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Abstract An artificial intelligence-based predictive model was developed using a support vector

machine to investigate the solubility data of the drug Busulfan drug in supercritical carbon dioxide.

The data for simulations were collected from literature. The model was trained and implemented in

order to determine the correlation between the solubility values and the input parameters, namely,

temperature and pressure. These parameters were used as the inputs as they are known to have a

significant effect on the solubility of Busulfan in supercritical carbon dioxide. In the artificial intel-

ligence model, a polynomial model with kernel function was applied to the data, and the model’s

findings were compared with measured data for fitting. Good agreement was observed between

the model’s outputs and the measured data with coefficient of determination greater than 0.99.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Development of predictive models for pharmaceutical manu-
facturing is of great importance, and extremely useful for mov-
ing towards a Quality-by-Design (QbD) paradigm which is
very important for the next generation of pharmaceutical pro-

cessing (Shirazian, 2017; Ismail, 2019; Shirazian, 2018). In this
paradigm, the process of pharmaceutical manufacturing
should be thoroughly understood for advanced production

and quality assurance. Indeed, the models can help to develop
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Table 1 The solubility data of busulfan used in the simula-

tions (Pishnamazi, 2020).

P(bar) T(K) Y (mole fraction)

120 3.08E + 02 8.03E-05

120 3.18E + 02 5.17E-05

120 3.28E + 02 4.69E-05

120 3.38E + 02 3.27E-05

160 3.08E + 02 1.26E-04

160 3.18E + 02 1.19E-04

160 3.28E + 02 9.19E-05

160 3.38E + 02 8.91E-05

200 3.08E + 02 1.49E-04

200 3.18E + 02 1.72E-04

200 3.28E + 02 2.10E-04

200 3.38E + 02 2.12E-04

240 3.08E + 02 1.72E-04

240 3.18E + 02 2.10E-04

240 3.28E + 02 2.46E-04

240 3.38E + 02 3.12E-04

280 3.08E + 02 1.97E-04

280 3.18E + 02 2.73E-04

280 3.28E + 02 3.48E-04

280 3.38E + 02 4.40E-04

320 3.08E + 02 2.26E-04

320 3.18E + 02 3.26E-04

320 3.28E + 02 4.27E-04

320 3.38E + 02 5.45E-04

360 3.08E + 02 2.45E-04

360 3.18E + 02 3.46E-04

360 3.28E + 02 4.90E-04

360 3.38E + 02 6.33E-04

400 3.08E + 02 2.74E-04

400 3.18E + 02 3.71E-04

400 3.28E + 02 6.18E-04

400 3.38E + 02 8.65E-04
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pharmaceutical processing specifically for solid-dosage oral
formulations which constitute the majority of the produced
pharmaceuticals (Lou et al., 2021; Stranzinger, 2021). The pre-

dictive models can be developed at different levels and for var-
ious pharmaceutical unit operations such as granulation,
crystallization, milling, coating and reactions (Shirazian,

2017; Walsh et al., 2020; Singh, 2020; Pishnamazi, 2021;
Shirazian, 2018; Ismail, 2019; Ismail, 2020). Either mechanistic
or non-mechanistic models can be developed for prediction of

the performance of pharmaceutical unit operations. The mod-
els developed for pharmaceutical processing have been imple-
mented for process development, and great results have been
reported. Indeed, robust models need to be developed and

implemented for processes.
One of the major challenges in pharmaceutical product

development is to improve the solubility and bioavailability

of drug substances in aqueous media. This can be achieved
by various physio-chemical techniques. One of the techniques
for improving drug solubility is nanonization in which the

drug particles are manufactured at small scales such that the
solubility is increased considerably due to higher surface area
and energy of the nanoparticles. The methods of preparation

of nanomedicines are diverse but can be divided into two cat-
egories of top-down and bottom-up approaches. The bottom-
up method has attracted much attention due to the precise
control over the product quality. In this method, the drug sub-

stance is usually dissolved in a proper solvent, and then the
nanosize powder of the drug is formed in a solvent removal
process depending on the structure of the drug and operating

conditions. However, other methods of nanonization have
been reported in the literature (Padrela, 2018).

When developing advanced processes for the production of

nano drugs, a sound understanding of the basic process meth-
ods is vital, indeed underpinning research is required to under-
stand the formation of nanomedicine in the specific

nanonization process used. By understanding the process,
one can optimize the production to achieve the best quality
and minimize the cost and energy for production of nanomedi-
cine. The models based on mechanics and statistical models

can be used and developed for simulation and understanding
of nanomedicine production. Basically, before deploying the
process, the solubility of drug in the solvent must be deter-

mined, as it plays a crucial role in a processing approach based
on a bottom-up technique. Recently, some empirical and ther-
modynamic models have been developed for simulation

of drug solubility in supercritical solvent which is used for
preparation of nanomedicines.
Fig. 1 Chemical structure of the drug used in this study

(https://pubchem.ncbi.nlm.nih.gov/compound/Busulfan#section=3D-

Conformer. Accessed July 2021).

Fig. 2 Schematic structure of SVM model in prediction of

busulfan solubility.



Fig. 3 Prediction of parameter Y based on P and T with SVM

model and Kernel Function = polynomial with the order of 2 and

box constraint equal to response Scale/0.1.

Fig. 3 (continued)
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Sodeifian et al. (Sodeifian, 2018; Sodeifian, 2020; Sodeifian

et al., 2020; Sodeifian et al., 2019) developed a number of
thermodynamic-based models for prediction of various drugs
solubilities in supercritical CO2. Zabihi et al. (Pishnamazi,
2021; Pishnamazi, 2021; Pishnamazi, 2021; Zabihi, 2020;

Zabihi, 2020; Zabihi, 2021; Pishnamazi, 2020; , xxxx; Zabihi,
2021; Pishnamazi, 2020; Zabihi, 2021; Pishnamazi, 2020) used
several semi-empirical correlations for simulation of drug sol-

ubility in supercritical solvent. Their results indicated that the
employed models are capable of predicting drug solubility in
supercritical solvents with high accuracy, and can be used as

extrapolative tools for prediction of drug solubility in super-
critical carbon dioxide.

The main objective of the current work is to develop a new
simulation methodology for prediction of drug solubility at

supercritical conditions. The method of simulation is based
on support vector machines (SVM) which utilize multi-Class

support vector algorithms for prediction and training the data
of solubility. The model of drug used in this study is busulfan
which is considered a good candidate for the production of
nanomedicine in continuous supercritical-based technology.

The data are collected from literature and for model’s training
to build the SVM model. The results of simulation are evalu-
ated in terms of accuracy, and the simulation parameters are

tuned to achieve the best prediction of drug solubility. To
the best of the authors’ knowledge, there is no simulation
study on prediction of busulfan solubility in supercritical

CO2 using support vector machine algorithms, which can be
considered as the main innovation of the current study.

2. Measurement method

Busulfan with the chemical formula of C6H14O6S2, and molec-
ular weight of 246.304 gr/mol was used. The raw drug with

purity of 0.98 was treated to remove the impurity, and the drug
with the resulting high purity was used in the experiments. We
have collected data from the literature, and the detailed
description of the drug and measurements can be found else-

where (Pishnamazi, 2020). The structure of the drug is indi-
cated in Fig. 1.



Fig. 4 Prediction of parameter Y based on P and T with SVM

model and Kernel Function = polynomial with the order of 2 and

box constraint equal to response Scale/2.

Fig. 4 (continued)
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The collected solubility data at different pressures and tem-
peratures are listed in Table 1. As seen, 32 values are collected

for the drug at 8 pressures and 4 temperatures between 308 and
338 K to evaluate the effect of these two important process
parameters on the values of drug solubility. It is worth men-
tioning that the unit of solubility is mole fraction (Y) in the cal-

culations, between 0 and 1.

3. Method of calculations

For modelling and simulations of the solubility data, a method
of support vector machines (SVM) was employed due to the
complexity of the system. The method of SVM is widely uti-

lized in applications including signal processing, medical appli-
cations, natural language processing, and voice and picture
recognition. The SVM’s main goal is to separate information
components into two groups: types and classes. The algorithm
uses a hyperplane to separate linearly separable data sets, how-

ever it will implement a soft margin boost when it comes to
identifying practical solutions.

SVMs’ accuracy for classification and estimation is quite
high, and their results on classification and regression tasks

are remarkably. A multi-class SVM is made up of several bin-
ary classifiers. Kernels help to open up nonlinear issues, giving
them more flexibility and capability to deal with different situ-

ations. Using training data, we just need support vectors to
create a decision surface. The resulting model is fully capable
of code generation after the training is complete.

The binary classifier that the SVM generates is termed the
optimum splitting hyperplane and is produced via a projection
that develops highly nonlinear input variables into the high-
dimensional feature space. SVM utilizes non-linear class

boundaries in constructing a linear decision model. An SVM
trained on linearly split data provides a hyperplane that accu-
rately separates the data, but the separation is accomplished as

far away from the learning options as possible. In this study
the polynomial machine with kernel function can be defined as:

k x; xið Þ ¼ x:xi þ 1ð Þd ð1Þ



Fig. 5 (continued)

Fig. 5 Prediction of parameter Y based on P and T with SVM

model and Kernel Function = polynomial with the order of 2 and

box Constraint is equal to response Scale/5.
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where k x; xið Þ & d are kernel function and the degree of the
polynomial kernel. The input vector in the method can be
defined as xi 2 Rn, & yi 2 �1; 1ð Þ , i ¼ 1::l and the optimal
hyperplane separating the binary decision classes that can be

defined in the main algorithm and SVM is:

Y ¼ signð
X

i¼1
yiai x:xið Þ þ bÞ ð2Þ

More details on the structure of SVMs can be found in Fig. 2
(Zhang, 2019).

4. Results and discussion

The Support Vector Machines (SVM) approach is utilized in
the present research to simulate the output parameter (Y) that
takes into account two distinct inputs, such as P and T. The Y

variable is the drug solubility in supercritical CO2 with the unit
of mole fraction (dimensionless). Kernels increase SVM versa-
tility and applicability, allowing them to be deployed in a wide
range of situations and settings. The Kernel Function controls
polynomial order transformation. As a consequence of this

change, the response scale now fits inside the bounds of the
box Constraint, improving model performance. The response
component of the model is modified to improve prediction

capacity and model correctness. Then, the optimal model is
chosen, in this instance based on the optimum response scale.

Fig. 3 shows the prediction of Y as a function of P and T
for Kernel Function = polynomial of order 2 and box

Constraint = response Scale/0.1. The findings indicate that
the R value for the model’s output and target values is about
0.94, indicating a good degree of prediction capacity. The

SVM findings likewise follow the trend of experimental values
for the P and T parameters. However, , this model over-
predicts the Y for lower P values and under-predicts Y for

higher P values (150–350). Then, when P greater than 350,
the experimental observation and the SVM prediction model
agree well.

The model exhibits improved fitting between experimental
and predicted values as the percentage of response decreases.



Fig. 6 (continued)

Fig. 6 Prediction of parameter Y based on P and T with SVM

model and Kernel Function = polynomial with the order of 2 and

box constraint equal to response Scale/10.
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In this instance, the R value rises to 0.98, and for P values
more than 200, the Y values agree well with the experimental

results. Furthermore, we can still observe over-prediction of
outcomes for P < 200 (See Fig. 4).

By lowering this ratio, the model’s accuracy reaches its

maximum prediction capacity. In this instance, the R value is
0.99. Furthermore, the pattern of prediction data sets is com-
pletely consistent with experimental results, demonstrating the

robustness of these machine learning models (See Fig. 5). More
reductions in the box Constraint framework have a detrimen-
tal effect on model prediction (See Fig. 6). However, if this
decrease is exceeded, the model’s accuracy would be com-

pletely lost (See Fig. 7).
This SVM-based machine learning model demonstrates

that this kind of dataset has excellent modelling potential.

However, additional tuning parameters should be included in
the training algorithms to improve prediction performance.
The new SVM study indicates that the experimental technique

may be developed more quickly, with much lower experimen-
tal expenses and operational time. In addition, the order of the
polynomial varies from 0 to 30 for further tweaking model

parameters, and we discovered that the smaller the order of
the polynomial, the better the prediction capacity (See Fig. 8).

5. Conclusion

In the current study, a Support Vector Machine (SVM) model
is created to simulate the output variable Y, based on the input
variables P and T. The model is developed for simulation of a

set of solubility data for the busulfan drug in a wide range of
pressures and temperatures. The process is simulated for devel-
opment of supercritical processing in the manufacture of nano-

medicine in which supercritical CO2 is the solvent. The SVM’s
support for kernel features increases its application and flexi-
bility. The Kernel Function controls all polynomial order

transformations. Results show that modification to the Scale
Constraint has resulted in improved model performance. Fur-
ther research is required to determine which tuning may be
included into training techniques to improve prediction perfor-



Fig. 7 Prediction of parameter Y based on P and T with SVM

model and Kernel Function = polynomial with the order of 2 and

box constraint equal to response Scale/20.

Fig. 8 Error analysis of SVM model and Kernel Func-

tion = polynomial with different order and box Constraint is

equal to response Scale/0.1.
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mance. This research also demonstrates that machine learning
can predict a limited number of datasets. More testing datasets
are needed, however, for a better assessment of this approach.

Combining SVM with an experimental method could provide
a continuous domain of findings and results, which saves
resources and time by avoiding several experimental runs

and the use of costly materials for experimental observation.
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