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Abstract: The recovery of semantics from corrupted images is a significant challenge in image
processing. Noise can obscure features, interfere with accurate analysis, and bias results. To address
this issue, the Regularized Neighborhood Pixel Similarity Wavelet algorithm (PixSimWave) was
developed for denoising Nifti (magnetic resonance imaging (MRI)). The PixSimWave algorithm uses
regularized pixel similarity detection to improve the accuracy of noise reduction by creating patches
to analyze the intensity of pixels and locate matching pixels, as well as adaptive neighborhood
filtering to estimate noisy pixel values by allocating each pixel a weight based on its similarity. The
wavelet transform breaks down the image into scales and orientations, allowing a sparse image
representation to allocate a soft threshold on its similarity to the original pixels. The proposed method
was evaluated on simulated and raw T1w MRIs, outperforming other methods in terms of an SSIM
value of 0.9908 for a low Rician noise level of 3% and 0.9881 for a high noise level of 17%. The addition
of Gaussian noise improved PSNR and SSIM, with the results indicating that the proposed method
outperformed other models while preserving edges and textures. In summary, the PixSimWave
algorithm is a viable noise-elimination approach that employs both sparse wavelet coefficients and
regularized similarity with decreased computation time, improving the accuracy of noise reduction
in images.

Keywords: magnetic resonance imaging (MRI); Gaussian noise; Rician noise; regularized pixel 16
detection; wavelet transform; denoising

1. Introduction

Typically, a medical image dataset includes either a single or multiple images that
depict the projection of an anatomical volume onto an image plane (projection or planar
imaging), a series of thin slices via a volume (tomographic or multislice two-dimensional
imaging), a collection of data from a volume (volume or three-dimensional imaging), or
a dynamic series of acquisitions produced by capturing multiple tomographic or volume
images over time (four-dimensional imaging). Currently, medical image formats include
Analyze, Neuroimaging Informatics Technology Initiative (Nifti), Montreal Neurological
Institute (Minc), and Digital Imaging and Communications in Medicine (Dicom), in which
the file details show the organization of the image data within the file and instruct the
implemented software on how to properly load and display the pixel data [1]. As an
improvement from the Analyze format, the Nifti format was developed to resolve the short-
comings in medical imaging data storage. Although initially designed for neuro-imaging
purposes, Nifti can also be applied in other domains. One of Nifti’s key characteristics is
the inclusion of raw data within the 3D image, which comprises two affine coordinates
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that connect the voxel index with the spatial index. Nifti offers a benefit over managing
multiple Analyze files by arranging two files per 3D scan [2].

The image format is the method used to store data inside images. Additional images
are included in the medical image dataset to depict the three-dimensional view. The
number of pixels in the horizontal and vertical directions, the number of bits per pixel,
and the number of images per subject are all indicated in medical images. Additionally,
translating medical formats into digital formats is necessary to process and view the images.
Researchers must convert medical imaging formats, which can be accomplished using
open-source software tools like Mango—short for Multi-image Analysis GUI (University
of Texas Health Science Center at San Antonio, Texas), MRIcron (v1.0.20190902 at the
McCausland Center for Brain Imaging, University of South Carolina), 3D slicer (An Image
Computing Platform for the Quantitative Imaging Network, Earth, Texas, United States),
MicroDicom (founded by Simeon Antonov Stoykov based in Sofia, Bulgaria.), Freesurfer
(Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, United
States), etc. [2].

Magnetic resonance imaging (MRI) is one sort of image acquired in medical imaging. It
is utilized to view the body’s interior structures, such as the brain. These images may assist
doctors in identifying abnormalities in a patient, such as a brain tumor, or in assessing the
effectiveness of brain surgery. However, noise and other types of deterioration like blurring
effects are frequently introduced into MRI during acquisition [3]. The images acquired must
be preprocessed before harnessing them for further post-processing like segmentation and
classification. Thus, image denoising aims to remove noise with its associated degradations
from a corrupted image, thereby restoring the true image [4]. Noise includes several other
high-frequency attributes like edges and texture. It is a challenging task to differentiate
within the method of denoising and, therefore, the denoised images may inevitably lose
some details [5]. The denoising of images is a key topic in the arena of image processing,
specifically medical imaging, as it provides a means to reduce the noise present in an
image, improve its quality, and make it more suitable for additional analysis. Denoising
is becoming increasingly popular as it helps to improve the robustness of medical image
analysis. This is mandatory because, in the process of acquisition of the images, there
may be the presence of artifacts, noise, blurriness, etc., which may inhibit the accuracy
of the diagnosis of the disease. The principal challenge comprises lessening the amount
of noise, that is, regularizing the MRI while protecting the subtleties, the edges, and the
little structures that could be pivotal for a correct diagnosis. Nevertheless, given that local
denoising techniques are simple in terms of low time complexity, their capabilities are
limited when the noise level is large. Antecedent to this is the fact that a high noise level
substantially disrupts the correlations of the surrounding pixels. Non-local self-similarity
(NSS) priors have lately been used in several approaches [6] since images contain many
comparable patches in different places. Denoising images aim to lessen the noise in the
acquired medical images while attenuating the loss of inherent attributes and amplifying
the signal/noise (SNR) [7]. Moreover, the NLM filter suggested by [8] has received interest
in denoising MRI due to the abundance of repeated patterns in both naturalistic and medical
imaging. The majority of the state-of-the-art methods yielded good results; however, the
computation time is increased, and the original attributes of the images are lost in the
process.

Considering the facts stated above, our paper proposes the PixSimWave algorithm to
tackle these challenges. Utilizing this approach reduces the computation time by exploiting
the regularized neighborhood pixel similarity alongside the wavelet coefficient sparsity. As
such, it divides the image into patches and compares the pixels’ intensity to find similar
pixels. Then, a weight is assigned to each pixel based on the similarity to the original pixels.
The wavelet transform decomposition breaks down the image into different scales and
orientations, resulting in a sparse representation of the image. This means that only a small
percentage of the coefficients are non-zero, while the rest are close to zero. Our algorithm
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falls under the category of filtering and regularization techniques using neighborhood
pixels and not diffusion–denoising generative models.

The contributions of this research are as follows:

• A low computational complexity was achieved with the PixSimWave algorithm. By
dividing the images into patches, different levels of detail can be captured, thus
reducing the number of pixel comparisons required. Hence, reducing complexity by
narrowing down the size of the data that the algorithm operates on results in faster
and more efficient denoising of images.

• The edges and other high-frequency features of the images were preserved when the
PixSimWave algorithm was applied for denoising, as it offers the ability to both reduce
noise and preserve features simultaneously. The reason for this is that it can isolate
and distinguish noise components while safeguarding the important features of the
images.

• Evaluation of the PixSimWave algorithm demonstrates a high PSNR when compared
with other algorithms, which proves its efficiency for denoising medical images.

• The PixSimWave algorithm can be applied to images of any size and resolution,
making it a versatile method for image denoising.

In the rest of this paper, we present the following information. Section 2 explores the
current research status and current trends in image conversion, as well as the various noises
that can be applied and the different tools available for removing them. Section 3 discusses
the algorithm’s process flow, implementation steps, pseudocode, and its computational
complexity. Throughout Section 4, the experiment with results of the research and a
discussion of the findings can be found, while a summary of the work is provided in
Section 5.

2. Literature Review

This section analyzes the existing literature and research gaps on image conversion,
different noises that can be applied, and different tools that can be used to remove these
noises.

2.1. Variation of Noise

In image processing, noise refers to random variations in pixel values that are not
representative of the true content of the image. It is often caused by external factors such
as electromagnetic interference, sensor noise, or errors in image acquisition. Noise can
significantly degrade the quality of an image by obscuring important information, reducing
contrast, and introducing artifacts. Several types of noise can occur in digital images, but
the most important ones will be discussed in this paper.

2.1.1. Gaussian Noise

Gaussian noise is the most prevalent type of noise in digital imaging and arises due
to sensor constraints in the course of collecting the images under low luminance intensity
circumstances, resulting in a challenging task for the visible light sensors to record scene
information correctly [9].

2.1.2. Rician Noise

Rician noise occurs when the signal amplitude is superimposed with Gaussian noise
that has the same standard deviation as the signal. This type of noise is common in magnetic
resonance imaging (MRI) and synthetic aperture radar (SAR) images. It can make images
look grainy and reduce their quality. Therefore, it is important to remove noise from the
images or minimize it during the acquisition process.

2.1.3. Impulse Noise (Salt and Pepper Noise)

This noise statistically drops the original value of the data. In addition to salt and
pepper noise, this type of noise is sometimes referred to as white noise. Nevertheless, some
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pixel values in the image are altered by salt and pepper noise rather than the entire image
being corrupted. There is a possibility that some neighbors will remain the same in a noisy
image.

2.1.4. Speckle Noise

This noise is multiplicative in nature. These are visible in coherent imaging systems
such as lasers, radars, acoustics, etc. The occurrence of speckle noise in an image is similar
to that of Gaussian noise [10].

2.1.5. Poisson Noise

This is a type of noise that is often encountered in digital images. It is caused by the
random variation in the number of photons detected by a camera sensor or other imaging
system. Poisson noise tends to be more prevalent in low light conditions, where the number
of photons is reduced and the noise is more visible. In image processing, the Poisson
distribution is often used to model the statistical properties of the noise [10].

However, in MRI, as our case study, the existing literature [11] has established that
the prominent noises present in it are Gaussian and Rician noise. There are random
variations during the acquisition process of MRI due to the short acquisition time, as well
as interference caused by internal components of the MR scanner. As a result of these
variations, we can model them as Gaussian and Rician noises, respectively. Noise with a
Gaussian distribution has the same probability distribution as additive noise. Alternatively,
Rician noise is non-additive and tends to produce Rician-distributed image data. As
signal-to-noise ratios (SNRs) increase, Rician distributions tend to resemble Gaussian
distributions [12–15].

2.2. Denoising Algorithms

The assessment of noise and image denoising in MRI has been a significant field of
research for some years, employing numerous techniques. These can be roughly divided
into four categories: filtering methods, transform domain methods, statistical modeling
methods, and regularization methods.

• Filtering methods: In eliminating contrastive noise constituents, multifarious filtering
algorithms have been propounded. The exploration of MRI denoising approaches
was demonstrated by the usage of smoothing using a Gaussian filter in voxel-based
morphometry (VBM) analysis. This was used as a preprocessing step before parti-
tioning the grey matter of the MRI for discrepancy artifacts [16]. A Wiener filter was
utilized, employing familiarized orientation to deduce the structure in every voxel
and generating reformed parameters by adaptively merging the techniques iteratively.
This was locally experimented on an MRI brain phantom, assisting in the segmentation
algorithm to extract more exquisite details [17]. In Ref. [18], a dynamically weighted
adaptive median filter (ADWMF) was proposed as an impulsive noise removal filter.
An ADWMF filter is weighted dynamically based on the results of noise detection,
instead of fixed weights. Both low and high-density images perform better when using
the AMWMF algorithm. By combining geometric, photometric, and local structure
similarities, a trilateral filter was proposed in [19], yielding edge-preserving results.
The algorithms proposed by [20] were based on the idea of incorporating as many
structural similarities as possible. Notwithstanding, the method was time-consuming
and insufficient in terms of searching pixels, while Ref. [21] proposed an innovative
approach for MRI denoising that incorporated the non-local means filter, Wiener filter,
and median filter. Although it was more accurate than NLM, there was an increment
in the computation time.

• Transform domain methods: Transform domain filtering methods are signal processing
techniques that operate on signals in a different domain, often by transforming them
into a representation that emphasizes specific features or properties. For instance,
Bayesian Markov random field models [18], rough set and kernel PCA [19], and
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higher-order singular value decomposition [20,21] introduce an integrated framework
combining wavelet-based processing and statistical testing in the spatial domain.
It proposes two enhancements: revisiting the paradigm and reducing spatial bias,
and compensating for wavelet transform shift-invariance. Furthermore, Ref. [22]
introduced a technique for locating neuronally related fluctuations in fMRI data which
automates noise detection and produces discrete spatial and temporal features for
effective cleanup, while Karnati et al. [23] proposed higher-order Partial Differential
Equations (PDEs), an image smoothing method using a fourth-order PDE model. In
MRI denoising, noise estimation methods in the wavelet domain are also utilized,
where MRI is divided into sub-bands at various scales in the wavelet domain. To
estimate signal components, coefficients are treated using soft or hard thresholding [22].
With variant correspondence, the region of proximity between two pixels can be
computed using multi-area tables and the fast Fourier transform, resulting in a 50-
fold speed-up while retaining comparable quality [23]. There are several methods
for wavelet-based image denoising, including Bayesian shrinkage, soft thresholding,
and wavelet packet thresholding, each with varying approaches to estimating the
threshold and reassembling the image [24,25]. In contrast to traditional methods like
Fourier-based filtering, wavelet-based denoising is more adept at retaining image
details and high-frequency properties due to the sparsity of wavelet coefficients in
which most information is concentrated in just a few coefficients [26].

• Statistical modeling methods: In Ref. [27], first-order statistics were proposed for the
frequency content of the median filtered residuals (MFRs) of original and median
filtered images for use in image forensics. The resulting feature set is significantly
larger than the deep learning-based detector and delivers better detection results in
low-resolution images of all quality levels. Conversely, Kazerouni et al.’s [28] diffusion
models are probabilistic generative models that learn complex distributions by adding
noise to the data and then restoring the original structure. This allows for accurate
modeling of data distributions affected by random noise. Chung et al. [29] proposed a
new denoising method using score-based reverse diffusion sampling that overcomes
drawbacks and excels in in vivo liver MRI data with complex noise mixtures. Wu
et al. [30] developed a deep-learning framework for super-resolution brain MRI images
that included self-attention. The results of the experiments showed that based on the
learned perceptual image patch similarity (LPIPS) metric, their framework produced
the least distorted super-resolution brain MRI images.

• Regularization methods: Regularization is a popular technique used in denoising
algorithms to reduce noise while preserving important details in images or signals.
As an illustration, Rudin et al. [31] introduced a nonlinear total variation-based noise
removal algorithm by using Lagrange multipliers and the gradient-projection ap-
proach, a limited optimization numerical algorithm that reduces image noise, and a
non-invasive method that produces cutting-edge outcomes. Also, Manjón et al. [32]
proposed an adaptive non-local means of noise removal by spatially sifting out the
intrinsic noise in the MRI. By regulating the filtering parameter, they were able to
identify MRI data with an exact pattern via contrasted mean levels, rectifying its
intensity in-homogeneity while attenuating the error in the noise variance of which
several methods for speeding up execution were presented. It is possible to compute
the mean for each pixel by searching just the pixel itself rather than the entire image.
Likewise, deep learning methods have achieved state-of-the-art performance in denois-
ing tasks. One notable approach [33] exploits the structure of the neural network itself
to perform denoising, without the need for large training datasets. In addition, GANs
have shown promising results in denoising tasks by training a generator network
to transform noisy images into clean ones. Among others is the Noise2Noise (N2N)
method introduced by [34]. This method trains a network using only pairs of noisy
images, without the need for clean reference images.
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Fully aware that the impact of noise appended can be greatly weeded out without
any iota of recognition depending on the efficiency of filtration and denoising algorithms
exploited, our proposed algorithm aims to use less computation time by exploiting the
sparsity of the wavelet coefficients. This involves quantifying the gray values of each
pixel by selecting the features that eliminate noise or degradation in the image based on
their self-similarity regularization and then convolving the image with a series of wavelet
functions at different scales and positions. Decomposition of the image into multiple
frequency components using a selective wavelet function enhances simultaneous noise
reduction and feature preservation, thus making it a versatile method that can be applied
to images of any size and resolution.

3. PixSimWave Methodology

This section discussed the process flow, implementation steps, pseudocode, and the
computational complexity of the PixSimWave algorithm.

3.1. Process Flow of PixSimWave Algorithm

The process flow of the PixSimWave algorithm is illustrated in Figure 1. This algorithm
loads an image that contains noise from the path and divides this image into two patches
for easy comparison. These two patches are compared with each other based on their pixel
intensity to determine the similarities between them. After extracting the similarities, a
weight is applied to these pixels and hence an average of this weight is computed. The
computed average weight was also converted to a wavelet domain and a soft thresholding
was applied, as well as the inverse wavelet transform to remove the noise from the image.
Using this method, the final result was a noiseless image that preserved the image’s features
and required less computing time to process.
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3.1.1. Regularized Pixel Similarity Detection

Regularized pixel similarity detection was used for adaptive neighborhood filtering to
improve the accuracy of noise reduction in the image. This technique estimated the value
of a noisy pixel by identifying synonymities between different pixel regions within the
image.

Additional constraints are added to the similarity measurement process to improve
the accuracy of the estimate and reduce the impact of outliers and noise in the image. This
approach involves using a weighted average of pixel values within a given area, but with
additional smoothing and regularization factors that ensure the resulting estimate is more
accurate and reliable.
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By performing a regularized pixel similarity detection process, better results, even
when working with images that contain high levels of noise, are achieved.

3.1.2. Application of Wavelet Transform

Utilizing a time–frequency representation and thresholding method, wavelet trans-
form is an effective technique for reducing noise in images while maintaining essential
features. During the image denoising process, wavelet transform is used to decompose the
image into coefficients at varying scales and orientations, which are then thresholded and
reassembled to create a cleaner image.

3.2. Implementation Steps of PixSimWave

Step 1. Load the image frame:
The image is loaded from its path location in the system and read the pixels on the

height and width as shown in Equation (1) where x is the height and y is the width.

x, y ⇐ image (1)

Step 2. Pixel extraction:
The image is divided into patches a and b to extract similarities. The pixel value of

patch P(a) at position x, y is shown in Equation (2) while patch P(b) at position x, y is shown
in Equation (3), respectively.

P(a) ⇐ image(x, y) (2)

P(b) ⇐ image(x, y) (3)

Step 3. Pixel comparison:
In this step, the pixel intensity values of Equations (2) and (3) as shown in Equation (4)

are compared to find similar patches.

P(compare) ⇐ Pa(x, y)− Pb(x, y) (4)

Step 4. Weight calculation:
A weight is assigned to the acquired similar patches or pixels from Equation (4), which

results in Equation (5). The L2 norm was chosen because of the closeness between the two
vectors, and it measures the difference between the original image and the denoised image.

W(a, b) =
1

α(x)
exp

(
−
| |Pa(x, y)− Pb(x, y) ||22,η

h2

)
(5)

where W(a,b) is the indices of patches in the image, α(x) is a normalization constant, η is
the standard deviation, P(a + x, y), P(b + x, y) are the pixel values of patches a and b at
position (x,y), and h is a parameter controlling the degree of smoothing. We experimented
with the choice of parameters in terms of smoothing scale, search window, and kernel sizes
to be used. After this, the optimized values were derived via preferential experiments. As
a result, the smoothing scale, search window, and kernel sizes were set as 3 × 3, 7 × 7, and
21 × 21, respectively for all the levels of noise added.

Step 5. Weighted average:
Perform an average on the calculated weight in Equation (5), as described in

Equation (6), which gives the weighted average of the extracted patch values.

f̂ (x, y) =
1

Z(y) ∑ x ∈ Ω(y)W(a, b)× ĝ(x, y) (6)

where f̂ (x, y) is the denoised pixel value at position (x, y), and Z(y) is the normalization
factor, which is the sum of weights given to each pixel in the patch Ω(y). Ω(y) is the patch
centered around pixel y. Z(y) is the normalization factor, which is the sum of weights given
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to each pixel in the patch Ω(y). ĝ(x, y) is the original pixel value at position x, y. W(a, b) is
the weight computed between pixels x and y, which is a function of the distance between
their patch vectors and the value of a smoothing parameter h.

Step 6. Convert to wavelet domain:
This further separates the noise from the pixel into different frequency bands by using

a chosen wavelet basis function and multiresolution analysis as shown in Equation (7).
The wavelet basis described in Equation (7) was chosen because the coefficients of

the resulting signal decomposed, and this was used to reconstruct the image signal. Due
to their ability to represent signal features at different scales, they are effective for noise
removal. The localized nature of wavelets allows for the separation of signal and noise
components, enabling the removal of unwanted noise while preserving important signal
features.

crψa, b(t)=
1√
a ψ( t−b

a )

[
Wψ f

]
(a, b) =

1√
ab

x
f̂ (x, y)ψ

[
(x− a)

b
,
(y− b)

b

]
dx
dy

(7)

Step 7. Apply soft thresholding:
Soft thresholding was applied to the coefficients of the wavelet domain in Equation (7),

which reduces or removes small amplitude noise while preserving the significant features
of the image as described in Equation (8).

Ŵ(a, b) =

{
sgn(Wa,b)

(∣∣Wa,b
∣∣− τ

)
,

∣∣Wa,b
∣∣ ≥ τ

0,
∣∣Wa,b

∣∣ < τ
(8)

Step 8. Apply inverse wavelet transform:
Finally, an inverse wavelet transform was applied to the thresholded coefficients in

Equation (8) to give a noiseless image as seen in Equation (9).

f̂ (x, y) = ∑∑Ŵ(a, b)η
(∣∣Ŵ(a, b)

∣∣− τ
)

(9)

3.3. Computational Complexity of PixSimWave Algorithm

This section describes the pseudocode in Algorithm 1 and the computational com-
plexity of the proposed PixSimWave algorithm. The PixSimWave Algorithm has multiple
steps. Step 1 loads the image for processing and, therefore, consumes Big(O) = n for
n number of image frames. Step 2 divides the image into two patches, which takes
Big(O) = frame_dimension. Step 3 computes the similarities using Big(O) = n for n number of
pixels. Step 4 applies the weight using Big(O) = n for n number of pixels. Step 5 averages
the computed weight on the pixel with Big(O) = n for n number of pixels. Step 6 converts
the pixels to a wavelet domain using Big(O) = n for n number of pixels. Step 7 applies
soft thresholding by looping through the pixels to divide the pixels based on the threshold
thus the time complexity is Big(O) = frame_dimension. Step 8 applies inverse wavelet on
the threshold pixels, which consumes Big(O) = n for n number of pixels. This sums up to
Big(O) = 6n (2 × frame_dimension), which is a linear time complexity.

Step 1 (S1): Big(O) = n // n images

Step 2 (S2): Big(O) = frame_dimension

Step 3 (S3): Big(O) = n // n pixels

Step 4 (S4): Big(O) = n // n pixels

Step 5 (S5): Big(O) = n // n pixels
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Step 6 (S6): Big(O) = n // n pixels

Step 7 (S7): Big(O) = frame_dimension

Step 8 (S8): Big(O) = n // n pixels

Tsum = [S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8]

= [n + f rame_dimension + n + n + n + n

+ f rame_dimension + n]

Big(O) = 6n(2× f rame_dimension)

Algorithm 1: Pseudo-code of PixSimwave

Input: A noise MRI image
Output: A noiseless MRI image
Data: Load image from path
img ← image from path
/* Step1: Regularised Pixel Similarity Detection */
patchA ← img(x, y)
patchB ← img(x, y)
same_pix ← patchA–patchB
weig ← cv.fastNIMeansDenoising (same_pix, None, 3, 7, 21)
ave_weig ← sum(weig) × img
/* Step2: Application of wavelet transform */
threshold ← 0.005 × ave_weig
softness ← 0.0
img_without_noise ← wavelet(threshold, softness)
save_img_to_folder ← img_without_noise
Output: A noiseless MRI image

4. Experiments, Results, and Discussion

This section analyzed the experiment setup to design PixSimWave, the results of
PixSimWave when applied to the image dataset with errors, the statistical analysis of
the image obtained after the application of PixSimWave, and the comparative analy-
sis of PixSimWave with other denoising algorithms. In order to develop the proposed
PixSimWave algorithm, the OpenCV vision library was utilized in Python programming
language. In the setup specification in Table 1, the details of the experiments are provided.
The experiments were executed on the dataset from [35]. The dataset contains three types
of brain image data: T1-weighted MRI, T2-weighted 332 MRI, and proton density (PD)
weighted MRI. Each type of image comes in 181 slices of 256 × 256 pixels, with 1 mm
resolution in the x, y, and z planes. The images were simulated to closely resemble real
MRI scans, with realistic levels of noise and intensity variations, and anatomical structures
that match those found in the human brain. A T1-weighted MRI volume was used as the
ground truth to study the efficacy of the proposed method. In a similar vein, we validated
the efficiency of our proposed method using real medical T1w MRI images by randomly
selecting seven subjects from the OASIS cross-sectional dataset [36] and evaluating the
denoising metrics stated in the paper.

4.1. Visual Result of PixSimWave Algorithm

This section discussed the visual results of the PixSimWave algorithm when noise was
applied to the images. Gaussian and Rician noise were applied to the Nifti MRI images.
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Table 1. Experimental setup for PixSimWave algorithm.

System/Device Specification

Processor Intel(R) Core(TM) i7-10750H CPU @
2.60 GHz 2.59 GHz

Installed RAM 32 GB
System type 64-bit operating system, x64-based

Operating Systems Windows 10
Graphics Intel® UHD graphics

4.1.1. Addition of Rician Noise to Nifti Images

Rician noise is a type of noise that is often present in medical images, such as MRI
scans, caused by the random interference of multiple signal components. In an image, these
signal components could be the result of different tissues or organs, or the contrast agent
used in the imaging process. The interference between these components creates a random
noise pattern that is superimposed on the image signal. Rician noise can be modeled as a
Gaussian noise with a zero mean, added to the image signal that has a non-zero variance.
Assuming an input image I(x, y) and a Rician noise component N(x, y) with parameters
σ and ση, the resulting noisy image is modeled in Equation (10):

I′(x, y) =
√
((I(x, y) + ση))2 + N(x, y)2 − σ

η
(10)

where σ is the standard deviation of the Gaussian component of the Rician noise (associated
with the real and imaginary parts of the signal) and ση is the standard deviation of the
Rayleigh component of the Rician noise (associated with the magnitude of the signal). Note
that this equation assumes that the noise is added to the magnitude image rather than
to the real and imaginary parts separately. To add the noise to the real and imaginary
parts, one would need to sample two independent Gaussian distributions with standard
deviation σ/

√
2 and add the resulting values to the real and imaginary parts of the

image, 356, respectively. Rician noise of 5% was added to the original image of slice 20,
as displayed in Figure 2. It presents the visual representation of the original, noisy, and
denoised images used. Our algorithm performs better with distinct clarity of image quality
and good resolution. As depicted in Figure 2h, it can be seen that the proposed method
surpasses the other state-of-the-art (SOTA) methods with the edges and textures of the
images being preserved. Also, there is a kind of resemblance between the original image
and the denoised image of our proposed method, showing correlative robust results.

4.1.2. Addition of Gaussian Noise to Nifti Images

It is a type of statistical noise that has a Gaussian distribution (normal). In other words,
the noise values follow a normal Gaussian distribution. The original image is distorted
by adding Gaussian noise. A normal distribution’s probability density function matches
the probability density function of Gaussian noise, which is essentially statistical [37] as
displayed in (11). Let I(x, y) be the original image and N(x, y) be the Gaussian noise added
to it. Then, the mathematical equation would be as follows:

I′(x, y) = I(x, y) + N(x, y) (11)

where I′(x, y) is the resulting image with Gaussian noise. The value of the noise N(x,
y) at each pixel (x, y) is drawn randomly from a normal distribution with mean 0 and
standard deviation σ, and added to the corresponding pixel value of the original image I(x,
y). This process is repeated for each pixel in the image to add Gaussian noise to the entire
image. Gaussian noise of 5% was added to the original image of slice 20, as displayed in
Figure 3. This figure presents the visual representation of the original, noisy, and denoised
images used. Our algorithm performs well with the image quality and a higher-grade
resolution depicted in Figure 3h, illustrating how our proposed method outperforms other
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state-of-the-art techniques by preserving edges and textures. Additionally, the denoised
image from our algorithm shows a strong correlation with the original image, indicating
robust results.
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Figure 2. Visual representation of T1 MRI image (Slice 20) with 5% Rician noise. (a) Original T1 MRI
image, (b) 5% rician noisy image, (c) Denoised with Bitonic, (d) Denoised with NLML, (e) Denoised
with LMMSE, (f) Denoised with FastNLM, (g) Denoised with Advance NLM, and (h) Denoised with
PixSimWave.
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Figure 3. Visual representation of T1 MRI image (Slice 20) with 5% Gaussian noise. (a) Original
T1 MRI image, (b) 5% Gaussian noisy image, (c) Denoised with Bitonic, (d) Denoised with NLML,
(e) Denoised with LMMSE, (f) Denoised with FastNLM, (g) Denoised with Advance NLM, and
(h) Denoised with PixSimWave.

4.2. Statistical Analysis of PixSimWave Algorithm

This section analyzed the structural similarity index measure (SSIM), peak signal-
to-noise ratio (PSNR), root mean square error (RMSE), and the feature similarity index
measure (FSIM) of the proposed PixSimWave algorithm.

4.2.1. Structural Similarity Index Measure (SSIM)

The Structural Similarity Index Method (SSIM) is a model based on perception. Ac-
cording to this concept, structural information is perceived differently when an image
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degrades on account of preprocessing like data compression or transmission losses. Addi-
tionally, it works together with some other crucial perception-based facts for luminance
masking and contrast masking. Strongly interdependent pixels or spatially confined pixels
are highlighted by the phrase structural information [38]. Unlike PSNR, SSIM evaluates
the image structure and is a better evaluation metric for image quality because it uses an
uncompressed or distortion-free image as the basis for the evaluation. It evaluates the
simile between two images: the actual and the predicted [39], which is expressed in (12).

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (12)

where x = original image, y = denoised image with PixSimWave algorithm, µx = average of
x, µy = average of y, σ2

x = the variance of x, σ2
y = the variance of y, σxy= the covariance of x

and y, C1 = (K2L)2, C2 = (K2L)2, L = dynamic range, (K1) = 0.01, and (K2) = 0.03.
As long as the SSIM of the reconstructed image to the ground truth image is close

to 1, one can be sure the image is of good quality. The highest SSIM signifies the best
denoising technique. SSIM is regarded as the best metric so far because it quantifies the
perceptual difference between two similar images. Table 2 below compares the SSIM of
our proposed model to that of other SOTA results. As is readily seen by the comparison in
Table 2, we have the highest values marked in bold letters for all the noise levels tested as
compared to previous works. Considering the case of low noise levels added at 3%, the
SSIM obtained was 2–3% higher than the other methods. Similarly, for high noise levels
added at 17%, our proposed method gave 0.9881 while the next best was only 0.7455. As
the noise level increases, the SSIM values decrease because the image quality deteriorates,
due to the introduction of additional random variations in the image that are not related to
the actual content. This results in a decrease in the signal-to-noise ratio, which is the ratio
of the original image to the amount of noise in the image.

Table 2. SSIM Comparison indexes for PixSimWave and other algorithms on Slice 20 using Rician
and Gaussian noise with various noise densities.

Noise
Density (%)

Noise Techniques 3 5 7 11 13 15 17

Rician

Noisy image 0.8970 0.8804 0.8350 0.7629 0.7427 0.7182 0.6784

Bitonic [11] 0.9441 0.9345 0.9120 0.8158 0.7785 0.7717 0.7256

NLML [40] 0.9554 0.9415 0.9200 0.8164 0.7786 0.7726 0.7385

LMMSE [12] 0.9231 0.9187 0.8870 0.7965 0.7215 0.7528 0.7241

FastNLM [41] 0.9351 0.9378 0.9137 0.8029 0.7651 0.7635 0.7280

ANLM [42] 0.9641 0.9561 0.9380 0.8306 0.7900 0.7824 0.7455

PixSimWave 0.9908 0.9899 0.9895 0.9886 0.9883 0.9882 0.9881

Gaussian

Noisy image 0.9497 0.8854 0.8381 0.7766 0.7507 0.5893 0.5429

Bitonic [11] 0.9576 0.9248 0.8750 0.8029 0.8140 0.7824 0.7216

NLML [40] 0.9682 0.9345 0.8850 0.8182 0.7851 0.7890 0.7448

LMMSE [12] 0.9540 0.9002 0.8530 0.7611 0.7407 0.7299 0.6822

FastNLM [41] 0.9640 0.9283 0.8680 0.7453 0.7611 0.7961 0.7520

ANLM [42] 0.9720 0.9453 0.9140 0.8400 0.8226 0.8133 0.7612

PixSimWave 0.9913 0.9907 0.9895 0.9837 0.9787 0.9727 0.9655

Furthermore, Figure 4 presents the graphical representation of SSIM analysis on OASIS
images. It is evident that the noise added introduced random fluctuations in the image
components, leading to differences between the original and distorted images. With higher
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noise levels, the luminance component of the images becomes less similar due to the
presence of random brightness variations. This is because the contrast component also
becomes affected, as noise can blur edges and reduce the distinction between different
regions in the image. The structural component, which captures the similarity in local
patterns, is similarly impacted by noise, resulting in reduced SSIM. Thus, at a noise level
greater than 5–7%, the increased noise tends to degrade the SSIM score, indicating a
decrease in perceived image quality.
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Figure 4. SSIM; the result when different Gaussian noise levels were applied to OASIS images and
PixSim Wave was used for denoising.

4.2.2. Peak Signal-to-Noise Ratio (PSNR)

The PSNR is a metric used to estimate how much distortion-causing noise is present
between two images and how well it impacts the quality of the display. The signal’s
extremely wide dynamic range makes it necessary to compute the PSNR as the decibel
scale’s logarithm term. This infers that the decibel (dB) form is used to compute the ratio
between both images. For evaluating PSNR, MSE is utilized in the process. Mathematically,
PSNR is defined in Equation (13).

PSNR = 10. log10

(
MAXi√

MSE

)
(13)

MSE represents the Mean-Square Error and MAXi is the maximum possible intensity
value of the image. The number 255 corresponds to pixels represented by eight bits per
sample. High PSNR means the MSE between the actual image and the predicted image is
very low. A properly restored image should have a high PSNR value indicating its high
quality, while a low PSNR value will result in a very poor quality of the restored image.
Although the PSNR is a widely used tool for evaluating image quality, its deficiencies have
long been known conventionally. Specifically, PSNR does not take the structural fidelity
and edge integrity of the image into account because low PSNR images might nevertheless
be of good quality. At the same time, in Table 3, the addition of Gaussian and Rician noise
performs relatively better than the previous work, as shown by the increase in PSNR value.
As a case in point, let us look at the situation in which the noise level was 7%, and the
PSNR was 7–8 dB higher than the SOTA results. Larger noise levels correspond to lower
PSNR values, but PixSimWave still has a PNSR value higher than 40. This demonstrates
the superiority of our proposed algorithm.



Sensors 2023, 23, 7780 14 of 20

Table 3. PSNR Comparison indexes for PixSimWave and other algorithms on slice 20 using Rician
and Gaussian noise with various noise densities.

Noise
Density (%)

Noise Techniques 3 5 7 11 13 15 17

Rician

Noisy image 37.58 33.21 31.25 28.85 26.13 25.86 24.75

Bitonic [11] 38.41 35.58 33.25 31.18 29.44 28.92 27.58

NLML [40] 40.51 36.06 34.52 31.89 30.15 29.18 28.07

LMMSE [12] 36.67 31.80 30.73 28.51 27.48 26.50 25.59

FastNLM [41] 38.33 35.82 33.51 30.51 29.08 28.32 27.19

ANLM [42] 41.04 37.17 35.04 32.33 30.80 30.07 29.31

PixSimWave 46.80 46.62 46.50 46.35 46.30 46.25 46.24

Gaussian

Noisy image 39.54 37.23 34.48 31.53 30.83 30.20 29.81

Bitonic [11] 40.85 38.25 35.32 34.88 32.24 32.51 31.62

NLML [40] 41.51 39.28 38.83 34.76 34.08 33.69 32.89

LMMSE [12] 40.72 37.66 36.02 32.91 31.92 31.07 30.38

FastNLM [41] 40.04 38.82 37.19 33.41 33.69 32.73 31.55

ANLM [42] 42.64 40.47 38.62 36.98 35.45 34.36 33.44

PixSimWave 46.80 46.59 46.09 44.29 43.02 42.07 41.00

Similarly, the analysis performed on the OASIS cross-sectional datasets selected ran-
domly, as illustrated in Figure 5, indicates the results obtained from the PSNR versus noise
level. From the graph, as the noise level increases, the PSNR value decreases. This is
because noise introduces random fluctuations and errors into the signal, resulting in a loss
of fidelity and information. At 3–5%, the PSNR value is relatively high, indicating that
the noise has little impact on the image quality. However, as the noise level increases, the
PSNR value decreases, indicating a higher level of distortion and reduced fidelity of the
image. This means that the noisy image deviates more from the original, resulting in a
lower PSNR value.
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4.2.3. Root Mean Square Error (RMSE)

The Root Mean-Square Error is a widely used technique for measuring errors, particu-
larly the differences between actual and predicted values, as shown in Equation (14). This



Sensors 2023, 23, 7780 15 of 20

method assesses the scale of the errors and is an excellent tool for evaluating the accuracy
of predictions by different estimators for a particular variable [39].

RMSE
(
θ̂
)
=
√

MSE
(
θ̂
)

(14)

Figure 6 displays the RMSE results, which increase exponentially with an increase in
noise level, as expected. This is because the noise added random variations to the images,
making it harder to accurately predict the outcome. As a result, the errors in the predictions
also increase, leading to higher RMSE values.
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4.2.4. Feature Similarity Index Measure (FSIM)

To fully understand how the FSIM metric works, there is a need to give a brief
introduction of two terms associated with it. These are phase congruency and gradient
magnitude.

Phase Congruency:
Coupé et al.’s [43] technique aimed to identify visual features. The fact that phase con-

gruency is unaffected by changes in picture brightness is one of its key qualities. Addition-
ally, it can recognize additional intriguing traits. It emphasizes the image’s characteristics
in the frequency domain. Contrast is invariant to phase congruency.

Gradient Magnitude:
A widely traditional area of study in digital image processing is the computation

of image gradients. The gradient operators are expressed using convolution masks. To
measure the gradients, numerous convolutional masks are employed. Assuming I(x) is an
image, while Hx and Vy are the horizontal and vertical gradients, respectively; therefore,
the gradient magnitude I(x) is represented in (15) [44] as follows:

I(x) =
√

H2
x + V2

y (15)

Correspondingly, Figure 7 illustrates the FSIM performance on the OASIS real medical
T1w MRI to measure the image quality. Unlike RMSE, an increase in noise level decreases
the FSIM value. This is because the noise present in an image affects its clarity, sharpness,
and overall visual appeal, which is what FSIM aims to measure. The higher the level of
noise, the more distorted and less clear the image becomes, resulting in a lower FSIM value.
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4.3. Real Clinical MRI

Using a clinical right lower leg MRI, Figure 8 shows the performance of the proposed
approach. In addition, a zoomed region is displayed for each case. Even small-scale
edges can be detected using the proposed method. It is evident that improved denoising
performance has been accompanied by enhanced tissue contrast and this does not diminish
the difference in brightness across the images.
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and zoomed images, respectively. Figure (c,d) present the correlated results of the proposed method.

Additionally, we evaluated our proposed method on another slice of the T1w brainweb
and made a comparison with other state-of-the-art methods, as shown in Figure 9.
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From Table 4, it is evident that our proposed method surpasses the performance of the
four other state-of-the-art methods in MRI image denoising, as evaluated by SSIM metrics.
Our method consistently achieves the highest SSIM scores for the MRI images at all noise
levels. Particularly, it outperforms the other methods significantly when the noise level in
the MRI images exceeds 3–5%.

Table 4. SSIM Comparison indexes for PixSimWave and other algorithms on another slice with Rician
noise and varying noise densities.

Noise Density (%)

Noise Techniques 1 3 5 7 9

Rician

Optimized Blockwise
NLM [45] 0.9826 0.9273 0.8710 0.8185 0.7706

3D-Wavelet
subbands [46] 0.9807 0.9236 0.8677 0.8168 0.7715

Adaptive NLM [32] 0.9747 0.8883 0.8005 0.7190 0.6464

Boosting GANs [44] 0.9810 0.9763 0.9691 0.9615 0.9540

PixSimWave 0.9903 0.9835 0.9818 0.9807 0.9802

Furthermore, we experimented with our proposed algorithm on a clinical T1-W cortical
MRI joint to joint (MRI LOWER EXTREMITY W/WO CONT) of size 256 × 256 pixels,
TE = 8 ms, TR = 466.664 ms, and slice thickness = 5.0 mm; data generated by the TCGA
Research Network: https://www.cancer.gov/tcga (accessed on 22 July 2023). Imaging was
performed on a Phillips Gemini Medical System.

4.4. Computational Analysis of PixSimWave with Other Denoising Techniques

The proposed PixSimWave algorithm was compared with other techniques, as dis-
cussed in Table 5.

Table 5 presents the computational times on a T1-W phantom image of 181 × 217 × 181
voxels with 9% noise. In terms of PSNR and the quality of denoised images, the proposed
method is better than other approaches.

https://www.cancer.gov/tcga
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Table 5. Comparison of different techniques in terms of computational time and denoising quality as
obtained on a T1-w phantom image of 181 × 217 × 181 voxels with 9% noise.

Techniques Computational Time (s) PSNR (dB)

Bitonic - -
NLML - -
LMMSE 4.92 26.17
FASTNLM 3162 34.19
ANLM - -
Optimized Blockwise NLM 135 33.75
3D-Wavelet subbands 181 34.47
Adaptive NLM - -
Boosting GANs - -
PixSimWave 5.59 44.67

5. Conclusions and Future Work

This paper presented a Regularized Neighborhood Pixel Similarity Wavelet Algorithm
(PixSimWave) for denoising Nifti (MRI) Images. By analyzing pixel intensity and dividing
the image into patches, the algorithm improves noise reduction accuracy by identifying
synonyms and reducing computation time. A performance evaluation of our proposed
method was conducted on both simulated and real MRI datasets in comparison with some
related state-of-the-art (SOTA) approaches. It was observed that our proposed method
achieves high performance, with PSNR and SSIM increasing with the noise level; the
features are also preserved, making it a versatile method for image denoising. In addition
to this, from the displayed visual representation, the proposed PixSimWave algorithm
shows a better improvement with the edges and textures being preserved after eliminating
noise alongside other degradations on the MRI.

However, in terms of running time, this method’s computational cost is less inferior
to LMMSE. In the future, we will try to decrease computational complexity. We will also
investigate strategies to optimize the algorithm further. Additionally, we plan to evaluate
the method on other image and noise datasets.
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