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I

European plaice (Pleuronectes platessa) is a commercially important flatfish occurring on the 

sandy bottoms of the European shelf. It is widely distributed in shallow waters (<100m) from 

western Mediterranean to Iceland. The species spawns in offshore waters. This usually occurs 

in the North Sea from December to March (Bergman et al. 1988), while in the Irish Sea, Nash 

et al. (2000) reported spawning from late January to early May. The eggs and larvae are 

pelagic for three to four months. After the larvae hatch, they are distributed to local nursery 

grounds by residual currents. These nursery grounds are shallow, sandy habitats. The number 

of plaice larvae reaching suitable beaches is determined by drift and diffusion of eggs from 

offshore grounds where spawning takes place (Steele & Edwards 1970). At the end of the 

larval period, metamorphosis takes place. The fish move from a relatively dilute three 

dimensional environment to a relatively concentrated two-dimensional environment (Nash et 

al. 2000). This metamorphosis is termed as settlement and from then on the fish adopts a 

benthic way of life. Adults exhibit seasonal migration patterns from spawning grounds to 

feeding grounds (De Veen 1978).

Begg et al. (2000) defined a fish stock as an “intraspecific group of randomly mating 

individuals with temporal of special integrity” . Stock discrimination of plaice is extremely 

important in forming the basis for fisheries management. Each stock may have unique 

demographic properties and responses to exploitation or rebuilding strategies (Begg et al. 

1999b). Each must be managed separately to optimize yield and to ensure sustainable 

recruitment (Grimes et al. 1987). Stock identification is the process that seeks to discern these 

definite units of individuals. At the 1999 Flatfish symposium van der Veer et al. (2001) stated 

that one of the bigger issues discussed was the lack of information on stock structure. The 

need for more insight into the methodologies for determining and describing stock structure 

was highlighted.

Introduction
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Currently stocks can be identified using genetics or phenotypic characters. The basic principle 

of genetics is to use inherited stable markers to identify genotypes that characterise fish 

populations (Coyle 1998). Many physiological, morphometric, meristic and calcareous 

characters have been used to identify fish stocks. They can provide information on stock 

membership, spatial distribution and phylogeny of stocks (Coyle 1998).

Otoliths are structures composed of calcium carbonate and are ideal for use in stock 

identification. Variation in growth rate produces corresponding variation in otolith 

microstructure and shape (Gauldie & Jones 2000). Otoliths grow throughout the lifetime of 

the fish and are less variable than the growth seen in scales and bones. Once deposited, otolith 

material is unlikely to be reabsorbed or altered (Campana & Neilson 1985) and, therefore, is 

unaffected by changes in fish condition which can confound body morphometries.

The microstructure of the otolith has several components. The hatch check marks the hatching 

of the fish from the egg. Daily increments are then laid down during the larval period under 

normal growing conditions. Each ring represented one day’ s growth (Pannella 1971). When 

the fish reaches metamorphosis and changes to a demersal stage of life, it lays down 4-6 

accessory primordia (AP). These are secondary growth centres and they allow a reader to 

back calculate the date of settlement (Modin et al. 1996, Allen 2004). Otolith increment 

number is age-dependent whereas increment width is growth dependent. The analysis of 

daily increments provides important information about early life events and population 

dynamics and is an important tool in the study of fish populations and stock structure 

The thesis presented here uses the microstructure and shape of plaice otoliths to test a number 

of hypotheses about spatial and temporal variation in early life history parameters, the stock 

structure of plaice, and the scales of variability between otolith readers.

In chapter two, otolith microstructure is examined to determine if stock structure exists in 

terms of larval growth and duration between larval plaice from the North Sea, east coast of
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Ireland and the west coast of Ireland. The study also determines if larval growth and duration 
of these stocks vary over time.
Chapter three uses the same adult archived otoliths as chapter two to determine if otolith 
shape varies between stocks and if so can this variation can help determine if stock structure 
exists between plaice from the same three ICES areas as chapter two.
Finally, otolith reader variation is examined in chapter four. The identification of increments 
within prepared otoliths is not an exact science and variation may occur between readers and 
laboratories. Beamish et al. (1983) noted that only 66% of 500 publications reporting fish age 
estimates even attempted to corroborate the accuracy of their ages. A mere 3.4% were 
successful in doing so. As quality control monitoring is an important factor in ageing projects, 
an intra-lab reader experiment was conducted to look at inter-reader ageing bias and 
precision. The implications of such variation for the interpretation of results from aging 
studies are discussed.

3



References

Allen BM (2004) Distribution, seasonal occurrence, recruitment and growth of juvenile 
commercial flatfish species on the west coast of Ireland. Galway-Mayo Institute of 
Technology

Beamish RJ, McFarlane GA (1983) The forgotten requirement for age validation in fisheries 
biology. Transactions of the American fisheries society 112:735-743

Begg GA, Brown RW (2000) Stock identification of Haddock Melanogrammus aeglefmus on 
Georges Bank based on otolith shape analysis. Transactions of the American fisheries 
society 129:935-945

Begg GA, Hare JA, Sheehan DD (1999) The role of life history parameters as indicators of 
stock structure. Fisheries Research 43:141-163

Bergman MJN, H.W. YdV, J.J. Z (1988) Plaice nurseries: effects on recruitment. Journal of 
Fish Biology 33:201-218

Campana SE, Neilson JD (1985) Microstructure of fish otoliths. Canadian Journal of 
Fisheries and Aquatic Science 42:1014-1032

Coyle T (1998) Stock identification and fisheries management: the importance of using 
several methods in a stock identification study. Australian society for fish biology: 
173-182

De Veen JF (1978) On selective tidal transport in the migration of North Sea plaice 
(Pleuronectes platessa) and other flatfish species. Netherlands Journal of Sea 
Research 12:115-147

Gauldie EA, Jones JB (2000) Stocks, or geographically separated populations of the New 
Zealand orange roughy Hoplostethus atlanticus, in relation to parasite infestation, 
growth rate, and otolith shape. Bulletin of Marine Science 67:949-971

Grimes CB, Johnson AG, Fable Jr. WAi (1987) Delineation of king mackerel 
(Scomberomorus cavalla) stocks along the U.S. east coast and in the Gulf of Mexico,
. Proceedings of the stock identification workshop November 5-7, 1985, Panama City 
Beach, Florida NOAA Technical Memorandum, NMFS-SEFC(199): 186-187.

Modin J, Fagerholm B, Gunnarsson B, Phil L (1996) Changes in otolith microstructure at 
metamorphosis of plaice, Pleuronectes platessa. ICES Journal of Marine Science 
53:745-748

Nash RDM, Geffen AJ (2000) The influence of nursery ground processes in the determination 
of year-class strength in juvenile plaice Pleuronectes platessa L. in Port Erin Bay, 
Irish Sea. Journal of Sea Research 44:101-110

Pannella G (1971) Fish otoliths: daily growth layers and periodical patterns. Science 
173:1124-1127

Steele JH, Edwards RRC (1970) The ecology of 0-group plaice and common dabs in Loch 
Ewe. 4. Dynamics of the plaice and dab populations. Journal of Experimental Marine 
Biology and Ecology 4:174-187

van der Veer HW, Nash RDM (2001) The 1999 Flatfish symposium: where to go from now? 
Journal of Sea Research 45:325-328

4



Spatio-temporal variation in larval life history of plaice (Pleuronectes platessa L.) 

determined using otolith microstructure in ICES area IVb, Vila and Vllb

2.1 Abstract

Plaice (Pleuronectes platessa) are an economically important flatfish in European waters. 

However, there remains much to be learned about the life history of this fish especially for the 

earliest stages. This chapter presents an analysis of temporal and spatial variation in two aspects of 

the early life history of plaice: length of the larval life and larval growth rate. Archived otoliths 

(earstones) from adult fish were used for the investigation. Samples were obtained from collections 

held by the Marine Institute in Ireland, Centre for Environment, Fisheries and Aquaculture Science 

(CEFAS) in England and the Animal Science Group in Wageningen University in the Netherlands. 

Three randomly selected year classes of plaice were examined; 1990, 1997 and 2001. Three areas in 

Western Europe were chosen for the investigation of spatial variability. These regions were based 

on international fishing divisions; ICES area Vila (Irish Sea), Vllb (west of Ireland) and IVb 

(North Sea). Otoliths were polished and image analysis conducted. Statistical analysis of the otolith 

microstructure revealed that there was no significant temporal difference in larval growth rate and 

duration over the ten year study period at any location. With regards to spatial differences, there 

was no significant difference between plaice from the Irish Sea and west of Ireland for both larval 

growth rate and duration. However, Vila (Irish Sea) and Vllb (west of Ireland) differed 

significantly from the North Sea plaice. Larval duration is shorter and growth rate is faster in plaice 

from Vila and Vllb. A possible link with sea temperature and food quantity is explored and the 

results are discussed in the context of climate change.
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2.2 Introduction

A stock is a group of individuals for which population parameters can be meaningfully 

estimated for specific management applications, typically fishery stock assessments (Begg & 

Waldman 1999).

Plaice in Ireland are treated as different stocks for the purpose of allocating TAC’s (total 

allowable catch) i.e. Celtic Sea, West of Ireland, Irish Sea and Southwest of Ireland. 

However, this separation is based on the geography of fishing activity rather than any 

scientific justification.

Lumping together of harvested populations with little gene flow can have a detrimental local 

effect. Bailey (1997) stated that complex population structure has major implications for 

management, Ovenden (1990) also observed that the homogenous exploitation of a resource 

composed of numerous unidentified populations can lead to the erosion of structure and 

possible extinction of a section of the resource.

There are two general methods by which stocks are defined: by genotype and by phenotype. 

Generally, subpopulations of marine fish populations show low genetic differentiation (Ward 

& Grewe 1994). This is probably because in the marine environment there are fewer barriers 

to dispersal than in terrestrial or freshwater environments, so there is greater genetic exchange 

between subpopulations. However, the level of gene flow that can make subpopulations 

genetically indistinct is low compared to the amount of exchange that would be required to 

allow replenishment of one subpopulation by another. In the absence of genetic variation, 

phenotypic markers remain important for identifying groups of fish that for management 

purposes should be treated as distinct stocks. The combined approach of multiple characters 

examining differing aspects of the spatial relationship of groups of individuals through time 

has led to the increasing use of a “holistic” approach, combining both genotypic and 

phenotypic concepts of stock identification (Hare 2005).

6



Plaice in the North Atlantic show high genetic homogeneity. However, the level of stock 

mixing needed to make them genetically homogenous may be too low to consider them as a 

single unit for management purposes. A study by Watts et al. (2004) looked at genetic 

differences between plaice within the Irish Sea and genetic variability in all samples was low. 

Hoarau et al. (2002) showed that European plaice consist of two genetically distinct entities: 

the continental shelf and Iceland.

Phenotypic traits such as morphology, growth, development rates and behaviour are all 

influenced by a combination of environmental and genetic factors. Persistent phenotypic 

differences between stocks, whether environmental or genetic in origin, can indicate limited 

mixing and may be sufficient cause for stock separation for management purposes (Swain & 

Foote 1999). Phenotypic stocks are most often defined using characters from juvenile and 

adult fish collected at different locations. Brophy et al. (2002) looked at herring otoliths from 

the Irish Sea and were able to separate stocks into autumn and winter spawned fish, based on 

otolith growth rates. Prolonged separation of postlarval fish in different environmental 

regimes can produce variation in early life history traits such as hatching and settlement times 

and larval and juvenile growth rates. Growth rates and larval duration are influenced by 

temperature and food availability (Folkvord et al. 1997). Hydrological characteristics such as 

fronts and eddies also have a large effect on the transport of plaice to nursery grounds and in 

maintaining stock separation (Wegner et al. 2003). Although phenotypic methods do not 

provide evidence for separate breeding populations, they can be more appropriate tools for 

defining stocks then genetic studies (Coyle 1998).

The studies referenced above and the current study all used otoliths to determine phenotypic 

differences between stocks. The reason is otoliths are good indicators of variation in early life 

history traits because they grow incrementally, throughout the life of the fish at a rate that is 

proportional to fish growth. Otolith daily increments provide a permanent record of past 

growth that is unaffected by the fish’s metabolism (unlike scales and bones) (Campana &
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Neilson 1985). When differences in the larval portion of the otolith are observed in juvenile 

and adult fish from different areas, it indicates that the groups were spatially or temporally 

distinct as larvae, and may indicate distinct spawning origin. Karakiri et al. (1991) compared 

larval growth, date of settlement and subsequent growth of 0+ plaice from two different 

locations in the Wadden Sea. They found differences in hatching times, larval period, 

settlement and growth rates between fish from different locations. This indicates that the fish 

had experienced different early life environments and therefore originated from different 

spawning grounds.

The current study uses archived collections of otoliths to investigate if adult plaice from three 

regions: ICES IVb (North Sea), Vila (Irish Sea) and Vllb (west coast Ireland), display any 

variation in early life history traits (larval growth rate and duration) which would indicate that 

they are of different larval origin. Abiotic factors such as temperature and food availability 

were examined to see if they accounted for any variation detected. Any correlation between 

larval duration and growth rate will also be discussed. Otoliths from three year classes; 1990, 

1997 and 2001 were used to investigate if these early life history traits varied temporally. 

Archived otolith collections provide an easy and inexpensive source of information on various 

fish species. They also provide a long term data set that can help scientists to distinguish 

trends from short-term fluctuations (Hutchinson et al. 2003). Information gleaned from the 

otolith collections in the present study may help to determine stock structure within the ICES 

areas and provide data to support the sustainable management of plaice fisheries.

2.3 M aterials and m ethods

Three pairs of otoliths are located posteriorly in the head of the fish and these are called the 

lapilli, sagittae and asterisci. In the present study, all work was carried out using the sagittal 

otoliths.
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Three different areas in western Europe were chosen for the study, ICES area Vila (Irish Sea), 

VEb (West of Ireland) and IVb (North Sea) (Fig. 2.1). The otoliths included in the analysis 

were from three randomly selected year classes: fish hatched in 1990, 1997 and 2001. The 

fish were 4 years old (as aged by the Marine Institute) on date of capture except in ICES IVb. 

Some fish from this region were caught at 3 years of age. However they still came from the 

same year class. Five otoliths from each year class were picked randomly from three different 

hauls in each ICES area, using random number tables. This gave a total of 135 otoliths for 

analysis.

Fig 2.1: Map of Western Europe showing ICES divisions
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The otoliths from CEFAS and the Netherlands were stored dry in envelopes whereas the 

otoliths from the Marine Institute were stored in “Histokit” single pack resin. These latter 

samples were removed from the resin by heating on a hotplate. As the resin melted the otolith 

was picked out using a forceps. Otoliths were stored in “Sterilin” square otolith boxes prior to 

analysis.

Otoliths were photographed using an Olympus camedia C-3040 digital camera with PC 

interface attached to an Olympus SZX 7 stereoscopic microscope at 16X magnification. The 

otoliths were examined and annuli counted to confirm age. Each otolith was then attached to 

a slide using crystal bond glue. They were polished using wet “Buehler” silicon carbide 

paper, grit 600|im and 1200(xm. The non-sulcus side (concave side) was polished first until 

the accessory primordium (AP) was visible using an Olympus CX21 compound microscope 

with an X100 oil immersion objective lens and an overall magnification of X1000. After the 

first polishing, each otolith was placed in the cap of a 0.5ml micro centrifuge tube and 

embedded in Buehler Epo-thin epoxy resin. The resin was allowed to set at room temperature 

over 24 hours. When the resin had set, the otoliths were cut out of the caps using a scalpel 

and attached to a glass slide using crystal bond glue. Polishing was carried out on the sulcus 

side with the same grit paper until the microstructure at the otolith core was visible under the 

microscope.

If daily increments were difficult to discern their contrast was enhanced by etching in a 

buffered proteinase solution as described in (Shiao et al. 1999). Proteinase digests the protein 

portion of the otolith matrix and retains the major calcified structure to reveal conspicuous 

daily increments. The otoliths were placed in “Sterilin” square Petri dish containing 25 

compartments and covered in the proteinase solution. The Petri dish was then put into a 

Binder oven at 45°C for 1 hour. The otoliths were taken out periodically over the hour and 

gently shaken. This allowed the rings to be read with more clarity.

Otolith preparation
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Temperature data were sourced from two locations. “The coastal temperature and ferry route 

programme: long-term temperature and salinity observations” produced by CEFAS, provided 

temperature information for ICES area IVb and Vila. Data for VHb was obtained from the 

Marine Institute weather buoy Ml ' and the National Oceanographic and atmosphere 

Administration (NOAA) website. (URL: osdpd.noaa.gov/PSB/EPS/SST/sst_and_fields.html). 

The temperature data time series was averaged. The Calanus abundance data were obtained 

from the continuous plankton recorder (URL: www.dpst@sahfos.ac.uk.) for the years 1990, 

1997 and 2001, from January to June. It records the phytoplankton colour index and Calanus 

fmmarchicus numbers present, which can be used when assessing food availability for larval 

plaice. The examination of food availability may help account for any variation in larval 

duration and growth rate.

Im age analysis

Polished otoliths were viewed at 1000X magnification using an Olympus CX41 light 

microscope. Images of the microstructure were taken using an Olympus camedia C-3040 

zoom digital camera. They were processed using Olympus DP- Soft 3.2 image analysis 

package.

Otolith images were used to estimate the length of larval life and the duration of 

metamorphosis from counts of daily increments. Increment counts were started from the hatch 

check which is approximately 10|im from the centre of the otolith (Hovenkamp 1990). Counts 

were terminated at the first accessory primordium (AP) which demarcates the start of 

metamorphosis and the end of larval life (Karakiri et al. 1989) (Plate 2.1).

Larval increment widths were calculated using the DP-soft programme to provide an estimate 

of larval growth rates. Each daily growth increment for the fish from each separate ICES area 

over the three years studied was averaged over a 29 day period. 29 days was the minimum 

length of larval life observed. Average daily otolith growth is correlated with average daily

1 2
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somatic growth and the average increment width can be used as an indication of somatic 

growth (Hovenkamp 1990). Karakiri et al. (1989) also showed that daily increment width is 

growth dependent. For reporting purposes otolith increment width results will represent and 

be referred to as growth rate.

All measurements were transferred to Microsoft excel for subsequent data analysis.

1st accessory primordiui

Daily increments

Plate 2.1: Polished otolith microstructure. Measuring line extends out to 1st AP

Data Analysis

All statistical analysis was carried out using MINITAB 15 for windows. Data were tested, 

where possible, using analysis of variance (ANOVA) which has three assumptions. All data 

must be independent, the distribution in each of the data groups around the mean must be 

normal and finally the data must have homogeneity of variance. Normality testing was 

conducted using the Ryan-Joiner test and for homogeneity of variances Cochran’s test was 

used. Where needed, data were normalised using log transformations. If data could not be 

normalised, non-parametric tests, Kruskal-Wallis and Mood’s median, for significant 

differences were used (Underwood 1997). When the data proved normal and had equal 

variances, analysis of variance (ANOVA) was conducted on the balanced set to test 2 

hypotheses:
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1. There is a difference in plaice larval growth and duration between the three year 

classes.

2. There is a difference in plaice larval growth and duration between ICES areas Vila , 

Vllb and IVb .

The ANOVA design consisted of two orthogonal factors: year and ICES areas and one nested 

factor: haul. Year and haul were considered to be random factors and region was a fixed 

factor.

Where ANOVA detected significant differences in the main factors, post hoc analysis to 

compare pairs of means was carried out using Tukey pairwise comparison tests.

Larval growth rates were also examined over a series of five day periods; e.g. 1-5, 6-10, 11- 

15, 16-20, 20-25 and 26-29 days after hatching. This was to examine how growth rates 

differed between the three ICES areas over the larval duration.

Correlation analysis was used to investigate the relationship between growth rates at days 20- 

25 and growth rates from days 1-29, to establish if growth within the five day period (20-25) 

was representative of growth throughout the larval phase. Daily rings are easier to read 

around day 20. Therefore, if days 20-25 could be used in analysis instead of the whole larval 

duration, errors in interpreting the data might be reduced.

Larval duration was calculated by averaging the number of days till metamorphosis in each 

separate ICES area for each year class. Larval duration was at least 29 days for all fish 

included in the analysis. Therefore, this 29 day period after hatching was used to calculate 

mean larval otolith growth rates.
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2.4  R esults

Overall results revealed that plaice from ICES area IVb had a longer larval duration and a 

slower growth rate lhan fish from the other two ICES areas (Table 2.3).

Table 2.3: Table showing mean larval duration and growth rates o f plaice in three different ICES

areas
Year
class

Icesarea mean daily increment 
width/um

SD(+/-) mean larval duration/days
SD(+/-)

1990 IVb 1.16 0.22 44 5.3
Vila 1.5 0.31 35 6.1
Vllb 1.3 0.19 38 3.7

1997 IVb 0.97 0.17 50 6.4
Vila 1.54 0.24 35 3.2
Vllb 1.39 0.24 37 4.3

2001 IVb 1.04 0.29 52 9.7
Vila 1.32 0.18 38 5.1
Vllb 1.44 0.25 37 4.1

Larval duration

The mean larval duration of plaice from area IVb in the three year classes studied was 49 

days, the average on the east (Vila) and west (Vllb) coast of Ireland was 36 and 37 days, 

respectively (Table 2.4 and Fig 2.2).
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Fig 2.2: Graph showing mean larval duration o f plaice in three different ICES areas over 
different time periods. Error bars represent standard deviations

Table 2.4: Table showing the mean, range o f days and standard deviation o f larval duration in 

each ICES area, averaged across three year classes (1990,1997 and 2001)

ICES Area Range/days Mean no. o f days SD (+-)

IVb 37-64 48.8 7.9

Vila 29-49 35.5 5.0

Vllb 31-48 37.6 4.0

ANOVA showed that there was no significant difference in plaice larval duration between the 

three years studied (p>0.05) within any region. However, analysis did reveal a significant 

difference in larval duration between regions. There was no significant interaction between 

year and ICES area (Table 2.5). Post hoc analysis showed that the significant differences 

seen between ICES areas were due to area IVb. The mean larval duration was significantly 

longer in the North Sea samples than in the other two areas (p=0.03).
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Table 2.5: Results o f a two way ANOVA comparing larval duration between year classes 1990, 

1997 and 2001 and ICES areas, V ila  and VHb

Source Mean Sq d.f. F ratio P r

Year 0.01 2 1.22 0.39 64.19%
ICES area 0.23 2 28.1 <0.01

Year/ICES interaction 0.01 4 1.92 0.15

There was no significant difference in larval duration between areas Vila and Vllb (p>0.05). 

Years were pooled and a one-way ANOVA was performed to see if any difference in larval 

duration could be detected between areas Vila and Vllb with a larger sample size. Results still 

showed no differences.

Growth rate

Statistical analysis (ANOVA) showed that there was no significant difference in larval growth 

rates from days 1-29 within any area for any year class. However, analysis did reveal a 

significant difference in growth rates between ICES areas (p=0.03) (Table 2.6). Post hoc 

analysis revealed that ICES IVb had a slower growth rate then the other two ICES areas (Fig.

2.3).

Table 2.6: Results o f  a two way ANOVA comparing larval growth rates between year classes 

1990,1997 and 2001 and ICES areas IVb, V ila  and V llb  from  days 1-29

Source Mean Sq d.f. F ratio P r

Year class 0.03 2 0.17 0.85 53.66%
ICES area 2.03 2 10.43 0.03

Year/ICES interaction 0.2 4 2.19 0.11
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Fig 2.3: Graph showing the mean larval growth rates (fim) o f  plaice over different year classes 
and from  three different ICES areas. Error bars represent standard deviations

Years were pooled to increase the power of the analysis and a one-way ANOVA was 

performed to see if any differences in growth occurred between Vila and VHb. Results still 

showed no significant differences between the two areas (p>0.05).

When growth rate was examined in 5 day blocks, results showed no significant difference 

between both years and areas in growth rate until day 16. Significant difference occurred in 

growth rate at days 16-20 (p=0.03). There were also significant differences recorded from 

days 21-25 and 26-29 (Fig.2A). A Bonferoni correction was conducted because multiple 

comparisons were performed (Table 2.7). After the correction, only days 21-25 showed 

significantly growth rate differences when compared to growth rate obtained from the data of 

the 29 day period. Post hoc analysis revealed that ICES area IVb had slower growth rates 

than Vila and Vllb. No temporal difference in daily growth rate was found for any ICES area 

(p>0.05).
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Fig 2.4: Mean otolith increment width (days 1-29) o f  larval plaice in three ICES areas

Table 2.7: Mean p-value o f larval growth rates for year class 1990,1997 and 2001 in ICES area

IVb, V ila  and VH b in 5 day blocks

Days p-value
1-5 0.132

6-10 0.584
11-15 0.152
16-20 0.035*
21-25 0.009**
26-29 0.012*

*  shows significant difference o f  0 .05

* *  shows significant difference after Bonferoni correction

A significant positive correlation was observed between growth at days 1-29 and days 20-25 

(correlation coefficient=0.762; p=0.010). Statistical analysis was carried out again for larval 

growth rates using days 20-25 instead of days 1-29. The same results were observed (Fig 2.5);
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there was no significant temporal difference in larval growth rate over the study period in any 

area but there was significant difference between ICES areas (Table 2.8). ICES IVb had a 

slower growth rate (p<05).

Fig 2.5: Graph showing the mean larval growth rates at days 20-25 o f plaice from  three year 
classes and from  three different ICES areas. Error bars represent standard deviations

Table 2.8: Results o f a two way ANOYA table comparing larval growth rates between year 

classes 1990,1997 and 2001 and ICES areas IVb, V ila  and VHb from  days 20-25

 Source________________ Mean Sq  elf.____F ratio  p___________ r2

Year class 0.04 2 1.12 0.41
ICES area 0.6 2 18.79 0.01

Year/ICES interaction 0.03 4 1.28 0.31

Results showed a strong negative correlation between growth rate and larval duration in the 

three different ICES areas over time (Table 2.9). As growth rates increase, larval duration 

decreases (Fig. 2.6).
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Table: 2.9: Table showing correlation between growth rate and larval duration in three ICES
areas over time

ICES area_______________ pearson's correlation c o e f f i c i e n t ___________p value
IVb -0.754 0.000
Vila -0.789 0.000
Vllb -0.651 0.000
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2.25
Larval growth rate/um

•  4b 
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Fig 2.6. Scatterplot show ing stron g negative correlation  betw een larval grow th  rate and

duration

Results from the phytoplankton colour index revealed more phytoplankton present in ICES 

Vila and Vllb then ICES IVb (Table 2.10). The Calanus finmarchicus data showed ICES area 

Vila to have the lowest levels and Vllb with the highest.

Table 2.10: Average phytoplankton colour index and Calanus finmarchicus numbers in three
ICES areas from  Jan-Jun in 1990,1997 and 2001. HO S t S

_ _ _ _ _____________________________________ V llb______________ V ila
phytoplankton colour 0.5 0.85
Calanus finmarchicus 0.75 0.24
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Results from the temperature data described average sea temperatures between January and 

June as coolest in the North Sea, intermediate in the Irish Sea and warmest off the west coast 

of Ireland (Table 2.11).

Table 2.11: Average sea surface temperatures (°c) from Jan-Jun in three ICES areas in 1990,
1997 and 2001

Year class IVb V i l a _______________ V llb __________
1990 8.6 9.2 10.3
1997 8.1 8.9 10.7
2001 7.9 9.2 10.2

2.5 Discussion 

Larval duration

Results revealed that there was no significant temporal difference in larval duration over the 

study period in any of the three ICES areas. Other studies have shown that the principal 

extrinsic factor influencing the rate of development of larval plaice is temperature (Ryland & 

Nichols 1975). Therefore, results from the current study would suggest that temporal variation 

in environmental factors such as temperature, over the time period of the study, was not 

sufficient to produce variation in larval duration. Similar results were also observed in a study 

conducted by van der Veer et al. (1999) in North Sea plaice. They found that despite the 

interannual differences in temperature (from 6.5°c to 10°c) no differences between years were 

found with respect to larval size and morphological stage at the time of immigration or the 

timing of immigration to inshore nursery grounds.

While no temporal variation occurred, spatial differences were observed. Fish in ICES area 

IVb (North Sea) had a longer larval duration than fish from the other two ICES areas. This 

would imply that North Sea fish were exposed to different environmental conditions such as 

temperature and food abundance, as larvae. Plaice from ICES area Vila and Vllb showed no
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significant variation in larval duration. This indicates that the adult fish in these areas were 

exposed to similar environmental conditions as larvae. This may be because the environment 

of the Irish Sea is not sufficiently distinct from that of the West coast and larvae developing in 

both areas have similar development times. Alternatively, larvae from the two areas grow 

differently, but fish from the two areas mix as adults at feeding and spawning grounds, and so 

no spatial variation in larval microstructure is detectable in the adults.

The larval duration of plaice from the North Sea observed in this study is shorter than those 

reported in other studies. In the Wadden Sea (ICES IVb), Karakiri et al. (1991) found that 

larval duration ranged from 50-82 days. For the North Sea Wegner et al. (2003) found that the 

general larval phase of plaice takes from 60 to 90 days. Ryland (1966) conducted tests in a 

lab and found that larval duration is temperature dependent and is usually between 60 and 70 

days at 6.75°c. These larvae were collected as eggs in the southern area of the North Sea. In 

the current study larval duration for plaice from the North Sea was shorter, ranging from 37 to 

64 days. This discrepancy may arise due to movement of plaice from other areas 

(characterised by shorter larval durations) into the North Sea after the larval stage or inter 

reader / inter-lab differences. Inter-lab calibration would be required to determine whether 

reader variation is the source of the observed larval duration differences.

Larval duration for plaice from the Irish Sea was also shorter than other studies, ranging from 

29 to 49 days (mean = 35). In the Irish Sea (Al-Hossaini et al. 1989) recorded larval duration 

values of between 42-59 days for plaice with mean larval increments ranging from 50 to 53 

days.

Plaice from the west coast had larval durations ranging from 31-48 days (mean = 37). This is 

a slightly longer larval duration then found in previous studies. A study conducted by Allen et 

al. (2008) found larval duration times of 28-43 days (mean=33) on the west coast of Ireland. 

(Allard 2006) recorded larval duration in the west coast of Ireland between 21 and 45 days 

(mean=30).
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Results from these previous studies suggest that larvae from the west coast of Ireland reached 

metamorphosis more quickly then Irish Sea plaice and this would support the theory that 

larvae from the two areas are spatially separated but mix as adults. In order to confirm this, 

sampling of juveniles still in the nursery grounds in both areas and before they mix would 

need to be carried out. If the larval duration of fish was shorter on the west coast, it would 

confirm that they are from two separate stocks.

Growth rate

Results revealed that there was no significant temporal difference in growth rate over the 

study period in any of the three ICES areas. However, spatially fish in ICES area IVb had a 

slower growth rate than fish from the other two ICES areas. Again, this would imply that 

North Sea fish were exposed to different environmental conditions as larvae. Plaice from 

ICES area Vila and Vllb showed no significant variation in larval growth rate. This indicates 

that the adult fish in these areas were exposed to similar environments.

Daily growth rate for North Sea fish ranged from 0.9pm-1.2pm over the ten year period. A 

study by Karakiri et al. (1991) recorded daily growth rate of 0.2pm-0.8pm in plaice from the 

Dutch Wadden Sea. This is a slower rate of growth then the results from the current study. 

However, the above study only measured the first few increments after hatching Another 

study on North Sea plaice by Hovenkamp (1990) found daily increment widths ranging from

0.7pm-1.5pm, which is similar to the current results.

In the current study increment widths ranged from 1.3pm to 1.44pm over the ten year period 

for Galway Bay. This is a slower growth rate than that reported by Allen et al (2008) who 

observed growth rates ranging from 1.94pm to 2.79pm in Galway Bay. However, the later 

study only measured increments representing days 20 to 25 after hatching. As shown in the

24



results above this period is when a significant amount of growth occurs in plaice larvae (Fig. 

2.4). and this may account for the differences between the two studies.

No spatial or temporal variation in larval otolith growth was apparent before day 16 in plaice 

from the three different ICES areas. Larval growth rates, determined from laboratory and field 

observations, are often slow with little variation during the yolk-sac stages, which persist for 

some 12 days as seen by Ryland (1966) in lab experiments, but increase rapidly from first 

feeding until metamorphosis (Nash & Geffen 2005). This would explain the slower growth 

rate reported by Karakiri as seen above because that study only used the first few days after 

hatching as a measure of growth rate. Also, growth rates may appear uniform before day 12 

because the measurement of increments is not sufficiently precise to detect differences. 

Because of the difficulties associated with detecting variation early in the larval growth, 

increments from days 20-25 were used as an index of growth in subsequent analyses. The 

width of these increments was strongly correlated with increment width over the whole larval 

phase, justifying the use of this index.

As stated earlier, spatial variation in larval duration and growth rates observed in this study 

may be related to environmental conditions, such as food abundance. In general, there is a 

positive relationship between food levels and growth rate (Nash et al. 2005). Before 

metamorphosis, larvae feed on planktonic prey in the water column. In the current study, 

phytoplankton colour index and Calanus fintnarchicus numbers were used as an indicator of 

food availability. Results show that ICES IVb had the lowest level of phytoplankton 

recorded, followed by Vila and Vllb. This concurs with observed growth rates in the current 

study. Fish from the North Sea which had a slower growth rate also had less food available to 

them then plaice from the other two ICES areas. A study by Folkvord et al. (1997) used 

different feeding environments to determine growth of juvenile herring in the lab. Herring 

exposed to higher plankton densities had wider otolith increment widths. More data is needed 

to examine the correlation between food abundance and growth.
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A second possible explanation for the differences in growth rate and larval duration between 

ICES areas is temperature differences between the cooler North Sea and the warmer waters 

found in Vila and Vllb (Table 2.8). Fox et al. (2000) described average sea temperatures 

between January and June as coolest (7°c) in the North Sea, intermediate in the Irish Sea 

(8,9°c) and warmest in the Celtic Sea (10.5°c). Hovenkamp et al. (1991) showed that somatic 

growth rates of plaice larvae were strongly related to water temperatures. Bergman et al. 

(1988) found that growth of plaice in the Wadden Sea depends only on ambient water 

temperatures. Another study by Hyder et al. (1998) found increasing the temperature lowers 

the development time, increases the numbers at metamorphosis and lowers the pelagic daily 

instantaneous mortality of plaice in the Irish Sea. Fox et al. (2000) found that warmer sea 

temperatures led to shorter larval durations. The temperature results from the current study 

concur with the previous studies. Results show that sea surface temperatures were highest in 

ICES Vllb and fish had the lowest larval duration. Larval duration was longest in the North 

Sea where the temperatures were the lowest.

Results from the current investigation also revealed a negative correlation between larval 

duration and growth rate; fish which grew faster as larvae had a shorter larval duration. As 

discussed above, temperature seems to be the main driving force in relation to growth rate, 

larval duration and overall year-class strength. An increase in temperature (as with climate 

change) could affect larval survival and development in many ways. Rapid larval 

development may increase the chance of larvae reaching the nursery grounds and thus 

produce a strong year class. An increase could offset the effect of predation in relation to the 

decreased larval duration and increased growth rates which would make the fish too big to be 

prayed upon. A study by van der Veer et al. (2000) revealed that, after severe winters where 

the number of predatory crustaceans are reduced, early flatfish juveniles grow to sizes which 

are too large for recovered crustacean stocks to predate in June. However, higher 

temperatures may also cause plaice to reach metamorphosis earlier and therefore not reach the 

safety of the nursery grounds. In the North Sea, there are larger distances between the



spawning grounds and the nursery grounds, unlike the Irish Sea where both spawning and 

nursery ground are close by (Hyder et al. 1998).

Otolith reader effects must also be considered when comparing larval growth and duration 

differences from different studies. Variation between labs in the preparation or interpretation 

of increments could produce differences. Are the observed differences greater then 

differences created by variations between labs or readers? In an overview of otolith studies 

entering the 21st century, Campana (2005) comments on the developing maturity of otolith 

microstructure research and the relative scarcity of routine daily increment validation studies. 

In chapter four, results from an inter-reader experiment from the author’s laboratory is 

conducted to see if inter-reader variation is great enough to explain observed differences in 

age? If this is the case it would require inter-reader and inter-lab calibration to resolve. 

However all the otoliths in the current study were read by the same reader so this would 

negate and inter-reader variation.

Stock identification is an integral component to fisheries stock assessment and is essential for 

effective fisheries management. The mixing of fish stocks will have a huge effect on how they 

are managed. If stocks are not detected they could be put under pressure with regards to 

recruitment. The results in this study indicate that the management units of the North Sea and 

the other two ICES areas contain distinct populations with limited mixing between them. 

Therefore, the treatment of the North Sea stock as separate from the others would be an 

appropriate decision in terms of management. At the moment ICES treat plaice from ICES 

Vila and VHb as distinct stocks, with no mixing. However, different mixing rates that are not 

detected can yield grossly different predictions of abundance trends (Kell et al. 2004). 

Results suggest the possibility that stocks in ICES Vila and Vllb are mixing after the larval 

stage. Additional research is needed to confirm that they are separate stocks at the larval 

stage. As suggested earlier in the discussion, sampling at the juvenile stage before fish leave
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the nursery grounds would help confirm the stock mixing theory. Tagging of these juveniles 

could also be examined to see if the fish are mixing when they move offshore.

Other aspects of otolith structure can be used in determining different stock or life histories of 

fish. Trace element composition of otoliths has been examined elsewhere, to determine the 

relationship between water composition and the resulting composition of the otolith. The 

following chapter will look at otolith shape as a method of stock identification using the same 

archived samples as used here. This study may throw some light on the findings from the 

current study.
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Spatio-temporal variation in adult plaice {Pleuronectes platessa L.) determined using 

otolith shape in ICES area IVb, V ila and VHb

3.1 Abstract

Stock identification is paramount in managing fish stocks. In this chapter the otoliths 

(earstones) of adult plaice were examined to see if fish from different geographical locations 

could be identified by otolith shape. Otolith shape was characterised using indices calculated 

from basic manual distance measurements. Archived otoliths from adult fish were used for the 

investigation. Samples were obtained from collections held by the Marine Institute in Ireland, 

CEFAS in England and the Animal Science Group in Wageningen University in the 

Netherlands. Three randomly selected year classes of plaice were examined; 1990, 1997 and 

2001. Three areas in Western Europe were chosen for the investigation of spatial variability. 

These regions were based on international fishing divisions; ICES area Vila (Irish Sea), Vllb 

(west of Ireland) and IVb (North Sea). The shape of the first annulus and the whole otolith 

shape were measured. Statistical analysis of the results showed little variation in otolith shape 

in plaice from the three ICES areas. Analysis of whole otolith shape shows a small degree of 

variation in one shape variable (circularity). This study shows that shape indices are not very 

powerful for discriminating between plaice from different ICES areas. Reasons for lack of 

discrimination and other phenotypic markers that might be useful are discussed.
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Stock structure information provides a basis for understanding fish populations and this 

knowledge is vital in management. Persistent phenotypic differences, whether environmental 

or genetic in origin, can indicate limited mixing of fish populations, and may be sufficient 

cause for stock separation (Swain & Foote 1999). Otoliths, which are structures composed of 

calcium carbonate are ideal for use in stock identification (Campana & Neilson 1985). The 

chemical composition of otoliths has been examined as a viable method of stock 

identification. Changes in concentrations of elements in the environment can influence the 

concentrations of these elements in the otoliths of fish. The array of elements can characterise 

different stocks or sub-populations. Geffen, Jarvis et al. (2003) looked at spatial differences in 

the trace element concentrations of Irish Sea plaice. Significant differences in otolith 

composition were found between sampling sites. The analysis revealed separation between 

groups of plaice in the eastern Irish Sea indicative of metapopulation structure associated with 

known spawning grounds. Variation in the growth rate of the fish, produces corresponding 

variation in otolith microstructure and shape (Gauldie & Jones 2000). Otoliths grow 

throughout the lifetime of the fish and are less variable than other somatic growth structures 

such as scales and vertebrate which also lay down growth rings. Once deposited, otolith 

material is unlikely to be reabsorbed or altered (Campana et al. 1985), and is, therefore, 

unaffected by changes in fish condition which can confound body morphometries. The shape 

of fish otoliths can therefore be an ideal marker for fish populations if they maintain distinct 

environments during some or all of their lives. Variation in otolith shape in fish from different 

geographical regions is assumed to provide evidence that distinct regions are occupied, at 

least for part of the life history, thereby representing a phenotypic measure of stock 

identification (Ihssen et al. 1981).

Plaice in the North Atlantic show high genetic homogeneity. Therefore, shape analysis may 

be useful for discriminating between stocks where genetic methods have failed. If juvenile

3.2 Introduction
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plaice from different areas produce otoliths with distinctive shapes from this part of their life 

history, shape analysis could provide a simple yet accurate method of identifying different 

fish stocks. Tuset et al. (2003) used otolith morphology to identify regional differences in 

Comber (Serranus cabrilla) from the Mediterranean and Atlantic regions. Friedland et al. 

(1994) also used otolith morphology in stock discrimination of Atlantic salmon (Salmo salar). 

They looked at otolith shape as an indicator of both continent of origin i.e. North America or 

Europe, and country of origin.

Otolith shape can be characterised using indices which are calculated from basic manual 

distance measurements such as length, width, area and perimeter, or on more complex 

methods that use mathematical functions such as Fourier descriptors. These are mathematical 

descriptions of an otolith silhouette that can describe and compare otolith shapes 

quantitatively (Bird et al. 1986). It is also possible to measure the shape of the otolith at a 

previous point in the fish’ s life by using the outline of an internal feature such as an annulus 

(Burke et al. 2008). It is thought that a well defined internal annulus corresponds to the shape 

of the otolith at the time of the annulus formation. Burke et al. (2008) assessed the feasibility 

of using shape parameters generated from internal traces to identify juvenile origin in herring 

from the Irish and Celtic Sea. They were able to distinguish between populations with a >95% 

degree of accuracy.

Because otolith growth and shape are linked to fish growth, factors affecting fish growth will 

also affect otolith growth. While there may be a genetic contribution to otolith shape 

differences between stocks, environmental factors are considered to be the major determinants 

of otolith growth (Begg & Brown 2000). Several lab experiments confirm that the relationship 

between otolith and somatic growth of fish is mediated by temperature and /or modifiers of 

growth rate (Campana 2005). Campana et al. (1993) suggested that environmental effects are 

generally more influential determinants of otolith shape then genetic effects, because otolith 

shape changes in response to differences in growth rate. Stock definitions based on
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differences in otolith structure depend not only on differential growth rates, but also on the 

consistency of the environmental conditions encountered during the life history of a fish in 

each stock (Campana et al. 1993). The previous chapter reports spatial variation in juvenile 

plaice life history parameters over three ICES areas listed above, which appear to be driven 

by temperature. Spatial variation caused by temperature could also result in growth 

differences and consequently in the size and shape of the otolith after the first year.

The purpose of this study is to examine shape characteristics of plaice otoliths from three 

different ICES areas in Europe over three time periods to determine if otolith shape 

measurements can be used to discriminate between plaice from the different ICES 

management units. Also, the study uses the shape of the juvenile portion of the otolith to 

establish if the fish from the three areas are of distinct juvenile origin.

3.3 M aterials and m ethods

Three pairs of otoliths are located posteriorly in the head of the fish and these are called the 

lapilli, sagittae and asterisci. In the present study, all work was carried out using the sagittal 

otoliths.

The archived otoliths used in this study were provided from the Marine Institute of Ireland, 

Centre for Environment, Fisheries and Aquaculture Science (CEFAS) in the UK and the 

Animal Science Group in Wageningen University in the Netherlands. The samples from the 

Marine Institute were collected from the commercial fish landings. Samples from CEFAS and 

Wageningen University were collected during research surveys.

Factors such as age, sex ratios and year class may affect otolith shape. Castonguay et al 

(1991) concluded, from an analysis of Atlantic Mackerel (Scomber scombrus) stock structure, 

that confounding effects of age and year-class on otolith shapes need to be assessed carefully
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before drawing any conclusions. For this reason, the otolith samples for this study used the 

same year class of plaice across the three ICES areas. This eliminated any year class effects. 

Information on the sex of the plaice used in the present research was unavailable. However, 

other studies such as Bird et al. (1986) looked at shape differences between herring otoliths 

from Atlantic and Alaskan stocks. They found no differences in the shape of the otoliths 

arising from sexual dimorphism. Castonguay et al. (1991) also came to the same conclusion 

with respect to Atlantic mackerel.

Three different areas in northern Europe were chosen for the study, ICES area Vila (Irish 

Sea), Vllb (West of Ireland) and IVb (North Sea). The otoliths included in the analysis were 

from three randomly selected year classes: fish hatched in 1990, 1997 and 2001. The fish 

were 4 years old on date of capture except for those from ICES IVb. Some fish from this 

region were caught at 3 years old. Five otoliths from each year class were picked randomly 

from three different hauls in each ICES area, using random number tables. This gave a total of 

135 otoliths analysed.

O tolith  preparation

The otoliths from CEFAS and Wageningen University were stored dry in envelopes whereas 

the otoliths from the Marine Institute were stored in “Histokit” single pack resin. These latter 

samples were removed from the resin by heating on a hotplate. As the resin melted the otolith 

was picked out using a forceps. Otoliths were stored in “Sterilin” square otolith boxes prior to 

analysis.

O tolith analysis

Each otolith was placed in a black dish (for best background image) and immersed in water. 

Images were taken using an Olympus camedia C-3040 zoom digital camera attached to an 

Olympus SZX 7 stereoscopic microscope. The distance between successive annuli (distinct
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bands laid down on the otolith each winter) were used as a measure of annual growth (Plate 

3.1).

Plate 3.1: Image o f a plaice otolith under 1.25x magnification

Measurements were taken from the core to the edge of each annulus along the longest axis 

using the Olympus Dp-Soft 3.2 image analysis package. This measurement was used as a 

proxy for fish growth in one year and also confirmed the age of the fish. The outline of the 

first annulus and the edge of the otolith was traced manually using Olympus Dp-Soft 

software. A series of two-dimensional measurements was then taken.

For shape analysis, the following size parameters were measured in order to calculate certain 

shape indices: area (A); perimeter (P); feret width (FW); feret length (FL). Feret length and 

feret width are the length and width of a box, which encloses the otolith. All measurements 

were taken using Olympus Dp-soft. These size parameters were used to calculate the shape 

indices. The formulas for the shape indices are described in table 3.1.
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Table 3.1: Table showing the size parameters and resulting shape indices calculated for analysis
o f each otolith

Size parameters Shape Indices

Area (A) Circularity = P/A2

Perimeter (P) Rectangularity -  A/  (FL*FW)

Feret Weight (FW) Form-factor = (4uA)/P2
Feret Length (FL) Roundness = (4A) / (ttFL2)

Ellipticity = (FL-FW) / (FL+FW)

Form-factor is a measure of circumference irregularity, taking values of 1.0 when it is a 

perfect circle and <0.1 when irregular. Roundness and circularity give information on the 

similarity of various features to a perfect circle, with minimum value of 1 and 4k  (12.57), 

respectively corresponding to a prefect circle. Rectangularity describes the variations of 

length and width with respect to the area, 1.0 being a perfect square and values are less than 

this depending on the ratio of the long to the short side. Finally, ellipticity indicates if the 

changes in the axes are proportional (Tuset et al. 2003).

Statistical analysis

All statistical analysis was carried out using MINITAB 15 for windows. Data were tested 

using analysis of variance (ANOVA). To ensure that the data met the assumptions of 

ANOVA, the Ryan-Joiner test was used to test for normality and Cochran’s test was 

conducted to testing for homogeneity of variances. Where needed, data were transformed. If 

data did not meet the assumptions of normality and equal variances after transformation, non- 

parametric tests, Kruskal-Wallis and Moods Median were used (Underwood 1997). The 

analysis of the data tested three hypotheses:

1. There is a significant difference in plaice otolith shape between year classes.

2. There is a significant difference in plaice otolith shape between ICES areas.

3. The otolith size/fish length relationship differs between ICES areas.
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The ANOVA design consisted of two orthogonal factors, year and ICES areas, and one factor: 

haul nested in ICES area. Year and haul were considered to be random factors and ICES area 

was a fixed factor. Analysis of covariance (ANCOVA) was conducted using MINITAB to test 

the relationship between otolith size and fish length. ANCOVA is a merger of ANOVA and 

regression for continuous variables. ANCOVA tests whether certain factors have an effect on 

the outcome variable after removing the variance for which quantitative predictors 

(covariates) account. Otolith size is the dependant/response variable, ICES area is the factor 

and fish length is the covariate.

The data from the trace of the 1st annual ring and the whole otolith outline were treated 

separately. Form-factor was not normally distributed and did not have equal variance so was 

omitted from all further analysis. Four shape variables: ellipticity, roundness, rectangularity 

and circularity were analysed using separate uni-variate ANOVA’s. The whole otolith outline 

data set comprised of a combination of three and four year old fish. Begg et al. (2000) found 

that age is one of the factors inducing large variation in otolith shape within stocks. Therefore, 

analysis was restricted to the four year old fish. This produced an unbalanced data set. The 

analysis of unbalanced data using ANOVA can be problematic as the tests for main effects 

and interactions are not independent of each other. However, computational methods 

designed for unbalanced data can overcome these issues by the using alternative methods to 

calculate the sum of squares (Shaw & Mitchell-Olds 1993). This approach is preferable to 

imposing balance on the data by removing replicates which can greatly reduce the power of 

the analysis. In this study all data were analysed using unbalanced Type III ANOVA’s in 

Minitab. When significant differences were detected, Post hoc analysis to compare pairs of 

means was carried out using Tukey pairwise comparison tests.
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3.4 Results

First annual ring

There were no significant differences in otolith length after year one between hauls, between 

the three ICES areas or between the three years and there was no significant interaction 

between the main effects (p>0.05). There was also no spatial or temporal significant 

differences detected for any of the shape indices (p>0.05). As the nested factor (haul) was 

found to be highly insignificant (p>0.25), data were pooled across haul to increase the power 

of the analysis. Again no significant difference could be detected. Data were then pooled 

across years to detect any spatial differences and no significant differences were seen in any 

of the indices (p>0.05). When data were pooled across ICES areas, a significant temporal 

difference was seen in roundness (p<0.01) and ellipticity (p< 0.01). A Tukey pair wise 

comparison was used to detect where the differences occurred. Fish from 1990 had less 

rounded and less elliptical otoliths then fish from 1997 and 2001 when one-way ANOVA was 

conducted (Table 3.2).

Table 3.2: Table showing results o f a series o f one-way-ANOVA’s on shape indices at year 1 (data
pooled across ICES areas)

Indices DF SS MS F P rJ

Ellipticity 2 0.03 0.01 7.20 <0.01 9.83%

Roundness 2 0.04 0.02 5.22 0.01 7.33%

Retangularity 2 <0.01 <0.01 1.24 0.29 1.84%

Circularity 2 0.30 0.15 2.08 0.13 3.06%

Whole otolith shape

There was also no spatial or temporal significant differences detected for any of the shape 

indices (p>0.05). Data were pooled across years and one-way ANOVA’s conducted to detect 

spatial differences. Circularity showed a significant difference between ICES areas (Table
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3.3). A Tukey pairwise test revealed that plaice otoliths were more circular in fish from ICES 

IVb compared to fish from ICES Vila and Vllb.

Table 3.3: Table showing results o f a series o f one-way-ANOVA’s on shape indices at year 4 (data
pooled across years)

Indices DF SS MS F P r*

Ellipticity 2 <0.01 <0.01 1.45 0.24 2.16%

Roundness 2 0.01 <0.01 2.49 0.09 3.64%

Retangularity 2 <0.01 <0.01 0.27 0.78 0.39%

Circularity 2 <0.01 <0.01 10.04 <0.01 13.21%

Data were pooled across ICES areas to detect temporal differences and one-way ANOVA’s 

carried out. A significant difference occurred with ellipticity (Table 3.4). A Tukey pairwise 

comparison revealed fish from year class 1990 had less elliptical otoliths then 1997 and 2001.

Table 3.4: Table showing results o f a series o f one-way-ANOVA’s on shape indices at year 4 with
pooled ICES areas

Indices DF SS MS F P rJ

Ellipticity 2 0.01 0.01 5.30 0.01 7.44%

Roundness 2 0.01 0.01 2.69 0.07 3.92%

Retangularity 2 0.01 0.00 2.49 0.06 4.22%

Circularity 2 0.00 0.00 1.29 0.28 1.92%

ANCOVA showed an interaction between ICES area and fish length (p=0.015). Post hoc 

analysis revealed that fish from ICES IVb had significantly smaller otoliths at a given length 

then the other ICES areas (Fig 3.3). The rate at which otolith size changes with respect to fish 

size varies between areas.
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Fig: 3.3 Scatterplot showing total otolith length vs. plaice length in three ICES areas after year
four

3.5 Discussion

This study has shown that otolith shape indices are not suitable for discriminating between 

plaice from the three ICES areas studied. Analysis of the whole otolith shape shows a small 

degree of variation in circularity in fish from the North Sea but this is only when the data 

were pooled across the three year classes. Thus, otolith shape alone would not be enough to 

distinguish between fish from different populations at the individual level.

There was also no regional variation in the juvenile otolith shape. Because it is unlikely that 

all fish were from the same nursery area, the most likely reason that no variation was seen is 

that there isn’t a strong enough regional difference in the environment to produce distinct 

juvenile signatures. It is also possible that large scale regional differences are overridden by 

small scale local differences. With the influence of the environment being paramount, the
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utility of otolith shape for stock identification would depend on the relative consistency of the 

environment in a given stock area (Campana et al. 1993).

There was some temporal variation in juvenile otolith shape and whole otolith shape when 

data were pooled over the three ICES areas. These temporal differences are as big as or bigger 

than regional differences. The variations detected may be due to interannual variations in 

environmental conditions such as temperature. Campana et al. (1993) suggested that 

environmental effects are influential determinants of otolith shape because otolith shape 

changes in response to different growth rates. The study also stated that otolith shape will not 

differentiate well among populations with similar growth rates.

The interaction between ICES area and fish length was significant, showing that the rate at 

which otolith size changes with respect to fish size varies between areas. This shows that 

these fish are growing differently and are probably exposed to different environments on 

average over the life cycle. However, these differences do not have a great impact on otolith 

shape. This emphasises that for plaice, otolith shape analysis does not have high 

discriminatory power.

Other studies have been able to distinguish between fish stocks using otolith shape. Burke et 

al. (2008) found that otolith shape could distinguish between migrant and resident 

components of Celtic Sea winter-spawned herring. A 97% classification success was achieved 

based on the shape of the 1st winter ring. In Mexico, De Vries et al. (2002) found it possible to 

distinguish individual king mackerel from eastern Gulf and Atlantic stocks and to estimate 

stock composition in the mixed-stock fishery using otolith shape analysis.

In general, demersal fish live a more sedentary life than pelagic fish. Because of this mode of 

life, otoliths in demersal fish have a less complex shape (Popper et al. 2005). Plaice otoliths 

are a simple ellipsoid shape when compared to the otoliths of other fish such as herring and
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mackerel, which are more complex. Plaice otoliths are rounder in form and lack specific 

morphological characteristics. Perhaps othliths with more complex shapes (e.g. herring) show 

more shape variability in response to environmental factors than relatively featureless otoliths 

(e.g. plaice). However, studies to distinguish cod stocks by otolith shape were successful, 

even though cod otoliths are also quite simple in shape (Campana et al. 1993). But it also 

should be noted that growth rate differed significantly between the different cod stocks. A 

study conducted by Stransky et al. (2005) found an increasing shape complexity and variation 

with larger fish or otolith size. Perhaps older fish with larger fish otoliths would have allowed 

discrimination between stocks in the current study.

Another factor to consider is the degree of stock separation needed to distinguish between 

populations using otolith shape. Do stocks that can be distinguished on the basis of otolith 

shape tend to come from more geographically separated and environmentally distinct areas? 

Friedland et al. (1994) were able to discriminate between North American and European 

salmon using otolith morphometries but otolith shape appeared to be a weak tool for 

identification of the country of origin. Turan (2000) observed a direct relationship between 

the extent of phenotypic divergence and the geographical separation of populations of 

Northeast Atlantic herring. The study distinguished between Icelandic, Baltic and 

Trondheimsfjord stocks but was unable to separate out North Sea and Celtic Sea stocks. 

Perhaps the plaice stocks in the current study did not have sufficient geographical separation 

to produce distinct otolith shape characteristics.

One method that could potentially be used to improve the discrimination of plaice form 

different areas based on otolith shape is fourier analysis of otolith outlines. This method is 

useful for describing more subtle differences in shape as higher order harmonics can be used 

to measure increasingly complex shapes.
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3.6 Conclusion

The results of this study indicate that otolith shape analysis is not a good technique for 

recognizing stock structure in plaice over the spatial scales involved. It seems in instances 

where growth rates are similar among groups of fish, even if the groups are widely separated 

geographically, the prospect for using otolith shape as a stock discriminator is not promising. 

Further research should focus on other phenotypic markers. Tuset et al. (2006) used otolith 

weight to explain intra-species variation and found that classification percentage increased 

significantly when otolith weight was considered. Perhaps this factor should be combined 

with fourier analysis in further studies. Petursdottir et al. (2006) detected significant 

differences in otolith shape between adjacent spawning groups of Icelandic cod. The study 

showed , when using otolith morphology alone, using shape variables rectangularity and 

circularity , no significant difference between year class and area were detected However, 

when combined with otolith size variables (length, weight, width) differences were detected. 

Future studies should include otolith size data in the analysis.
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Inter-reader precision and bias of daily otolith increments in a Galway-Mayo Institute 

of Technology laboratory

4.1 Abstract

The scientific and stock assessment literature contains more incorrect age data than people 

realise. The major cause of these errors is a lack of adequate quality control. This latter 

process normally involves age validation, tests for bias and measures of precision.

This study examines precision of daily increment counts in plaice otoliths and sets out to 

determine if inter-reader precision varies between reader combinations and between otolith 

regions.

Otoliths used in this investigation were from 0+ plaice caught in Skerries Co. Dublin and 

Galway Bay, Ireland in 2007. Three readers within the fisheries laboratory at the Galway- 

Mayo Institute of Technology were assigned the letters A, B and C. Otoliths were randomly 

split into three groups. Each reader was given two groups of otoliths to age.

Counts of daily rings were compared between readers using paired t-tests to determine if 

readings were affected by systematic bias and differences in precision between readers was 

measured using coefficients of variation (CV).

There was a high level of systematic bias with certain reader combinations. The larval part of 

the otolith showed less bias when compared to the metamorphic and the juvenile portions. 

Results also confirmed that inter-reader precision varied between the portions of the otolith 

being read. The lowest CV for all readers was for the larval stage. The presence of bias will 

confound the interpretation of most measures of precision. Before any study is conducted in a 

laboratory involving ageing fish, inter-reader calibration should be carried out. Reported 

temporal or spatial variation in growth and larval duration in a fish species may have been due 

to inter-reader differences rather than reflect actual differences between the populations 

analysed.
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4.2 Introduction

Age information forms the basis for calculations of growth rate, mortality rate and 

productivity, ranking it among the most influential of biological variables (Campana 2001). 

However, the process of ageing fish using otoliths can have an element of subjectivity. This 

subjectivity can occur in the preparation of the otolith or in the reading of them. Stock studies 

put much effort in discerning differences between otoliths of different fish stocks but very 

little to resolve the uncertainties of age determination.

Quality control is normally equated with age validation, which can be expensive and time 

consuming. However, it is a very important factor in ageing projects and should be 

incorporated into them. A study conducted by Beamish et al. (1983) noted that only 66% of 

500 publications reporting fish age estimates attempted to corroborate the accuracy of their 

ages. A mere 3.4% were successful in doing so. A good quality control programme should 

also test for reader bias and measure precision among age readers.

Other methods of age validation include a statistical program for age validation. Okamura et 

al. (2009) produced a statistical programme for validating annual growth band formation 

based on edge analysis. Marginal increment analysis is another validation method used. If a 

growth increment is formed on a daily cycle, the average state of completion of the outermost 

increment should display a daily sinusoidal cycle when plotted against time of day. However, 

this is a very hard validation method due to technical difficulties associated with viewing a 

partial increment affected by variable light refraction (marinebiodiversity.ca/otolith.htm).

The quality of age estimates can be assessed using two measures: age accuracy, the closeness 

of age estimation to true age, and age precision the closeness of repeated measurements from 

the same reader (Campana et al. 1995). To determine age accuracy, fish of a known age 

would be required; however, reference collections are not available in many ageing studies.
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I

Measures of precision are valuable for assessing the relative ease of determining the age of an 

otolith or comparing the skill level of one age reader relative to that of others (Campana 

2001). Kimura et al. (1979) measured the precision between age readers by random effects 

analysis of variance. Beamish et al. (1981) proposed that an index of “average percent error” 

(APE) be used. However APE can vary widely among different species and age groups within 

species and is therefore not widely used. The most commonly used measure of ageing 

precision now is coefficient of variation (CV). It is a statistical measure of the dispersion of 

data points in a data series around the mean. The CV is statistically more rigorous and more 

flexible than other measures (Chang 1982). This is the method used in the current study.

Different age readers can interpret a given otolith in different ways. If the difference is 

consistent, there is a bias. This is when one reader is consistently assigning a higher or lower 

age than the other for one or more age groups. Bias may also occur within estimates from the 

same reader over a period of time. The presence of bias will confound the interpretation of 

most measures of precision. Therefore, bias should always be addressed before precision 

(Campana et al. 1995).

Repeated age determinations of a sample of fish are conducted for one of two reasons: to 

determine if there are systematic differences in age estimation between one or more age- 

readers, methodologies or laboratories or to estimate the reproducibility of age estimates. 

Campana et al. (1995) recommended a combination of a CV to measure precision and an age 

bias plot to assess the consistency of repeated age determinations.

This study sets out to determine if precision varies between reader combinations and between 

otolith regions for plaice. Readers were researchers at the Commercial Fisheries Research 

laboratory at the Galway-Mayo Institute of Technology who were experienced in the 

techniques involved. Two of the readers were students and the other was a lecturer and project
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supervisor. Systematic bias between readers and otolith regions was also investigated. 

Validation of age estimates was not attempted as the fish studied are not of a known age.

4.3 Materials and methods

Otolith preparation

Otoliths used in this investigation were from 0+ plaice caught in Skerries Co. Dublin and 

Galway Bay, Ireland in 2007. Fish were hand netted at low tide on sandy beaches. They were 

bagged and taken back to the lab where they were frozen. The otoliths were removed from the 

juvenile fish using two dissecting pins under an Olympus SZX 7 stereoscopic microscope. 

When removed they were stored in “Sterilin” square otolith boxes prior to analysis.

To prepare the otolith for analysis each one was attached to a slide using crystal bond glue. 

Otoliths were polished using wet “Buehler” silicon carbide paper, grit 600|xm and 120()|im. 

The non- sulcus side (concave side) was polished first until the accessory primordium (AP) 

was visible using an Olympus CX21 compound microscope with an XI00 oil immersion 

objective lens and an overall magnification of X1000. After the first polishing each otolith 

was placed in the cap of a 0.5ml micro centrifuge tube and embedded in Buehler Epo-thin 

epoxy resin. The resin was allowed to set at room temperature over 24 hours. When the resin 

had set the otoliths were cut out of the caps using a scalpel and attached to a glass slide using 

crystal bond glue. Polishing was carried out on the sulcus side with the same grit paper until 

the microstructure was visible under the microscope.

Three readers within the lab were assigned the letters A, B and C. One reader was very 

experienced and had various published papers that involved reading otoliths. That reader 

trained the other two in otolith counting. Fifty seven otoliths were randomly split into three
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groups of 19 using random numbers table and assigned into groups 1, 2 or 3. Each reader was 

given two groups of otoliths (Table 4.1).

Table 4.1: Table showing combination which reader looked at which sample

Reader A Reader B Reader C

Sample 1 * *

Sample 2 * *

Sample 3 * *

Counting daily rings

Each reader counted the otolith daily increments using the same method. Counts were made 

within three portions of the otoliths: larval, metamorphic and juvenile. Counts within the 

juvenile and metamorphic regions were made under x 20 objective (with x 10 eyepiece) 

magnification. The larval region was counted using x 100 oil immersion objective.

Juvenile counts excluded the first complete ring beyond the last ‘peak’ of all accessory 

growth centres but included the edge of the otolith. Plaice were considered juvenile until 

sexual maturity. Where possible, counts were taken along an axis between 4 and 7 o’clock 

(i.e. anti-rostrum).

Metamorphic counts excluded the metamorphic ring but included the first complete ring 

beyond the peak of the accessory growth centre nearest the otolith edge. The metamorphic 

ring is defined as the last complete larval ring before increments are disrupted by accessory 

growth centres.

Increments within accessory growth centres are often indistinguishable, so counts were 

normally taken from areas between growth centres. Larval counts included the hatch ring and 

metamorphic ring. Images of the microstructure were taken using an Olympus camedia C-
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3040 zoom digital camera. They were processed using Image-Pro Plus image analysis 

package.

All measurements were transferred to Microsoft excel, MINITAB 15 and Systat version 11 

for subsequent data analysis.

Data analysis

Counts were compared between readers using paired t-tests to determine if readings were 

affected by systematic bias (consistent over or under estimation of age by one reader 

compared to a second reader). Prior to the analysis the difference between each reader’ s 

counts was tested for normality as the t-test operates under the assumption of normally 

distributed paired differences. Data which were not normal were analysed using the Wilcoxen 

test, which is a nonparametric equivalent of a 1-sample t-test. This test computes a Wilcoxen 

signed rank test on all pairs of variables of the differences between the two.

The coefficient of variation (CV) is a commonly used statistical index of precision. It is 

expressed as a ratio of the standard deviation to the mean. Here, CV’ s were computed to 

obtain measures of inter-reader precision for each reader combination, within each portion of 

the otolith (larval, metamorphic and juvenile). ANOVA was used to determine if precision 

varied significantly between the three reader combinations (AB, AC and BC) and between the 

three otolith regions. Where significant differences were detected, post-hoc analysis was 

carried out using Tukey pairwise comparisons.
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4.4 Results

Systematic bias

There was a high level of systematic bias with reader combinations AB and BC over the total 

otolith count (Table 4.2). Reader combination AC showed no bias. The paired t-test also 

showed significant bias when reading the different portions of the otolith.

Table 4.2: Table showing paired t-test results in otolith aging o f different reader combinations 
and different growth stages along with mean pairwise difference (mpwd)

Sample 1(A&B) Sample 2(B&C) Sample3(A&C)

p-value t/z-value mpwd p-value t/z-value mpwd p-value t/z-value mpwd

Larval counts 0.03 2.36 5.5 0.01 3.15 3.7 0.02 2.23 5.3

Metamorphic

counts
<0.05 No bias 4.2 0.01 5.05 3.6 <0.05 No bias 2.3

Juvenile counts <0.05 No bias 1.4 <0.05 No bias -1.4 0.01 2.26 14

Total otolith 

count
0.005 2.819 3.7 0.004 3.28 2 <0.05 No bias 3.7

Paired t-tests showed reader C had consistently higher counts then reader B (p = 0.004), up to 

two days mean differences (Fig 4.1).
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otolith increment counts

In the AB combination, reader A had consistently higher counts then B (P = 0.005), up to four 

days mean paired difference (Fig. 4.2).

otolith increment counts

Reader combination AC showed no systematic bias (P>0.05) (Fig.4.3). Variation between the 

readers was randomly distributed.
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Fig4.3: Graph showing systematic bias between reader combination AC when reading total
otolith increment counts

Paired t-tests, combining the data for the three reader combinations, showed significant bias 

in reading the different portions of the otolith (Table 4.3). The larval part of the otolith 

showed less bias when compared to the metamorphic (p=0.003) and the juvenile portions (p=

0.024). No significant systematic bias between metamorphic and juvenile regions was 

detected (p= 0.574) (Table 4.3). The level of systematic bias occurring in the current study 

depends on the section of the otolith being read.

Table 4.3: Results o f a t-test showing inter-reader bias between otolith regions

Otolith regions P- value
Larval < Metamorphic 0.003

Larval < Juvenile 0.024
Juvenile = Metamorphic 0.574

Precision

Inter-reader precision varies significantly between reader combinations (Table 4.4). To see if 

these results were driven by any large differences in mean lengths between reader 

combinations, an ANOVA test was conducted. Results found no significant difference in 

mean lengths of the fish between the three groups (p>0.05).
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Results also confirmed that inter-reader precision varies depending on the portion of the 

otolith being read. The lowest CV for all readers was the larval stage (Table 4.4), which had 

the least random error. The results indicate that ageing becomes more difficult as the fish gets 

older and observer effects become significant at the juvenile stage when the largest number of 

increments are encountered.

Table 4.4: Table showing mean CV  o f different reader combination and different growth stages

Samples
Mean larval

CV%
Mean

metamorphic
CV%

Mean 
juvenile CV

Total otolith 
countCV %

Mean reader 
C V %

AB 16.2 34.2 29.3 19.6 24.8

BC 9.7 21.3 8.4 8.9 12.1

AC 18.0 20.3 49.1 15.5 25.7

mean 14.6 25.3 28.9 14.7

ANOVA results showed no differences in inter-reader precision between the three reader 

combinations when the larval region was examined (p= 0.138). A high level of imprecision 

exists between all reader combinations for the metamorphic and juvenile otolith regions (CV= 

25.3% & 28.9%, respectively). When the metamorphic region was tested, no significant 

differences in precision occurred between reader combinations (P-0.141). However, when the 

juvenile portion was examined a significant difference occurred (P=0.023) Post-hoc analysis 

showed reader combination CB (CV 8.4%) had significantly less imprecision than 

combination CA (CV 49.1%) when reading the juvenile portion (Table 4.4).

4.5 Discussion

Systematic bias

The presence of bias will confound the interpretation of most measures of precision. 

Therefore, bias should always be addressed before precision. Results revealed that reader A
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and C over estimated counts in relation to reader B. Reader B had the most experience in 

reading otoliths and had also trained the other two readers. The fact that reader A and C 

showed similar bias could be owing to the fact that they are both less experienced then reader 

B. Inter-reader bias will have an effect on interpretation of age data in the lab as estimates of 

hatch date and growth rates will vary between readers and between labs. Differences in hatch 

dates and growth rates between studies/labs could be misinterpreted as regional or temporal 

variation and this highlights the need for inter-lab calibration. Errors in microstructure data 

due to reader interpretation could effect models of larval drift. Predictions of larvae 

metamorphosing early could lead a reader to determine poor recruitment due to juveniles not 

reaching suitable nursery grounds. Or detection of slow growth rates may lead a reader to 

conclude that a longer larval duration will lead to higher rates of predation in the water 

column and again reduced recruitment..

Systematic bias varied with the portion of the otolith being read. Less bias may exist because 

of an expectation of age at the larval stage. This part of the plaice life cycle has a set and 

expected duration. Greater bias was detected between readers when reading the metamorphic 

and juvenile stages of the otolith. However there is also some expectation of duration at the 

metamorphic stage. To resolve systematic bias, known age fish would have to be aged by all 

readers, repeatedly and come to some agreement on age. Perhaps further training is required 

by the readers.

Precision

Results from the current study shows that reader agreement varies between the different 

reader combinations and between otolith regions. CV was lowest for larval stages. This could 

be due to the readers having the most experience of aging the larval portion of the otolith. 

More imprecision occurred with the metamorphic and juvenile stages. This may indicate that 

the older the fish gets, the harder it is to age. Eklund et al. (2000) found variability was 

highest in older aged herring in a study looking at between-reader variation. However, they
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examined yearly, not daily growth. Also, identification of the 1st AP which marks the 

metamorphic stage can be difficult to identify and any mistakes here can affect subsequent 

ageing thereafter. This could account for the increase in imprecision for the other two otolith 

portions. Again, known age fish would help improve skill, accuracy and validate counts.

The above results may have implication for other studies conducted in the same laboratory. 

Results from previous studies may have reported different ages for populations of fish but this 

may have only been driven by intra-lab differences rather then actual biological differences. 

In chapter two, differences observed in the study are valid because only one reader was 

involved with ageing fish. However, when the results were compared with other studies, 

variation in growth and larval duration may have been due to inter-reader differences rather 

then biological differences. To resolve this, the size of the variation should be examined. Are 

the observed differences in growth and age bigger than inter-reader differences? In this case 

the reported differences in larval duration, which ranged from 7-15 days were much bigger 

then the inter-reader variability, which ranged from 3-5 days. Therefore environmental factors 

account for variation in larval duration.

Power et al. (2006) conducted a study to look at precision and bias of blue whiting age 

estimates within and between age readers. Within reader precision was found to be higher 

than between reader precision and an experience gradient became evident during the study. 

Stransky et al. (2005) looked at bias and precession of age readers investigating Atlantic 

redfish. Error in age determination was attributed to interpretation differences between 

readers and concluded that intercalibration between labs was needed to provide consistent 

input for stock assessment. While a limited number of studies examine precision of annual 

age estimates, there is very little formal evaluation of the precision of daily increment counts 

in the literature. The results of the present study also demonstrate that before any study is 

conducted in a lab involving fish ageing, especially where results from different readers are to 

be used, inter-reader calibration should be carried out. When reader agreement is reached,
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only then should otoliths be read for a study. Standardising ageing methodologies and 

investigating variability in age determinations between fisheries laboratories on a large scale 

also needs to be addressed. When imprecision and bias is sufficiently low between readers in 

a laboratory, intercalibration with other labs could begin. This would help reduce error in the 

overall assessment of age for fish, including plaice in Europe, making stock management 

more reliable. Finally, while the results in chapter 2 do not suffer from inter-reader errors, the 

possibility that systematic error could evolve over time cannot be excluded. This could be 

mitigated by ensuring that reading of otoliths was earned out randomly with respect to 

treatment.
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General Conclusion

Results revealed no temporal differences in larval duration or larval growth rate, over the 

three year classes examined, in ICES area IVb, Vila and Vllb, larval plaice development 

remained constant. Plaice from ICES area Vila and Vllb showed no significant variation in 

larval growth rate and larval duration. This indicates that the adult fish in these areas were 

exposed to similar environmental conditions as larvae (e.g. temperature and food abundance). 

Alternatively, larvae from the two areas do grow differently, but fish from the two areas mix 

as adults at feeding and spawning grounds, and so no spatial variation in larval microstructure 

is detectable in the adults. However, spatial differences were observed. Plaice from ICES IVb 

did have a reduced growth rate and larval duration when compared to the other two ICES 

areas. This infers that no mixing of adults from the North Sea and the other two ICES areas 

occurred. Therefore, the treatment of the North Sea stock as separate from the others would 

be an appropriate assumption in terms of management. The North Sea basin constitutes a 

random-mating unit with high gene flow among geographically recognizable stocks (Hoarau 

et al. 2002) and are assessed as one stock.

The shape of these otoliths were examined for temporal and spatial variations. It was hoped 

that otolith shape could distinguish between separate stocks of plaice. Results revealed otolith 

shape indices are not suitable for discriminating between plaice from the three ICES areas 

studied. Analysis of the whole otolith shape shows a small degree of variation in circularity in 

fish from the North Sea but this is only when the data was pooled across the three year 

classes. This would not be enough on its own to distinguish between fish from different 

populations at the individual level. There was some temporal variation in juvenile otolith 

shape and whole otolith shape when data was pooled over the three ICES areas. These 

temporal differences are as big as or bigger than regional differences.
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A major shift in otolith research and the use of age-based data has been a fundamental 

requirement to ensure quality control in ageing facilities and data processing (Begg et al. 

2005). Before any study is conducted in a lab involving fish ageing, inter-reader calibration 

should be carried out. When imprecision and bias is sufficiently low between readers in the 

lab, intercalibration with other labs could begin. This would help reduce error in the overall 

assessment of age for plaice in Europe, making stock management more reliable. When the 

results from chapter two were compared with other studies, variation in growth and larval 

duration may have been due to inter-reader differences rather then growth differences. To 

resole this, the size of the variation should be examined. Are the observed differences in 

growth and age bigger then inter-reader differences? In chapter four an intralab study 

involving three readers from GMIT found a high level of systematic bias. The presence of 

bias will confound the interpretation of most measures of precision. Before any study is 

conducted in a laboratory involving ageing fish, inter-reader calibration should be carried out.

Over the past decade there have been significant developments in fisheries science, based 

largely on the technological advances in extracting information from otoliths of fish 

(Campana 2005). There is no other biological structure that is more important to fishery 

science than otoliths because of the information they contain. This information includes age 

and fish growth, movement patterns and habitat interactions. Scientists must continue to 

develop the appropriate technologies to extract information from otoliths and interpret it 

accurately in terms of the biology of the fish and the environments they have experienced 

(Begg et al. 2005).

The importance of otoliths is their capability to provide stock identification which is vital for 

fish stock management: the overall goal. Begg et a/.(1999a) found that any disregard of stock 

structure can lead to dramatic changes in the biological attributes and productivity rates of a 

species. Archived otolith collections provide an easy and inexpensive source of information 

on various fish species. They also provide a long term data set that can help scientists to
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distinguish informative patterns from short-term fluctuations. These otolith collections may 

help to determine stock structure within the ICES areas and ensure the sustainable 

management of fisheries.
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