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Autonomous vehicles process immense quantities of data 
while navigating their environment. The algorithms that drive 
the technology are dependent on real-world data for 
development, testing, and validation. Table i presents the results 
of the research into relevant autonomous vehicle datasets. The 
majority of these autonomous driving datasets are primarily 
addressing the challenges of (a) scene understanding, (b) 
simultaneous localization and mapping, and (c) object 
detection. Mostly they rely on sensors such as LiDAR, Radar, 
and camera. However, some datasets – such as the Berkley 
Deep Drive dataset – primarily focused on Camera GPS and 

Inertial Measurement Unit (IMU) data.  
While these datasets are useful, their lack of modality is a 

major shortcoming of some of them when pursuing multimodal 
ML methods such as online active ML. Furthermore, some 
datasets rely so heavily on GPS that they were not intended 
indoor environments or areas where the terrain can obstruct 
signals. Though some of the datasets reviewed provide IMU 
data, such as speed and direction of travel, most do not. Usually, 
the gathered data is optimized for a for a single aspect of 
autonomous vehicle research, and therefore not the most 
versatile. 

TABLE I: REVIEWED AV DATASETS 

Name Ref Permission 
Environment Year Description 

nuScense [1] Licence 
Structured 2019 

nuScense is an AV dataset recorded using LiDAR, Radar, camera, and GPS. nuScense consists of 1000 scenes 
containing 1.4 million camera images, 390000 LiDAR sweeps, 1.4 million Radar sweeps. Containing 23 

different classes or 1.4 million objects annotated by hand. nuScense was collected in Boston and Singapore. 

Oxford Radar 
RobotCar Dataset [2] Opensource 

Structured  2019 
The Oxford Radar RobotCar Dataset is a radar release to append the Oxford RobotCar Dataset from 2016. 
Sensors included a Navtech CTS350-X Millimetre radar, dual Velodyne HDL-32E LiDAR with optimized 

ground truth radar odometry. Data was collected around Oxford over 280km.  

Brno Urban 
Dataset [3] Licence  

Structured 2019 
Bruno urban is an AV dataset recorded in the Czech Republic over 350km using four cameras, two LiDAR’s, 

an inertial measurement unit, an IR camera, and a differential Global Navigation Satellite System (GNSS) 
receiver with centimetre accuracy.  

A*3D [4] Opensource 
Structured 2019 

A*3D is an AV dataset recorded at different times of the day and night in sunny, cloudy, and rainy weather 
conditions. 230000 human ladled 3D object annotations in 39,179 LiDAR Point Cloud frames with 

corresponding front facing RGB images. 

Waymo Open 
Dataset [5] Opensource 

Structured 2019 

Waymo open is an AV dataset recorded in the USA using LiDAR and camera sensors. The dataset contains 
data from 1,000 segments collected at 10Hz in diverse scenarios and environmental conditions. The dataset 

shows four object classes, 12M 3D bounding box labels with tracking IDs on LiDAR data and 1.2M 2D 
bounding box labels with tracking IDs on camera data. 

Lyft Level 5 [6] Licence 
Structured 2019 

Lyft level 5 is a large-scale AV dataset recorded by a multiple, high-end AV fleet containing over 55000 
humans ladled 3D annotated frames. Data was captured using seven cameras and up to 3 LiDAR. A semantic 
map provides 4000 lane segments (2000 road segment lanes and about 2000 junction lanes), 197 pedestrian 

crosswalks, 60 stop signs, 54 parking zones, eight-speed bumps, and 11-speed humps. 

Argoverse [7] Opensource 
Structured 2019 

Argoverse is an AV dataset recorded in Pittsburgh and Miami using LiDAR and camera sensors. Split into 
three releases; the first contains 113 scenes with 3D tracking annotations on all objects. The second release is a 

dataset of 300,000-plus scenarios. The third release is a set of HD maps of several neighbourhoods.  
AEV 

Autonomous 
Driving Dataset 

[8] Licence 
Structured 2019 

AEV is a dataset consisting of 2.3 TB of the camera, LiDAR sensor data, featuring 
Forty thousand frames with 2D semantic segmentation, 12000 frames with 3D bounding boxes, and unlabelled 

3D Point Clouds. Also, 390000 frames of unlabelled sensor data. 

ApolloScape [9] Opensource 
Structured 2019 

ApolloScape is an AV dataset recorded in China using camera and LiDAR sensors with pixel-by-pixel 
annotations, including 26 different recognizable objects – cars, bicycles, pedestrians, and buildings. The 

dataset offers numerous levels of complexity recorded in challenging environments, Weather, and extreme 
lighting conditions. 

Berkeley Deep 
Drive [10] Opensource 

Structured 2018 
Berkeley Deep Drive is an AV dataset recorded in the USA using camera and GPS sensors. The dataset 

contains 100000 HD video – each running 40 seconds long at 30 fps – sequences over 1100-hour of driving 
across many different times of day, weather conditions, and driving scenarios. 

Oxford RobotCar 
Dataset [11] Opensource 

Structured 2016 
The Oxford RobotCar Dataset was recorded in Oxford, covering a fixed path, using LiDAR, camera, and GPS. 

Data was captured over one year, covering a variety of Weather and traffic conditions showing road users, 
along with longer-term changes to the environment. 

KITTI [12] Opensource 
Structured 2013 

The KITTI dataset was recorded in Germany using LiDAR, camera, Radar, and GPS sensors. The KITTI 
dataset is regarded as a benchmark dataset upon which many of the proceeding datasets were based. The 

dataset contains 6 hours of diverse traffic scenarios recorded at 10-100 Hz covering autobahn, rural roads, and 
inner-city scenes.  

CamVid [13] Opensource 
Structured 2008 

CamVid dataset provides ground truth labels that associate each pixel with one of 32 semantic classes. The 
dataset comprises ten minutes of high-quality 30Hz footage, with corresponding semantically labelled images 
at 1Hz. 700 images were annotated manually and were then inspected and confirmed by a second person for 

accuracy. 
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As of 30th January 2020, the LboroLdnAV dataset consists of 
45.6 hours of Video, LiDAR, and Ultrasound data collected 
over 1.2 km of unstructured indoor and outdoor environments 
under various scenarios. In total, 2.5 million frames captured by 
four cameras, 672k frames captured by the 360Fly Wide-angled 
Camera; 1.2 million frames captured by the Ricoh Theta V 360° 
Camera; and 624k frames captured by the two Wansview IP 
cameras. In addition, both the LiDAR and Ultrasonic sensor 
array captured a total of 252k and 220k scans, respectively. 

 
Figure I: The primary outdoor data collection routes. The traversable distance 
was 1.2 km over four different locations, Route 1 Lesney Avenue, Route 2 BT 
Sports Plaza, Route 3 East Bay Lane, and Route 4 Canal Side. 

Seven object classes were annotated - People, Bus; Van; Car; 
Motorbike; Cyclist, and Traversable Surfaces. While this 
research’s focus was FSD, it was felt that the additional object 
classes were beneficial in improving the value of the dataset and 
were therefore annotated. Each class was labelled with 
bounding boxes or polygons at 5Hz intervals. Although four 
cameras were used during the data collection period, only two 
of the data streams were used for the FSD process – the Ricoh 
Theta V 360° Camera and the ultrasonic sensor array. Data were 
annotated by hand, and a ground truth label for the seven classes 
is appended to the dataset. 

TABLE II: DESCRIPTION OF THE LBOROLDNAV DATASET 
Title LBORO Dataset 

Collection Periods 28/05/2018 to 18/08/2018 & 01/11/2019 to 30/01/2020 

Location East Bay Lane, Lesney Avenue, BT Sports Plaza, Canal-
Side  

Total Size 45.6 hours over 1.2 km 

Class People, Bus, Van, Car, Motorbike, Cyclist, Traversable 
Surfaces 

The primary prerequisites of the LboroLdnAV dataset were 
to facilitate the development of multimodal machine learning 
algorithms for intelligent mobility. Therefore, the data 
collection route, shown in Figure , was chosen to cover various 
unstructured environments and traversable surfaces. While 
extreme weather conditions are desired, they were not the 
primary prerequisite when collecting the data. It should be 
noted that Figure I does not include the traversals for the indoor 
environment as these routes were not planed due to the 

changing environment.  
Conditions of the license and permit granted by the 

management company restricted the speed at which the 
automatous platform could operate – less than 4kph. While the 
autonomous platform can operate at speeds of up 22kph, there 
would be little point since changing the sensors’ frequency of 
operation would return inaccurate measurements. For example, 
decreasing the frequency of operation of either the LiDAR or 
Ultrasonic sensors array can result in ghosting. Ghosting is a 
replica of a recorded image, offset in position. Although 
possible to increase the frequency of operation to prevent 
ghosting, the resolution of the data captured by the LiDAR 
would significantly reduce. In the case of the ultrasound, it 
would result in crosstalk of transmitted and detected signals. 
While it would be possible to overcome these issues with 
sensors with a higher resolution, there will always be a degree 
of give and take in terms of frequency of operation.  

TABLE III: SUMMARY STATISTICS FOR THE LBOROLDNAV DATASET 
Sensor Type Size 

360Fly Wide-
angled Camera Image 2.34 GB 

Ricoh Theta V 360° 
Camera Image 4.05 GB 

Wansview IP 
Camera (x 2) Image 0.24 GB 

HC-SR04 
Ultrasonic Array 2D Scan 5.6 MB 

VLP-16 LiDAR 3D Scan 12.8 GB 
Delphi ESR 3D Scan N/A 

The primary data collection routes were in unstructured 
indoor and outdoor environments. If we were to change the data 
collection environment to a structured environment, where the 
autonomous platform operated at a higher speed, the 
instruments and frequency of operation would need to be re-
evaluated. Table ii details the date, location, classes captured, 
and data streams of the LboroLdnAV dataset, while Table iii 
lists summary statistics for the dataset so far. Data collection 
periods were chosen to encompass many classes in as many 
different environmental conditions as possible. However, since 
the dataset appended to this research is a partial release, most 
data was gathered during fine conditions. It should be noted that 
the data release reported in this article is the first part of a more 
extensive project that is currently in the process of expanding 
into Sri Lanka, in addition to further experiments around the 
Olympic Park. 

The self-evolving autonomous ground vehicle used during 
the data collections period required a specific type of dataset. 
One that can fulfil the requirements of multimodality while 
providing optical and range data from at least two sensor 
streams of a known location. To determine the effectiveness of 
the proposed FSD framework, we visually compare the self-
evolving component against the baseline SVM classifier and 
present the results in Figure II. Figure II a depicts the results of 
the baseline SVM classifier. Figure II b depicts the results of 
the self-evolving component. Figure II c depicts the results of 
the self-evolving component and the fusion of the image and 
ultrasonic range data. 
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Figure II: From top left to right. Scenario 1: Indoor environment with stationary obstacle traversing lino. Scenario 2: Outdoor environment traversing changing 
surface (Concrete to Tarmac). Scenario 3: Outdoor environment traversing changing surface (Concrete/AstroTurf). Scenario 4: Indoor environment with 
stationary obstacle traversing tiled surface. 
 

In consonance with the results presented in Figure II Scenario 
1 (c), 2 (c), 3 (c) and 4 (c), the combination of the self-evolving 
component and sensor data fusion is better at detecting free 
space than the baseline SVM classifier. The combined approach 
correctly classifies the obstacles. For example, in Figure II 
Scenario 1 (a) & (b), the white boxes - positioned in front of the 
autonomous platform - are largely classified as free space. This 
corresponds to a situation where the baseline classifier performs 
poorly due to high saturation. 

Similarly, for Figure II Scenario 2 (a), the baseline classifier 
fails to detect different surfaces as free space and miss-classifies 
a flower bed. Although there is an improvement in Figure II 
Scenario 2 (b), it is not until Figure II Scenario 2 (c) that the 
flowerbed and curbstone are correctly classified as free space. 
Figure II Scenario 3 (a) & (b) correspond to a situation where 
the baseline classifier and the self-evolving component is not 
performing very well. Due to high saturation, the AstroTurf 
area to the front of the testbed gets classified as an obstacle. 
Contrary to this, in Figure II Scenario 3 (c), the AstroTurf area 
to the front of the testbed gets correctly classified as traversable 
space. It should be noted there are areas of the AstroTurf that 
remain classified as occupied space. This can be attributed to 
these areas falling outside the FoV of the ultrasonic sensor 
array. 

Figure II Scenario 4 (a) illustrates a different situation where 
the area to the left of the image is classified correctly, and the 
area to the right of the image is miss-classified. Conversely, in 
Figure II Scenario 4 (b) & (c), there is a marked improvement 
when using the self-evolving and the combined approach to free 
space segmentation. 
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