc.  

For example, a job of counting temperature values in the 

range of 20-30 Celsius in the Engineer Building can be written 

as:  
/map(x=>(x,1))/reduceByKey((y1, 

y2)=>(y1+y2))/content(EngineerBuilding/temperatureSensor) 

The content filter specifies target data sources for this job, 

i.e., all temperature sensors in the Engineer Building. Each 

selected sensor acts as a mapper, which runs the Map function 

to process its reading and returns the data content in the format 

of (temperature-reading, 1). The temperature reading of each 

sensor is treated as the key and the value “1” is the appearance 

of the temperature reading for this job. Intermediate reducers 

receive key-value pairs from its job neighbour. They run the 

Reduce function to add values with the same key.  

The sink node gets the computed result(s) returned from its 

job neighbours and perform the final computation, which 

indicates the completion of the current job. The data 

processing/computing requirement of an exactly once job is 

defined as that all the mapper data requested by the sink node 

is retrieved and each data sample is computed exactly once on 

the way to the sink node. 

Two tables are designed to aid ECE nodes to log the data 

computation state of each job in case link failures happen 

during executing tasks. The first table is called the Job State 

(JS) Table that is managed by the sink node. The table is 

useful to check completed job ID(s) in the Job State Commit 

Phase to clear corresponding information saved at edge nodes. 

The sink node creates a record of each issued job request and 

checks the corresponding received computation results. The 

job state is saved as a pair of “JobID – State 

(Completed/Uncompleted)”. A completed job means that each 

edge node on the job tree has finished its processing on the issued 

job request and final computed result has been correctly delivered 

to the sink node, which ensures the reliability of the data delivery 

and computation. More detailed protocol is described in the Job 

Tree Build Phase. The second table is the Computation Record 

(CR) Table which saves the job tree ID and the data received 

from downstream neighbours for the job (abbreviated as 

dataContent) with its corresponding ID (abbreviated as 

dataID). Each record in the CR Table is in the form of 

“JobTreeID – DataID – dataContent”. All reducers, forwarders 

and mappers maintain a CR Table locally. Each of them inserts 

a record to its CR Table after returning or forwarding the 

computed/produced data to its upstream node. 

E. Job State Commit Phase 

As IoT edge devices are resource-constraint, the intermediate 

state (saved in the JS Table and CR Table) of job execution 

cannot be stored permanently. Meanwhile, the saved information 

can only be cleaned if the correspondent task has completed. The 

Job State Commit Phase is designed to achieve the goal. 

The sink node notifies its job neighbours of the specific job 

ID(s) that have completed in in the Job Execute Phase so that 

ECE nodes can clear the corresponding saved information. The 

JobCompleted Interest for this phase is defined as (d) and it can 

be sent periodically depending on the job requirements, e.g. every 

30 seconds or every 10 completed jobs. This paper assumes that 

the sink node is aware of the resource constraints of the edge 

nodes and then decides the frequency of sending the 

JobCompleted Interests accordingly. The sink node creates the 

JobCompleted Interest. Intermediate reducers and forwarders 

forward this Interest until it reaches mappers. 

        /JobNeighbour/JobTreeID/CompletedJobID(s)                   (d) 

Where, /JobNeighbour is the name of a neighbour obtained 

in the Job Tree Build Phase. /JobTreeID is created by the sink 

node when sending the job tree building request. 

/CompletedJobID(s) is the successfully computed job ID(s) 

summarized by the sink node to inform others on the job tree. 

As a result, all the ECE nodes achieve the consensus of the 

completed tasks they have participated and they no longer need to 

maintain the history records of the completed job(s), e.g., the 

cached computed data content at reducers and the saved 

previously captured data samples at mappers. It helps to release 

resources and space for the edge devices engaged in the data 

processing. In contrast, the intermediate processing state of tasks 

should be saved if nodes receive no notifications from the sink 

node. An ACK procedure is employed to response the 

JobCompleted Interest, which is initiated by the mappers and 

traverses in the reverse path of the JobCompleted Interest and 

finally reaches the sink node as the end of the Job State Commit 

Phase. 

F. Job Tree Rebuild Phase 

ECE nodes experiencing link failures can initiate the Job 

Tree Rebuild Phase to recover. If there is only one neighbour 

in the original IoT network, i.e. the current upstream node, the 

node must check the link regularly until it recovers. For 

instance, as shown in Fig.2 (b), node 13 only has one 

neighbour (node 7) on the network. Here we focus on the case 

that the nodes have other paths connecting to the sink node 

besides the one just failed. 

A failed link affects two neighbouring nodes. To help 

explain the design, the upstream node is defined as the 

Previous-Upstreamer and the downstream node is defined as 

Rebuilder. For example, if the link between node 12 and node 

6 in Fig.2 (c) is disconnected, node 6 is the Previous-

Upstreamer and node 12 is the Rebuilder. The Job Tree 

Rebuild Phase is always initiated by the Rebuilder. This paper 

assumes that the link condition is detected by periodically 

exchanging HELLO messages between the neighbouring 

nodes, which is a widely used scheme in routing protocols. 

The following procedure is adopted whenever a link failure is 

detected. 
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The Rebuilder checks if it has other neighbours on the 

original IoT network, excluding the Previous-Upstreamer and 

its child nodes. Two cases are designed according to the 

checking result. 

Case 1: Rebuilder has other neighbour(s) 

A RebuildJobTree Interest is defined as (e) and (f) with a 

slight difference for this case. Interest (e) is sent by the 

Rebuilder and Interest (f) is used for the neighbours of the 

Rebuilder to forward the rebuilding request when needed. The 

meaning of each part of the Interest is: (1) /NeighbourName is 

the name of each neighbour of the Rebuilder found in the 

original IoT network, (2) /RebuildTree is the identifier for the 

Job Tree Rebuild Phase, (3) /RebuilderName is the NDN name 

of the Rebuilder, (4) /JobTreeID is to indicate the job tree of 

interest, and (5) /UpstreamNodeName is the name of the 

upstream neighbour of the Rebuilder. 

  /NeighborName/RebuildTree/RebuilderName/JobTreeID           (e) 

/NeighborName/RebuildTree/UpstreamNodeName/JobTreeID     (f) 

If the Rebuilder finds any neighbour(s), it sends a 

RebuildJobTree Interest (e) to each of its neighbours. A node 

receives the RebuildJobTree Interest and parses the content. 

Two scenarios may happen after the node extracts the 

JobTreeID in the Interest and checks whether it is already on 

the job tree.  

Scenario-I: the node has joined the job tree with the 

requested JobTreeID. The node assigns a local and global ID 

to the downstream neighbour that sends the RebuildJobTree 

Interest, also inserts the record to its ID table as introduced in 

section D. It then replies a “Rebuild-OK” message with the 

assigned global ID. If multiple “Rebuild-ok” messages are 

received, the Rebuilder node always chooses the first one 

received and notifies the other neighbours to withdraw its 

rebuilding requests. 

Scenario-II: the node is not on the job tree with requested 

JobTreeID. The node re-writes the RebuildJobTree Interest as 

(f) and forwards it to its neighbours, which repeats the above 

procedure to process the Interest. If a node has no neighbours 

available, it directly replies “Rebuild-Rejected”. Note that, the 

mappers are defined as not responsible for disseminating or 

forwarding jobs to others due to their limited resources and 

capabilities. Therefore, when a mapper receives a 

RebuildJobTree Interest, it refuses the request by replying a 

“Rebuild-Rejected” message even though it is working on the 

job tree. Finally, if the Rebuilder receives “Rebuild-Rejected” 

messages from all its neighbours, it takes the same action as 

defined in Case 2. 

The Rebuilder can re-enter the Job Execute Phase after 

receiving its new global ID. Meanwhile, the Rebuilder 

launches the Job State Sync Phase to make sure neither data 

losses nor data duplications are caused by the link failure, 

which is described in next sub-section. If the Rebuilder is 

connecting downstream nodes on the job tree, it needs to 

update their global IDs by notifying them with the ChangeID 

Interest defined as (g). The interest includes three parts: (1) 

/JobNeighbour is the name of a neighbour on the job tree, (2) 

/JobTreeID is to specify the affected job tree in case multiple 

job trees coexist, and (3) /ChangeID(NodeGlobalID) is to 

inform the downstream neighbours the new ID assigned for 

the specific job tree.  

/JobNeighbor/JobTreeID/changeID(NodeGlobalID)            (g) 

Case 2: Rebuilder has no other neighbour(s) 

If the Rebuilder cannot find any neighbours, it needs to 

notify its downstream neighbour(s) to search for a new path to 

reach the sink node. This design aims to reduce the number of 

nodes affected by link failures as less as possible. 

A ChangePath Interest is defined for this case and it is 

written as (h). In the Interest, /JobNeighbour is the name of a 

neighbour used to disseminate jobs in the Job Execute Phase, 

/ChangePath is the identifier to notify the downstream 

neighbours to alter the path for reaching the sink node, 

/JobTreeID is to specify the affected job tree in case multiple 

job trees coexist. 

/JobNeighour/changePath/JobTreeID                           (h) 

Each downstream neighbour of the Rebuilder becomes a 

new Rebuilder when it receives the ChangePath Interest, 

which is named as downstream-Rebuilder for clarity. A new 

round of Job Tree Rebuild Phase is initiated for each 

downstream-Rebuilder. When the downstream-Rebuilder 

successfully finds a new path on the job tree, it should notify 

the Rebuilder by replying a “Leave-tree” message. This 

notification helps the Rebuilder to maintain its downstream 

neighbours for the specific job once it recovers from the link 

failure and re-enters the Job Execute Phase. Any downstream-

Rebuilders that have failed to find an alternative path will 

regularly checks with the Rebuilder to get updates of the failed 

links (whether it is recovered). 

Two examples of link failures are illustrated in Fig.2 (c). 

The following steps are the rebuilding procedure for the job 

tree edge between node 4 and node 2 failed. 

Step-1: Node 4 as a Rebuilder finds that no other 

neighbours exist except the current upstream node 2 and the 

current downstream node 7 on the job tree. It notifies node 7 

by sending a ChangePath Interest. 

Step-2: Node 7 becomes a downstream-Rebuilder and sends 

the RebuildJobTree Interest to its neighbouring node 9 and 16. 

Step-3: Node 16 is already on the requested job tree, but it 

replies “Rebuild-Rejected” as it is a mapper. As node 9 is not 

on the requested job tree, it re-writes the RebuildJobTree 

Interest and sends to its neighbours. Node 8 takes the same 

action as node 9 and gets a “Rebuild-ok” message from node 

2. Node 9 then replies to node 7 after it receives the “Rebuild-

ok” message and its global ID from node 8. Details of the 

nodes’ ID table are presented in Fig.3 (b). 

Step-4: Node 7 receives its new global ID and notifies its 

downstream neighbours on the job tree, i.e., node 13 and node 

14, with a corresponding changed global ID by sending the 

ChangePath Interest. The ID table of node 7 is updated as 

shown in Fig.3 (c). Meanwhile, node 7 notifies node 4 of the 

path change result. Node 4 can re-join the job tree by 

connecting node 7 as the upstream node if needed. 

G. Job State Sync Phase 

The Job State Sync Phase aims to prevent any violations of 

the exactly once computation requirement due to the job tree 
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changes, i.e. to avoid the local cached data in the Rebuilder to 

be recomputed if the data has been computed in the previous 

upstream node of this Rebuilder. The Rebuilder initiates this 

phase after it finds a new path to recover from link failures. 

The procedure is to synchronize the data computation state 

starting with the sink node, traversing the reducers or 

forwarders on the previous path (before link failures), until 

reaching the Previous-Upsteamer of the Rebuilder. Note that 

the newly arrived data (after the link failure) from the 

downstream nodes to the Rebuilder node will be processed as 

normal, and therefore, this phase can coexist with the Job 

Execute Phase. 

A JobSync Interest is defined for the Job State Sync Phase, 

as shown in (i). The meaning of each part of the Interest is as 

follows. /SinkNodeName is the NDN name of the sink node. 

As the sink node gathers all computed results for each job, the 

Rebuilder firstly asks the sink node as the starting point. 

/JobSync is the identifier for the Job State Sync Phase. 

/RebuilderGlobalID is the global ID of the Rebuilder. 

/JobTreeID is to indicate the specific job tree in case multiple 

job trees running at the same time.  /JobID/DataID contains 

the ID(s) of data-samples for specific job to be checked. 

/SinkNodeName/DataCheck/RebuilderGlobalID/JobTreeID/JobID/DataID   (i) 

The following steps are undertaken in this phase: 

Step-1: The Rebuilder constructs the JobSync Interest and 

sends it to the sink node. 

Step-2: The sink node parses the JobSync Interest to get the 

/JobID. It firstly checks whether the task has completed. If a 

task is marked as completed, it means that all the data content 

has been correctly computed and received, and consequently 

the data-samples to be checked is not affected by the 

Rebuilder’s link failure. The sink node can reply a 

“DataSample-Received” message to the Rebuilder, which 

indicates that the Job State Sync Phase has finished. If the sink 

reducer finds that the task state of the JobID is uncompleted, it 

means that the corresponding job execution is still ongoing 

and the sink node requires more information to answer the 

JobSync Interest.  

The sink node further extracts the RebuilderGlobalID and 

DataID from the JobSync Interest. It searches the 

RebuilderGlobalID in its ID table resulting in the two cases 

below. 

If the RebuilderGlobalID is found, it means that the sink 

node is the Previous-Upstreamer of the Rebuilder. The sink 

node then checks the DataID in its JS Table. If the data has 

been received, the sink node replies a “DataSample-Received” 

message to the Rebuilder, which indicates that the Job State 

Sync Phase has finished. Otherwise, the sink node replies 

“DataSample-Not-Received” and asks the Rebuilder to resend 

those data.  

If the sink node fails to find the RebuilderGlobalID in its ID 

table, it needs to forward the JobSync Interest to the previous 

path of the Rebuilder before the link failure. This requires to 

decompose the global ID of the Rebuilder to obtain the next 

hop node to reach the Previous-Upstreamer of the Rebuilder. 

As described in section D, the global ID of a node consists of 

its upstream neighbours’ global IDs separated by hyphens. 

The sink node is the starting point of each individual path on 

the job tree. Therefore, it extracts the first sub-ID (the number 

before the first hyphen) to find the next destination node to 

forward the Interest. The sink node compares the sub-ID with 

all the assigned local IDs in its ID table. The node with a 

matched local ID is the next hop node (named as NextHop for 

clarity) to forward the JobSync Interest.  

As the downstream nodes require further information to 

parse the message, the sink node creates a new Interest named 

ForwardJobSync, as defined in (j). The Interest is based on the 

JobSync Interest with two different components. 

/NextHopName is the NDN name of the NextHop. /HopNum is 

the hop number of the current node to reach the sink node on 

the job tree. This design assists other nodes to parse the 

RebuilderGlobalID in the ForwardJobSync Interest. 

/NextHopName/DataCheck/RebuilderGlobalID/JobTreeID/JobID/DataID/HopNum  (j) 

Step-3: The NextHop node extracts the RebuilderGlobalID 

and DataID after having received the ForwardJobSync 

Interest. It then checks each data sample ID in the DataID in 

its CR Table. For each data sample, if it is received, it means 

either this node is the Previous-Upstreamer of the Rebuilder or 

the upstream node of the Previous-Upstreamer which has 

received the processed data content after the link failure. The 

NextHop replies a “Data-received” message for each received 

data sample to the node (either the sink node or an upstream 

NextHop) that has sent the ForwardJobSync Interest. 

If the DataID is not found, the NextHop node searches the 

RebuilderGlobalID in its ID table. If the RebuilderGlobalID is 

found, it means the ForwardJobSync Interest has reached the 

Previous-Upstreamer of the Rebuilder. The NextHop node 

replies “DataSample-Not-Received”. If the NextHop fails to 

find the RebuilderGlobalID in its ID table, it rewrites the 

NextHopName and HopNum parts of the ForwardJobSync 

Interest and forwards it to the downstream NextHop. Suppose 

that the HopNum is n in the received ForwardJobSync Interest, 

the current NextHop node knows that the hop number of its 

upstream node is n so that its own hop number equals to n+1, 

which means the current NextHop node extract the (n+1)th 

sub-ID as the local ID of the next destination node. It then 

finds the neighbour with the matched local ID, replacing the 

NextHopName by the neighbour’s name. Repeating step-3 

until a NextHop node finds the RebuilderGlobalID matching 

one of the neighbours’ global ID in its ID table. 

Step-4: If a NextHop node is neither the Previous-

Upstreamer of the Rebuilder nor the one found the matched 

DataID content in its CR Table, it simply forwards received 

reply message. 

Step-5: The sink node receives the replied message. If the 

message content is “DataSample-Received”, the sink node 

forwards this message to the Rebuilder, which means the Job 

State Sync Phase has finished.  If the message content is 

“DataSample-Not-Received”, the sink node asks the Rebuilder 

to resend those data. The Job State Sync Phase is complete 

when the sink node receives all the missed data-samples from 

the Rebuilder. 

Fig.4 presents an example for the Job State Sync Phase. 

Node 12 finds a new upstream node (node 5) after the link 

between itself and node 6 fails. The green lines with arrows in 

the figure indicate the normal data computation flow in the 
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Job Execute Phase. Steps of the Job State Sync Phase are the 

blue lines with arrows, labelled as steps (1) – (6). To explain 

in detail: 

(1) Node 12 as the Rebuilder sends the JobSync Interest to 

node 0. 

(2) Node 0 as the sink node checks the task ID, node global 

ID and data ID embedded in the Interest and does not find the 

corresponding records. Therefore, it constructs the 

ForwardJobSync Interest and sends to the next hop neighbour. 

(3) Node 2 as the NextHop parses the received Interest and 

checks the embedded node global ID and the data sequence 

numbers. As it does not find matched information, it revises 

the ForwardJobSync Interest and continues the forwarding 

process. 

(4) Node 6 as the NextHop of node 2 receives the 

ForwardJobSync Interest. It finds that the RebuilderGlobalID 

within the Interest matches one of its downstream neighbour’s 

global ID. To this end, Node 6 is the Previous-Upsteamer of 

node 12. It checks the corresponding data computation records 

and then replies. 

(5) Node 2 as the intermediate NextHop forwards the reply 

from node 6 to node 0. 

(6) Node 0 replies to node 12 according to its received 

message content. 

 
Fig.4. Procedure of ECE Job State Sync Phase 

H. Overhead Analysis of ECE 

The overhead incurred by ECE design includes two parts, 

one is the computation records saved at each ECE node and 

the other is the network traffic generated to handle link 

failures and ensure the exactly once data computation. 

• Network Traffic 

The network traffic transmitted in the Job Tree Build Phase 

and the Job Execute Phase is defined as the actual job traffic, 

which sends job requests and returns computed job results in 

the formed job tree. Extra cost besides the actual job traffic is 

exchanged to deal with link failures and guarantee the exactly 

once computation on the same data, which includes the Job 

Tree Rebuild Phase, the Job State Sync Phase and the Job 

State Commit Phase, abbreviated as ECE-RSC phases. For 

clarity and simplicity, let 𝑋𝑅𝑆𝐶−𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡  and 𝑋𝑅𝑆𝐶−𝐷𝑎𝑡𝑎 denotes 

the corresponding size of the Interest and Data packets used in 

the ECE-RSC phases, including the RebuildJobTree, the 

ChangePath, the JobCompleted, the JobSync and the 

ForwardJobSync Interests introduced in previous sub-sections.  

In the Job Tree Rebuild Phase, at most three procedures 

contribute to the overhead traffic. The first is that the 

Rebuilder searches the alternative path(s) to find an upper 

stream neighbour which is already on the job tree in order to 

re-join the job tree. For example, in Fig.2 (c) node 3 is the 

upper stream neighbour of node 12. We call this upper stream 

neighbour as Joint-Upstream for clarity and use 𝐷𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟
𝐽𝑜𝑖𝑛𝑡−𝑈𝑝

 to 

represent the path distance between the Rebuilder to the Joint-

Upstream. The second procedure is the notification of ID 

change. After the Rebuilder finds a new path to re-join the job 

tree, it receives a new global ID. If the Rebuilder is a mapper 

node, the second procedure can be ignored as mapper nodes 

have no downstream neighbour in ECE design. Otherwise, the 

Rebuilder then needs to update the global ID of all its 

downstream neighbours and notify them of the change. 

Suppose 𝑁𝑐ℎ𝑖𝑙𝑑 denotes the total number of nodes on the sub-

tree with the Rebuilder as the root. The number of edges 

traversing by the ChangePath Interest equals to the number of 

nodes (i.e. 𝑁𝑐ℎ𝑖𝑙𝑑) on the sub-tree. The third procedure is 

optional. More traffic is generated when the Job Tree Rebuild 

Phase involves node(s) acting as downstream-Rebuilder(s). 

For example, node 7 as a downstream-Rebuilder 

communicates with node 4 which is the Rebuilder in Fig.2 (c). 

Suppose 𝑁𝑑𝑜𝑤𝑛 is the total number of downstream-Rebuilder 

connected to the Rebuilder and 𝐷𝑑𝑜𝑤𝑛(𝑖)
𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟  is the path distance 

between the downstream − Rebuilder 𝑖 and the Rebuilder. 

To simply the overhead expression, the cost of each IoT 

network link is assumed to be the same and labelled as 𝐶𝑙. The 

total overhead occurred in the Job Tree Rebuild Phase (𝑂𝑅) 

can be written as (k). 

𝑂𝑅  =  𝐶𝑙*(𝐷𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟
𝐽𝑜𝑖𝑛𝑡−𝑈𝑝  + 𝑁𝑐ℎ𝑖𝑙𝑑 +  ∑ 𝐷𝑑𝑜𝑤𝑛(𝑖)

𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟𝑁𝑑𝑜𝑤𝑛
𝑖=1 )* 

(𝑋𝑅𝑆𝐶−𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 + 𝑋𝑅𝑆𝐶−𝐷𝑎𝑡𝑎)                                                             (k) 

The overhead traffic in the Job State Sync Phase also 

includes three procedures at most. The first is the 

communication between the Rebuilder and the sink node. Let 

𝐷𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟
𝑆𝑖𝑛𝑘  denotes the path distance from the Rebuilder to the 

sink. If the sink node has already received the data sample(s) 

matched the ID(s) in the JobSync Interest, this phase is 

finished and the rest two procedures can be omitted. 

Otherwise, the second procedure is the enquiry between the 

sink node and Previous-Upstreamer of the Rebuilder or the 

upstream node of the Previous-Upstreamer which has received 

the processed data content after the link failure. Suppose 

𝐷𝑆𝑖𝑛𝑘
𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚

 is the path distance between the sink node and the 

upstream node which can answer the ForwardJobSync 

Interest. The third procedure is optional. It is for data re-

transmission if finding any data samples missing in the 

previous procedures. The Rebuilder re-sends the specific data 

samples to the sink node. Thus, the overhead traffic in the Job 

State Sync Phase (𝑂𝑆) can be written as (l). 

𝑂𝑆  =  𝐶𝑙( 𝐷𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟
𝑆𝑖𝑛𝑘 +𝐷𝑆𝑖𝑛𝑘

𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚
+𝐷𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟

𝑆𝑖𝑛𝑘 )(𝑋𝑅𝑆𝐶−𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡+𝑋𝑅𝑆𝐶−𝐷𝑎𝑡𝑎)     (l) 

In the Job State Commit Phase, the sink node sends the 

notification to all other nodes on the job tree periodically. 

Suppose if 𝑁𝑡𝑜𝑡𝑎𝑙 is the number of nodes on the job tree, there 
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are  (𝑁𝑡𝑜𝑡𝑎𝑙-1) edges to transmit the Interest and Data packets 

in this phase. Let 𝑇𝑡𝑜𝑡𝑎𝑙  denotes the time length of the current 

sink node issuing jobs on the job tree and 𝑡𝑐𝑜𝑚𝑚𝑖𝑡  as the 

frequency for the sink node to send the JobCompleted Interest. 

The overhead traffic in the Job State Commit Phase (𝑂𝐶) can 

be written as (m). 

𝑂𝐶  =  𝐶𝑙(𝑁𝑡𝑜𝑡𝑎𝑙-1) (𝑋𝑅𝑆𝐶−𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡+𝑋𝑅𝑆𝐶−𝐷𝑎𝑡𝑎)(𝑇𝑡𝑜𝑡𝑎𝑙/𝑡𝑐𝑜𝑚𝑚𝑖𝑡)          (m) 

The network traffic overhead of ECE altogether is 

calculated as 𝑂𝑅+𝑂𝑆+𝑂𝐶 . Observing equations (k), (l) and (m) 

can conclude three factors that affect the overhead. The first is 

the job tree size. Both the depth and width of the job tree 

decide the number of nodes required by current job(s). The 

deeper and wider the job tree, the bigger the variable 𝑁𝑡𝑜𝑡𝑎𝑙 in 

equation (m), which increases the overhead traffic. The second 

factor is the pre-defined frequency for the sink node to send 

notifications, i.e. 𝑡𝑐𝑜𝑚𝑚𝑖𝑡  in equation (m). For the same job 

running the same time on the job tree, the smaller the value of 

𝑡𝑐𝑜𝑚𝑚𝑖𝑡 , the more rounds of the Job State Commit Phase are 

invoked. It results in a bigger value of 𝑂𝐶 which contributes to 

the whole overhead of ECE. The last factor is the node that 

experiences a link failure, i.e. the Rebuilder in ECE. The 

overhead traffic 𝑂𝑅  in equation (k) is tightly related to the 

number of messages that the Rebuilder sent in the Job Tree 

Rebuild phase, i.e. to find a new upstream node (𝐷𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟
𝐽𝑜𝑖𝑛𝑡−𝑈𝑝 ), to 

notify downstream neighbours of ID change (𝑁𝑐ℎ𝑖𝑙𝑑) and the 

previous upstream neighbour of path change (∑ 𝐷𝑑𝑜𝑤𝑛(𝑖)
𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟𝑁𝑑𝑜𝑤𝑛

𝑖=1 ). 

In addition, the distance between the Rebuilder and the sink 

node directly affects the overhead 𝑂𝑆 in equation (l). The 

longer the distance, the more messages exchanged to finish the 

Job State Sync Phase. 

• Computation Record Storage 

The intermediate state of job execution is saved at each ECE 

node, i.e. the sink node maintains the JS Table and others have 

their corresponding CR Table. Let 𝑊𝑖 represent the number of 

records for 𝑛𝑜𝑑𝑒𝑖 to insert to its local TS/CR Table per second 

and 𝑇𝑐𝑙𝑒𝑎𝑟  is the time length for waiting the notification of 

clearing records from the sink node. The number of records 

saved by all ECE nodes for each clear-record-cycle (𝑊𝐸𝐶𝐸) 

can be calculated as (n). It is easy to summarize that the 

overhead of ECE computation record storage is decided by 

𝑇𝑐𝑙𝑒𝑎𝑟 . The smaller the 𝑇𝑐𝑙𝑒𝑎𝑟  value, the less records 

maintained by each node. However, it is worth to mention that 

a smaller 𝑇𝑐𝑙𝑒𝑎𝑟  results in entering the Job State Commit Phase 

more frequent, which increases the network traffic overhead. 

It is up to the sink node or IoT applications to decide the best 

𝑇𝑐𝑙𝑒𝑎𝑟  value. 

𝑊𝐸𝐶𝐸 =  ∑ (𝑊𝑖
𝑁𝑡𝑜𝑡𝑎𝑙
𝑖=1 ∗ 𝑇𝑐𝑙𝑒𝑎𝑟)                                           (n) 

IV. EVALUATION AND ANALYSIS 

This section presents tests to verify the feasibility of ECE 

and evaluate its performance under different link failure 

scenarios. As ECE relies on a job-tree-based ID and a 

multiple-phase job execution scheme to assure the exactly 

once data computation, overhead analysis is conducted in 

terms of ID allocation (varying according to the tree depth), 

the job maintenance (occurred in ECE-RSC phases), and 

intermediate state of job processing save at edge nodes. 

Due to no existing approaches targeting the same problem 

as studied in this paper, a benchmark solution is developed 

based on the checkpoint scheme. It is abbreviated as CP-

Benchmark for clarity and its main idea is summarized as 

below: 

Step-1. The sink node has the information of processing-

capable devices in the network. It generates a job execution 

plan/graph before issuing computation tasks, which randomly 

picks the processing nodes and then splits the data sources into 

subgroups accordingly. The sink node notifies each selected 

processing node of the generated job graph. 

Step-2. During the job execution, the sink node sends a 

checkpoint message periodically to all nodes on the job graph. 

Each node returns its current state to the sink node (to mimic 

the central and durable storage for checkpoint snapshots) as 

the reply for the checkpoint message. The checkpoint is 

successfully saved if the states of all nodes are normal. 

Otherwise, the sink node initiates a recovery procedure to fix 

the failure/error. 

Step-3. The sink node randomly picks another device to 

replace the failed one and migrates the computation tasks on 

the new-picked node. 

Step-4. The sink node asks all nodes on current job graph to 

rollback to last checkpoint to restart. The system jumps to 

Step-2 to repeat. 

All tests are implemented on ndnSIM [39] which is a 

simulator specially designed for NDN. The following settings 

are applied to all tests: the sink/user node sends one task 

Interest per second. ECE mappers/CP-Benchmark data sources 

return a Data packet per received task Interest. Edge nodes 

process data samples every five seconds, which facilitates the 

ndnSIM simulator to capture link failure events. It can be 

flexibly set to meet the requirements of IoT applications. The 

network traffic is calculated by accumulating the number of 

transmitted Interest and Data packets by all nodes involved in 

the job tree/graph. 

Two types of data transmission speed (bandwidth + delay) 

are set for the simulation: 250 Kbits per second + 10 

milliseconds based on the Zigbee protocol between a mapper 

and a reducer/forwarder of ECE, and between a data source 

and a processing node of CP-Benchmark. 54 Mbits per second 

+ 1 millisecond using the IEEE 802.11 parameter between 

reducers and forwarders of ECE, and between processing 

nodes of CP-Benchmark. 

A. Feasibility of ECE 

To verify if ECE functions correctly as described in the 

protocol design section, the network topology shown in Fig.2 

(a) is created in ndnSIM. Node 0 is configured as the user 

node and node 10-16 are set as mappers. Node 1-9 may act as 

a reducer or a forwarder or do not participate in data 

processing depending on their situations. The user node has a 

job request which consecutively issues 100 computational 

tasks. It also sends a JobCompleted Interest every 20 

committed tasks to notify other nodes on the job tree to clear 

the corresponding history job records. 
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Fig.5. Job Tree Built and Updated by ECE

 
Fig.6. Traffic on ECE Nodes 

The cost of all links is set to the same. The job tree is built 

according to the NDN routing protocol utilizing the shortest 

path algorithm. Link failures are defined to happen during the 

job execution at different moments: the first failed link is 

between node 6 (a forwarder) and node 12 (a mapper) and the 

second is between node 2 (a reducer) and node 4 (a 

forwarder). 

Fig.5 shows different job trees during the simulation: (a) is 

the initial job tree built with node 0 as the root, (b) is the 

updated job tree after the link between node 6 and 12 fails and 

(c) is the job tree after the second link failure happens 

(between node 2 and 4). In the figures, each node is shown as 

a red dot, and the green lines indicate the edges on the job tree 

while the black ones are not currently used by the tree. The 

updated job trees prove that ECE protocol can deal with link 

failures without suspending normal job execution procedure. 

Moreover, the final job result is received correctly neither with 

data lost nor duplicated processing. 

Fig.6 reflects the transmitted traffic at each node during the 

test. The figures of node 10, 11, 15 and 16 have the same 

curve pattern, which are stable and repeat regularly. Because 

the four nodes are not affected by any network failures. They 

act as mappers to receive task requests and return data content. 

The peaks in their figures represent the periodic JobCompleted 

Interest sent in the Job State Commit Phase, i.e. every 20 

committed tasks. 

After the first link failure happens, it causes more traffic for the 

following nodes. Firstly, the highest peak in the figure of node 12 

is the extra messages of ECE-RSC to handle the first link failure. 

Secondly, as node 6 only has one job neighbour (node 12) and 

after the link between them fails, it neither receives nor returns 

job data. Consequently, its curve stays at 0 after the first link 

failure. Thirdly, node 5 is the updated upstream job neighbour of 

node 12, it starts to transmit Interest and Data packets because of 

the rebuilt job tree. Lastly, the number of transmitted packets of 

node 3 increases after the first link failure because it adds one 

more job neighbour (node 5) and therefore it needs to send more 

ComputingJob Interests and reply with more computed job 

results. 

The second link failure forces node 4 to leave the job tree as 

it has no backup routes reaching the sink node, resulting its 

curve turning to 0. Meanwhile, node 4 notifies the link failure 

situation to its child neighbour node 7 so that node 7 can try to 

find an alternative route without being affected by the link 

failure. The rebuilt job tree enables node 7 to continue 

working on the job tree by adding node 8 and 9 as forwarders 

on the new path. Thus, the curve in the figure of node 8 and 9 

respectively shows transmitted packets after the second link 

failure. Furthermore, the number of transmitted packets by 

node 7 grows as labelled by the red oval in its figure, which is 

the procedure initiated by node 7 to search alternative paths. 

The global ID of node 7 changes because its upstream 

neighbours on the job tree has been updated. It also changes 

the global ID of the child nodes of node 7. The highest peak in 

the figure of node 13 and 14 shows the increased number of 

messages for the notification of updated global ID. 

B. Network Traffic Comparison and Analysis 

ECE network traffic overhead is evaluated by comparing 

with the CP-Benchmark. Two network topologies are created 

   
(a) Initial Built Job Tree (b) Job Tree Updated after 1st Link Failure (c) Job Tree Updated after 2nd Link Failure 

X
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to show the performance. A job in the tests is defined as 

consecutively executing and completing 100 computational 

tasks. The sink node sends a JobCompleted Interest every 20 

committed tasks in ECE test case. As more network traffic is 

incurred by a higher checkpoint frequency, two checkpoint 

intervals are deployed for the CP-Benchmark tests, i.e. every 5 

seconds and every 20 seconds. 

• Toy-Topology in Fig.2 (a) 

The network topology in Fig.2 (a) is created in ndnSIM for 

tests. Two failures are set during the job execution for ECE 

and CP-Benchmark respectively. Node 0 is the user node and 

node 10-16 are data sources. Other nodes act as edge devices 

and whether an edge node joins data processing depends on 

the job tree/graph generated by the protocol. CP-Benchmark 

randomly picks three edge nodes to undertake data processing 

and therefore the data sources are randomly separated into 

three groups.  

 

 

 

Fig.7. Network Traffic Comparison: ECE Vs. CP-Benchmark 

Fig.7 shows the test results, i.e. the black curve represents 

ECE and CP-Benchmark with checkpoint interval in 5 seconds 

and 20 seconds is in blue (CP_5) and red (CP_20) 

respectively. At the beginning of the simulation, the highest 

peak of ECE is the number of messages exchanged by all 

nodes in the Job Tree Build Phase. The job tree is built once 

for every new user node, which brings the most overhead in a 

round of job execution. As the sink node is assumed to have 

the information of network resources in advance for the CP-

Benchmark solution, the initial cost of generating job graph is 

lower than that of ECE.  

When the job execution starts, it is easy to observe that the 

network traffic of CP-Benchmark is always above ECE no 

matter the setting of checkpoint interval. The main reason is 

CP-Benchmark takes no consideration of the physical 

topology when generating the logical job plan. In this test, the 

job graph generated by the CP-Benchmark is selecting node 1 

to process data samples from node 10, 13, 14 and 16, node 5 

to be responsible for node 11 and 12, and node 7 to manage 

node 15. The cost of transmitting raw data to edge nodes is 

larger than the gain of data computation or aggregation. In 

most cases, the distance between a data source and a 

processing node is longer than the path of directly sending 

data samples from the data source to the sink node.  

The peaks with a dot on the top of CP-Benchmark curves 

are the moments to handle link failures. It produces more 

traffic than the job execution procedure because the sink node 

needs to pick another edge node to recover and notify all 

nodes on the job graph to rollback to last checkpoint state. The 

network traffic of CP-Benchmark with 5-second checkpoint 

interval (blue curve) is higher than it with 20-second interval 

(red curve) because checkpoint messages are transmitted more 

frequent during the job execution. The benefit is that the 

system can detect and recover from failures more quickly, 

which reduces job execution latency. The time cost of CP-

Benchmark with 20-second checkpoint interval is 

approximately 30s longer than both its 5-second interval and 

ECE by observing the x-axis of Fig.7. 

An enlarged view of ECE curve is added in Fig.7 to show 

more details. The peaks with a dot on the top indicate the two 

link failures. According to the equation (k) and (l) described in 

previous section, more messages are exchanged to rebuild the 

job tree, sync job states and retransmit lost data if any. The 

peaks with a square on the top are the moments of the 

JobCompleted Interest traversing all nodes on the job tree to 

clear history job data, as described in equation (m). The job 

completion time of ECE is the same as CP-Benchmark with 5-

second checkpoint interval.  

• BRITE-Topology 

To test the scalability of ECE protocol, a network topology 

consisting of 100 nodes is generated by using BRITE [40] 

topology generator with RouterWaxman model. It is called 

BRITE-Topology for clarity. Node-0 is configured as the 

sink/user node. For the rest 99 nodes, 69 nodes (node number 

31-99) act as mappers/data sources and 30 nodes are edge 

nodes. Five link failures are set during the simulation for ECE 

and CP-Benchmark respectively. 

Fig.8 (a) and (b) are the corresponding job graph generated 

by ECE and CP-Benchmark. The red dots represent nodes, 

green lines with arrows are links used on the job graph and 

black lines are original network links that are not used by 

current job. ECE builds the job tree with node-0 as the root. 

CP-Benchmark randomly selects five edge nodes to undertake 

data computation tasks. All data sources are split into five 

groups and the number of nodes in each group is random in 

the range from 5 to 15. 

Fig.9 (a) presents the test results of ECE to complete the 

same job with/without failures. ECE-Exec (red curve) is the 

test case that no failures happen during the job execution. 

ECE-RSC (black curve) shows the network traffic varying 

with ECE to handle five failures during the job execution. 

Both curves have the highest peak at the initial of the test 

ECE CP_5 CP_20 

ECE-Enlarged 
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because of ECE nodes exchanging the routing information to 

build the job tree. 

 
(a) ECE Job Tree 

 

 
(b) CP-Benchmark Job Graph 

Fig.8. Job Graph on BRITE-Topology 

The ECE-Exec curve goes up and down every five seconds 

during the whole test, which keeps the same as the frequency 

of reducers to process data every five seconds. The network 

traffic increases when the reducers return the Data packets 

after processing. The black curve overlaps with the red curve 

most time of the simulation, which proves limited extra cost 

incurred by ECE to achieve exactly once data computation. 

The peaks with a blue diamond on the top above the black 

curve represent the sink node sending JobCompleted Interests 

in the Job State Commit Phase. These peaks also contain the 

network traffic for ECE handling link failures, which explains 

the first two peaks are higher than others in the zoomed view 

of Fig.9 (a). Observing the network traffic, the black curve is 

lower than the red one from approximately 50th second of the 

test. As link failures result in updated job trees, the number of 

Interest and Data packets decreases because of nodes changing 

their role during the job execution to aggregate multiple 

packets into one. For example, the number of Data packets can 

reduce if a node that was not on the job tree becomes a reducer 

to aggregate multiple job data content into one Data packet. 

The network traffic comparison between ECE and CP-

Benchmark is shown in Fig.9 (b). CP-Benchmark with 5-

second and 20-second checkpoint interval are respectively 

presented as the blue (CP_5) and red (CP_20) curve. ECE 

curve is in black, which is the same as the ECE-RSC shown in 

Fig.9 (a) if need to see more details. As more nodes are 

included in the BRITE-Topology, the cost of ECE to build the 

job tree grows consequently. It also results in the network 

traffic of CP-Benchmark increasing significantly, which 

always transmits more packets than ECE to complete the same 

job. 

 
(a) ECE Overhead Analysis 

 

 
(b) ECE Vs. CP-Benchmark 

Fig.9. Network Traffic Comparison on BRITE-Topology 

With the network size increases in IoT, data transmission 

from data sources to processing nodes contributes a lot to the 

total network traffic if ignoring their physical topology during 

job assignment, such as CP-Benchmark randomly grouping 

data sources with edge nodes. In addition, it causes noticeable 

delay to finish the same job when using checkpoint based 

ECE-Exec ECE-RSC 

CP_5 CP_20 ECE 
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scheme to guarantee exactly once data computation, which 

could even double the job execution time if observing the red 

curve in Fig.9 (b). 

C. Overhead of ECE Computation Record Storage 

For the evaluation purpose, the Clear-Record-Frequency 

(CRF) is defined as the number of completed tasks to clear all 

history records once. The job tree built in Fig.5 (a) is applied. 

A job in this simulation is defined as consecutively executing 

and completing 200 tasks. The sink node sends a 

JobCompleted Interest with CRF = 50/20/10 respectively for 

the same job. 

 
Fig.10. Overhead of Job Computation Records Storage 

Fig.10 shows the number of records saved at each ECE 

node with different CRF settings. The red curves represent 

CRF = 50, the green curves are for CRF = 20 and the blue 

ones for CRF = 10. The black lines in the figure track the 

network traffic for the job tree building and job execution 

processes, which are the same as the ECE-Exec results 

discussed in previous section. As node 5, 8 and 9 are not on 

the job tree, they neither transmit job data nor save 

computation records. 

The number of saved records varying with CRFs can be 

separated into two types. One is the test results of mappers 

(node 10-16). In the case of CRF = 50, the red curve repeats in 

a period of increasing from 0 to 50 and dropping to 0. 

Similarly, the green curve rises from 0 to 20 and downs to 0 

with CRF = 20 and the blue curve is in a cycle of 0 to 10 to 0 

with CRF = 10. The curves of mappers grow smoothly for all 

CRF settings because mappers reply each received 

ComputingJob Interest immediately. A job computation record 

is added after returning each Data packet. The number of 

transmitted packets for executing actual jobs stays at 2 no 

matter the CRF settings, i.e. one Data packet plus one received 

Interest packet per second in the Job Execute Phase. 

The rest of the ECE nodes, i.e. node 0 as the sink node and 

node 1-4, 6 and 7 as a reducer or a forwarder, present another 

type of test results. All curves grow every five seconds due to 

the pre-defined data processing frequency of reducers and 

forwarders. The number of save job computation records is 

cleared every 10/20/50 completed jobs with corresponding 

CRF settings. The curves of job execution packets keep the 

same, which is not affected by CRF changes. The test results 

follow the same conclusion of the equation (n) in the previous 

section that the bigger CRF value the more records maintained 

by all ECE nodes. It depends on the specific IoT applications 

to decide the best CRF setting. 

 
Fig.11. ECE ID affected by Job Tree Depth 

D. Overhead of ECE ID Allocation and Update 

As the ECE node ID is constructed based on the path of the 

job tree, the depth of a job tree directly affects the cost of the 

initial ID allocation and as well as the ID update whenever a 

network failure happens. Two network topologies are created 

in Fig.11 as a comparative study of the cost of the ECE ID 

allocation and update affected by the job tree depth. The only 

difference between the 2 initial job trees, i.e. Job-Tree-A and 

Job-Tree-B, is the number of intermediate nodes between the 

sink node and the mappers. 

The simulation runs on each job tree for 100 seconds. Three 

link failures are configured at 32nd, 62nd and 82nd second 

respectively during the simulation. For Job-Tree-A, the failed 

links in temporal order are the link between node 2 and m3, 

the link between node 3 and m4 and the link between node 1 

and m2. For Job-Tree-B, the link failures happened in order 

are the links between node 8 and m3, node 9 and m4 and node 

7 and m2. The two updated job trees after the three link 

failures are also shown in Fig.11 with red dashed lines to 

indicate the failed links. 

The number of transmitted packets by each node varying 

with the simulation time is presented in Fig.12 (a) and the total 

network traffic is shown in Fig.12 (b). The black curves 

ECE-Exec 

CRF=50 CRF=20 

CRF=10 
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represent the test data generated on the Job-Tree-A and the red 

curves are for Job-Tree-B. For node 4-9, they only have 

transmitted packets for Job-Tree-B.The curves of mapper m1 

and m5 are the same for both tree topologies as the link 

failures have no effect on their job execution procedure. There 

is a slight difference in the number of packets in the figures of 

mapper m2-m4. Because changing from Job-Tree-A to Job-

Tree-B only generates more traffic in the Job State Sync Phase 

with more intermediate nodes involving to forward Interest 

and Data packets. The transmitted packets by mapper m2-m4 

in other ECE phases keep the same. 

 
                                    Job-Tree-A                      Job-Tree-B       

(a) Cost at each node to update ID 

 
(b) Total Cost of ECE Nodes to update ID 

Fig.12. Overhead of ECE ID Update 

For node 1-3, they disseminate less job requests on Job-

Tree-B than that on Job-Tree-A because they are only 

responsible for one downstream neighbour on Job-Tree-B. 

The ComputingJob Interest in the Job Execute Phase is sent 

per job node so that more downstream neighbours introduce 

more traffic, which is doubled with returned job Data. 

The total cost of the whole job tree is shown in Fig.12 (b). 

The number of transmitted packets almost increases two times 

when changing from Job-Tree-A to Job-Tree-B. The 

formulated equation (k) in the previous section can also apply 

here. Besides the above reasons, the cost on Job-Tree-B also 

involves nodes leaving (re-joining) the job tree due to no 

downstream neighbours (connecting new downstream 

neighbour(s)), indicated by the variable 𝐷𝑑𝑜𝑤𝑛(𝑖)
𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟  in equation 

(k). For instance, when the link between node 8 and m3 fails, 

m3 finds a new path via node 7 on the job tree. When node 8 

finds no job neighbours available after losing m3, it leaves the 

job tree by notifying node 5 the situation. The same actions 

are taken by both node 5 and 2. When the second link failure 

between node 9 and m4 happens, m4 sends re-join request to 

node 8. To this end, node 8, 5 and 2 need to initiate the re-join 

tree procedure one by one until getting the reply from the sink 

node, indicated by the variable 𝐷𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟
𝐽𝑜𝑖𝑛𝑡−𝑈𝑝

 in equation (k). 

Thus, the number of packets transmitted to allocate and update 

ECE ID is closely related to the tree topology as well as the 

specific node that experiences the link failure. 

V. CONCLUSION 

Collaborative edge computing is a data processing paradigm 

which employs multiple edge devices cooperating with each 

other to execute jobs for IoT applications. To achieve exactly 

once data computation in collaborative edge computing 

scenarios, one of the challenges to be addressed is the network 

connections between edge devices may fail during the job 

execution. This may result in data losses or duplicated data 

transmission/computations, and consequently violates the 

exactly once computation guarantee. 

This paper proposes the ECE protocol as a solution. It 

consists of five phases and is built upon the novel ICN 

architecture. The Job Tree Build Phase is launched before 

running any jobs and forms a tree based job graph with the 

sink/user node as the root of the tree. The Job Execute Phase 

disseminates job requests and returns the computed job results 

in the form of NDN Interest and Data packets. Whenever a 

network failure happens during the job execution, the Job Tree 

Rebuild Phase and the Job State Sync Phase are invoked to 

update the job graph and ensure no data is affected by the 

failures. Finally, the Job State Commit Phase is designed to 

notify all the nodes on the job tree on the completed jobs. A 

set of tests have been performed to show the feasibility and 

scalability of the ECE protocol and the overhead associated 

with ID assignment and computation information storage is 

analyzed. 

Future work includes improving ECE with a device 

capability aware algorithm to build/maintain the job tree for 

different IoT applications considering the resource constraints, 

device heterogeneity, energy consumption and mobility of 

edge devices. As the proposed design is built upon ICN, the 

naming scheme and/or name resolution may be improved to 

Job-Tree-A 

Job-Tree-B 
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support more types of IoT jobs, e.g. filtering data sources 

and/or selecting edge devices.  
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