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Dynamics and impacts of changing ref-

erence points with a focus on recruit-

ment productivity

Paula Silvar-Viladomiu

Abstract

Managing fish stocks in the context of changing ecosystems and productivity is an

ongoing challenge for fisheries science. Reference points are key tools for enabling

effective management, defining management goals, guiding management actions

and providing advice on sustainable catches. Measuring productivity is crucial for

estimating reference points. For many fish stocks, there is evidence that productivity

has changed over time in a non-stationary manner. While understanding why these

changes have occurred is important, in the more immediate term, understanding

how productivity is changing and accounting for those changes is crucial for tactical

management.

The objectives of this thesis were to (i) explore reference point estimation and

retrospective changes, (ii) highlight a method developed by Randall Peterman

and colleagues (Peterman’s Productivity Method) as a method to track temporal

changes in recruitment productivity of fish stocks, and (iii) apply this method to

the Celtic Seas ecoregion.

Chapter 1 provides context into the evolution of fisheries science historical back-

ground, overviews reference point evolution and paradigms, and emphasizes the

importance of reference points for fisheries management. Challenges posed by

ecosystem concerns in fisheries management and reference points in dynamic eco-

systems are discussed. Implications of dynamic productivity of fish stocks are also

considered.

Chapter 2 provides an empirical review of the reference points used by the Inter-

national Council for the Exploration of the Sea (ICES) to base advice on fishing

opportunities. The ICES reference point framework and its historical evolution are

reviewed in detail. The extent to which reference point estimation is consistent

with the ICES guidelines is evaluated. Chapter 3 studies retrospective changes in

reference points and implications for fisheries sustainability in the ICES region.

Changes in stock status are decomposed and quantified to distinguish the effect of

monitoring from changes in reference points. Frequent changes in reference points

xii



are found with significant impacts on sustainability status, and reasons for change

in reference points are researched.

Chapter 4 explores the status quo of reference points and highlights a method

to estimate dynamic reference points to adapt single-species reference points to

changing ecosystem concerns. This chapter provides a comprehensive review of

the estimation of reference points in both single-species and ecosystem contexts.

Current reference points ignore persistent dynamic productivity change by assuming

that the SR relationship is stationary and with constant recruitment parameters

over selected time periods. The method presented, Peterman’s Productivity Method

(PPM), is capable of tracking temporal dynamics of recruitment productivity via

time-varying stock-recruitment parameters. Adding the temporal dimension of

changes in productivity when estimating reference points can broadly account

for non-stationary ecosystem considerations in fisheries management advice. In

Chapter 5, PPM is applied to analyze stochastic changes in recruitment productivity

for Celtic Seas ecoregion stocks and common temporal productivity trends are

synthesized. Many stocks in the Celtic Seas ecoregion display non-stationary

recruitment productivity with diverse temporal trends.

Chapter 6 elaborates on the importance of research synthesis such as the ones

conducted in this thesis. Details of current reference points used in the ICES

framework are discussed along with implications and causes of reference point

changes over time. Further elaboration on Peterman’s Productivity Method as a link

to non-stationary ecosystem concerns is provided. Dynamics in productivity of the

Celtic Seas ecoregion stocks and implications for management advice are discussed.

Recommendations for future research on dynamic recruitment productivity are

given to keep developing the method and the science to reconcile reference points

and ecosystem concerns.

This thesis provides a substantial contribution to current research on the adaptation

of reference points and fisheries advice to changing ecosystems by reviewing and

synthesising ICES reference point estimation, analysing retrospective changes to

reference points, demonstrating how Peterman’s Productivity Method can account

for changes in productivity, and applying this approach to stocks in the Celtic Seas

ecoregion.
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Chapter 1

General thesis introduction
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1.1 Introduction

1.1.1 Historical background on the evolution of fisheries

science

Fluctuations in the abundance of fish populations and their causes have been

studied since the middle of the 1880s (Gulland 1988). In 1884 a controversy

emerged on whether fish populations were inexhausted or whether they were

affected and limited by harvesting (see Huxley 1884 speech). Towards the

end of the 19th century, scientists began finding evidence that fisheries were

reduced and fished populations were declining, which prompted concerns about

overfishing (Garstang 1900). The International Council of the Exploration of

the Sea (ICES), was established in 1902 and formed an overfishing committee

during its first meetings to study the decrease of fish and evidence of overfishing.

As commercial fishing was developing, the study of fish population dynamics,

status, and causes of change became critical; the need to manage fisheries and

regulate fishing was realised. This induced the development of data collection

and analysis methods for stock assessment (reviewed in Gulland 1988). In

the 1910s, Fedor Baranov developed a theory for cohort progression where

fishing and natural mortality acted continuously. The resulting catch equation

showed how catch was a function of fishing and natural mortality. This theory

considered that the reduction in fish abundance is related to catches (widely

used in fisheries modelling).

ICES played a major role in establishing the scientific basis for fisheries models

(Quinn 2003). ICES meetings encouraged important developments in data

collection systems and scientific stock studies (reviewed in Gulland 1988;

Quinn 2003). Hjort emphasized the importance of recruitment (early life

history of fish populations) and recognized recruitment variability as being

a prime factor in determining the size of fish populations (Hjort 1914). In

1931, Russel developed a simple general theory for assessing the status of

fish populations (Russell 1931). Russel identified factors in absolute rates

influencing populations weight changes: the increase due to the recruitment

rate, the increase due to the growth of fish, the decrease because of natural

mortality, and the decrease because of the catch rate.

Hjort (1933) formulated the theory that a fishery would have an optimum

yield derived from the equilibrium conditions of a population model. Hjort

showed that the equilibrium catch would be for levels of fishing effort and how

2



this could be maximised. Later known as maximum sustainable yield (MSY).

During the World Wars, it was demonstrated how important fishing was in

depleting fish populations; with the cessation of fishing, it was observed that

stock’s abundance increased (Smith 1994). Quantitative fisheries models kept

developing and advancing making it possible to estimate MSY, e.g. surplus

production models (Schaefer 1954), yield-per-recruit theory (Beverton and

Holt 1957), and the concept was consolidated. Cushing (1973) differentiated

between “growth overfishing”, which is catch that exceeds MSY at a given

effort level, and “recruitment overfishing”, which is the catch that would

reduce recruitment.

The concept of MSY gained a lot of popularity around the 1950s and it was

solidified. Subsequently, MSY was criticised from multiple angles (Larkin

1977). Larkin (1977) published the “epitaph” to MSY elaborating on his con-

cerns about: species interactions, sub-populations, mixed fisheries, estimation

problems, and the appropriateness of MSY as a management goal. However,

as explained in the next section, a new interpretation of MSY made it the

dominant fisheries management strategy (Mace 2001).

1.1.2 Reference point evolution and paradigms

Scientific fisheries management advice focuses on promoting sustainability

and avoiding overfishing of fish stocks (Caddy and Mahone 1995). Reference

points play a key role in this process. Caddy and Mahone (1995) reviewed

the development and diversity of reference points and provided an overview of

their formulation, technical basis, utility, and limitations. Reference points

capture the management objectives of the fishery and depending on the

interpretation of these objectives, appropriate technical basis are defined for

the reference points. Some initial interpretations to prevent overfishing were

to avoid recruitment overfishing (Mace 2001; Sissenwine and Shepherd 1987).

The development of the precautionary approach to fisheries management to

ensure resource conservation was crucial in the evolution of reference points

(reviewed in Restrepo et al. 1999). The precautionary approach is a way

of thinking about fisheries and making management decisions that can help

prevent overfishing and rebuild depleted stocks. Restrepo et al. (1999) defined

that “In fisheries, the precautionary approach is about applying judicious

and responsible fisheries management practices, based on sound scientific

research and analysis proactively (to avoid or reverse overexploitation) rather

3



than reactively (once all doubt has been removed and the resource is severely

overexploited), to ensure the sustainability of fisheries resources and associated

ecosystem for the benefit of future as well as current generations”. Recognition

of uncertainties in fisheries science and challenges in fisheries management

also led to the stipulation that the precautionary approach should be applied

to management (reviewed in Hilborn et al. 2001). The evolution of the

precautionary approach and the awareness of the ecosystem effects of fishing,

resulted in a new interpretation of MSY (reviewed in Mace 2001). This new

interpretation consisted of a fundamental change of MSY from a target catch

state towards a limit fishing mortality rate at MSY (Mace 2001).

In 1995, after a scientific and technical meeting in Rome, the Food and

Agriculture Organization (FAO) of the United Nations published a code

of conduct for responsible fisheries that set out principles and international

standards of behaviour for responsible practices in view of ensuring the effective

conservation, management and development of living aquatic resources, with

due respect for the ecosystem and biodiversity (FAO 1995a). The code

recognized that long-term sustainable use of fisheries resources is the overriding

objective of conservation and management. It advocated for the adoption

of appropriate management measures, based on the best scientific evidence

available, designed to maintain or restore stocks at levels capable of producing

maximum sustainable yield. The code recommended the application of the

precautionary approach and stressed the need for research on the effect of

climate or environmental change on fish stocks and ecosystems. The FAO

published Technical Guidelines on the precautionary approach (FAO 1995b)

focusing on definitions of overfishing incorporating target and limit reference

points, decision rules to prevent overfishing and promote stock rebuilding

and incorporation of uncertainty by using a risk-averse approach. The UN

Fish Stock Agreement contains guidelines for implementing the precautionary

approach including indications to specify precautionary reference points and

management strategies (UN 1995).

In 2002, the Johannesburg Plan of Implementation of the World Summit

on Sustainable Development provided the fundamental principles and the

programme of action for achieving sustainable development. The plan called

for an ecosystem approach and rebuilding of fisheries to MSY, promoting

science-based decision-making and reaffirming the precautionary approach

(UN 2002). In addition to international agreements, each region has fisheries

policies that set the context for fisheries advice (e.g. EC 2013; MSA 2007).
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Typically, the precautionary approach and MSY are common paradigms

underlying the estimation of reference points globally (Mace 2001; Hilborn

2020; Marchal et al. 2016; Silvar-Viladomiu et al. 2022a).

In Europe, ICES evolved to have a major responsibility in the provision of

scientific advice to various commissions such as the European Commission

and the North-East Atlantic Fisheries Commission. Advice agencies, such

as ICES, collaborate to provide stock assessments and estimate reference

points in accordance with the policy of the region or the country (ICES

2019a). Despite general agreement regarding the conceptual bases behind

reference points, the interpretation, technical definition, and use are complex

and vary between regions (Hilborn 2020; Ricard et al. 2012). ICES began

developing reference points for advice focusing on maintaining stocks within

safe limits, avoiding reduction of average recruitment in relation to biomass

(ICES 2003a). Implementation of MSY-based approaches began developing in

2007 during the ICES Workshop on Limit and Target Reference Points (ICES

2007). Consequently, general guidelines and tools were developed for reference

point estimation (reviewed in Silvar-Viladomiu et al. 2022a). Currently, ICES

gives advice based on MSY reference points integrating the precautionary

approach (ICES 2021c; ICES 2021a).

1.1.3 Role and importance of reference points for fish-

eries management

Reference points have proven crucial for the implementation of effective

management by enabling the establishment of a set of rules to control fishing

pressure (Caddy and Mahone 1995). These reference points are key for

tactical management because they represent targets and thresholds by which

the biological state of the stock can be evaluated and the allowable catch

can be advised (Gabriel and Mace 1999). Reference points are defined based

on the conceptual criteria that embody the management objectives for the

fishery (e.g. MSY and avoiding overfishing). A target reference point indicates

the level of fishing or biomass which is considered to be desirable and at

which the management action should aim (Caddy and Mahone 1995). A

limit reference point indicates a state of a fishery or stock which is considered

undesirable and which management action should avoid (Caddy and Mahone

1995). These reference points define levels of a stock specifying a predefined

course of management actions depending on the status of the stock, i.e. Harvest
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Control Rules (HCR; Kvamsdal et al. 2016; Getz and Haight 1989). HCRs

are considered a key component of the precautionary approach to fisheries

management (Restrepo et al. 1999; FAO 1995b). A HCR provides the scientific

basis for the tactics employed in a fishery and depends on explicit or perceived

management objectives on which to base scientific management (Punt 2010).

There are different types but, in general, they control catch or fishing mortality

to permit the achievement of management goals.

Although many stocks were overfished (Ludwig et al. 1993), the state of

the world’s fisheries has been improving with reductions in fishing mortality

rate of many assessed stocks achieved through management (Worm et al.

2009; Fernandes and Cook 2013; Cardinale et al. 2013; Hilborn et al. 2020).

Overfishing is a major threat to marine ecosystems because it can cause

stock collapses, reduce biodiversity and alter ecosystem functions (Worm et al.

2006). Reduction in fishing mortality has been shown to help recover stock

biomass (Cardinale et al. 2013; Fernandes and Cook 2013; Zimmermann and

Werner 2019; Hilborn et al. 2020). Reference points can trigger management

actions (by measuring the status of fish stocks, and defining management goals)

contributing to the reduction of the overall fishing mortality rate, which helps

to ensure the conservation of marine ecosystems (Mace 2001; Hilborn et al.

2020). Cardinale et al. (2013) showed that the exploitation status for many

EU stocks had greatly improved during the last decade due to management

(i.e. fishing mortality has been reduced) and was close to the fishing mortality

rate that will deliver MSY. Fernandes and Cook (2013) demonstrated that

these reductions in fishing mortality were associated with declines in fishing

effort. Globally, Hilborn et al. (2020) showed that the recovery in abundance

trends was correlated with changes in fishing pressure. Their study indicates

that overall, in assessed areas, stock abundance was currently above the level

that would produce MSY. Zimmermann and Werner (2019) also demonstrated

the importance of the reproductive output for the stock’s recovery and the

positive correlation between recruitment and changes in spawning biomass.

1.1.4 Ecosystem concerns in fisheries management

A major criticism of MSY is that it does not take into account species and

ecosystem interactions (Larkin 1977; Vert-pre et al. 2013; May et al. 1979).

The need for Ecosystem-Based Fisheries Management (EBFM) has been long

globally accepted and is included in most fisheries policies (FAO 2003; MSA
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2007; EC 2013). In recent decades, fisheries science and management have

been evolving towards EBFM. Taking an EBFM requires a holistic approach

to fisheries management, which takes into account species interactions and

environmental system-wide effects, considering humans as an integral part of

the ecosystem (Fogarty 2014). The implementation and operationalization of

the EBFM face several challenges (see Cowan et al. 2012; Dolan et al. 2016),

for example, difficulty in providing operational guidelines for defining and

attaining ecosystem-based objectives. Ecosystem approach methods can be

very data-demanding and highly complex (Collie et al. 2016). Significant effort

has gone into developing models and remarkable advances have been made

(see Geary et al. 2020). These studies greatly improved our understanding

of the effects of fisheries and other anthropogenic impacts on ecosystems,

and emphasized the importance of ecosystem biological and environmental

interactions in fish population dynamics (e.g. Collie and Gislason 2001;

Trijoulet et al. 2020; Ottersen et al. 2001; Gaines et al. 2018). Important

advances have been made towards the inclusion in decision-making frameworks

of ecosystem models (e.g. Bentley et al. 2021; Chagaris et al. 2020; Lucey

et al. 2021), multispecies models (e.g. Plagányi et al. 2014; Lewy and Vinther

2004), and links with environmental and ecological drivers (e.g. Crone et al.

2019). However, in terms of tactical management for fisheries advice, the use

of these tools and the inclusion of explicit environmental and biological drivers

affecting fish population dynamics is still relatively limited (Skern-Mauritzen

et al. 2016).

To operationalize EBFM the use of single-species and optimum yield frame-

works has been proposed (Pauly and Froese 2021; Patrick and Link 2015).

Single-species frameworks are not incompatible with EBFM, therefore these

approaches can be reconciled. Single-species stock assessment frameworks are

more attainable than most ecosystem approach methods as they are less data-

demanding (Pauly and Froese 2021). However, as suggested by Sissenwine

et al. (2014), current frameworks for stock advice need more flexibility to in-

clude more scientific uncertainty and recognize the dynamics of the ecosystem

(e.g. deal with technical and biological interactions in multispecies fisheries

and ecosystems). In the EU, reference ranges have been developed to give

flexibility around fishing mortality at MSY in mixed fisheries, where several

stocks and fleets share the same space (i.e. technical interactions) (Rindorf

et al. 2017a). In mixed fisheries contexts, major advances have been made

in developing simulation frameworks to optimising yields (e.g. Garcia et al.
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2020). Additionally, a method has been proposed that, using the outputs of

an existing ecosystem model for the region, can scale fishing mortality within

the reference ranges giving the ecosystem conditions Bentley et al. (2021).

Nevertheless, challenges remain on how to align sustainable yield with includ-

ing ecosystem considerations. Overall, for both single-species and EBFM, the

levels of fishing must be aligned with the stock productivity (Mace 2001).

Therefore, ensuring sustainability of the stock and the ecosystem requires

consideration of the ecosystem impacts on fish productivity (King et al. 2015;

Clausen et al. 2018).

1.1.5 Reference points and dynamic ecosystems

Initial deterministic static interpretations to estimate reference points have

evolved to include variability of productivity around a long-term equilibrium

(Rindorf et al. 2017b; Silvar-Viladomiu et al. 2022b). The estimation of MSY

using historical data typically assumes that past conditions have a similar

probability of occurring in the future (Caddy and Mahone 1995). In 1996,

Caddy challenged the equilibrium paradigm arguing that steady state in

fisheries is relatively rare (Caddy 1996). Despite this, fisheries advice is often

based on an equilibrium paradigm in terms of productivity; most calculations

relative to reference points are long-term equilibrium yields and stock sizes

(Hilborn 2002). Recruitment productivity, which measures the renewal of

a population with the relation between spawner abundance and subsequent

recruitment (i.e. stock-recruitment relationship), is assumed stationary in

the estimation of reference points, i.e. a time-independent relationship with

constant parameters in time (Hilborn and Walters 1992).

Ecosystems are non-stationary; ecosystem changes are related to changes in

environmental variability, food-web interactions, fishing pressure (especially

overfishing), and climate change (reviewed in Fogarty and Collie 2020). The

FAO fish stock assessment manual established that reference points must be

regularly updated, taking into consideration possible changes in the biological

parameters or exploitation patterns (FAO 2003). This point was reiterated

by ICES (ICES 2021a) in light of the dynamic nature of marine ecosystems.

However, a protocol for revising the reference points in response to changing

ecosystem or fisheries conditions is generally missing (Sissenwine et al. 2014).

Regime shifts are abrupt changes in the environment or the ecosystem state

which can cause changes in fish productivity (King et al. 2015; Vert-pre
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et al. 2013). In the revision and estimation of reference points, a common

adaptation when regime shifts are detected is to reduce the data to the most

recent productivity regime (Punt et al. 2014a). However, this approach has

disadvantages such as losing information in the data (Silvar-Viladomiu et al.

2022b; Collie et al. 2021). In a review of management strategies that take

into account climate and environmental variation Punt et al. (2014a) found

that explicitly identifying and implementing mechanisms did not improve

the performance of the management strategy. Of the case studies, where

management has been adapted to productivity and regime shifts, reviewed

by King et al. (2015), the operationalization of the relationship between

environmental drivers and productivity was often unsuccessful mainly because

of uncertainty in process understanding. In addition, accounting for regime

shifts was shown challenging due to, for example, recruitment time series

being shorter than the span of the regime shift and time series having high

variability hindering the detection of the regime shift.

1.1.6 Dynamic productivity of fish stocks

Taking into account the influences of ecosystem changes in stock population

dynamics and productivity in management advice is important because it could

cause risk of failing to prevent overfishing (Lindegren et al. 2009; Pershing

et al. 2015). Climate change will impact ecosystems and influence changes

in productivity and reference points (Free et al. 2019; Gaines et al. 2018;

Ianelli et al. 2011). At a global level, there has been evidence of changes in

productivity in a non-stationary manner (Vert-pre et al. 2013; Britten et al.

2017). An increasing number of studies found evidence of temporal changes

in recruitment productivity of many stocks (Dorner et al. 2008; Minto et al.

2014; Britten et al. 2017; Tableau et al. 2019). This evidence poses challenges

for defining reference points for management. A key effort for implementing

EBFM in dynamic ecosystems lies in the detection of changes in population

productivity and their causes or drivers: how is fish productivity changing

and why?

The quest to understand why productivity changes is important for manage-

ment. Identifying the drivers and the explicit mechanisms of the processes

that change the productivity of fish stocks is crucial to inform predictions.

However, due to the existence of many direct and indirect processes (Lindmark

et al. 2022), complex dynamics can arise (Sugihara et al. 2012). Finding strong
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links between drivers and productivity changes is challenging (Vert-pre et al.

2013; Tableau et al. 2019). One critical complication for the implementation

of mechanistic links is that the relationships can change over time (Myers

1998; Ottersen et al. 2013; Litzow et al. 2020). These issues translate to the

difficult implementation of these relationships in management.

It is now evident that the lack of consideration of the underlying ecosystem’s

effects on productivity in the estimation of reference points can cause bias in

management (Zhang et al. 2021a; Holt and Michielsens 2020; Clausen et al.

2018). Understanding how population productivity varies with abundance has

been considered crucial in traditional fisheries management (Quinn and Deriso

1999). This thesis posits that in the context of changing ecosystems it is also

crucial to understand how productivity varies over time. And this time-varying

productivity should be accounted for in the estimation of reference points for

fisheries management.

Environmental and stock structure changes can cause productivity parameters

to change (Walters 1987). Zeng et al. (1998) demonstrated that time-varying

parameter techniques offer an advance for modelling population dynamics in

changing environments because population dynamics processes may operate

at different times and under different density ranges. Rose (2004) showed

that overfishing, abundance and climate effects are complex and reflected in

population parameters not being constant over time. Randall Peterman and

his group developed a state-space modelling approach to estimate parameters

of the stock-recruitment relationship that vary over time which enabled track-

ing temporal dynamics of recruitment productivity (Peterman et al. 2000;

Peterman et al. 2003). This approach has great potential and flexibility

for taking into account underlying ecosystem changes in the modelling of

recruitment productivity and estimation of reference points (Minto et al. 2014;

Silvar-Viladomiu et al. 2022b).

1.2 Overview and aims of the thesis

This thesis addresses a crucial gap for fisheries management advice in light

of ecosystem dynamics by (i) reviewing reference points estimation and ret-

rospective changes, (ii) highlighting Peterman’s Productivity Method as a

method to track temporal changes in recruitment productivity, and (iii) apply-

ing this method to the Celtic Seas ecoregion. Research presented in Chapters
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2 and 3 throw light onto important concerns on reference point estimation and

retrospective changes. Reference points include precautionary, stochastic and

uncertainty elements, but stationarity is assumed. Reference points change

over time and these retrospective changes have significant implications for sus-

tainability status. Chapter 4 proposes a method developed by Peterman and

colleagues to link single-species advice and ecosystem concerns. Peterman’s

Productivity Method can track temporal changes in recruitment productiv-

ity, and the application of this method and estimation of dynamic reference

points would give flexibility to the advice framework needed to account for

non-stationarity ecosystem concerns. Chapter 5 applies the method to model

dynamic recruitment productivity of stocks in the Celtic seas ecoregion.

This thesis provides a substantial contribution to current research on the

adaptation of reference points and fisheries advice to changing ecosystems,

by reviewing and synthesising ICES reference point estimation, analysing

retrospective changes to reference points, demonstrating how Peterman’s

Productivity Method can account for changes in productivity, and applying

this approach to model dynamic recruitment productivity of stocks in the

Celtic Seas ecoregion.

A brief overview of the chapter structure is provided here:

Chapter 1. General thesis introduction

Chapter 1 provides an overview of: historical background on the evolution

of fisheries science, reference point evolution and paradigms, role and im-

portance of reference points for fisheries management, ecosystem concerns in

fisheries management, reference points and dynamic ecosystems and dynamic

productivity of fish stocks.

Chapter 2. An empirical review of ICES reference points

Chapter 2 provides an empirical review and synthesis of the ICES reference

point framework for current advice, describing how reference points are defined

and estimated and how they have been developed. Based on the review of

reference points estimation for all ICES category 1 stocks, recomendations

are given for future advances.
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This chapter is in press at the ICES Journal of Marine Science:

Silvar-Viladomiu, P., Batts, L., Minto, C., Miller, D., Lordan, C. (2022). An

empirical review of ICES reference points, ICES Journal of Marine Science,

79, 10, 2563–2578. https://doi.org/10.1093/icesjms/fsac194

Chapter 3. Moving reference point goalposts and implications for

fisheries sustainability

Chapter 3 focuses on understanding retrospective changes in reference points

in the ICES region over the last decade by exploring whether reference points

had changed, how this change impacts the status of commercial fish stocks,

and what causes these changes.

This chapter has been published in Fish and Fisheries :

Silvar-Viladomiu, P., Minto, C., Halouani, G., Batts, L., Brophy, D., Lordan,

C., and Reid, D. G. (2021). Moving reference point goalposts and implications

for fisheries sustainability, Fish and Fisheries, 22, 1345––1358. https://doi.

org/10.1111/faf.12591

Chapter 4. Peterman’s productivity method for estimating dynamic

reference points in changing ecosystems

Chapter 4 is a quo vadimus paper that describes the status quo and the

future landscape of stock reference points in changing ecosystems. The

chapter starts with a review of current single-species reference points and

estimation, describes ecosystem concerns and methodological approaches, and

finally highlights a method as a link between current reference points and

changing ecosystems concerns: Peterman’s Productivity Method. Randall

Peterman and colleagues developed a method to estimate dynamic recruitment

productivity via time-varying stock-recruitment parameters (Peterman et al.

2003). Challenges and future developments in this area are outlined.

This chapter has been published in the ICES Journal of Marine Science:
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Silvar-Viladomiu, P., Minto, C., Brophy, D., and Reid, D. G. (2022). Peter-

man’s productivity method for estimating dynamic reference points in chan-

ging ecosystems, ICES Journal of Marine Science, 79, 4, 1034–1047. https:

//doi.org/10.1093/icesjms/fsac035

Chapter 5. Stochastic modelling and synthesis of dynamic fish

recruitment productivity in the Celtic Seas ecoregion

In Chapter 5, Peterman’s Productivity Method (highlighted in Chapter 4)

is applied to model and synthesise dynamic fish recruitment productivity of

Celtic Seas ecoregion stocks. Time-invariant and time-varying versions of the

Ricker model were evaluated, where parameters were allowed to vary over

time according to a stochastic process. We evaluated recruitment productivity

correlations across stocks and identify common productivity trends in the

Celtic Seas ecoregion.

This chapter is in preparation for submission:

Silvar-Viladomiu, P., Minto, C., Lordan, C., Brophy, D., Bell, R., Collie, J.,

and Reid, D. G. Stochastic modelling and synthesis of dynamic fish recruitment

productivity in the Celtic Seas ecoregion.

Chapter 6. General thesis discussion

Chapter 6 synthesises the findings of Chapters 2-5 and places the results in the

context of the general introduction. I elaborate on the current ICES reference

point framework and changes in reference points over time. This chapter

also reflects on the application of Peterman’s Productivity Method as a link

to adapt single-species reference points to ecosystem concerns. Implications

of time-varying stochastic recruitment productivity in Celtic Seas ecoregion

and the relationship to dynamic reference points are provided. Finally, re-

commendations for future research on dynamic recruitment productivity are

discussed.
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Chapter 2

An empirical review of ICES

reference points

This chapter is a verbatim copy of the accepted manuscript by the ICES

Journal of Marine Science, which can be found in Appendix B.1:

Silvar-Viladomiu, P., Batts, L., Minto, C., Miller, D., Lordan, C. (2022). An

empirical review of ICES reference points, ICES Journal of Marine Science,

79, 10, 2563–2578. https://doi.org/10.1093/icesjms/fsac194
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Abstract

The International Council for the Exploration of the Sea (ICES) has provided

scientific stock advice based on reference points to manage fisheries in the North

Atlantic Ocean and adjacent seas for decades. ICES advice integrates the

precautionary approach with the objective of achieving maximum sustainable

yield. Here, we examine ICES reference point evolution over the last 25 yr and

provide a comprehensive empirical review of current ICES reference points for

data-rich stocks (Category 1; 79 stocks). The consistency of reference point

estimation with the ICES guidelines is evaluated. We demonstrate: (1) how

the framework has evolved over time in an intergovernmental setting, (2) that

multiple precautionary components and sources of stochasticity are included,

(3) that the relationship and historical context of stock size and recruitment are

crucial for non-proxy reference points, (4) that reference points are reviewed,

frequently taking into account fluctuations and multiple sources of variability,

(5) that there are occasional inconsistencies with the guidelines, and (6) that

more comprehensive and clearer documentation is needed. Simplifying the

stock-recruit typology and developing quantitative criteria would assist with

this critically important classification. We recommend a well-documented,

transparent and reproducible framework, and periodic syntheses comparing

applications across all stocks.

Keywords: precautionary approach; maximum sustainable yield; ICES region;

synthesis; limit and target reference points; stock population dynamics

2.1 Introduction

Reference points are key to providing fisheries advice and enabling effective

management of fish stocks (Sissenwine and Shepherd 1987; Hilborn et al. 2020).

A crucial consideration in reviewing reference points is how they are currently

used and interpreted in advice products. Target and limit reference points can

be used to evaluate stock and fishery status and can also be used in, or for

the evaluation of, Harvest Control Rules (HCRs) that apply harvest strategies

to set allowable catch (Punt 2010). Internationally, most advice recipients

use similar terminology around the need to establish limit reference points,

such that “Limit reference points set boundaries to constrain harvesting within

safe biological limits so stocks can produce maximum sustainable yield” and

target reference points, where “Fishery management strategies shall ensure
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that target reference points are not exceeded on average” (UN 1995). The UN

Fish Stocks Agreement in 1995 set out the principles for the conservation

and management of fish stocks. Under this agreement management should

be designed to maintain or restore stocks to levels capable of producing

Maximum Sustainable Yield (MSY) and must be based on the Precautionary

Approach (PA) and the best available scientific information. Many fishing

jurisdictions agree to provide advice that integrates the PA with MSY and

embraces the ecosystem approach, e.g. the Common Fisheries Policy (EC

2013), the UK Fisheries Act (Anon 2020), and the Magnuson-Stevens Fishery

Conservation and Management Act (MSA 2007) in the United States. These

are typical foundations for the basis of reference point estimation. Whilst

there are common paradigms and similar terminology, there are many different

approaches to setting and estimating reference points (Ricard et al. 2012),

depending on the region, jurisdiction, and the HCR used to trigger management

decisions.

Reference points are commonly expressed in terms of a stock’s biomass or

spawning stock biomass (SSB) state and fishing mortality rate (F ). Reference

points that would produce MSY can be derived from per-recruit analyses

coupled with the stock-recruit (SR) relationship in a stochastic projection

using, in addition, biological parameters and fishery patterns from the stock

assessment (Hilborn and Walters 1992). Recruitment productivity is often

based on the stock-recruitment (SR) relationship. Common functional forms

to model the SR relationship are the Ricker (Ricker 1954), the Beverton-Holt

(Beverton and Holt 1957), and segmented regression or hockey-stick (Mesnil

and Rochet 2010). Despite its importance, estimating SR parameters is

challenging because the relationship is not well understood for many stocks

due to a lack of data or the relationship itself being weak because of recruitment

variation (Shepherd and Cushing 1990; Myers 2001; Thorson et al. 2014).

Other factors that limit our knowledge of SR relationships are process and

observation errors; uncertainty in variables (recruitment or SSB estimates); and

non-stationarity (Hilborn and Walters 1992; Dickey-Collas et al. 2015; Minto

et al. 2014; Perälä et al. 2017). Proxy reference points based on percentages

from per-recruit analysis can be used when MSY-based estimates cannot be

obtained (Geromont and Butterworth 2015). However, these exclude the SR

relationship and other stock information that can make them unreliable. In

the northeast Atlantic, yield-per-recruit (YPR) proxies were commonly used

proxies for FMSY (ICES 2007) because they rely on few data but are still
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useful to provide management recommendations for some stocks. Some US

regions set percentages of spawner-per-recruit (SPR) or unfished biomass (B0)

as MSY reference point proxies (Wetzel and Punt 2017). Preferred proxies

and percentages used vary between regions. These are usually based on meta-

analysis of data-rich stocks. Setting the appropriate proxy and level for a

reference point depends on life history features, and all available information

on the SR relationship should be used (Mace 1994; Cadrin 2012).

Biomass limit reference points have a key role in identifying safe biological

limits. These reference points could be interpreted as the level of stock

biomass at which recruitment is impaired, or where there is recruitment

overfishing. Recruitment overfishing occurs when a population has been fished

down to a point where spawning biomass is so low that recruitment decreases

substantially (Sissenwine and Shepherd 1987; Cushing 1975). Estimation

of biomass limit reference points varies a lot regionally, and the estimation

method impacts the level and the associated uncertainty of the reference point

(Deurs et al. 2021). Some regions define biomass reference points as a chosen

percentage below BMSY, e.g. 0.5 BMSY or higher in the United States (Punt

et al. 2014c). However, recent stock size trends and fluctuations might not

be informative regarding BMSY, in addition to the SR relationship possibly

not being well understood. Also, a percentage of unfished biomass, B0, can

be used as the basis for a biomass limit reference point in parts of the United

States (Wetzel and Punt 2017). Fishing mortality limit reference points, such

as Flim, also have an important role in safeguarding safe biological limits.

Fishing mortality should always be below that which will drive the spawning

stock to the Blim threshold.

Fish stocks display marked variability in life history, recruitment, and histor-

ical exploitation (Caddy and Mahone 1995). To estimate reliable reference

points, these important features need to be taken into account, i.e. natural

patterns of fluctuation in the dynamics of biomass, recruitment, and changes in

fishing pressure and selectivity over time. In particular, recruitment temporal

dynamics are complex and are challenging to deal with in the estimation of

reference points (Sharma et al. 2019). For instance, sporadic large recruitment

can influence the estimates of SR parameters. Additionally, there must be

sufficient contrast in the SSB data to accurately understand the underlying

SR relationship and estimate reference points (Anon 1999). If the contrast is

small, estimates could be determined mainly by process or measurement error

and thus could be unreliable. In these cases, the choice of reference point
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should be more precautionary (Anon 1999). Additionally, uncertainty related

to the modelling tools, management, and advice implementation has to be

dealt with when setting reference points (Kell et al. 2005).

The International Council for the Exploration of the Sea (ICES) has been

providing scientific stock advice to government and international regulatory

bodies that manage fisheries in the North Atlantic Ocean and adjacent seas

for decades. ICES advice is diverse and based on requests from a range of

requestors, including governments, governmental agencies, RFMOs, commis-

sions, etc. The current approach integrates the PA with the objective of

achieving MSY in accordance with the international guidelines to manage

fish stocks (ICES 2021a). The ICES interpretation of MSY is maximizing

the average long-term yield from a given fish stock while maintaining the

stock in productive condition. When providing fisheries advice for stocks with

full analytical assessments, ICES refers to two types of reference points: PA

reference points and MSY reference points.

Within ICES, several relevant discussions on reviewing reference points have

occurred in recent workshops (ICES 2020a; ICES 2021e; ICES 2020c), which

has led to the Workshop on ICES reference points (WKREF1 and WKREF2).

The purpose of WKREF1 and WKREF2 was to review and re-evaluate ICES

reference points and produce clear evidence-based recommendations to the

Advisory Committee (ACOM), and produce a road map to implementation

to develop user-friendly guidelines and tools for the future. Both target and

limit reference points were considered in terms of how they can be used in

the evaluation of stock status, the ICES MSY advice framework, and more

generally in management strategy evaluations (MSEs) to define if HCRs are

both precautionary and in accordance with the MSY approach.

In this article, we reviewed reference points used in ICES fisheries advice up

to 2021. We start by examining the evolution of the ICES reference point

framework over the past 25 yr, followed by a summary of the current approach.

Then, we investigate (i) most recent updates in ICES reference points; (ii) the

key role of ICES biomass limit reference point (Blim) and its relationship with

SR typologies in the guidelines; (iii) the estimation of MSY reference points

and how uncertainty and variability are included; and (iv) interdependencies

among reference points, particularly the impact of Blim changes on other

reference points. Finally, based on this comprehensive empirical review, we

summarize six concluding points and give recommendations for the future.
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2.2 Evolution of ICES-advised reference points

The ICES reference point framework has been strongly influenced by policy

needs and drivers but also by the availability of tools to estimate reference

points in a consistent way (Figure 2.1). The ICES Study Group on the

Precautionary Approach (SGPA) in 1998 defined Blim as the biomass “below

which recruitment becomes impaired or the dynamics of the stock are unknown”

(ICES 1998). The word ‘impaired’ is synonymous with the concept that,

on average, recruitment becomes systematically reduced as biomass declines

below a certain point. During the early 2000s, the various SGPA meetings

developed understanding of precautionary reference points considerably (ICES

2001; ICES 2002; ICES 2003b). This culminated in the Study Group on

Precautionary Reference Points for Advice on Fisheries Management (SGPRP)

in 2003, which was the first systematic attempt to estimate PA reference

points for most data-rich ICES stocks (i.e. Category 1, stocks for which a

full analytical assessment could be conducted; ICES 2003a). ICES advised

on the state of the stock relative to a limit reference point (Blim) that should

be avoided to ensure that stocks remain within safe biological limits, i.e. a

high probability that SSB is above Blim and that fishing mortality is below a

value Flim that will drive the SSB to Blim. At that stage, ICES had already

started to define SR types based on SR plot categorization, and use segmented

regression to estimate breakpoints in the SR relationship. The definition of

Blim was “the SSB below which is a substantial increase in the probability of

obtaining reduced (or ‘impaired’) recruitment i.e. the estimate of Blim should be

risk-averse so that when the stock is at Blim the probability that recruitment is

substantially impaired is still small, but below Blim that probability increases”.
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In 2002, the Johannesburg Declaration of the World Summit on Sustainable

Development (WSSD; UN 2002) called for an ecosystem approach and re-

building fisheries to Maximum Sustainable Yield (MSY). In 2007, the ICES

Workshop on Limit and Target Reference Points (WKREF) was established

with terms of reference that included review of reference points with respect

to regime shifts and the science and implementation of MSY-based approaches

(ICES 2007). Various problems with limits and targets were identified, and

there was no consensus on a way forward. It was thought “that distance

between Bpa and Blim could take into account the uncertainty due to differ-

ent regimes”. From the review of the scientific and management literature,

WKREF concluded that MSY is a difficult concept for management purposes

because it is difficult to assess, unstable over time, and only applicable in

a single species context. Single-species MSY and BMSY will not work for

predators and prey at the same time (May et al. 1979; Walters et al. 2005).

The Workshop on Implementing the ICES FMSY framework (WKFRAME) in

2010 and 2011 was tasked with drafting technical guidelines to assist ICES

expert groups in the implementation of the ICES MSY framework for advice

(ICES 2011). A trigger biomass point, MSY Btrigger, was defined as a low

biomass that is encountered with a low probability if a stock is exploited at

FMSY. This differs from BMSY, which is the expected average biomass if the

stock is exploited at FMSY. These workshops discussed the role of MSY Btrigger

and indicated “it should be selected as a biomass that is encountered with

low probability if FMSY is implemented” and that “under MSY exploitation it

should be a property of the expected distribution of SSB”. However, ensuring

compatibility with the PA was also raised as an issue, including the need

to avoid Blim in the long term, taking model error into account. At this

stage, generic tools that were easily and widely applicable started to develop.

The methodology PlotMSY was developed in AD-Model Builder to perform

deterministic equilibrium yield analysis coupled with stochastic simulation

procedures (ICES 2010), using the assessment summary and sensitivity data.

In PlotMSY, SR model uncertainty was taken into account by model averaging

of three functions (Ricker, Beverton-Holt, and hockey-stick). The tool was

used by the ICES community to provide robust estimation of MSY estimates

(ICES 2017b), which was a major step forward to stochastically estimating

reference points.

Various ICES advice recipients developed strong policies to implement an

ecosystem and MSY approach in their fisheries management systems. Within

21



the EU, legal obligations to implement MSY management and establish

multiannual plans reflecting the specificities of different fisheries based on

the best available science were set out in the reformed CFP (EC 2013).

There were significant technical developments around Management Strategy

Evaluations (MSEs; ICES 2013; Punt et al. 2014b), and work on developing

a new ICES tool to estimate MSY reference points began (the stochastic

equilibrium software EqSim). EqSim provides MSY reference points based on

the equilibrium distribution of stochastic projections. In EqSim, parameters

related to productivity (i.e. natural mortality, maturity, growth) are randomly

re-sampled from a specified period of the assessment and recruitments are

re-sampled from their predictive distribution (ICES 2017b). This methodology

can take into account the uncertainty in the SR model by applying model

averaging of different SR functional forms, as well as incorporate advice error.

After limited progress at the Workshop to consider reference points for all

stocks (WKMSYREF), there was significant development as EqSim was more

widely tested at WKMSYREF2 (ICES 2017b). A joint ICES/MYFISH (https:

//www.myfishproject.eu/) “Workshop to consider the basis for FMSY ranges

for all stocks” (WKMSYREF3; ICES 2015b; ICES 2015a), systematically

estimated MSY reference points and FMSY ranges for the North Sea and Baltic

stocks to address a special request from the EU for MSY ranges for their

regional multiannual plans (MAPS; EC 2013). A year later, the “Workshop

to consider FMSY ranges for stocks in ICES categories 1 and 2 in Western

Waters” (WKMSYREF4) developed the approach further and estimated

MSY ranges for demersal stocks in western waters (ICES 2017b). The ICES

technical guidelines to estimate “ICES fisheries management reference points

for category 1 and 2 stocks” were published in 2017 (ICES 2017a).

Since 2017, several ICES expert groups have identified challenges and sug-

gested developments in reference point estimation (Figure 2.1) – including

the ICES Workshop on North Sea stocks Management Strategy Evaluation

in 2018 (WKNSMSE), the ICES Workshop on Guidelines and Methods

for the Evaluation of Rebuilding Plans in 2019 (WKREBUILD), the ICES

third Workshop on Guidelines for Management Strategy Evaluations in 2019

(WKGMSE3), the ICES Workshop on Management Strategy Evaluations

of Mackerel in 2020 (WKMSEMAC), and the ICES Workshop of Fish-

eries Management Reference Points in a Changing Environment in 2020

(WKRPCHANGE). Current guidelines (ICES 2021c) were criticized in various

working groups as they were thought to be complex, convoluted, and not
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always well understood or followed by assessment practitioners. There is little

documentation on EqSim to help those at benchmarks with implementation

and interpretation. Other issues highlighted were that determination of Blim

requires a subjective classification of the SR pairs into types (ICES 2020c);

discrepancies were found between reference points from the standard ICES

approach and MSEs (ICES 2019c); major sources of uncertainty in reference

points were related to changes over time in biological and SR parameters(ICES

2021a); and determining the time period used to derive reference points was

considered challenging because estimation becomes unreliable as time are

reduced (ICES 2021a). In recent years, ICES has been in the process of

reviewing and modifying their reference point estimation guidelines through

two workshops WKREF1 and WKREF2 (Figure 2.1). We argue that part of

the reform must consider exactly how current procedures are implemented

comparatively across stocks. Hereafter, as a part of the continual process to

improve ICES reference point estimation, we provide an empirical review of

how category 1 reference points are currently derived. Such synthesis enables

cross-comparisons of stocks displaying consistencies, highlights inconsistencies,

and points towards further improvements.

2.2.1 ICES current reference points approach

Recently, ICES published updated guidelines for estimating reference points

(ICES 2021c). The emerging five-step procedure for estimating reference

points was strongly linked to the advice framework and the need to ensure

that the ICES MSY advice rule (AR) was also consistent with the ICES PA

(ICES 2021c; Figure 2.2). The ICES MSY AR is a HCR that leads to catch

advice corresponding to a fishing mortality of equal to FMSY when SSB is at

or above MSY Btrigger but reduced relative to FMSY when the stock is below

MSY Btrigger (ICES 2021e). The ICES approach aims to maximize long-term

yield while safeguarding against low SSB. Thus, more caution is needed below

Blim (see dashed line below Blim in Figure 2.2). The advised catch might be

zero when the stock cannot be rebuilt above Blim in the year after the advice

with greater than 50% probability.

The current five steps to estimate reference points involve (i) identifying

appropriate data (truncate time series or not), (ii) identifying SR type (six

different types are described with different recommended actions; Table 2.1),

(iii) estimating biomass limit reference points, (iv) deriving PA reference
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Precautionary approach

MSY approach

Choose SR type 
for the stock

Blim

Implement 
 SSB assessment

uncertainty 
Bpa

F

SSB

ICES 
Advice 
Rule

 Implement
stochasticity 

Choose 
SR relationship

functional form(s) 
Include advice 

uncertainty 

MSY Btrigger , FMSY

Blim

F MSY ={FMSY if F MSY⩽F pa
F pa if F MSY>F pa

MSY Btrigger={ Bpa ifF recent≫FMSY
max(Bpa ,Q(0.05 ;FMSY )) ifF recent≈FMSY

Figure 2.2: The ICES advice rule (Category 1 stocks) integrates the precau-
tionary approach (yellow) with Maximum Sustainable Yield (blue). Where
if Frecent has been in the vicinity of FMSY for 5 or more years, then the fifth
percentile of SSB, when fished at FMSY [Q(0.05;FMSY )] is used as the trigger
point, otherwise Bpa is used. The precautionary criterion (Fpa, also called
Fp.05) is a fishing mortality that results in ≥ 95% annual probability that SSB
remains at or above Blim in long-term equilibrium and caps FMSY.

points from limit reference points, and (v) estimating MSY reference points

without and later with the AR. First, the value of FMSY is calculated, including

stochasticity and advice error. Second, the MSY Btrigger is selected without

advice error. For most stocks that lack data on fishing at FMSY, MSY Btrigger

24



is set at Bpa (ICES 2021c). For stocks with evidence of fishing mortality being

at or below FMSY, MSY Btrigger is selected to be the maximum value between

the fifth percentile of the distribution of SSB when fishing at FMSY (excluding

advice error but including stochasticity in population and fishery) and Bpa

(Figure 2.2). Then, the ICES MSY AR is evaluated via stochastic simulation

with FMSY and MSY Btrigger and checked that the fishing mortality that results

in a low long-term probability (≤ 0.05) of SSB to be below Blim (called the

precautionary criterion or Fpa) is lower than the initial FMSY. If FMSY is ≥
Fpa, then the advised FMSY is capped to the value of Fpa (Figure 2.2).

Key steps for estimating ICES reference points are identifying SR stock type

and deriving biomass limit reference points. These steps are related because

the technical basis for Blim is generally determined by the classification of stock

characteristics into SR typologies (Table 2.1). In the ICES guidelines, historical

fishing mortality is not considered when deciding the stock typology, but it is

relevant for some SR types when setting Blim (Table 2.1). To estimate MSY-

based reference points, it is typically assumed that the associated parameters

remain constant or vary around a historical long-term mean. ICES considers

MSY reference points to be valid only in the short and medium-term (5-10

yr), as ecosystems and fisheries are dynamic over time. Therefore, reference

points are subject to regular reviews (ICES 2021e).
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2.3 Methods

2.3.1 ICES category 1 reference point database

Estimation of reference points is dependent on the definition or technical

basis used, method settings, and data/output used. We assembled a data-

base of reference point estimation data for 79 ICES category 1 stocks. All

stock-specific available documentation was reviewed including benchmark and

inter-benchmark reports, working group reports, special requests, expert group

reports, and specific working documents (specific topic documents submitted

during benchmarks that support the main assessment). Collated data relate to

reference points and their estimation, including re-evaluation year, estimation

framework, Blim and FMSY technical basis, SR type, SR settings, assessment

error settings, time-period settings, references, EqSim settings, and hitting

precautionary bounds (Table 2.2). We developed an R code to clean the

information as collated from the documents (see Table 2.2 for cleaning details).

This comprised grouping categories to summarize information expressed in

different texts into homogenized terms. For stocks that used EqSim (eqsim run

from the R package msy; https://github.com/ices-tools-prod/msy), we

also revised raw reported information to fill in default values, assuming: (a)

if SR truncation was not stated, then the data were not truncated; (b) if

autocorrelation, process error, recruitment, and catch trimming of extreme

values were not stated, then we assume EqSim function default (i.e. auto-

correlation: on, process error: on, recruitment trimming of extreme values:

restrict the range of recruitment deviations to +/- three standard deviations

on the log scale, catch trimming of extreme values: off). We did not assume

default values on the assessment uncertainty parameters and period selection

of biological and selectivity parameters because the function defaults differ

from the guidelines. When an SR type was not stated in the report, it was

inferred from SR plot characteristics by following ICES guidelines for SR type

identification (ICES 2021c) and using expert knowledge among the authors.

2.3.2 Stock biomass and fishing mortality features

We estimated spawning stock biomass and fishing mortality metrics to assess

the consistency with the SR typology guidelines (Table 2.1). We extracted

stock assessment results (fishing mortality, spawning size biomass, and re-

cruitment data) from the ICES Stock Assessment Graphs database via XML
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Table 2.2: ICES category 1 reference point database. Description of data
collated, whether they are EqSim specific and cleaning procedure for each
data variable.

Data variable Description
EqSim
specific

Cleaned

Refpt framework Reference point framework No Homogenize terms
SR type SR stock type No No

SR type n
Inferred SR stock type, assigned to
stocks with no stated typology in
reports

No No

Blim tecbasis Blim technical basis No Homogenize terms
Blim Blim value No No
FMSY tecbasis FMSY technical basis No Homogenize terms
FMSY FMSY value No No
SR model SR functional form model No Homogenize terms
SR modelweights SR models weights Yes No

Breakpoint.fixed.at
Breakpoint of the fixed segmented
regression

Yes Homogenize terms

SR data truncated
Whether data was truncated
(Yes/No/Not stated)

No
Assumed No if not
stated

AutocorrelationR
Whether autocorrelation parameter
was used (TRUE/FALSE/Not stated)

Yes
Assumed TRUE if not
stated

SR period
Year period of SR pairs period used to
derive reference point

No No

process.error
Whether process error parameter was
used (TRUE/FALSE/Not stated)

Yes
Assumed TRUE if not
stated

recruitment.trim
Whether recruitment trimming was
used (Yes/No/Not stated)

Yes
Assumed Yes c(-3,3) if
not stated

FCV
Value set for the coefficient of variation
of F (FCV )

Yes No

FPHI
Value set for the autocorrelation of F
(Fϕ)

Yes No

SSBCV
Value set for the coefficient of variation
ofSSB(SSBCV )

Yes No

bio.years
Year period used for biological
parameters

Yes
Calculation of number
of years

Selectiv-
ity pattern period

Year period used for biological
parameters

Yes
Calculation of number
of years

bio.years
Year period used for biological
parameters

Yes
Calculation of number
of years

extreme.trim
Whether extreme catch values
trimming was used (Yes/No/Not
stated)

Yes
Assumed No if not
stated

Hitting.precautionary.
bounds.FMSY.Fpa

Whether the precautionary bounds
were hit (FMSY > Fpa or FMSY < Fpa

or not stated)
No Homogenize

Report reference
Reference from which the information
was extracted

No No

parsing (ICES 2021d). All the calculations were made using the most recent

assessment for each stock. We calculated the coefficient of variation of the

full time series of SSB assuming a log-normal distribution (CV SSB) as a

stock-level summary of the stock biomass spread. To summarize the history

of stock fishing mortality, of relevance to Blim choice, we calculated the mean
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F relative to FMSY over the full time series.

Frel =

∑n
t=1 Ft

n

FMSY

(2.1)

, where t is the year and n is the number of years in the time series for a given

stock.

2.3.3 Spasmodic stocks categorization

Spasmodic stocks (SR type 1; Table 2.1) are defined by ICES as “stocks

with occasional large year classes” (ICES 2021c). To assist the identification

of spasmodic stocks and determine the consistency of the spasmodic stock

definition, we evaluated the variance of recruitment time series. First, we

fitted a loess smother with a 0.3 span to the natural logarithmic transformed

recruitment. A span of 0.3 (a trade-off between over-smoothing and over-

fitting) would capture approximately decadal-scale long term changes, which

we seek to remove in our assessment of spasmodic stocks. Such low-frequency

variability could be caused by historic fishing patterns reducing SSB and thus

reducing recruitment and does not reflect the high amplitude variation of

spasmodic stocks (Spencer and Collie 1997). To characterize the high frequency

variability, we calculated the empirical cumulative distribution function (CDF)

of the detrended recruitment proportional to the maximum. We also calculated

the CDF of the raw recruitment time series proportional to the maximum

to compare results (detrended or not). The CDF is useful as it displays the

fraction of the observed values less than a given value and thus informs on how

infrequent specific recruitment events are. Intuitively, spasmodic recruitment

would be typically low recruitment events with occasional large recruitment

events, which translates into a steeply climbing CDF. To identify time series

with high variance, we estimated the theoretical expected 80% interval for

CDFs of time series with lognormal variance of 1. We used a variance value

of 1 as this is the 90th quantile of detrended residuals from the Ram Legacy

Stock Assessment Database (version 4.44) across all stocks in the database.

The criteria used identify an extreme pattern for a given variance. To estimate

the theoretical expected interval, we used 42 yr, which is the median length of

the SR pairs across all the studied stocks (this could be tailored for individual

stocks).
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2.3.4 Changes in reference points database

For a total of 79 stocks, we also acquired retrospective data of past assess-

ments from the year of the working group WKMSYREF4 to the most recent

assessment year (2016-2021). We accounted for the change in 2017 of the codes

that are used to identify each stock (stock label key). We obtained reference

points data (FMSY, MSY Btrigger, Blim, and Bpa), and time-series data on stock

size, fishing mortality, and recruitment. We retained only assessments that

used ”SSB” in the stock size description. Changes in reference points between

sequential assessments were identified for analysis; we calculated the change

in reference point (RP) as the proportional change relative to the preceding

assessment (RP y −RP y−1)/RP y−1, where y is the assessment year, following

the method in Silvar-Viladomiu et al. (2021). Simultaneous changes in FMSY

and Blim, and MSY Btrigger and Blim were visualized.

2.4 Consistency of current ICES reference

points

In this section, we present the results from evaluating the consistency of

2021 ICES reference points with the guidelines (ICES 2021c). We evaluated

reference point updates, SR type classification in relation to Blim technical

basis and stock characteristics (SSB, fishing mortality, SR relationship, and

recruitment variability), the framework to implement stochastic MSY, and

simultaneous changes in reference points.

2.4.1 Evaluation and update of reference points

Currently, from the 79 stocks classified as ICES category 1, most reference

points have been changed within the last 5 years (81.01% for FMSY and 75.95%

for Blim), with two stocks with long-established reference points (northeast

Arctic capelin in 2001 and cod in 2003; Figure 2.3). There are four stocks

with recent estimates of FMSY but older estimates of Blim. This might reflect

changes to the ICES reference points guidelines to cap from FMSY to Fpa (the

F that would lead to SSB ≥ Blim with a 95% probability in the long term,

previously known as Fp.05; Figure 2.3).
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Figure 2.3: Year of the most recent evaluation for FMSY and Blim reference
points for the current advice of ICES category 1 fish stocks.

2.4.2 Stock SR typology and biomass limit reference

points

For many stocks, the SR type was not specified in the documentation reflecting

difficulties to assign it (not stated SR type in the reports n = 40). The

typologies were often consistent with the selection of Blim recommended in

the guidelines (Figure 2.4; Table 2.1). For type 1 stocks (spasmodic stocks),

three Blim technical bases were used, Blim was Bloss (lowest observed SSB), a

fraction of Bpa, or the lowest SSB where recruitment was good/high or not

impaired. The basis recommended in the guidelines was the lowest SSB, where

large recruitment is observed. Stocks categorized as type 2 (evidence that

recruitment is or has been impaired) typically define Blim as the breakpoint of

the segmented regression. The lowest SSB where recruitment was good/high or

not impaired was also used to define Blim for several type 2 stocks (Figure 2.4).

There is one case (herring in the northeast Atlantic and Arctic Oceans, her.27.1-

24a514a) where the Blim technical basis for a type 2 stock is MBAL, which

refers to the old minimum biological acceptable level, commonly including a

buffer. For SR type 3 stocks (wide dynamic range of SSB and evidence that

recruitment is or has been impaired, with no clear asymptote in recruitment at

high SSB), selection of Blim was the lowest SSB where recruitment is good/high

or not impaired. However, the recommended choice is the SSB close to the

highest observed value, depending on an evaluation of the historical fishing
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mortality. There was no stock SR type 4 reported; however, we inferred that

herring in Iceland grounds (her.27.5a) could fall under that category given

that recruitment increases as SSB decreases. The Blim basis for that stock

was SSB with a high probability of impaired recruitment. For SR type 5 (no

impaired recruitment or no clear relation between stock and recruitment), the

most frequent technical basis for Blim was Bloss. For stocks of type 6 (narrow

dynamic range of SSB and showing no evidence of past or present impaired

recruitment), Blim cannot be directly derived and so it was used a fraction of

Bpa. Other technical bases for Blim based on spawner per-recruit or unfished

biomass analysis, e.g. 35% SPR, 20% B0, were occasionally used (Figure 2.4).

Figure 2.4: Crosstabulation of reported and inferred SR typology and Blim

technical basis. Showing the number of inferred SR type stocks above and the
number of stated SR type stocks below in brackets.

2.4.3 Stock typology, SSB range, and historical fishing

mortality

Some assigned typologies adhere well to their definitions (e.g. type 6 - narrow

range of SSB), whereas there are examples of similar degrees of variation in

SSB being categorized differently across stocks (e.g. narrow for one stock but

wide for another; Figure 2.5). Most stocks that were categorized as SR types

with wide SSB ranges (i.e. types 2, 3, and 4) had larger SSB variation, but

there were some exceptions, e.g. herring in the northeast Atlantic and Arctic

Ocean (her.27.1-24a514a), witch in the North Sea, Skagerrak, Kattegat, and
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eastern English Channel (wit.27.3a47d), and sole in the North Sea (sol.27.4),

which were categorized as type 2 but showed relatively low SSB variation

(Figure 2.5).

Historical fishing pressure showed an important relationship with the SR type.

Predominantly type 2 stocks, which present evidence of impaired recruitment,

showed high average historical fishing mortality, e.g. cod in the eastern

Baltic Sea (cod.27.22-24) and sardine in the Cantabrian Sea and Atlantic

Iberian waters (pil.27.8c9a) in Figure 2.5. Exceptions could be related to the

perception of fishing pressure over time in long time series, e.g. stocks that

have been fished over FMSY only in recent years. Herring in the northeast

Atlantic and Arctic Ocean (her.27.1-24a514a; Figure 2.5) was categorized as

type 2 but showed low relative fishing mortality in the last three decades. Stock

SR types 5 and 6, with no evidence that recruitment is or has been impaired

(no clear relationship between stock and recruitment) showed different ranges

of SSB variation but typically lower fishing pressure over time, e.g. herring

in the Gulf of Bothnia (her.27.3031) and horse mackerel in Atlantic Iberian

waters (hom.27.9a) in Figure 2.5. However, there were some stocks categorized

as SR type 5 but with high relative fishing mortality, e.g. cod in the eastern

English Channel and southern Celtic Seas (cod.27.7e-k) and haddock in Rockall

(had.27.6b) in Figure 2.5. Also, stocks that have been historically fished over

FMSY but used truncated SR data to define the typology could result in

selecting a SR type with no evidence of impaired recruitment, e.g. type 6 for

the North Sea, eastern English Channel, and Skagerrak cod (cod.27.47d20;

Figure 2.5).

2.4.4 Stock typology and recruitment variability

Recruitment dynamics impact the choice of SR typology, specifically, spas-

modic stocks that are classified as SR type 1 according to the guidelines.

Low frequency trends in recruitment, which absorbed the effect of historical

fishing, showed multiple patterns across all stocks (Appendix A.1 Figure

SM1). Three stocks classified as SR type 1 (spasmodic) were identified as

having high detrended recruitment variability (Figure 2.6). These stocks were

cod in East and South Greenland (cod.2127.1f14), haddock in the northeast

Arctic (had.27.1-2), and haddock in the North Sea and West of Scotland

(had.27.46a20), inferred in this study (Appendix A.1 Figure SM2). Recruit-

ment time series for these stocks display a clear pattern of occasionally large
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Figure 2.5: Relative fishing mortality and variability in SSB by inferred or
stated SR type of the 79 ICES category 1 stocks that were analysed. Frel is
the average fishing mortality relative to FMSY over the data period, and CV
SSB is the coefficient of variation of SSB for log-normally distributed data on
a proportion scale. The shape of data points represents if the SR type has
been inferred in this study or stated in the reports.

year classes (Figure 2.7A). One SR type 1 stock showed comparatively lower

variance for both recruitment and detrended recruitment. This was herring

in the Irish Sea, Celtic Sea, and southwest of Ireland (her.27.nirs; Figure

2.7A and Appendix A.1 SM2). Two SR type 1 stocks, horse mackerel in the

northeast Atlantic (hom.27.2a4a5b6a7a-ce-k8) and haddock in the southern

Celtic Seas and English Channel (had.27.7b-k), showed high variability for

recruitment but not for detrended recruitment (Appendix A.1 Figure SM2).

This could result from occasional large recruitments occurring only early (or

only once) in the time series with significant lower variability thereafter, e.g.

horse mackerel in the northeast Atlantic (hom.27.2a4a5b6a7a-ce-k8; Figure

2.7B).

We also found stocks with high recruitment variability and possibly spasmodic

but not classified as SR type 1. We identified high detrended recruitment

variability for two stocks classified as SR type 2, cod in the western Baltic

Sea (cod.27.22-24) and sole in the North Sea (sol.27.4). The recruitment time

series for these stocks also showed infrequent strong recruitment (Figure 2.7B).

Two stocks classified as difficult to assign showed high detrended recruitment

variability (Figure 2.6), Greenland halibut in the northeast Arctic (ghl.27.1-2)
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and capelin in the northeast Arctic and Barents Seas (cap.27.1-2). One stock

inferred as SR type 2 showed high detrended recruitment variability; this

refers to cod in the northeast Arctic (cod.27.1-2). Golden redfish in Iceland

and Faroes grounds, West of Scotland, North of the Azores, and East of

Greenland (reg.27.561214), which was inferred as type 5, showed relatively

high detrended recruitment variability (Figure 2.6), due to sporadic high

recruitment year classes (Figure 2.7B). Several stocks showed high recruitment

variability but not after removing the trend (Appendix A.1 Figure SM2),

e.g. sprat in Skagerrak, Kattegat, and North Sea (spr.27.3a4), sardine in

Cantabrian Sea and Atlantic Iberian waters (pil.27.8c9a), and haddock in

Iceland grounds (had.27.5a), and in Faroes grounds (had.27.5b).

Figure 2.6: Empirical cumulative distribution function of recruitment relative
to maximum recruitment by inferred SR type. Colour shows stated SR type.
The pink area shows the theoretical expected 80% interval for CDFs of time
series (length = 42) of lognormal variance = 1.

2.4.5 Stochastic frameworks to estimate MSY-based

reference points

The modelling framework used for estimating ICES category 1 MSY-based

reference points was substantially homogeneous (Figure 2.8A), with the ma-

jority of the stocks estimated with the generic tool for stochastic simulation
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Figure 2.7: Recruitment time series proportioned to the maximum recruitment
year class for a selection of category 1 stocks. The top panel (A) shows
all stocks inferred as SR type 1 (spasmodic); the bottom panel (B) shows
examples of high variability in recruitment time series for other SR types.
Colour reflects stated SR type (purple: SR type 1, blue: SR type 2, grey: not
stated).

framework EqSim (n = 54). For 11 stocks, mostly short-lived pelagic species,

simulation frameworks developed specifically to conduct full feedback, MSEs

were used applying the ICES guidelines. Reference points were estimated

within the Gadget assessment model for four stocks. For spurdog in the

northeast Atlantic, reference points were estimated within the age-length

and sex-structured assessment model. Northeast Arctic haddock reference

points were estimated with a framework called PROST – Projection Stochastic

(Figure 2.8A).

Key recruitment considerations for the derivation of MSY-based reference

points are the choice of SR functional form, accounting for variability and tem-

poral dynamics, and determining and accounting for regime shifts. Accounting

for temporal dynamics is achieved by including autocorrelation in recruitment,

process error, and trimming of occasional extreme values. For stocks that used

EqSim, autocorrelation and process error were mostly included as a default

setting and thus typically accounted for in the estimation (Figure 2.8B left).

Autocorrelation is included for the recruitment residuals of the SR model

according to an AR(1) process. Process error is included with the stochastic

predictive distribution of recruitment plus the simulated observation error.

Removal of recruitment extreme values was often applied, and the option

of trimming extreme catch values was occasionally used (Figure 2.8B left).

The issue of regime shifts is linked to the classic dilemma between using
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Figure 2.8: Summary plots of reference point estimation frameworks and
settings used for ICES category 1 stocks as of November 2021. Top panel
(A) count plot of used reference point estimation frameworks in assessments.
Bottom panel (B) with data treatment in EqSim-based estimation of reference
points (left), parameter period settings (middle), and assessment uncertainty
settings (right).

full-time series or selecting a reduced-time series. Stock recruitment pairs were

truncated for the estimation of reference points for 10 stocks (Figure 2.8B left).

Time windows for biological productivity or selectivity parameters were 10 yr

for the majority of stocks unless patterns were found in the data, in which

case 5 or 3 yr were typically used (Figure 2.8B center). The uncertainty of the

advice (FCV , Fϕ) within EqSim was often set with default values (FCV n = 27,

Fϕn = 33, Figure 2.8B right). In WKMSYREF4, parameters for assessment

error were evaluated and the following values were assigned as default values:

assessment error in the advice year (FCV ) = 0.212; autocorrelation in assess-

ment error (Fϕ) = 0.423. These values are the medians of the results for five

stocks for which the evaluations were completed in WKMSYREF3.

2.4.6 Changes in reference points

Reference points have changed relatively frequently, with substantial changes

between years (once or twice in the last 6 yr; Appendix A.1 Figure SM3).

Given the reference point technical basis, changes in MSY Btrigger are directly
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related to changes in Blim, though changes in FMSY are typically not related to

changes in Blim. The main impact of changes in Blim was on changes in MSY

Btrigger (Figure 2.9A), as MSY Btrigger is often defined as Bpa, which is often

a multiple of Blim. However, revisions of the technical basis of MSY Btrigger

and Bpa can cause changes in MSY Btrigger not related to a Blim change. For

example, the technical basis for MSY Btrigger for many stocks was set to Bpa

because the criterion of being fished at or below FMSY for around 5 yr was not

met. As stocks are fished consistently with FMSY, they may change to a MSY

Btrigger corresponding to the fifth percentile of SSB when fishing at FMSY. The

majority of changes in Blim were not related to changes in FMSY (Figure 2.9B).

Nevertheless, changes in Blim might have had an impact on FMSY where the

value of FMSY is capped and set at Fpa due to a higher than 5% probability of

SSB going below Blim, where an increase in the value of Blim is related to a

decrease in the FMSY value (Figure 2.9B).

Figure 2.9: Simultaneous changes in reference points. Impact of changes in
Blim on the ICES biomass trigger point MSY Btrigger (A); Impact of changes
in Blim on FMSY for the most recent 5 years (B). Colour shows whether stocks
are currently hitting precautionary bounds (FMSY > Fpa) and therefore there
is a capping on FMSY.

2.5 Conclusions

In this paper, we have extensively reviewed the evolution of ICES reference

points and the estimation procedure currently used for management advice

within the ICES framework. The review has addressed historically important

events related to the evolution of the ICES reference point framework and

evaluated how guidelines link with current reference point estimation. We
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have also examined the settings and processes considered in the estimation of

reference points. What conclusions do we have after the review?

1. ICES reference point framework has evolved in an intergovern-

mental setting. Reference points used in ICES advice have evolved and

are influenced by policy and scientific development. As an intergovern-

mental agency, ICES advice recognizes several international agreements

and responds to the policy and legal needs of ICES member countries

that use the advice as to the scientific basis for management. Advice

basis and therefore reference points have evolved with their requirements,

starting with the PA and expanding to integrate the MSY approach.

Additionally, the ICES framework also evolves along with new available

research and tools (e.g. EqSim).

2. ICES reference points incorporate multiple precautionary as-

pects and sources of stochasticity. The objective of ICES AR

is to maximize long-term average yield with a safeguard against low

SSB and staying within the precautionary bounds. The current system

incorporates many features of the precautionary approach, particularly

as it pertains to recruitment overfishing.

(a) ICES recognizes that fish stocks should be above Blim and fish at a

level that keeps fish stocks above Blim. The biomass limit reference

point is the central reference point to the precautionary approach.

It is set by graphic rules based on SR data pairs. The choice of

Blim aims to ensure that the biomass below which recruitment is

impaired is detected (ICES 2021c). The lowest level of biomass

(Bloss) is typically used as a biomass limit reference point when

there is no clear SR relationship. We note that the typologies of SR

data pairs are not hypothesis-driven, which provides flexibility but

also leaves the process open to subjective decisions across stocks.

(b) The EqSim framework is the standard ICES software, which was

used to estimate reference points for the majority of the ICES

stocks studied. The framework enables the implementation of

stochasticity in biological and fisheries processes and therefore is

more precautionary. Including stochastic processes in the estima-

tion of MSY has been demonstrated in surplus production models

to lead to more conservative reference points (Bousquet et al. 2008;

Bordet and Rivest 2014). Advice error can be applied on the target

39



F (Fpa and Fϕ), usually using the default values. These values were

the median evaluated values for five ICES stocks (her.27.3a47d,

sol.27.7d, pok.27.3a46, sol.27.4, ple.27.420). This advice uncer-

tainty is supposed to represent how uncertain our estimates of

fishing mortality are in the advice year.

(c) Within the ICES process for estimating reference points, FMSY and

MSY Btrigger are evaluated to check that they meet the precaution-

ary criterion. The precautionary criterion reference point (Fpa)

represents the fishing mortality corresponding to 5% probability

of SSB being below Blim in the long term, estimated by stochastic

simulation (i.e. biological and fishery variability and advice error

included). When the precautionary criterion is lower than the

estimated FMSY, then the FMSY is capped to its value.

(d) The MSY-based biomass reference point should be below typical

natural variation (here, the fifth percentile), and its selection safe-

guards against unexpected low SSB when fishing at FMSY. There-

fore, the technical basis adopted for the biomass reference point

MSY Btrigger depends on the fishing history relative to the FMSY.

The MSY Btrigger is set to Bpa, a more precautionary value, when

there are no more than 5 yr of fishing mortality equal to or lower

than FMSY.

3. The relationship and historical context of stock size and re-

cruitment are crucial for non-proxy reference points and are

embedded in ICES guidelines. On the one hand, ICES reference

point estimation is typically external to the assessment process; therefore,

the understanding of the SR relationship and the choice of SR functional

form is key. The graphical characteristics of the SR relationship are

what define the SR type classification and impact the consequent Blim

choice. For the estimation of MSY-based reference points, the choice of

SR relationship functional form (e.g. the commonly used Beverton-Holt

model, segmented regression model, and Ricker model) impacts the

reference point value. The Eqsim software can fit a combination of SR

models and implement a goodness-of-fit model weighting. Usually, as a

first step, to account for SR functional form uncertainty, all three SR

models are examined, and depending on the weighted results, the models

that have significant contributions are chosen. The segmented regression
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model can estimate the break-point or have it fixed at the biomass limit

reference point as a way to restrict the breakpoint when there is no

reliable data for its estimation. On the other hand, due to limit and

MSY-based reference points only being entirely informed if the stock

has been overexploited (Tsikliras and Froese 2019), regional historical

evolution of the stock determines the data available to inform reference

points. Historically, many fish stocks in the North Atlantic have been

heavily exploited (Fernandes and Cook 2013). Although exploitation

pressure has decreased during the last decades, there is evidence of

historical overfishing in the data for many of the stocks. The historical

exploitation patterns result in having a high contrast in SSB data and

evidence of stocks where recruitment is impaired. Having a contrast

in SSB may give evidence of how recruitment is impacted, which can

inform the estimation of FMSY. Whereas in other areas, where there is a

lack of contrast, proxies are derived.

4. Reference points are reviewed frequently, taking into account

fluctuations and multiple sources of variability. We found that

reference points have changed frequently and substantially. These chan-

ges in reference points have been shown to have an important impact

on stock status (Silvar-Viladomiu et al. 2021). The frequency of PA

reference point evaluations can differ from the MSY reference point

evaluations. Simultaneous changes in Blim and MSY Btrigger reference

points are correlated because Blim is typically used to estimate Bpa,

and Bpa is commonly used as an MSY Btrigger. Reference points are

revised in benchmarks to update productivity change concerns, along

with assessment methodology and data updates. In the estimation

of reference points, variation in processes related to productivity can

be included in several ways. The SR variation pattern is assessed to

detect regime changes. If strong evidence of a regime shift is found, the

time series may be truncated, though there are reasons not to truncate:

reduction to shorter time series might increase the uncertainty associated

with the reference point (Deurs et al. 2021), and changes are often

gradual, in which case choosing a time window might not be appropriate

(Collie et al. 2021). EqSim settings enable accounting for variation and

uncertainty, for example, process error in the SR relationship (stochastic

uncertainty around the SR model), which is typically included in the

estimation. Temporal dynamics can be accounted for by autocorrelation
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in recruitment and trimming of occasional extreme values. Trimming

of extreme values to account for high variability can be also applied to

catch data. Selection for the data window of productivity parameters

(i.e. natural mortality, weights-at-age, maturity, and fishery selection

pattern) is shortened when persistent trends are found in the data.

5. There are occasionally inconsistencies with the guidelines. By

reviewing all stocks, it becomes apparent that the current SR type and

consequent choice of Blim have some occasional inconsistencies with

the guidelines. We identified that a high percentage of stocks were

found difficult to classify by assessors, which might be a reflection of

ambiguity in SR types in the current guidelines. The implementation of

the classification framework depends on whether assessors can determine

if there is a clear SR relationship, which may be challenging. Comparably

across all stocks, SSB measures show inconsistencies with the description

in the SR types for some stocks. For example, some SR type 2 stocks

show no evidence of a wide dynamic range in SSB, e.g. her.27.1-24a514a.

In some cases, even when stocks appear to have impaired recruitment

(type 2), the segmented regression change point was not chosen as

the Blim value, e.g. the Blim value for cod.27.22-24 is the lowest SSB

where recruitment is good/high or not impaired. The current SR type

classification definitions might have gaps, e.g. how to classify a stock

with evidence of impaired recruitment but with a narrow dynamic range.

For stocks with no clear SR relationship, the choice of Blim was more

consistently Bloss or a fraction of Bpa for stocks with a narrow SSB range.

The classification of spasmodic stocks was shown to be difficult, as well

as the consequent choice of an appropriate Blim level for these stocks.

6. More comprehensive and clearer documentation of reference

point estimation is needed. Documentation on assessors decisions

made for reference point estimation (e.g. settings) lacked consistency

across stocks and details were sometimes missing or difficult to find.

The code used for the estimation was only occasionally attached to the

reports. Although there are guidelines on general steps for the estimation

of ICES fisheries management reference points (ICES 2021e), there is

a lack of a detailed document of guidelines for the use of the EqSim

framework.
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2.6 Recommendations for the future

Advice based on reference points is requested by governments to manage

their fisheries. For most data-rich stocks, fisheries managers in the northeast

Atlantic require annual advice on fishing opportunities to be able to set advice

on catch for the next year. Best practice involves validation, verification,

transparency, and repeatability within very strict time constraints to produce

yearly fishing advice. The current ICES framework can deliver at that level.

Based on our review of the framework, we offer the following recommendations

and research suggestions to improve the reference point framework for the

near future.

The biomass limit reference point plays a key role in classifying the condition

of the stock and determining if recruitment is likely to be impaired. The choice

of Blim is related to the classification of SR types, which was found to lead to

ambiguous results in several cases. In WKREBUILD, it was highlighted that

the determination of Blim used a more or less subjective classification of the SR

pairs into types (ICES 2020c). We found that a significant number of stocks

were difficult to classify for assessors. A simplified and reduced framework

of classification for the choice of SR types may help reduce ambiguity. In

addition, the development of quantitative criteria and analytical tools that

establish cut-offs to assist in the decision of SR type may be useful. For

example, use measures of SSB range and SSB variation to define “narrow

dynamic range” and “wide dynamic range”. Also, developing criteria to define

spasmodic stocks, such as CDFs intervals, would help the classification to be

less subjective and more transparent. Additionally, developing generalized

quantitative criteria to establish Blim, e.g. give specific details on how to

define the lowest SSB for good/high or not impaired recruitment.

Stocks with spasmodic recruitment are common for some fish species, and

their management is particularly challenging (Licandeo et al. 2020). In ICES,

spasmodic stocks (SR type 1) are defined as “stocks with occasional large

year classes” (ICES 2021c). Spencer and Collie (1997) identified spasmodic

stocks as those having the highest variation in their study, with low-frequency

components without clear periodicities. Stocks with spasmodic recruitment

may have long periods of weak recruitment with infrequent or irregular strong

recruitment, which has complex links to stock productivity. More research is

needed to define spasmodic criteria, as well as on simulation frameworks to

evaluate how to define reference points and manage this type of stock (e.g.
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Atlantic redfish in Licandeo et al. 2020).

In WKRPCHANGE, it has been suggested that addressing PA/MSY needs

to take better account of changing productivity drivers, e.g. growth, repro-

duction, recruitment, density-dependence, and survival (ICES 2021a). Marine

ecosystems are dynamic and might be affected by climate change impact-

ing reference points. The productivity of fish stocks has been observed to

vary globally in a non-stationary manner (Vert-pre et al. 2013; Minto et al.

2014; Britten et al. 2016; Perälä et al. 2017). In the ICES reference point

framework, there are tools to account for temporal dynamics, and reference

points are evaluated regularly at benchmarks to revisit their assumptions on

future productivity. However, more research is needed on regime shifts and

the consequences of, for instance, truncating data time series. Truncating the

data can have significant impacts on the resulting parameter estimates. It

has been observed that reducing the length of time series used to estimate

reference points increases the uncertainty associated with them, particularly

with biomass limit reference points (Deurs et al. 2021). It is still relatively

unclear how to determine the period to use to estimate reference points. A

better understanding of the nature of recruitment variability and the impact

of changes will be key for estimating reference points. Research on how to

detect when there has been a significant change in productivity (e.g. Peterman

and Dorner 2012; Minto et al. 2014; Perälä et al. 2017; Tableau et al. 2019)

could clarify recommendations to deal with productivity change. Furthermore,

more research is needed to improve our understanding of ecosystem dynamics

and their impact, and how to integrate these concerns into the framework for

estimating reference points (Collie et al. 2021; Silvar-Viladomiu et al. 2022b).

As estimation of ICES reference points is typically made outside the assess-

ment model, there is associated uncertainty in current abundance estimates,

recruitment, and current fishing mortality regarding models and data used.

Propagating the assessment uncertainty into the reference point estimate is

important. We found that mainly default advice error values were used to

account for advice uncertainty. These values were calculated as the median of

five ICES stocks, and it would be an improvement to guide the estimation of

more stock-specific values. While there is some guidance in the WKMSYREF3

report (ICES 2015b), more documentation is needed along with extending the

research on estimation and the inclusion of advice uncertainty and dealing

with short time series.
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WKGMSE3 recommended the consideration of using more flexible MSE simu-

lation frameworks for estimating reference points. MSEs have the potential to

identify and account for more sources of uncertainties associated with refer-

ence points, e.g. density-dependent changes in underlying biological processes,

SR pair time period error, and assessment/advice formulation error (ICES

2020a). Simulation models can also help develop management procedures

and HCRs that are robust to perceived uncertainties, e.g. about recruitment.

Further research is needed to develop guidelines for when and how reference

points should be extracted from an MSE when one is conducted, using clear

terminology and on how to deal with different outcomes with regard to pre-

caution in reference point estimation and MSEs. Communication is extremely

important because the decisions and assumptions taken to build MSEs are key

to understanding the results. In general, WKGMSE3 recommended improving

communication between scientists and managers (ICES 2020a).

Overall, moving forward, we recommend improving communication and trans-

parency related to reference points in order to facilitate access to methods

and data used. Extensive documentation consistent across stocks is needed

for both general (cross-framework) and specific (EqSim) decisions and set-

ting choices. In the same way, TAF (Transparent Assessment Framework;

https://taf.ices.dk/app/about) was developed for assessments in order

to achieve retrospective implementation of the full procedure. We should also

be able to replicate reference point estimation at any historical time point by,

for example, embedding reference point estimation within TAF.

In an environment like ICES, there is a significant variation in the ability,

experience, and knowledge among experts conducting these analyses. For

reference point estimation, it is difficult to find a balance between preserving

some flexibility and having scientifically underpinned guidelines that are precise

and detailed (rather than general steps and recommendations). Furthermore,

those guidelines should be easily interpreted and understood by assessors.

Given the differences between stocks, species, and surrounding ecosystems,

some experienced scientists want flexibility to make the best scientific choices

and apply their preferred analytical tools. In general, the priority for the

framework should be to offer well-documented guidance with clearly stated

assumptions but without being too prescriptive. In order to achieve this, the

process might benefit from a more simplified methodology and terminology,

which may reduce ambiguity. Additionally, as noted in WKRPCHANGE

(ICES 2021e), the process of updating reference points in the context of
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ICES advice would benefit from specific additional guidelines clarifying when

reference points should be re-evaluated, how to test for non-stationarity or

regime shifts, and when to reevaluate assumptions (i.e. changes in fishing

patterns and productivity).

Finally, we recommend periodic syntheses such as these that take a detailed

comparative look at what is being done across all stocks. These syntheses

can then be compared and contribute to practices worldwide to continually

strive to improve reference point estimation as a key step in the provision of

scientific management advice.
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Chapter 3

Moving reference point

goalposts and implications for

fisheries sustainability

This chapter is a verbatim copy of a publish manuscript in Fish and Fisheries,

which can be found in Appendix B.2:

Silvar-Viladomiu, P., Minto, C., Halouani, G., Batts, L., Brophy, D., Lordan,

C., and Reid, D. G. (2021). Moving reference point goalposts and implications

for fisheries sustainability. Fish and Fisheries, 22, 1345– 1358. https://doi.

org/10.1111/faf.12591
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Abstract

For many environmental indicators, the sustainable status can change because

of changes in either the monitored state or the policy goal. Fisheries provide

an intensively monitored setting to investigate the relative impacts of such

change. Key fisheries sustainability indicators comprise the ratio between

fishing pressure or biomass and their respective reference levels. We developed

a retrospective database of population status, reference point changes, and

reported reasons for changes for all data-rich stocks in the ICES region. We

derived methods to distinguish the impacts of either source of change (monito-

red state or policy goal) on sustainable status. We found that reference points

changed frequently (64% of populations had reference point changes) with

varying magnitudes. Contrary to expectation, reference point changes were

often not compensated by changes in the state thus significantly impacting

inferred sustainability status and dependent scientific advice. Across a range of

life histories and assessments, changes in reference points dominate retrospect-

ive revisions in status over the full time series. Overall, status before and after

the change of reference point had no significant directional differences that

would suggest reference point change effecting movement towards or away from

sustainability. Although multiple factors have contributed to reference point

changes, our results show that the reference point definition and the technical

basis for estimation were the most important reasons for change. Recognizing

that reference points are not constant in time but rather form reference series

is paramount to quantifying present and historical sustainability. Properly

documenting, justifying, and quantifying the impacts of such change is an

ongoing challenge.

Keywords: Fisheries management; North Atlantic Ocean; population monit-

oring and assessment; sustainable targets and limits; UN sustainable develop-

ment

3.1 Introduction

Within the United Nations 2030 Agenda, goal 14 for sustainable development

relates to life below water and targets improved understanding of the status

of commercial fish stocks (FAO 2020). Historically, overfishing has been

widespread concern and the most decisive factor driving the collapse of marine

ecosystems and losses of ecosystem biodiversity (Jackson 2001; Worm et al.
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2006). The ability of fishery management systems to maintain fishing pressure

at levels that can sustain productive fisheries depends on the availability of

stock information and the capacity to adjust harvest in response to changes

in stock abundance. Recent analyses demonstrate that on average assessed

fisheries are improving with respect to management goals in regions where

there are research, assessment, and management plans (Fernandes and Cook

2013; Hilborn et al. 2020; Ricard et al. 2012; Worm et al. 2009).

Fisheries science has made substantial progress in developing tools to assist in

achieving policy goals. Management goals, commonly referred to as goalposts

by fisheries managers, are expressed as reference points for a sustainable

harvest. Quantitative measures of stock status relative to reference points are

used to provide advice on sustainable catches, often in conjunction with harvest

control rules (Kvamsdal et al. 2016). The status of a stock can be estimated

in terms of both the fishing pressure level (typically fishing mortality rate, F )

and abundance state level (typically biomass or spawning stock biomass, SSB)

relative to their reference point, often at Maximum Sustainable Yield (MSY).

The ratio of F to FMSY (termed relative fishing mortality) indicates how far a

stock is being fished from an optimally sustainable rate. Similarly, the ratio

of SSB to the biomass reference point (termed relative biomass) shows if a

stock is at a size that will provide MSY in the long term.

The concept of MSY is a common management goal underpinning reference

points (Mace 2001). MSY can be defined as “the highest theoretical equi-

librium yield that can be continuously taken on average from a stock under

existing average environmental conditions without significantly affecting the

reproduction process” (EC 2013). The precautionary approach (PA) plays an

important role in fisheries management and is necessary, but a not exclusive

condition for MSY. The International Council of the Exploration of the Sea

(ICES) provides advice in accordance with MSY when data are available, that

is consistent with the PA (ICES 2019a); populations need to be maintained

within safe biological limits to make MSY possible. ICES advice is based

on the fishing mortality reference point FMSY, and the biomass trigger point

MSY Btrigger (see Table 3.1 with definitions of those and related reference

points). For data-rich stocks, advice on sustainable catch focuses on attaining

a fishing mortality rate of no more than FMSY (fishing mortality status lower

than 1) while maintaining the stock above full reproductive capacity. When

SSB declines below MSY Btrigger (biomass status lower than 1), management

must take action to reduce fishing mortality (ICES 2019a).
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Table 3.1: The main reference points used in the ICES advice rule.

Reference point Definition

MSY Btrigger

Maximum sustainable yield biomass trigger is defined as the 5th
percentile of the distribution of SSB when fishing at FMSY, but for most
stocks that lack data on fishing at FMSY, MSY Btrigger is set at Bpa.

Bpa

Precautionary approach biomass reference point is a stock status
reference point above which the stock is considered to have full
reproductive capacity. Typically defined such that there is a 5%

probability that the actual biomass is below Blim taking account of
assessment error.

Blim

Biomass limit reference point is the key reference point, from which all
other PA reference points are estimated. Blim is the deterministic
biomass limit below which a stock is considered to have reduced

reproductive capacity.

FMSY
Fishing mortality that provides maximum yield given the current
assessment/advice error and biology and fisheries parameters.

The production of scientific fisheries management advice involves feedback

loops of data and analysis, review, and decision-making (Privitera-Johnson

and Punt 2020). The assessment type performed for each stock and the type

of advice given depends mainly on available knowledge. In ICES, stocks

are classified into six main data categories; for categories 1 to 4, there are

guidelines to estimate reference points (ICES 2017a; ICES 2018a). ICES

provides advice according to their MSY approach for category 1 and 2 stocks

and PA advice for category 3 – 6 stocks. Through the ICES framework, most

stocks undergo benchmarks every 3 – 5 years, where the methods and data

used in given assessments are externally reviewed to determine assessment

quality. Reference points used in ICES stock assessments are thought to be

valid only in the short and medium term due to changes in marine ecosystems

(ICES 2021e). As part of the benchmark process, reference points are reviewed

to ensure that they reflect the current understanding of stock dynamics and

are updated if necessary (ICES 2019a). Since reference points are estimated

from assessment outcomes, they are impacted by revisions (to the underlying

assumptions, data input and methods) made not only to the assessment but

also to the process specific to their derivation.

Previous studies have investigated how fishing mortality and/or biomass

estimates vary among assessments over time using several approaches to

measure variation (Evans 1996; Ralston et al. 2011; Wiedenmann and Jensen

2018). While investigating changes in the numerator of a sustainability
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indicator (e.g. F/FMSY) is important, we highlight the importance of changes

in both the numerator and denominator (i.e. the defined sustainable target

or limit). To our knowledge, no study has analysed the sources and the

relative impact of changes in reference points on the inferred stock status,

which is of critical concern to management. Changes to reference points may

be seen as “moving the goalposts” in one direction or another. To improve

understanding of changes in fisheries status it is necessary to discern how

components that comprise status (i.e. numerator and denominator) change.

Using an extended ICES assessments and denominator) change. Using an

extended ICES assessments database, we disentangle changes in key stock

status indicators such as relative fishing mortality (F/FMSY) and relative

biomass (SSB/MSY Btrigger). In addition, we present an analysis of reasons

for changes among assessments to identify important sources of variation and

uncertainty in reference points. Our key research questions thus comprise

(i) how have reference points changed in the region?; (ii) how do changes

in reference points impact sustainable stock status?; and (iii) what drives

changes in reference points?

3.2 Materials and Methods

3.2.1 Time series and reference points dataset

International Council of the Exploration of the Sea (ICES) stock assessments

provide detailed analyses of the dynamics and status of almost 200 stocks

representing important commercial fisheries for the European Union and

neighbouring countries. We obtained assessment output and reference points

from ICES stock assessments accessed by XML query portal System (http:

//standardgraphs.ices.dk/StandardGraphsWebServices.asmx/) or from

the relevant ICES report (http://stockdatabase.ices.dk/Default.aspx).

A total of 124 Stocks were subsetted to those that have reference point estim-

ates. These were mainly category 1 stocks although six of the selected stocks

were re-categorized during the timeframe of the study (either downgraded

or upgraded in data/advice categories). In 2017, ICES changed the codes

that are used to identify each stock (stock label key). These changes were

incorporated into our analysis. For the stock label keys in our list, we acquired

and integrated time series data on fishing mortality rate (F), spawning stock

biomass (SSB) and MSY reference points (FMSY and MSY Btrigger). These

51

http://standardgraphs.ices.dk/StandardGraphsWebServices.asmx/
http://standardgraphs.ices.dk/StandardGraphsWebServices.asmx/
http://stockdatabase.ices.dk/Default.aspx


data were downloaded on 17 April 2020. We excluded Nephrops stocks due to

the comparatively short length of the time series and the predominant use of

proxy yield-per-recruit reference points. Changes in reference points between

sequential assessments were identified for analysis. Change in reference point

(RP) was calculated as the proportional change relative to the preceding assess-

ment (RPy – RPy−1)/RPy−1, where y is the assessment year. The cleaning of

the database was supported by reference to the relevant published reports. We

filtered changes due to rounding and to being relative reference points to the

time series mean of fishing mortality or spawning stock biomass. Adjustments

were made to stocks that had non-comparable reference point values (different

measurement definitions used between assessments), see Appendix A.2 Table

SI1. Status analysis was not performed for reference points with substituted

values because, for example, the fishing mortality definition relative F in these

assessments could not be compared to absolute values in the other assessments.

3.2.2 Status change decomposition

For a given assessment and year, status is calculated by dividing timeseries of

estimated fishing mortality rate (F ) or biomass state (SSB) by the relevant

reference point. Sustainability status can change depending on changes to the

numerator (F or SSB) or denominator (FMSY or MSY Btrigger). We derived

expectations for the effect of changes in both numerator and denominator on

sustainability status. To analyse changes in status between assessments, we

first introduced the notation y to denote the assessment year and t the actual

year of the time series, for example F t=2000
y=2020, denotes the fishing mortality in

year 2000 as estimated in the assessment of 2020. For each stock, year, and

pair of consecutive assessments, we defined the inter-assessment change in

status Dt as the proportional difference in status for a given time series year t:

Dt =

Xy
t

Xy
MSY

− Xy−1
t

Xy−1
MSY

Xy−1
t

Xy−1
MSY

(3.1)

where X is either fishing mortality rate or spawning stock biomass and

XMSY is the relevant reference point. Pairs of consecutive assessments were

categorized according to whether or not a change in a reference point occurred.

We visualized time series of inter-assessment differences (Equation 3.1) to

understand how much status changes between consecutive assessments with
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reference point changes.

We estimated mean status before and after the change in reference point and an

unequal variances t test was used to compare the values and evaluated if there

were significant directional changes. We also compared the magnitude of the

variability of the changes in F and SSB for the complete data set (containing

all pairs of sequential assessments) to the variability of the subsetted data

set containing only pairs when a change in reference point occurred. For that

purpose, we measured the median absolute deviation (MAD) of the difference

in mean rate F and state SSB.

For the status decomposition analysis, we used the subsetted data when a

change in the reference point occurred. Change in status among sequential

assessments was quantified by the change in average status between consecutive

assessments over either the entire overlapping time series or the last 5 years

of overlap (to infer recent status changes). The difference in average status

can be decomposed into mean effects of the influence of changes in rate or

state between consecutive assessments (i.e. the numerator) and changes in

the reference point (i.e. the denominator). This decomposition comprises two

parameters: δ, which encapsulates the proportional change in the reference

point Xy
MSY = δXy−1

MSY ; and γ, which encapsulates the proportional change

in average rate (F ) or state(SSB) over time (
∑n

t=1 X
u
t / n = γ

∑y
t=1 X

y−1
t /n).

We derive the expected difference in status using γ and δ:

E(
Xy

t

Xy
MSY

− Xy−1
t

Xy−1
MSY

) =
γE(Xy−1

t )

δXy−1
MSY

− E(Xy−1
t )

Xy−1
MSY

) (3.2)

The mean proportional status change (w) is obtained by dividing the expected

difference in status by the expected previous status:

w =
E(

Xy
t

Xy
MSY

− Xy−1
t

Xy−1
MSY

)

Xy−1
t

Xy−1
MSY

=
γ

δ
− 1 (3.3)

The impact of either change cannot be isolated (as the derivatives with respect

to each naturally depend on the other). Nevertheless, we can empirically

evaluate given changes to determine how much the relative status changes

with respect to changes in either component. The mean change in status with

respect to the proportional change in the reference point (δ) and with respect
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to the proportional change in estimate time series (γ) can be estimated with

the following differential equations:

dw

dγ
=

1

δ
;
dw

dδ
=

−γ

δ2
(3.4)

We used a Pearson correlation test to evaluate the relationship between the

two estimated parameters of proportional change.

3.2.3 Covariates of change dataset

We review relevant advice reports for assessment years y and y − 1 to

collect information on modifications that may have impacted the value of

the reference points. Information on specific important revisions in assess-

ment or benchmark meetings was typically presented in the advisory re-

ports. Information regarding the technical basis for a reference point is

presented at the reference point summary table. However, detailed inform-

ation on settings for the estimation of the reference point was extracted

from extensive reading of the referenced document, for example assessment

reports or reference point estimation working group WKMSYREF (ICES

2014; ICES 2017b). These reports are available at the ICES library website

(http://www.ices.dk/publications/library/Pages/default.aspx).

Every event of reference point change might have been associated with multiple

modifications, typically within a benchmark assessment process. For example,

the North Sea, eastern English Channel, Skagerrak cod (Gadus morhua,

Gadidae) assessment was benchmarked in 2015, resulting in changes to the

input data structure, maturity, natural mortality and model settings causing

reference points to be re-estimated. Besides, the MSY fishing mortality

reference point was updated from Fmax to FMSY from EqSim (stochastic

equilibrium reference point software) analysis, and the rationale for Blim

was changed from Bloss to the SSB associated with the last above-average

recruitment.

For every event of change in a reference point, the relevant information was

collated into a new database and summarized as reference point covariates.

We defined covariates based on the most frequent changes and modifications

made. We aim to summarize revision generalized across all stock assessments.

Covariates comprise categorical variables of occurrence and factor variables of

a varying number of levels (Appendix A.2 Table SI2). “Assessment” covariates
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were used for the analysis of both fishing mortality and biomass reference

points. These comprised modifications such as (1) modification of stock defini-

tion; (2) revisions of input data both fisheries-dependent; and (3) independent

(e.g. inclusion or exclusion of fisheries-dependent and fisheries-independent

data, e.g. discards, commercial index, survey index); (4) re-assessed maturity;

(5) re-assessed natural mortality; and (6) a heterogeneous group encompassing

other revisions and updates of assessment methodology, additionally (7) re-

vision of the assessment type, which includes information of changes in the

model selected to assess the stock, with categories representing levels by the

combination of the previous and subsequent model.

For most ICES assessments, derivation of FMSY is typically a separate process

that uses assessment outputs for age-based models, and so we evaluated

changes in FMSY with “Assessment” covariates and covariates specific to

its derivation (“RP” covariates). These comprise (8) modifications to the

definition of FMSY,(9) change in the functional form of the stock-recruitment

relationship, (10) revisions to the time frame of recruitment data input and

(11) the time window of productivity parameters (growth, maturity, natural

mortality, selectivity). The two former were included because ICES guidelines

(ICES 2017a) recommend the use full time series of recruitment unless strong

evidence exists of a regime shift; and the use of the last 10 years of biological

parameters (weights, maturity, natural mortality) and fishery parameters

(selectivity) unless there is evidence of persistent trends. Revision to the

definition of FMSY was categorized according to the information provided

regarding the initial and subsequent choice of advised FMSY, for example

changes from the use of certain FMSY proxies to the use of FMSY.

Following the ICES MSY approach (Table 3.1, ICES 2017a), for MSY Btrigger

we included in the covariates the re-evaluation of the technical basis of

MSY Btrigger and related reference points (Bpa and Blim). This framework

includes transition rules, for example when a stock is fished at or below FMSY

for 5 or more years then the basis is MSY Btrigger changes from Bpa to the 5th

percentile of BMSY. For ICES stock assessments, the biomass reference point

Blim is the main precautionary reference point, and Bpa is usually derived from

it accounting for assessment uncertainty. Thus, to analyse changes in MSY

Btrigger we included covariates that are involved in setting MSY Btrigger as (12)

the revaluation of the technical basis of MSY Btrigger and its related reference

points (13) Blim and (14) Bpa.
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3.2.4 Reference point change analysis

We conducted an a posteriori regression analysis of sources of those historical

changes collated from the published reports. The influence of covariates

on reference points was analysed by a multiple linear regression taking the

proportional change in the reference point (δ) as the response. All covariates

relevant to the reference point were first included as main effects to explain

proportional changes in reference points; all possible combinations of submodels

were then fit and ranked by the Akaike information criterion (AIC), we used

the R function glmulti() for the model selection (Calcagno and Mazancourt

2010). Finally, we conducted a two- sided F-test ANOVA to the best-supported

multiple linear model and investigated the percentage of the variance explained

by the selected covariates.

3.3 Results

3.3.1 Reference point changes

We identified that 50 stocks (21 species) have had changes in MSY-based

reference points between 2011 and 2019 (Figure 3.1). This represents 64%

of the stocks with estimates of absolute reference points. There were a total

of 79 events of change in FMSY and 51 in MSY Btrigger, of which 42 were

simultaneous changes in both reference points. Of all stocks, North Sea,

eastern English Channel and Skagerrak cod 2015 and West of Scotland cod

2019 had the highest increase in FMSY (74%). Cantabrian Seas and Atlantic

Iberian waters sardine (Sardina pilchardus, Clupeidae) 2019 had the greatest

decrease (73%), which is considerably larger than the magnitude of any other

decreases. The biomass reference point, MSY Btrigger, increased by 145%

for North Sea, Skagerrak plaice (Pleuronectes platessa, Pleuronectidae) 2017,

when MSY Btrigger changed from Bpa to the 5th percentile of BMSY. The

largest decrease in MSY Btrigger occurred in Rockall haddock (Melanogrammus

aeglefinus, Gadidae) in 2019 (64%).

For some stocks, reference points continually declined or increased, for ex-

ample Baltic Sea sprat (Sprattus sprattus, Clupeidae) FMSY and seabass

(Dicentrarchus labrax, Moronidae) MSY Btrigger, but importantly for many

stocks with multiple reference point changes, these included a mixture of

decreases and increases (Figure 3.1). This raises the question of whether those

changes reflect short-term productivity fluctuations or difficulties estimating
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suitable reference points. We found that simultaneous changes in both ref-

erence points showed no relationship between increases or decreases in FMSY

and MSY Btrigger (Appendix A.2 Figure SI1).

Figure 3.1: Changes in reference points for stock assessments for the period
2011–2019, measured in percentage change relative to the preceding assessment.
Stocks are ordered by species. Acronyms used in stock description are: BB,
Bay of Biscay; BC, Bristol Channel; CS, Celtic Sea; BS, Baltic sea; CaS,
Cantabrian Sea; AI, Atlantic Iberian waters; EC, English Channel; FG, Faroes
grounds; GR, Gulf of Riga; GB Gulf of Bothnia; FP, Faroes Plateau; IS, Irish
Sea; NA North Atlantic; AO, Arctic Ocean; NS North Sea; S, Skagerrak; K,
Kattegat; R, Rockall; WS West of Scotland; c, central; n, northern; e, eastern;
w, western.

3.3.2 Sustainability status changes

Examining timelines of changes in status (F/FMSY and SSB/MSY Btrigger)

between assessments in which reference points changed (Appendix A.2 Figures
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SI2 and SI3), we observed a variety of temporal patterns in the nature and

magnitude of the changes (Appendix A.2 Figures SI4 and SI5). In some cases,

the changes of reference point caused almost indiscernible changes in status

(e.g. relative fishing mortality of Western Baltic Sea sole (Solea solea, Soleidae)

2014 in Figure 3.2),while elsewhere important status changes occurred when

reference points changed (e.g. relative fishing mortality Cantabrian Seas

and Atlantic Iberian waters sardine 2019). Occasionally, the sign of the

change in status cross-over, meaning that the status trajectories between the

assessments intersect, for example Skagerrak and Kattegat, western Baltic

Sea sole 2015 in Figure 3.2. Status often varied markedly in the most recent

years due to variability in fishing mortality rate (F ) or biomass state (SSB)

esti-mates, which are typically more variable in terminal years owing to a lack

of convergence of the estimates (e.g. as caused by cohorts just entering the

fishery and assessment). For example, in Cantabrian Seas and Atlantic Iberian

waters sardine, a change to the 2019 assessment caused a relative increase in

the F/FMSY estimates that decreased in magnitude from 2010 to 2019 while

a change to the 2015 assessment for Rockhall haddock caused a positive trend

in the relative decrease of SSB/MSY Btrigger from 2012 to 2015 (Figure 3.2).

Several cases showed significant fluctuations in the magnitude of the relative

change in status; some with a clear pattern (e.g. Rockhall haddock 2019)

and others with a steady directional trend (e.g. Celtic Sea, Irish Sea herring

(Clupea harengus, Clupeidae) deviation in 2013, Figure 3.2). To reflect these

differences, we analysed status changes using both the complete time series

and only the last 5 years to capture trends in changes in recent years.

Overall, while there are many examples of large changes in status for individual

stock, there is no clear movement away from or towards sustainability (Figure

3.3 top panel). For the most recent five years, the changes in relative fishing

mortality and relative biomass state showed greater spread than when all

years were included. Changes in status were not directional based on unequal

variances t test of the status before and after the assessment update (change in

average relative fishing mortality recent: t(159,46) = −0.04, p = .965; complete

time series: t(164,81) = −0.06, p = .95; change in average relative biomass

recent: t(101,23) = −0.19, p = .849; complete time series: t(99,41) = 0.05, p

= .957). The changes in average F or SSB, when a change in reference

point occurred, had similar or greater variability than when all pairs of

sequential assessments are considered (change in average relative fishing

mortality recent: MADchange = 1.49, MADallpairs = 0.03; complete time
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Figure 3.2: Example of changes in status timelines. Top-panel shows relative
fishing mortality rate (F/FMSY ); and bottom panel shows relative biomass
state (SSB/MSY Btrigger) proportional changes of assessment year (y) relative
to the previous (y − 1), for assessments in which changes in reference points
were implemented.

series: MADchange = 1.48, MADallpairs = 0.009; change in average relative

biomass recent: MADchange = 4, 807.33, MADallpairs = 5,187.62; complete

time series: MADchange = 2, 494.93, MADallpairs = 1, 490.71). Therefore, the

changes in sequential estimates of F and SSB were more marked when a

change in reference point occurred.

3.3.3 Effect of reference point changes on sustainability

status

We define δ as the proportional change in the reference point and γ as the

proportional change in average rate (F ) or state (SSB) overtime. There was

some evidence of a weak positive relationship between changes in rate or state

and reference point (Figure 3.4),which was significant only for biomass over the

recent part of the time series (ρ = 0.33, p = .018) and over the complete time

series (ρ = 0.53, p < .001). Where the proportional changes in the numerator

and denominator were equal, no change in status occurs (1:1 line in Figure 3.4).

However, particularly looking at the data for the complete time series, average

status changes were mainly due to changes in reference points (horizontal

spread of points in Figure 3.4a2, 3.4b2). Some of the greatest changes in

relative fishing mortality were associated with changes in FMSY, for example
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Figure 3.3: Mean status before and after at changes in reference points. Top-
panel shows mean status on logarithmic scale in terms of relative fishing
mortality (a) and relative biomass (b), over last five recent years (a1, b1) and
complete time series (a2, b2). Bottom panel shows the distribution of the
difference of status between before and after the reference point change. Black
point and dashed line represents median values.

increase in relative fishing mortality for sardine in 2019 (Figure 3.4a point

61); and decrease in North Sea, eastern English Channel, Skagerrak cod in

2015 (Figure 3.4a point 11). Similarly for relative biomass, large changes were

related mainly with changes in MSY Btrigger, for example Rockhall haddock

in 2019 (Figure 3.4b point 28) and North Sea and kagerrak plaice in 2017

(Figure 3.4b point 63). Yet, eastern English Channel sole 2017 had important

changes in both the biomass estimate and MSY Btrigger (Figure 3.4b point

80). Only occasionally were the changes in rate or state compensated by

changes in reference point over the most recent period such that no change in

status occurred. This counters a common belief that changes in the estimated

state will be compensated for by changes in the reference points, which are

caused by new information on processes. There were examples of where

this compensation occurred: relative fishing mortality of Gulf of Bothnia

herring (Figure 3.4a point 39); and relative biomass of Northeast Atlantic

horse mackerel (Scomber scombrus, Scombridae; in Figure 3.4b point 51),

and North Sea and eastern English Channel whiting (Merlangius merlangus,

Gadidae; in Figure 3.4b point 91).

The marginal relationship between mean status change (over the complete
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Figure 3.4: Change in sustainability status decomposition. Relationship
between proportional change in average rate or state (γ) and propor-
tional change in reference point (δa = F y

MSY /F y−1
MSY ; δb = MSY By

trigger

/MSY By−1
trigger), background colour represents impact in status change for relat-

ive fishing mortality rate, F/FMSY (a) and relative biomass state, SSB/MSY
Btrigger (b), over recent years (a1, b1) and the complete time series (a2, b2).
The plot numbers correspond to the event numbers in Appendix A.2 Table
SI1: (2) 2016 blue ling in Celtic Seas, English Channel and Faroes grounds;
(11) 2015 cod in North sea, eastern English Channel, Skagerrak; (15) 2019 cod
in West of Scotland; (28) 2019 haddock in Rockall; (39) 2013 herring in gulf
of Bothnia; (40) 2017 herring in gulf of Bothnia; (51) 2017 horse mackerel in
North Atlantic; (61) 2018 white anglerfish in Cantabrian Sea and Atlantic
Iberian waters; (80) 2017 sole in eastern English Channel; (91) 2018 whiting
in North Sea and eastern English Channel.

time series) and proportional change in reference point displayed a curvilinear

inverse response adhering to the expected relationship (Figure 3.5 top panel).

As the reference point is the denominator of status (F/FMSY and SSB/MSY

Btrigger), if the numerator compensated for the change in the denominator

one would expect a flat relationship in Figure 3.5. We found that reductions

in reference points (δ < 1) resulted in steeper increases in status, whereas

increases in reference points (δ > 1) resulted in more moderate reductions in
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status (e.g. from the theoretical proportional change in mean status γ
δ
− 1,

a 10% reduction in the reference point would result in an approximate 11%

increase in status whereas a 10% increase in the reference point would result

in an approximate 9% increase in the status where γ = 1). This negative

relationship between changes in status and the change in the reference point

appears stronger (less variable) for relative fishing mortality than for the

relative biomass (Figure 3.5 top panel). Occasionally, there were assessments

where the reference point decreased but status also decreased, or where both

increase. The observed marginal relationship with the proportional change in

rate or state (γ) was diffuse compared to the theoretical relationship (Figure

3.5 bottom panel). Over recent years of overlap, the marginal relationship

of changes showed in general more variability for the proportional change

in reference point and less variability in the marginal relationship with the

proportional change in rate or state estimates (Appendix A.2 Figure SI6).

Figure 3.5: Marginal relationship between average change in status and δ,
proportional change in reference point, at the top panel; and γ, proportional
change in rate (left) or state (right), at the bottom panel considering the
complete time series. Grey line shows the expected theoretical change with a
change in δ (top) or γ (bottom).
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3.3.4 Possible reasons for reference points change

Across all the covariates, the distribution of the magnitude of change in

both reference points displayed heterogeneous patterns with wide ranges; no

covariate showed a clear directional effect (Appendix A.2 Figures SI7 and

SI8). Most changes in reference point occurred due to a combination of effects

rather than a single cause; we found that covariates occurred simultaneously,

they might be correlated and also interact (Appendix A.2 Figures SI9 and

SI10).

Events of change in both FMSY and MSY Btrigger presented similar frequency

of occurrence for “Assessment” covariates. Input fisheries-dependent and

fisheries-independent data were revised for roughly 20% of the cases. The

assessment model was modified in approximately 15% of the cases, the most

frequent change being from XSA to SAM (n = 5). Re-assessment of natural

mortality was found in 11% of the cases for FMSY and 6% of the cases for

MSY Btrigger. Changes in natural mortality estimates comprise revision of

assumptions (e.g. using a new single species method, introducing multispecies

estimates), or updates (e.g. time-varying mortality updated, multispecies

estimates using a new multispecies model run). Less frequently encountered

covariates (> 10% of the cases) were the revision of maturity estimates and

the revision of the definition of the stock.

Although multiple factors have contributed to changes in reference points,

our results showed that the evolution in the definition for fishing mortality

reference point (FMSY) and re-evaluation of the technical basis for limit biomass

reference point (Blim) were the most important (Table 3.2). Revision of fishing

mortality reference point definition was the most frequent covariate identified

(n = 30, 40% of the cases). This key covariate explained the largest part of

the variance (39.8%) of the model (F − statistic13 = 3.6, p = .0004, Table

3.2). It presented the change of many previous definitions (e.g. proxy values)

and diversity of stochasticity implementation methods, to a unified FMSY

estimation framework Eqsim (Figure 3.6a). We found that advised FMSY

based on analogies from other stocks (n = 2) or provisional from simulation

frameworks (n = 8) were on average higher than subsequent FMSY; however,

per-recruit proxies were lower based on small sample sizes (Fmax n = 8; F0.1

n = 4). Only one observed change was related to a revision of the fishing

mortality reference point from the calculated value (FMSY) to Fp05 established

by stochastic simulations when the precautionary criterion is not met (Figure
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Figure 3.6: (a) Average change in advised reference point FMSY with levels
of revision in definition of fishing mortality reference point: FMSY , yield-per-
recruit proxies (F0.1 , Fmax), spawner biomass per-recruit proxies (FSPR30 ,
FSPR35, FSPR40, FSPR50), Fpa, reference point from analogy of other stocks
and provisional reference point; and (b) average change in advised reference
point MSY Btrigger with levels of revision of the technical basis: BMSY , Bpa

, Break point, Bloss , proxy from Spict model. The width of the line shows
the number of occurrence of that specific revision. Warm colours are mean
increase and cool colours mean decrease of reference point advised value.

3.6a). For the biomass reference point, revision of Blim technical basis explained

29.94% of the variance of the model (F − statistic13 = 2.23, p = .04, Table

3.2). Blim technical basis was revised for 19% of the cases and MSY Btrigger

for 16%. From the re-evaluations of MSY Btrigger (n = 13), for 23% of the

cases the technical basis was changed from Bpa to the 5th percentile of BMSY

(Figure 3.6b). The most frequent revision found was re-evaluation of the

technical basis of Bpa (23% of the cases), which involves modification of how

the assessment uncertainty is accounted for. Both selected models to explain

changes in reference points had large residual variability at 44.62% and 21.02%

for FMSY and MSY Btrigger, respectively (Table 3.2) likely reflecting the binary

nature of the covariates without the magnitude of change.

The different nature of ICES fishing mortality target and biomass threshold

reference point was reflected in the analysis. As FMSY is a model estimate

output, it is impacted by modifications to input data (e.g. selection pattern

and biological parameter) and underlying assumptions (i.e. stock–recruitment

relationship functional form). We found that to derive FMSY, the assumption
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of the stock–recruitment relationship functional form was revised for 24% of

the cases (n = 19). Modelling of the stock–recruitment relationship (a key

density-dependent process) remains a challenge and this is known as the main

source of variation (ICES 2015b; Simmonds et al. 2011). During workshops

to consider the basis for FMSY ranges for all stocks, WKMSYREF (ICES

2015b; ICES 2017b) several stock–recruitment models were investigated from

functional form combinations to the use of segmented regression. In terms

of data input to derive reference points, we found that the time series to

estimate FMSY was revised in 11% of the cases for recruitment and 7.5% for

productivity parameters. Time series of recruitment and SSB to model the

stock–recruitment relationship are re-evaluated to ensure the selection of the

relevant period when there is a change in the perception of the productivity

regime (i.e. shifts or trend). Both, revision of stock–recruitment functional

form and selected time series of recruitment, were important variables in the

model, which explained around 5% of the variance each ( p < .05, Table 3.2).

In contrast, MSY Btrigger (when set to Bpa) is based on biomass assessment

estimates, because is often derived from Blim (typically set by stock–recruitment

typology rules). Therefore, it is more sensitive to changes affecting the

estimates of biomass, for example revision of assessment model type, fishery-

dependent and fishery-independent data, methodological revisions and re-

assessment of maturity (Table 3.2).
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3.4 Discussion

3.4.1 Evolution of sustainable targets and thresholds

Reference points play a key role in fisheries management by providing targets

and thresholds to guide management actions (Mace 2001). Reference points

may change, not only reflecting the non-stationary nature of the ecosystem but

also our ability to capture those changes. The frequency at which reference

points are updated varies globally, for example, tuna Regional Fisheries

Management Organizations and North Pacific Fisheries Management council

update reference points with each assessment (Kell et al. 2016). ICES stocks

provide a unique opportunity in terms of breadth and frequency of change

(Figure 3.1) to investigate the impact of changes in reference points. By using

ICES stocks for this analysis, we gained a data-rich and detailed overview of

the evolution of reference points and their key management use in measuring

sustainability status. Stock status before and after a change in a reference

point had no significant directional differences (Figure 3.3) that would suggest

a retrospective movement towards or away from sustainability. But there

have been important effects of reference point changes for specific stocks with

implications for sustainable harvest advice and perceived conservation status.

We showed that, across a range of life histories and assessments, changes in

reference point dominate changes in status over the full time series (Figure

3.4). Analysis of recent years shows more variability due to terminal estimate

variability and bias (known as retrospective pattern in assessment updates;

ICES 2020b) but also highlights the importance of changes in reference points

on status. For simultaneous changes in FMSY and MSY Btrigger, we would

expect an inverse relationship (i.e. a decrease in FMSY would be associated with

an increase in MSY Btrigger and vice versa), assuming that the same method

was used and only new information in processes was included. However, a

substantial number of events deviated from the expected direction (Appendix

A.2 Figure SI1), which might be indicative of changes in perceived productivity.

Reference point changes reflect simultaneously the evolution of management

policy and scientific understanding and methodology. In 2009, ICES adopted

the MSY framework on top of their precautionary framework and began

adapting the advice provided (Lassen et al. 2014). The framework includes

transition rules; for example, when a stock is fished at or below FMSY for 5 or

more years then the basis of MSY Btrigger changes from Bpa to the 5th percentile

of BMSY (ICES 2017a). This is because productivity and BMSY estimates
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may change as stocks increase when fishing mortality is reduced to more

sustainable levels (i.e. FMSY). Another occurrence was the re-estimation of

FMSY and precautionary reference points during the workshops WKMSYREF

(2013–2015). This was stimulated by the request of the European Commission

for advice on potential intervals above and below FMSY for selected stocks.

Evaluations of MSY were made using EqSim or similar methods to implement

stochasticity (ICES 2014; ICES 2017b). Changes in software used to derive

FMSY are important because the underlying uncertainty assumptions and the

way stochasticity is implemented may vary, which affects the estimates (ICES

2017b; ICES 2019c).

Across different regions, past studies of the variability among historical assess-

ment and projection simulations have shown that there are numerous potential

causes for changes in assessment estimates over time (Privitera-Johnson and

Punt 2020; Punt et al. 2018; Ralston et al. 2011; Wiedenmann and Jensen

2018). Previous studies have shown sensitivity of MSY-based reference points

to the functional form and parameters of the stock–recruitment relationship

(Simmonds et al. 2011; Zhu et al. 2012). A recent study initiates there search

on the uncertainty associated with biomass limit reference points (Deurs

et al. 2021). They were found to be sensitive to the estimation method, time

series length, and stock development trends. However, to our knowledge,

no study has systematically quantified the impact and reasons for changes

in reference points over time. We explored the effect of modifications to

reference points that were stated in assessment reports. Were we to also

re-run the assessment models and reference point estimation procedure it

would be possible to investigate the deterministic impact of any given changes

singularly or in combination. This mechanistic approach would be greatly

facilitated through transparent frameworks for data and modelling and advice

such as the recently developed ICES Transparent Assessment Framework

(https://taf.ices.dk/app/about last accessed August 15th, 2020). Such

an analysis is beyond the scope of this work but would be extremely useful

and could be operationalized where changes are proposed. Our analysis sets

the groundwork for future mechanistic investigation of the causes underlying

changes in reference points and status on a stock-by-stock basis.
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3.4.2 Implications for fisheries management

Time-varying reference points will become increasingly important for man-

agement given: (i) continual improvements in stock assessments (in terms of

new and improved data and estimation) and continually improved knowledge

of stock biology; (ii) the development of operational ecosystem approach and

the increasing inclusion of ecosystem concerns in assessments (Marshall et al.

2019; Skern-Mauritzen et al. 2016); and (iii) growing evidence of dynamics,

shifts in productivity, and the influence of climate change, which emphasizes

the need to adapt reference points (Britten et al. 2017; Collie et al. 2012;

Minto et al. 2014; Vert-pre et al. 2013; Szuwalski and Hollowed 2016; Tableau

et al. 2019). These changes in reference points will require inclusion in future

interpretations of stock status (Hilborn 2020).

We underscore the importance of keeping track of changes and modifications

to understand their impact and allow comparisons across stock assessments

that underpin fisheries management. Our results also highlight the continual

importance of accounting for scientific uncertainty to distinguish it from real

changes in the ecosystem or the fishery, which are fundamentally different. We

emphasize them any examples in Figure 3.1 of where reference points decrease

and then increase or vice versa and posit that these cases will offer useful

insights into the general process lending towards further investigation of the

stability and performance of management advice under true and perceived

change. Given the challenges faced by estimation and the use of reliable

reference points for management (Hilborn 2002), reference points are better

seen as reference series. The relevant reference point in the reference series

should also be time-dependent (possibly with lags) when inferring historical

sustainability rather than assessing historical status relative to the most

recent reference point. We recommend careful documentation of changes to

assessment assumptions and data inputs (Punt et al. 2018), as well as the

revision in estimation or selection of reference points and detection of shifts in

productivity (Clausen et al. 2018). Communicating, explaining and justifying

the changes is remarkably important to understand them and their relevance.

Nowadays, this can be readily achieved using change logs that are common in

other continual development processes such as software development.

Although this work is tailored for ICES reference points, the approach to

decompose changes in status into components can be applied to other regions

and globally (e.g. using the RAM Legacy Database). Methods developed here
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are applicable in settings where the ratio of a state to a changing goal is used

to indicate status (e.g. Sustainable Development Goals: 6 Clean Water and

Sanitation; 13 Climate Action; 15: Life On Land).

3.5 Acknowledgments

We are grateful to Kenneth Patterson for his valuable contribution and feedback

in early stages of this manuscript. We thank European stock assessment

scientists, data collectors, and ICES upon whose assessments our work is

based. This analysis was funded by Irish Department Agriculture, Food and

the Marine’s Competitive Research Funding Programmes (DAFM) as part of

the FishKOSM project (Ref 15/S/744).

70



Chapter 4

Peterman’s productivity method

for estimating dynamic reference

points in changing ecosystems

This chapter is a verbatim copy of a publish manuscript in the ICES Journal

of Marine Science, which can be found in Appendix B.3:

Silvar-Viladomiu, P., Minto, C., Brophy, D., and Reid, D. G. (2022). Peter-

man’s productivity method for estimating dynamic reference points in chan-

ging ecosystems, ICES Journal of Marine Science, 79, 4, 1034–1047. https:

//doi.org/10.1093/icesjms/fsac035
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Abstract

Target and limit reference points are fundamental management components

used to define sustainable harvest strategies. Maximum Sustainable Yield

(MSY) and the precautionary principle underpin many reference points. Non-

proxy reference points based on MSY in age-based single-species assessments

depend on the stock-recruitment (SR) relationship, which can display complex

variability. Current reference points ignore persistent dynamic change by

assuming that the SR relationship is stationary and with constant recruitment

parameters over selected time periods. We highlight Peterman’s productivity

method (PPM), which is capable of tracking temporal dynamics of recruit-

ment productivity via time-varying SR parameters. We show how temporal

variability in SR parameters affects fishing mortality and biomass MSY-based

reference points. Implementation of PPM allows for integrated dynamic eco-

system influences in tactical management while avoiding overwrought and

sometimes ephemeral mechanistic hypotheses tested on small and variable

SR datasets. While some of these arguments have been made in individual

papers, in our opinion the method has not yet garnered the attention that is

due to it.

Keywords: EBFM reference points; non-stationary productivity; scientific

fisheries management advice; stochastic processes; stock-recruitment relation-

ship; time-varying parameters

4.1 Introduction

Reference points play a key role in the provision of scientific advice for fisheries

management (Garcia 1996). They provide the basis to define targets and

limits that establish operational objectives, necessary for effective fisheries

management (Sissenwine and Shepherd 1987; Schnute and Haigh 2006; Hilborn

et al. 2020). Reference points provide benchmarks to promote the sustainability

of the stocks and reliant fisheries (Mace 1994). By identifying limits that

should not be exceeded and targets that should be achieved, they support

harvest control rules (HCRs) that guide management decisions (Punt 2010;

Kvamsdal et al. 2016). They have an essential role in current management

frameworks, to provide recommendations for fishing strategies and to define

tactical management measures, e.g. catch and effort limits, and the design of

management plans.
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Major paradigms used to define reference points internationally are Maximum

Sustainable Yield (MSY) and the precautionary approach (FAO 1995a). The

Food and Agriculture Organization (FAO) of the United Nations defines MSY

as: “the highest theoretical equilibrium yield that can be continuously taken

(on average) from a stock under existing (average) environmental conditions

without affecting significantly the reproduction process”. Managing fish stocks

under the precautionary approach and MSY has been generally advocated by

international agreements (FAO 1995a; UN 1995; UN 2002). The UN Fish Stock

Agreement contains guidelines for applying a precautionary approach within

an MSY framework. During the World Summit on Sustainable Development,

organized by the UN in 2002, it was agreed in the Johannesburg Declaration

to “maintain or restore stocks to levels that can produce the MSY with the

aim of achieving these goals for depleted stocks on an urgent basis and where

possible not later than 2015” (UN 2002). These concepts are embraced by

intergovernmental organizations and are reflected in important fisheries policies,

e.g. Common European Fisheries Policy (EC 2013) and Magnuson–Stevens

Fisheries Conservation and Management (MSA 2007) in the United States.

While MSY has been criticized from multiple angles (Larkin 1977), a change

in focus, away from MSY as a target catch state towards a target and limit

fishing mortality rate at MSY (Mace 2001), has made it one of the main

operational guides for sustainability in global fisheries management (Worm

et al. 2009; Marchal et al. 2016). Indeed, given difficulties in establishing

economic management objectives, MSY emerges as a default fall-back option

(Beverton and Holt 2004), if not the appropriate economic objective in itself

considering all components of the overall fishing sector (Christensen 2010).

One of the main criticisms of MSY is whether it is possible to take ecological

aspects into account (Larkin 1977; May et al. 1979; Mace 2001). Studies

highlight the challenge of achieving MSY simultaneously for cohabiting species

(Mackinson et al. 2009). There is also indication that single-species MSY may

need to be adapted when ecological interactions are present— i.e. predation,

competition (May et al. 1979; Gislason 1999; Collie and Gislason 2001).

Additionally, the growing evidence of regime shifts (Vert-pre et al. 2013;

Perälä et al. 2017); and the effect of climate change in fish stocks (Free et al.

2019) emphasize the presence of non-stationary population processes, which

mean that reference points will also vary.

The need to adopt a more holistic approach to fisheries management has been
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globally accepted (FAO 2003). Thus, the ecosystem approach is included

in most fisheries’ international agreements and policies. Ecosystem-based

fisheries management (EBFM) requires comprehension of the broader picture

(biophysical interactions, biodiversity, food-web structure, ecological processes,

and ecosystem functioning). Therefore, the science for its operationalization

and implementation is often considered challenging (Cowan et al. 2012; Dolan

et al. 2016). It is crucial to develop reference points as operationally powerful

as those currently used in single-species management advice yet in accordance

with ecosystem concerns. There is still no agreement on how to evolve the

MSY concept and what should be considered targets and limits within EBFM

(Rindorf et al. 2017b). The MSY concept applied correctly might be more

useful to EBFM than other data-demanding methods (Pauly and Froese 2021).

There is a “gap” between single-species methods that provide reference points

for advice to trigger tactical management and ecosystem-based methods that

often do not have clearly defined operative standards for tactical management

(Fogarty 2014). This gap is difficult to bridge because more complex models

present greater modelling challenges (Quinn 2003), making the outcomes less

suitable for management. Both methods are needed to support: (a) tactical

advice able to make management decisions in an immediate term and (b)

strategic advice based on the understanding of the system and the study of

ecosystem drivers and their effects. In this article, we focus on how to deal

with changing ecosystems within tactical fisheries management. We present a

possible bridge to align stock reference points with ecosystem concerns.

In our opinion, the keystone lies in the static assumptions to model recruitment

productivity, made in most single-species reference point estimations, which

do not reflect non-stationary behaviours shown in fish productivity (Peterman

et al. 2000; Minto et al. 2014; Perälä et al. 2017). We briefly review reference

point estimation in single-species contexts and highlight how time-varying

approaches provide operational objectives for management reflective of a

dynamic ecosystem. We believe that the framework for doing this is available,

we provide due recognition to the originators — Professor Randall Peterman

and his group — , and look to challenges and future developments. We

conducted hypothetical numerical simulations to show the role of temporal

variability in stock–recruitment (SR) relationship parameters and their impact

on reference point estimates. For our example, we chose to explore the

commonly applied Beverton–Holt SR model to complement previous research

on non-stationary SR relationships, which used the linearized Ricker model.
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Finally, we propose priority research areas in this field that will improve model

development and application.

4.2 Status quo of single-species reference points

Globally, there is broad agreement regarding the concepts underlying reference

points used to assess the status of fish stocks for management advice. Never-

theless, the interpretation and application of reference points have evolved and

differed among regions (Ricard et al. 2012; Hilborn 2020). We give an overview

of the status quo of single-species reference points, focusing on approaches

used in areas with advanced fisheries management systems: e.g. the United

States and Europe (ICES region). This background provides an entry point

for our arguments regarding Peterman’s productivity method (PPM).

4.2.1 MSY reference points

Understanding how population productivity varies with abundance is crucial in

determining maximal surpluses and thus defining single-species reference points

(Quinn and Deriso 1999). Reference points are usually expressed in terms

of fishing mortality rate (F ) and biomass, typically spawning stock biomass

(SSB). The scientific concept of MSY was introduced with the aggregated

Schaefer model (Schaefer 1954), which assumes that population growth is

density-dependent with a linear decrease in per-capita rate of population

growth with increasing abundance, resulting in a logistic population model

that is decremented by given catches. The logistic model has production as

a quadratic function of abundance. In Schaefer surplus production model

(Schaefer 1954), MSY is obtained at half of the carrying capacity or equilibrium

level. Subsequently, Pella and Tomlinson (1969) proposed an extension to

allow for asymmetric production curves.

For surplus production models, MSY reference points (FMSY and BMSY) are

internally estimated as functions of model parameters. These methods, also

called biomass dynamic models, focus on population growth and mortality.

The productivity of the stock is modelled with a limited set of parameters

including the intrinsic growth rate and carrying capacity of the population.

Surplus production models are often used for data-limited stocks because they

are less data demanding, although Bouch et al. (2020) highlight estimation

challenges associated with data availability with respect to the stock history.
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Age- or length-structured methods allow the cohorts to be followed, and

so they use data structured in age or length classes to analyze population

changes. These methods provide a more complete analysis of the stock

by following the dynamics of individual cohorts. Age- or length-structured

methods contain three basic components: growth, mortality, and recruitment

(Quinn and Deriso 1999). In addition to age and length information of the

population, the required inputs (which may sometimes be estimated) are

biological information including growth parameters, mortality, and maturity.

Whereas the majority of contemporary data-rich stock assessments use age-

structured models, the choice of model type is usually region-specific (Dichmont

et al. 2016). Integrated assessments (Maunder and Punt 2013), that allow

many data types in a single analysis, are becoming more popular, e.g. Stock

Synthesis SS3 (Methot and Wetzel 2013) in the west coast of the United

States; as are state–space models such as SAM (Nielsen and Berg 2014) in

the ICES region.

In age-structured assessments, to estimate MSY, the productivity and hence

yield from a population is modelled as a function of fishing mortality rate

and pattern, and from this, the relationships of yield to biomass and fishing

mortality are derived. The age-based MSY has arisen from fundamental

population dynamics models based on per-recruit theory (Beverton and Holt

1957), and is derived from three relationships (see example Figure 4.1): (i)

spawning stock biomass per-recruit (SPR) that models the spawning mass

productivity for a given recruit as a function of fishing mortality SPR(F); (ii)

SR relationship that models the relationship between the number of recruits

to the spawner biomass; and (iii) yield per-recruit that models the mass

removed from the population per-recruit by fishing. The per-recruit analysis

is related to biological variables (i.e. maturity or fecundity, growth/weight

at age, and natural mortality), fishery parameters (i.e. selectivity), and rate

of removals. In age-structured methods, MSY-based reference points were

typically estimated externally to the assessment model. Although integrated

assessment methods can estimate reference points internally as functions of

model parameters, sometimes fixing parameters of the SR relationship.

The relationship between stock size and recruitment defines the reproductive

productivity of the stock and is, therefore, key to the estimation of non-proxy

reference points. Understanding the SR relationship is crucial for MSY-

based reference point estimation (Shepherd 1982; Conn et al. 2010). The

inverse of the equilibrium SPR(F) provides a slope that intersects with the SR
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function at the equilibrium level of recruitment (Figure 4.1). The most popular

functions developed to understand the SR relationship are: Beverton–Holt

model (Equation 4.1; Beverton and Holt 1957), Ricker model (Ricker 1954),

and hockey-stick segmented regression (Barrowman and Myers 2000; Mesnil

and Rochet 2010). These models determine the density-dependent form and

hence the compensation of the stock before recruitment. The parameters of

the SR model relate to the reproductive potential of the stock and the rate at

which recruitment changes with increasing eggs or abundance. For example,

in the commonly used Beverton–Holt equation,

R =
αSSB

β + SSB
(4.1)

, where recruitment increases towards an asymptote as spawning stock in-

creases, α is the maximum number of recruits produced, and β is the spawning

stock needed to produce (on average) recruitment equal to α/2. The SR rela-

tionship is typically modelled as stationary (parameters are averages across

time) and so assumed constant over time (Hilborn and Walters 1992).

Despite its importance, the SR relationship is challenging to model for many

stocks because of insufficient contrast and a high degree of variability. For

stocks where recruitment information is lacking or there is high recruitment

variability, per-recruit analysis can offer proxies to use as reference points

(Gabriel and Mace 1999). The validity of per recruit levels as proxies for MSY

reference points is highly dependent on the life history characteristics of the

stock (Mace 1994). It is recommended to support the choice of appropriate

proxy with the SR information available (Cadrin 2012). Spawner per-recruit

levels are commonly used as proxies for MSY-based reference points in the US

(Maunder and Deriso 2014; Wetzel and Punt 2017), where they are developed

for individual stocks and designed to work in a precautionary sense.

4.2.2 Biomass limit reference points

Limit reference points are critically important for defining HCRs. HCRs are

a structured framework for providing scientific management advice (Punt

2010) and are considered a key component of the precautionary approach to

fisheries management (FAO 1995b). In HCRs, biomass limit reference points

are used to indicate the level of biomass below which reproductive potential

is impacted to avoid recruitment overfishing; typically interpreted as the SSB
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Figure 4.1: Reference points (virgin, crash, MSY and per-recruit proxies)
and relationships between SSB and F, recruitment and SSB, yield and F and
Yield and SSB at equilibrium with fitted Beverton-Holt functional form for
North Sea Skagerrack plaice (plaice in IV); plots modified from output of
FLRBRP analysis from FLR package in R (https://flr-project.org/doc/
Reference_points_for_fisheries_management_with_FLBRP.html). Grey
dots represent data observations for ICES stock plaice in IV division at the
assessment in 2018 (ICES 2018b), being 2018 the terminal year and the dots
observations in preceding years.

under which recruitment declines. There are several ways to set biomass limit

reference points (Punt et al. 2014c) depending on the HCRs in which they

are to be used. The approach chosen to estimate biomass limit reference

points impacts both the level and the amount of uncertainty associated (Deurs

et al. 2021). In the United States, a percentage of BMSY is typically used to

define limit biomass reference points. In situations when the SR relationship

is not well understood, a fraction of the unfished biomass (B0) can be used

to define the biomass limit reference point and occasionally also as a proxy

for MSY biomass reference point. In ICES, the key biomass reference point

is Blim, which is defined as the deterministic limit of biomass below which

a stock is considered to have reduced reproductive capacity. This reference

point is determined following SR typology rules that account for how stock

biomass relates to recruitment at the window of data available (ICES 2017a).
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A commonly used biomass limit reference point is the lowest observed biomass

(Bloss) for stocks with no clear relation between stock and recruitment. The

biomass limit reference point is the basis of all precautionary reference points

in the ICES advice rule used to estimate other precautionary reference points.

4.2.3 Stochastic MSY

Initial static and deterministic interpretations of equilibrium MSY were

thought to be inappropriate because they ignore the fact that fish populations

fluctuate in abundance (Mace, 2001). Most current MSY interpretations aim

to deal with those dynamics and account for sources of uncertainty. The

processes for taking into account uncertainty in reference point vary; differ-

ent methods to assess stocks deal with including variance and uncertainty

differently (Patterson et al., 2001; Dichmont et al., 2016).

In assessments, biological information (growth, mortality, and maturity) vary

by age structure and can vary over time (Methot and Wetzel 2013; Nielsen and

Berg 2014; Dichmont et al. 2016). To derive reference points when biological

variables vary over time, a typical approach is to estimate their average value

and account for temporal variability with parametric bootstrap or random

sampling methods. A temporal window of biological information time series

might be used, e.g. ICES guidelines state to use a 10-year time window (ICES

2017a) unless temporal patterns are found, in which case the time-window is

shortened.

Recruitment typically fluctuates considerably, reflecting that this is often

the most variable component in assessments (Maunder and Thorson 2019).

Complete time series of recruitment are typically used to derive reference

points unless regime shifts are detected. The SR relationship is modelled as a

stationary process with some variability (Figure 4.2). Fluctuations in recruit-

ment are commonly treated as a random process (e.g. log-normal) around

an assumed relationship between stock size and recruits. Reference points

are based on the long-term mean SR relationship (fixed parameters of the

functional form chosen), and independent or mean-reverting autocorrelated

process errors. Commonly no process error in the parameters is incorporated

(i.e. process uncertainty of the model structure reflecting the natural vari-

ability of the processes affecting the dynamics). The residuals of the fitting

frequently have temporal patterns with autocorrelation of residuals sometimes

being stronger than the SR relationship itself (e.g. North Sea and Skagerrak
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plaice, Figure 4.2). The stochastic equilibrium software for MSY modelling

has been developed by ICES to implement stochasticity in reference point

estimation (EqSim, https://github.com/ices-tools-prod/msy). EqSim

performs random sampling of the biological and fishery variables and samples

from the predictive recruitment distribution. Simulated autocorrelation in re-

cruitment can be included if shown to be important. Eqsim can also deal with

structural uncertainty of the SR functional form by applying the averaging of

a combination of models (ICES 2017a).

Figure 4.2: Stock-recruitment relationship of North Sea and Skagerrak plaice
(plaice IV). Left panel shows the relationship between SSB and recruitment
with fitted Beverton-Holt functional form; right panel shows the temporal
evolution of residuals of the SR relationship (top), and the relationship between
residuals at year t with residuals at year t+1 (bottom). Dots represent data
observations, colour scale represents the assessment year, and the blue line is
a gam model of the residuals with a first-order penalty.

Simulations of the entire system in Management Strategy Evaluation frame-

works (MSE; Punt et al. 2014b) play a key role in identifying sources of

uncertainty and stochastic elements, and in testing the precautionary criteria

(Kell et al. 2005). In an MSE, the whole management system is modelled

in the operating model (reality system or true state) and the management

procedure (perceived state). The MSEs have become crucial to evaluate

reference points and the performance of HCRs relative to agreed management

goals (De Oliveira et al. 2009). Development of MSEs is impacting the choice

of reference points, which to be precautionary must consider uncertainty in

both the science (stock assessment and reference point estimation) and the

management process. A present focus of MSE is evaluating the ICES precau-
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tionary criteria, specifically, if advised reference points ensure the populations

are maintained within safe biological limits under given uncertainties (ICES

2017a).

4.3 Reference points for changing ecosystems

Ecosystems are non-stationary, often presenting complex dynamical behaviour

(Sugihara et al. 2012; Fogarty et al. 2016). Globally, the productivity of

assessed fish stocks has been observed to fluctuate in a non-stationary manner

(Vert-pre et al. 2013; Perälä et al. 2017; Britten et al. 2017). Changes in

productivity constitute a challenge for defining management reference points.

A major limitation of single-species management is that interactions with

ecosystem drivers are usually not accounted for. An important element in

transitioning to EBFM would be to include these ecosystem concerns in

the estimation of single-species reference points. In this section, we address

approaches to deal with changing ecosystems in the calculation of reference

points.

4.3.1 Ecosystem concerns

Tools for EBFM comprise a heterogeneous group of models, used for multiple

objectives (see Geary et al. 2020 for a complete overview on ecosystem models).

Each marine ecosystem has its own features and functional responses with

spatial and temporal scales that are still relatively unknown (Hunsicker et al.

2011). Modelling tools that include ecosystem considerations increase in

complexity to incorporate ecological interactions, environmental drivers, and

human impact (Collie et al. 2016). When complexity increases it also increases

the knowledge needed to build the models, the parameters to estimate, and

the uncertainty propagated (Hollowed et al. 2011). Therefore, complexity

translates to an increase in data demand and a potential decrease in predictive

ability (Geary et al. 2020). Despite this, ecosystem models have developed

substantially in the last decades and have proved fundamental for strategic

management advice (Nielsen et al. 2018), offering a key holistic view of the

system (Benson and Stephenson 2017). Including ecosystem concerns, while

balancing complexity, e.g. Models of Intermediate Complexity for Ecosystems

(MICE models), helps improve understanding of the processes and disentangle

important ecological components (Plagányi et al. 2014). Studies on empirical

reference points from multispecies and ecosystem approaches, i.e. multispecies
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MSY (Gislason 1999; Collie and Gislason 2001; Moffitt et al. 2016), aggregate

biomass MSY (Gaichas et al. 2012), ecosystem global MSY (Trenkel 2018), have

shown intriguing mismatches with single-species reference points. Although

generally not used for tactical management, these studies emphasize that

incorporating ecosystem effects does alter MSY-based reference points.

In the United States, a food web ecosystem model of intermediate complex-

ity was used to estimate ecological reference points for Atlantic Menhaden

(Chagaris et al. 2020). In this way, information on ecosystem drivers and pred-

ator–prey interactions were incorporated into the assessment and management.

To our knowledge, this is the only case where an ecosystem model was used

to set an alternative ecological reference point. Additionally, ecosystem model

information was proposed as guidance within the ICES stock advice framework.

In the EU, where several stocks and fleets share the same space, reference

ranges—developed from the concept of Pretty Good Yield (Hilborn 2010)

—are used to give flexibility around fishing mortality at MSY in mixed fishery

contexts (Kempf et al. 2016; Rindorf et al. 2017a). The ICES working group

WKIRISH (ICES 2020b) has suggested that indicators from an ecosystem

model can be used to provide information on ecosystem conditions and make

recommendations regarding where in the precautionary F ranges we should

be setting fishing mortality from an ecosystem point of view, so called Feco

(Bentley et al. 2021; Howell et al. 2021). In these cases, the ecological drivers

selected depend on the stock interaction with the ecosystem studied.

Incorporation of holistic ecosystem considerations can be done at the simulation

level to evaluate alternative management strategies. If there is an ecosystem

model developed for the region, MSE can incorporate that ecosystem model

as the operating model (see Perryman et al. 2021 review). Higher complexity

and descriptive properties of the ecosystem model as the operating model

provides the capacity to evaluate the performance of an HCR taking into

account ecosystem considerations (Lucey et al. 2021). For example, the end-

to-end ecosystem model, Atlantis, has been used in an MSE for the Southeast

Australian fisheries (Fulton et al. 2014).

4.3.2 Inclusion of mechanistic drivers

A huge array of factors (biological interactions, climatic forcing, maternal

effects, climate change, and so on) can influence stock productivity. Inclusion

of ecosystem drivers in an explicit mechanistic way requires a significant
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expansion of assessment frameworks to enable a more data and time-intensive

assessment approach (Burgess et al. 2017). These ecosystem considerations

are currently seldom included in stock assessment or at the HCR level. Skern-

Mauritzen et al. (2016) found a diversity of ecosystem drivers and approaches

based mainly on expert knowledge and specific to a certain fishery. Most

cases were identified among US and ICES stocks. But in general, these

were rarely included in operational management advice. Their inclusion is

limited by the high level of understanding required, and the complexity of the

interactions, relationships, and their stability, which can be ephemeral (Myers

1998; Sugihara et al. 2012).

1. Inclusion of trophic interactions. The most typical trophic interaction

included in assessments is the predator–prey relationship, which can

be incorporated in parameters of natural mortality and growth rate.

Predation mortality rates can be estimated from stomach content analysis

with multispecies models. Multispecies dynamic models are extensions

of single-species assessment models that integrate trophic predator–prey

interactions with the mortality caused by the predator derived from

the predator diet data (Trijoulet et al. 2019). Addition of mechanistic

trophic interactions has been observed to greatly impact reference points

(Gislason 1999; Trijoulet et al. 2020). In some cases, parameter estimates

from multispecies models are thought to be more realistic than estimates

from single-species approaches (Hollowed 2000). Hence, natural mortality

parameters from multispecies models are occasionally used in stock

assessments. For example, several North Atlantic stocks assessed by

ICES use the natural mortality estimates from a Stochastic Multi Species

model (SMS; Lewy and Vinther 2004) in the single-species assessment

to provide management advice (ICES, 2018a). Predation also impacts

and can be incorporated into the SR relationship to help understand

trophic interactions in recruitment dynamics (Swain and Sinclair 2000;

Minto and Worm 2012; Collie et al. 2013).

2. Inclusion of environmental and ecological variables. Environmental

and ecological variables have shown a strong impact on population

dynamics. Examples of environmental drivers include temperature (e.g.

sea surface temperature), hydrodynamics, precipitation, wind-mixing

energy, North Atlantic Oscillation index, up-welling index, and river

input. Other influential ecological drivers might be zooplankton, chl a

(hence primary productivity), and eutrophication. The environment is
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considered to primarily affect recruitment dynamics showing relatively

rapid responses, especially for short-lived species (Clausen et al. 2018).

Apart from stock responses to these variables being specific to species and

systems, ecosystems are non-stationary, and therefore, different states

may have different influential drivers (Skern-Mauritzen et al. 2016).

Resulting in the inclusion of environmental drivers being challenging

(see Crone et al. 2019 for good practices). Including environmental

variables in the SR model has often failed, which might be due to

non-stationary relationships or because multiple variables were tested

without correcting for multiple tests (Myers 1998; King et al. 2015).

Besides, the link between SR and environmental drivers might not be

linear (Subbey et al. 2014). Several assessment models can include

environmental drivers, but in practice, their inclusion results in little

improvement with respect to management performance (Punt et al.

2014c; Haltuch et al. 2019). Therefore, environmental driver inclusion

remains rare and most reference points and HCRs do not explicitly

incorporate those relationships (Haltuch et al. 2019).

4.3.3 Re-estimation of reference points

Currently, reference points reflect average ecological and environmental condi-

tions over the time period of the data. By definition, MSY-based reference

points are estimated given prevailing average environmental conditions (MSA

2007; EC 2013). Average fishery and population dynamics of a stock along

with environmental conditions are inherently included in their estimation

(integrated in the average SR, growth, post-recruit mortality, and maturity

parameters). The FAO Fish stock assessment manual establishes that reference

points must be regularly updated, taking into consideration possible changes

in the biological parameters or exploitation patterns (FAO 2003). If reference

points are not changed once established, they will not reflect the dynamic

nature of the ecosystem (Kell et al. 2016). Hence, reference points are usually

reevaluated in the light of environmentally and stock density induced changes

in stock productivity and changes in species interactions (ICES 2021e). In

theory, the faster the dynamics evolve, the more often reference points would

need to be updated (Burgess et al. 2017).

Typically, reference points are revised with varying regularity. ICES considers

reference points to be valid only in the medium term (5–10 years), and therefore,
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they should be updated according to new population and fishery information,

and process understanding (ICES, 2021b). During assessment benchmarks,

data and parameters (biological, fishery, and SR relationship) are revised

and observed changes are taken into account. In the ICES region, reference

points have been observed to change frequently impacting the perception

of sustainability status (Silvar-Viladomiu et al. 2021). The ICES working

group WKRPCHANGE (ICES 2021a) identified several reference points that

are allowed to vary according to prevailing conditions. In the United States,

the National Standards guidelines state that because MSY is a long-term

average, it does not need to be estimated annually, but should be re-estimated

as required by changes in long-term environmental or ecological conditions,

fishery technological characteristics, or new scientific information (NOAA

Fisheries 2016). Even so, certain agencies update reference points with each

assessment, e.g. North Pacific Fisheries Management Council (check SMART

tool; NOAA Fisheries 2021).

In updating reference points, changes in productivity or regime shifts are

generally taken into account by the revision of the time series used for their

derivation. Regime shifts or trends present can be identified ad hoc or through

regime detection algorithm (e.g. STARS; Rodionov 2004). Some approaches

to deal with regime-shifts and changes in productivity are: (i) moving window,

which includes modelling recruitment from a specified number of years (King

et al. 2015); (ii) use of a detection algorithm to select the data with which to

base reference points (Punt et al. 2014c); and (iii) tailoring or truncation of

the data series to a temporal window after a shift has been detected (Szuwalski

and Punt 2013). A common difficulty, however, is how to decide which time

period to choose as representative of present dynamics. Estimation of reference

points might become unreliable as the time series is reduced (Deurs et al.

2021). Particularly, where one parameter (e.g. density-dependent asymptotic

recruitment) may not be updated at all given recent ranges of the stock but

the slope at the origin might be. Truncating data in this case risks losing

relevant partial information from earlier periods.

4.3.4 Dynamic proxy reference points

A reference point that takes into account shifts in the underlying productivity

of the stock has been proposed for the virgin biomass. In the United States,

where the virgin biomass reference point is extensively used for HCRs, a time-
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varying approach called dynamic virgin biomass was developed— dynamic B0

(A’Mar et al. 2009; Field et al. 2010). Contrary to the static virgin biomass,

which is an equilibrium-based measure, dynamic virgin biomass is a reference

population state representing the biomass that would have resulted across

time in the absence of fishing. The dynamic B0 approach uses the values

of the parameters estimated in the assessment to project the population

over time with no fishing, obtaining a time series of B0. The biomass varies

in time because of the estimated recruitment deviations and time-varying

growth and natural mortality. The population is simulated typically under the

assumption of a stationary SR relationship or driven by a separable function

of environmental drivers and stock size.

Dynamic B0 is increasingly being used because it can track population pro-

ductivity over time if fishing had not occurred (Punt et al. 2014c), but explicit

mechanisms involved in the change in productivity do not need to be iden-

tified. A’Mar et al. (2009) evaluated a management strategy with dynamic

virgin biomass and showed that management and estimation performance

was improved by adjusting the exploitation rate based on recent recruitment.

Dynamic B0 performs better than static B0 when stock productivity shifts

directionally (Berger 2019). The Inter-American Tropical Tuna Commission

(IATTC) recommends the use of dynamic virgin biomass when trends in

productivity or regime shift are detected (Maunder and Punt 2013).

4.3.5 PPM: dynamic recruitment productivity

Methods capable of modelling dynamic processes and detecting process vari-

ation over time are increasingly used (Auger-Méthé et al. 2021). Dynamic

state–space models to fit time-series data have been implemented both within

age-based assessment models (Aeberhard et al. 2018) and for the estimation

of population biomass dynamics and productivity (Walters 1986; Pella 1993;

Schnute and Richards 1995; Millar and Meyer 2000). State–space models allow

simultaneous estimation of variability in ecological dynamics and measure-

ments (Thorson et al. 2015). Several estimation methods have been developed

to fit state–space models: the Kalman filter and non-linear extensions, ADMB

(Automatic Differentiation Model Builder) Laplace and higher-order quad-

rature approximations, TMB (Template model Builder) approximations, EM

(Expectation-maximization algorithm), particle filters, and MCMC (Markov

chain Monte Carlo methods). The well-known Kalman filter is an optimal
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linear Gaussian estimation and forecasting method designed to extract signals

from noisy data.

Peterman et al. (2000) first introduced the use of the Kalman filter to identify

temporal patterns in recruitment productivity parameters. This method was

built on earlier applications of the Kalman filter in fisheries (Walters 1986;

Sullivan 1992; Pella 1993; Gudmundsson 1994; Schnute 1994), though these

were not explicitly implemented on SR parameters. The entry of new recruits

into the population modelled by the SR relationship is a fundamental part of

stock productivity. Recruitment productivity represents the most important

and largest source of variation in population processes (Quinn and Collie

2005). Randall Peterman and colleagues modelled the SR relationship as a

dynamic process by allowing process variation in the parameter governing

recruitment productivity.

In this article, we assign the term Peterman’s productivity method (PPM) to

estimation, filtering and smoothing methods, based in the first instance on the

Kalman filter, where SR parameters are part of the dynamic state process, and

thus allowed to vary over time (Peterman et al. 2000). The method enables

recruitment productivity to be modelled as a dynamic process with temporal

dimension, by allowing the process signal to be absorbed by the time-varying

parameters. These parameters track the variability of productivity dynamics

and reconstruct estimates of stock productivity in the past, allowing us to

better predict recovery times based on present productivity (Peterman et al.

2003).

Minto et al. (2014) extended the PPM to a multi-stock setting and studied the

variation in the maximum reproductive rate parameter of the SR relationship

for North Atlantic cod stocks. They showed that recruitment productivity

of North Atlantic cod populations has varied markedly over time and that

populations go through long periods of both high and low productivity. Mul-

tivariate developments on PPM enable the strength of the correlation between

the populations to be estimated within the model. Thus, providing increased

understanding of the similarity or dissimilarity of productivity dynamics inter-

and intra-species within and across regions. Tableau et al. (2019) expanded

the methodology exploring links with environmental variables and evaluating

differences between species and areas in the Northwest Atlantic. The number

of estimated parameters were reduced because they assumed a common signal

to noise ratio among stocks. The multi-stock estimation allows us to disen-
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tangle and account for the different sources of uncertainty (i.e. measurement

and process) and increases the robustness of the estimates even with limited

length of the data time-series. Links with environmental drivers can be easily

incorporated in the PPM. Nevertheless, prior work found relatively few re-

lationships between productivity and the selected covariates (Tableau et al.

2019). Adjacent stocks of the same species exhibited similar productivity

patterns with the strength of covariation declining over distance, which shows

that the method is powerful for detecting coherent ecological signals rather

than tracking noise.

The PPM enables us to model stochastic process on some or all parameters of

the SR relationship, and in theory separate signal from noise in the recruitment

productivity process. But, how sensitive are management reference points to

changing recruitment productivity? Either the density-dependent or density-

independent parameters, or both, can vary in time and impact biomass

or fishing mortality reference points differently. To visualize the effects of

changes in either parameter in MSY-based reference points, we ran a simulation

example based on the North Sea and Skagerrak plaice stock. We projected the

stock forward 50 years under a hypothetical random walk on either parameter

with a process variation of 0.2 on the annual deviations and estimated the

resulting dynamic reference points. We chose a random walk over an explicit

mechanism for illustration. When, in a Beverton-Holt SR functional form

(Equation 4.1), the α parameter varies in time we found that it has a strong

impact on the biomass MSY reference point. Being the maximum recruitment,

the α parameter affects mainly density-dependent regulation of the population

(Figure 4.3A). Time-varying β parameter, which is mainly related to density-

independent processes, caused strong impact on the fishing mortality reference

point because it affects the slope at the origin of the SR relationship (Figure

4.3B). Note that in this common formulation of the Beverton–Holt density-

independent and density-dependent processes are present in both parameters

(Beverton and Holt 1957) but dominate as above. Dynamic reference points

estimated with PPM, which incorporate the integrated signal on recruitment,

are fundamentally different approach to dynamic B0. In dynamic B0, temporal

changes in stock dynamics and underlying productivity are accounted for

by implementing stochasticity through variability in recruitment deviations

assuming a static SR relationship. Modelling time-varying SR parameters

also differs from projecting a population forward under a mean-reverting

autocorrelated process that assumes deviations return to the expected static
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form.

Figure 4.3: Impact on reference points of SR parameter temporal dynamics.
Simulated projections of time-varying parameter α (A, left) and parameter β
(B, right); and below the impact in estimated recruitment productivity, and
fishing mortality and spawning biomass MSY-based reference points. Black
line represents static reference points. Simulations are based on Plaice in
IV data (ICES 2018b) with Beverton-Holt SR model, using for reference
point calculation FLBRP from FLR R software (starting values: α0 = 12633
thousands, β0 = 93995). Both parameters are allowed to vary according to
a random walk on the log scale with deviations from a normal distribution
with mean zero and a standard deviation of 0.2. Colour scale represents the
assessment year.

We show that including time-varying productivity parameters can impact

biomass and fishing mortality reference point estimates. Being able to track

these changes in time can provide substantive improvements when biological

or fisheries conditions are changing. In which case, estimated reference points

using time-varying SR parameters are less biased (Holt and Michielsens

2020). The PPM not only allows us to estimate present productivity and

historical trends but also to capture the underlying change in recruitment

productivity. These dynamic reference points can be used in harvest policies

based on dynamic productivity forecasts to provide catch advice; applications
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of dynamic HCRs result in higher catches and reduced risk (Collie et al. 2012)

and are more robust to climate change impacts (Collie et al. 2021).

The PPM does not explicitly model measurement error in SSB (Peterman

et al. 2003). Although recruitment and SSB are the best estimates currently

available, there is inherent uncertainty associated with them (Brooks and

Deroba 2015). This uncertainty from the previous model can potentially

be propagated in the subsequent analysis. Uncertainty propagation could

be implemented by drawing from the estimator of SR parameters either by

assuming multivariate normality using the estimated Hessian matrix or by

using MCMC to sample from the posterior distribution. It may also be possible

to directly use the covariance matrix in the estimation likelihood in TMB as

a known measurement error component (Thorson and Minto 2015).

4.4 Towards a dynamic future

Status quo reference points include stochasticity, yet assume that fluctuation

in biological parameters (growth and mortality), the SR relationship, and the

resulting stock productivity are centred on a stationary mean at a given harvest

rate. Reference points are subject to updates but regime shifts are notably

difficult to predict and defining time windows can be difficult. In stochastic

implementations of MSY, random variability is usually added as an error

around average expected recruitment; but this is unlikely to completely capture

the dynamics of the process in time (Kell et al. 2016). Marine ecosystems

are not stationary; long-term trends are present, including those induced by

climate change (Szuwalski and Hollowed 2016). Population dynamics have

multiple complex interactions with the ecosystem (top panel Figure 4), and

dynamics thereof (Deyle et al. 2013). Beyond direct influence of environmental

drivers and direct trophic effects, population dynamics are affected indirectly

by changes in food-web structure, composition, and processes within the

food-web, e.g. trophic cascades (Frank et al. 2005; Casini et al. 2008). The

relationship between early life history (recruitment) and stock size, which has

strong influence on population dynamics, has shown marked variation over

time for many stocks (Minto et al. 2014; Britten et al. 2016; Perälä et al.

2017; Szuwalski et al. 2019; Tableau et al. 2019). The challenge is to manage

fisheries to sustainability in light of scientific uncertainty, natural variability,

and changing ecosystems. Current advice frameworks may not sufficiently

address the dynamic nature of MSY and reference points (Sissenwine et al.
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2014). So far, pretty good yield ranges have been proposed in the EU to allow

flexibility around MSY fishing mortality reference points in mixed fisheries

contexts (Rindorf et al. 2017a).

How can we bridge the gap between current MSY reference points and EBFM?

On the one hand, current advice is based on the assumption that SR is

stationary (left bottom panel Figure 4.4). On the other hand, the dynamics

created by the ecosystem are complex and manifold and so it can be difficult

to use direct ecosystem process information to inform management decisions.

Mechanistic inclusion of drivers in the SR relationship (right bottom panel

Figure 4.4) is risky because effects might be direct or indirect, linear or

non-linear, and multiple ecological factors may interact and vary over time.

We argue that modelling dynamic productivity using PPM might bridge the

gap and ultimately reconcile the MSY concept and EBFM (centre bottom

panel Figure 4.4). Dynamic parameter models have demonstrated potential to

implicitly incorporate the response of the stock to ecosystem change without

specifying the exact driver or functional mechanism involved (Minto et al.

2014; Nesslage and Wilberg 2019). Dynamic parameters applied to the SR

relationship enable estimation of MSY-based reference points that take into

account temporal changes in recruitment productivity. Several studies have

shown that in the presence of temporal variability in stock productivity,

dynamic processes should be accounted for to estimate reliable reference

points (Berger 2019; Mildenberger et al. 2019; Zhang et al. 2021a). Given

that productivity is non-stationary, rather than reference points based on

past average productivity, PPM provides a more informative picture of the

present productivity and its dynamics and therefore enables the estimation

of reference points in tune with the current state of the ecosystem (Tableau

et al. 2019; Britten et al. 2017).
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While EBFM comprises broader concerns than recruitment productivity in

fisheries management, we believe that using PPM has an important role to

include the influence of changing ecosystems on current fish stock manage-

ment. It would be very valuable for managers and assessment scientists to

fully understand the ecosystem processes and ecological mechanisms causing

these dynamics. That is not always possible, but this should not stop us

considering the implications of these processes, even if they are not completely

understood. The main advantage of this method for immediate application

in management is that it can be applied without understanding the process

that caused the change in stock productivity. Presently, time-varying pro-

ductivity relationships may be where we have the greatest opportunity to

empirically deliver on some of the requirements of EBFM in tactical fisheries

management (Minto et al. 2014). Sustainable harvest depends critically on

compensatory processes such as the SR relationship. Application of PPM in

the SR relationship to estimate dynamic reference points might be a first step

towards accounting for changing ecosystems in a MSY management goal. Pre-

vious studies have demonstrated the strengths of PPM in capturing complex

dynamics in recruitment productivity, improving recruitment forecast, and

enabling sustainable dynamic harvest practices (Peterman et al. 2000; Collie

et al. 2012; Minto et al. 2014; Britten et al. 2016; Tableau et al. 2019; Holt

and Michielsens 2020). Also, reference points from PPM within HCRs have

recently been shown to provide resilience to climate-induced effects (Collie

et al. 2021).

Incorporating ecosystem variability in reference points could make communic-

ation with stakeholders more challenging. Usually the more complicated the

modelling approach the more difficult it becomes to communicate, particularly

when those lead to a reduction in fishing opportunities. As we develop more

complex models we also have to think harder about how we communicate

these models so that social license is not lost. It is important to encourage

engagement in participatory science for management, e.g. stakeholders should

be aware of why it is important to include productivity dynamics. Social

license is not only obtained with simple models, social license is also obtained

by including elements that are relevant to include. For instance, by not

accounting for ecosystem concerns in reference points social license might be

removed. The work developed in WKIrish (ICES 2020b) is an example of

where a more complex understanding of the system improved social license.

In that project, fishers and stakeholders were recognized as knowledge experts
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of the system, and so their understanding of the system was included. By the

end, fishers and stakeholders had a very good understanding of the complex

analysis performed.

While PPM has much potential, important issues remain on how to manage

stocks with dynamic reference points. As to Quo Vadimus—we propose the

following four priority research areas to further PPM:

1. Estimability—can time-varying SR parameters be reliably estimated?

Does PPM have the ability to detect change where there is change and

reject it where there is no change? Estimated covariation from inde-

pendent assessments (Minto et al. 2014; Tableau et al. 2019) suggests

that real ecological changes are tracked. But state–space models are

difficult to estimate (Auger-Méthé et al. 2016), time series length can be

constraining, and some convergence issues were found when both para-

meters of the SR relationships were allowed to vary ovetime (Szuwalski

et al. 2019).

2. Uncertainty propagation—we use estimated recruitment and SSB that

have associated uncertainties and covariations (Dickey-Collas et al. 2015;

Brooks and Deroba 2015). We disagree that these outputs should not

be considered “data” (Brooks and Deroba 2015), however, as we con-

sider “data” in a broad information context rather than restricted to

raw observations. Many stock assessments use model-derived indices as

“data” input. A main goal of stock assessments is to estimate abund-

ance state and exploitation rate, often fitting and tracking independent

survey-derived recruitment indices. We argue that in the context of

much ecosystem uncertainty, estimated recruitment is some of the best

information we have on productivity dynamics. We certainly need to

propagate uncertainty correctly but the message that these data should

only be used with extreme caution could hamper enormous potential

for delivering on EBFM. With respect to the stock assessment model,

comparisons of external and internally estimated signals would help

guide practitioners. Stock-assessment free methods, such as (Perälä et al.

2017) also have great potential to inform the debate on what is signal

and what is post-assessment artifact.

3. What are the consequences of poorly estimated time-varying reference

points vs. well-estimated static relationships? Juxtaposing the relative

risks of managing under the presumption of no change when there is
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change and vice versa. So far, estimators of the model quality, e.g. AIC,

have been used to compare time-varying models and static approaches.

Statistical inference for these models is an active area of research such

as prediction error variance. In addition, time-varying approaches can

be evaluated with MSE or stochastic programming methods (Collie

et al. 2021). Generally, evaluation within MSE is recommended before

using these reference points to inform management decisions (Holt and

Michielsens 2020).

4. Nature of change—the Kalman filter is restricted to linear Gaussian

processes. Available integration methods for latent variables such as

Laplace approximation (TMB) or MCMC enable a great variety of

stochastic processes (including regimes, hidden Markov states, HMM

filter, extended Kalman filter, unscented Kalman filter, Kim filter, and

continuous processes in non-linear systems) to be considered and com-

pared. These methods can be applied to time-varying parameters under

different recruitment model structures (e.g. Beverton–Holt model). Of

particular importance is where change happens more abruptly than

the process expects it to and takes more time to adjust, essentially the

Kalman filter smooths over an abrupt jump (Peterman et al. 2000).

Perälä et al. (2017) addressed this with a Bayesian change point model

with stationary processes within each regime. While the nature of the

process and estimation method may change we believe that using the

term “Peterman’s productivity method”, applies for all settings where

the SR parameters evolve in time and recognizes the originator for a set

of methods that will broaden from the original Kalman filter.

Finally, we note that by using PPM we may gain an understanding of how

productivity has changed, but without knowledge of the mechanism, we cannot

predict where it is going (in the medium to long term). While we may track

productivity and manage accordingly, we must recognize the need for continual

mechanistic insights at broader levels to inform strategic management. All

the while, we rest on the feedback nature of HCRs to compensate for our

ignorance (Collie et al. 2021).
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Chapter 5

Stochastic modelling and

synthesis of dynamic fish

recruitment productivity in the

Celtic Seas ecoregion

This chapter is a verbatim copy of the manuscript in preparation for submis-

sion:

Silvar-Viladomiu, P., Minto, C., Lordan, C., Brophy, D., Bell, R., Collie, J.,

and Reid, D. G. Stochastic modelling and synthesis of dynamic fish recruitment

productivity in the Celtic Seas ecoregion.
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Abstract

The Celtic Seas ecoregion is undergoing major changes, which influence fish

productivity. Environmental changes, historical fishing patterns, and climate

change produce changes in the ecosystem and impact fish population dynamics.

Globally, the productivity of many stocks has shown evidence of change

over decadal timescales. Varying factors might drive these dynamics in the

Celtic Seas ecoregion, but for many stocks, these mechanisms have not been

fully understood to be included in management advice. We study dynamic

productivity for 28 stocks in the Celtic Seas by tracking integrated stochastic

signals in the relationship between stock size and recruitment using state-

space modelling applying Peterman’s Productivity Method. By allowing

parameters to vary in time, this method enable us to capture temporal process

variation in recruitment productivity. Our research objectives were to (1) fit

Ricker stock-recruitment models with time-varying parameters to all age- or

length-based assessed stocks in the Celtic Seas ecoregion, (2) evaluate which

parameters vary in time, (3) examine temporal characteristics of historical

recruitment productivity, (4) evaluate productivity correlation across stocks,

and (5) identify common patterns in recruitment productivity in the ecoregion.

For 25 out of 28 stocks, at least one of the three time-varying parameter

models had a better fit than the time-invariant model. In the Celtic Seas

ecoregion, fish productivity has diverse temporal patterns, with some stocks

displaying relevant long-term decreasing productivity trends. Getting insight

into temporal changes in productivity is very valuable and has important

implications for sustainable fisheries.

Keywords: time-varying productivity parameters; Peterman’s Productivity

Method; dynamic reference points; non-stationarity; ecosystem approach

5.1 Introduction

The ICES Celtic Seas ecoregion covers a major part of the northwestern

European continental shelf. This ecoregion also includes areas of the deeper

eastern Atlantic Ocean as well as coastal waters that are heavily influenced

by oceanic inputs (ICES 2021b). Previous studies in the area suggest that

marine communities respond to the combined effect of fisheries and climate

(Lynam et al. 2010). Environmental changes, such as changes in the North

Atlantic Oscillation (NAO), can produce temporal changes in oceanographic
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conditions which, in turn, can cause ecological responses such as changes in the

reproduction timing, abundance, growth, spatial distribution, mortality and

inter-specific relationships (Ottersen et al. 2001). Climate change and extreme

events could potentially cause important changes in the ecoregion (Richardson

and Schoeman 2004; Drinkwater et al. 2010). While broad environmental

variability and trends are evident, the mechanisms affecting the ecosystem

and the populations are complex (Sugihara et al. 2012; Fogarty et al. 2016).

Thus, although it is known that environmental drivers affect recruitment (e.g.

Kristiansen et al. 2011), these relationships are not fully understood and tend

to be not stable over time (Myers 1998; Stige et al. 2006; Ottersen et al. 2013).

Research has shown that main influences affecting fish abundance and their

population dynamics are current and historical fishing pressure in the region

(Hernvann and Gascuel 2020; Kempf et al. 2022). High levels of fishing

pressure affect a stock’s reproductive output by reducing the spawning stock

biomass and the numbers of old and more fecund individuals (Wright and

Gibb 2005; Ohlberger et al. 2022). At low population sizes, the variability

in recruitment survival has been found to increase (Minto et al. 2008). In

addition, recovery for overfished stocks at low abundance can be impaired (allee

effect or depensation; Perälä et al. 2022). In the Celtic Seas, fishing pressure

steadily increased from the mid-1980s and peaked in the late 1990s when

abundance of exploited stocks reached its historical minimum level (Fernandes

and Cook 2013; Hernvann and Gascuel 2020). However, spawner abundance

and age-structure has partly recovered over the past decades, coinciding with

a reduction in fishing mortality (Cardinale et al. 2013; Fernandes and Cook

2013; Hilborn 2020; Zimmermann and Werner 2019).

The effects of high fishing pressure make ecosystems and stocks more sensitive

to additional stresses such as climate change (Brander 2007; Heath 2005).

Climate change can complicate changes in ecosystems, by for example affecting

community composition (Genner et al. 2004), shifting distribution ranges

(Payne et al. 2022), and inducing changes in productivity (Gaines et al. 2018).

Changes in ecosystems structure and functioning arising from environmental

change and fishing pressure are expected to affect fisheries (Planque et al.

2010; Travis et al. 2014). Ecological changes can be gradual, causing impacts

in the long-term, or sudden and abrupt (Reid et al. 2016). Sudden unexpected

shifts between dynamic ecosystem states called regime shifts can occur driven

by both external forcing and internal perturbation, which can result in system-

wide trophic cascades (Daskalov et al. 2007; Casini et al. 2008; Möllmann and
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Diekmann 2012). Changes in ecosystems (gradual or abrupt) pose challenges

for fisheries management because they cause changes in productivity of fish

stocks (Vert-pre et al. 2013; King et al. 2015; Clausen et al. 2018).

Recruitment productivity is vital for the renewal of the population. In stock

assessments, the relationship between recruits and spawners is key for man-

agement of fisheries but notoriously variable and traditionally difficult to

understand (Hilborn and Walters 1992; Myers 1994). The stock-recruitment

relationships used to estimate reference points are typically modelled as a sta-

tionary process where the parameters are fixed based on historically constant

estimates (Collie et al. 2012; Collie et al. 2021; Silvar-Viladomiu et al. 2022b).

However, globally many stocks productivity is non-stationary, displaying evid-

ence of temporal variation in parameters of the stock-recruitment relationship

(Peterman et al. 2003; Dorner et al. 2008; Minto et al. 2014; Britten et al.

2016; Tableau et al. 2019). Temporal changes in productivity have important

implications for reference points (Kell et al. 2016; Holt and Michielsens 2020;

Zhang et al. 2021a; Silvar-Viladomiu et al. 2022b; Clausen et al. 2018), upon

which fishing opportunities advice is based. Stock-recruitment models with

time-varying parameters developed by Peterman and colleagues (Peterman’s

Productivity Method; Silvar-Viladomiu et al. 2022b) can track integrated

underlying signals of change in productivity without needing an understanding

of the mechanism behind it (Peterman et al. 2003). Allowing the parameters

to vary over time permits the separation of process variation in the parameters

from measurement error in survival (Minto et al. 2014). The PPM with

Kalman Filter enables us to reconstruct changes in productivity and identify

trends (Peterman et al. 2003).

For sustainable management, it is critically important that temporal trends

in recruitment productivity of Celtic Seas ecoregion stocks are detected in a

timely and reliable manner (Dorner et al. 2008). To better understand how

rather than why recruitment productivity has varied over decadal timescales,

we applied PPM and extracted filtered and smoothed time series patterns

for multiple species and stocks in the Celtic Seas ecoregion. For 28 stocks,

our objectives were to (1) fit stock-recruitment models with different time-

varying parameters configurations, (2) evaluate which parameters vary in time,

(3) examine temporal characteristics of historical recruitment productivity,

(4) evaluate productivity correlation across stocks, and (5) identify common

patterns in recruitment productivity of Celtic Seas ecoregion stocks.
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5.2 Materials and Methods

5.2.1 Recruitment and Spawning Stock biomass estim-

ates

We used the time series of spawning stock biomass and recruitment estimates

from the most recent stock assessments issued by the International Council

for the Exploration of the Sea (ICES). For stocks residing at least partially

in the Celtic Seas ecoregion, we extracted the data via XML from the ICES

Stock Assessment Graphs database (ICES 2022a). From that list, the stocks

her.27.1-24a514a (Norwegian spring-spawning herring), and lin.27.5b (Faroe

grounds ling) were excluded from the analysis because the stocks boundaries

showed only a minor overlap with the Celtic Seas ecoregion. We filtered for

assessments that estimated spawning stock biomass and used “SSB” in the

stock size description. Twenty-nine stocks were selected, most of which were

category 1 (i.e. stocks with quantitative assessments), except for cod.27.7a

and her.27.6a7bc which at the time of data extraction were category 3 (i.e.

stocks for which survey-based assessments or exploratory assessment indicate

trends). However, we used data from the 2018 assessment when the stocks

were considered as category 1, so a full analytical stock assessment was carried

out. One stock with a short time series (less than 20 years) was excluded

from the analysis (bli.27.5b67, blue ling in Celtic Seas and Faroes grounds).

Assessment methodologies were typically age or length-structured (Table 5.1).

Stocks were classified using metadata from the assessment by functional groups

based on ICES fisheries guild classification (pelagic, demersal, benthic, and

elasmobranch), and by region (northern, central, southern and wide area).

5.2.2 Model details

We applied Peterman’s productivity method (PPM), which is a state-space

dynamic model for estimating time-varying parameters of the stock-recruitment

relationship. We focused on the univariate (single-population) PPM to study

stock-recruitment relationship of Celtic Seas ecoregion stocks. We described

the stock-recruitment relationship with the Ricker model (Ricker 1954), which

depends on two parameters: a maximum-productivity and a density-dependent

coefficient. We evaluated four different PPM models: (i) time-invariant

Ricker model, (ii) time-variant maximum-productivity Ricker model, (iii)

time-variant density-dependent mortality Ricker model, (iv) time-covariant

101



T
ab

le
5.
1:

D
et
ai
ls
of

th
e
C
el
ti
c
S
ea
s
E
co
re
gi
on

st
o
ck
s
in
ve
st
ig
at
ed
.
A
ss
es
sm

en
t
ty
p
es
:
S
A
M

(S
ta
te
-s
p
ac
e
A
ss
es
sm

en
t
M
o
d
el
),
X
S
A
M

(S
ta
ti
st
ic
al

st
at
e-
sp
ac
e
A
ss
es
sm

en
t
M
o
d
el
),
M
Y
C
C

(M
u
lt
i-
Y
ea
r
C
at
ch

C
u
rv
es
),
S
S
3
(S
to
ck

S
y
n
th
es
is
3)
,
T
S
A

(T
im

e-
se
ri
es

an
al
y
si
s

ag
e-
b
as
ed

st
o
ck

as
se
ss
m
en
t
m
et
h
o
d
ol
og
y
),
X
S
A
(E

x
te
n
d
ed

S
u
rv
iv
or
s
A
n
al
y
si
s)
,
A
S
A
P
(A

ge
-S
tr
u
ct
u
re
d
A
ss
es
sm

en
t
P
ro
gr
am

m
e)
.

S
to

ck
K
e
y
L
a
b
e
l

D
e
sc
ri
p
ti
o
n

S
ci
e
n
ti
fi
c
n
a
m
e

A
g
e
-

a
t-
R

A
ss
e
ss
-

m
e
n
t

ty
p
e

S
e
ri
e
s

le
n
g
th

F
u
n
ct
io
n
a
l

G
ro

u
p

R
e
g
io
n

ar
u
.2
7.
5b

6a
G
re
at
er

si
lv
er

sm
el
t
in

d
iv
is
io
n
s
5.
b
an

d
6.
a
(F
ar
o
es

gr
ou

n
d
s
an

d
w
es
t
of

S
co
tl
an

d
)

A
rg
en
ti
n
a
si
lu
s

5
G
ad

ge
t

22
P
el
ag
ic

N
or
th
er
n

b
li
.2
7.
5b

67
B
lu
e
li
n
g
in

su
b
ar
ea
s
6-
7
an

d
D
iv
is
io
n
5.
b
(C

el
ti
c
S
ea
s
an

d
F
ar
o
es

gr
ou

n
d
s)

M
ol
va

dy
pt
er
yg
ia

9
M
Y
C
C

17
D
em

er
sa
l

W
id
e
ar
ea

b
ss
.2
7.
4b

c7
ad

-h
S
ea
b
as
s
in

D
iv
is
io
n
s
4.
b
-c
,
7.
a,

an
d
7.
d
-h

(c
en
tr
al

an
d
so
u
th
er
n
N
or
th

S
ea
,
Ir
is
h
S
ea
,

E
n
gl
is
h
C
h
an

n
el
,
B
ri
st
ol

C
h
an

n
el
,
an

d
C
el
ti
c
S
ea
)

D
ic
en
tr
ar
ch
u
s
la
br
ax

0
S
S
3

37
D
em

er
sa
l

C
en
tr
al

co
d
.2
7.
6a

C
o
d
in

D
iv
is
io
n
6.
a
(W

es
t
of

S
co
tl
an

d
)

G
ad

u
s
m
or
hu

a
1

S
A
M

40
D
em

er
sa
l

N
or
th
er
n

co
d
.2
7.
7a

C
o
d
in

D
iv
is
io
n
7.
a
(I
ri
sh

S
ea
)

G
ad

u
s
m
or
hu

a
0

A
S
A
P

51
D
em

er
sa
l

C
en
tr
al

co
d
.2
7.
7e
-k

C
o
d
in

d
iv
is
io
n
s
7.
e-
k
(e
as
te
rn

E
n
gl
is
h
C
h
an

n
el

an
d
so
u
th
er
n
C
el
ti
c
S
ea
s)

G
ad

u
s
m
or
hu

a
1

S
A
M

41
D
em

er
sa
l

S
ou

th
er
n

d
gs
.2
7.
n
ea

S
p
u
rd
og

in
S
u
b
ar
ea
s
1-
10
,
12

an
d
14

(t
h
e
n
or
th
ea
st

A
tl
an

ti
c
an

d
ad

ja
ce
n
t
w
at
er
s)

S
qu
al
u
s
ac
an

th
ia
s

0
*

11
6

E
la
sm

ob
ra
n
ch

W
id
e
ar
ea

h
ad

.2
7.
46
a2
0

H
ad

d
o
ck

in
S
u
b
ar
ea

4,
D
iv
is
io
n
6.
a,

an
d
S
u
b
d
iv
is
io
n
20

(N
or
th

S
ea
,
W
es
t
of

S
co
tl
an

d
,
S
ka
ge
rr
ak

)
M
el
an

og
ra
m
m
u
s
ae
gl
efi
n
u
s

0
T
S
A

50
D
em

er
sa
l

N
or
th
er
n

h
ad

.2
7.
6b

H
ad

d
o
ck

in
D
iv
is
io
n
6.
b
(R

o
ck
al
l)

M
el
an

og
ra
m
m
u
s
ae
gl
efi
n
u
s

1
X
S
A

30
D
em

er
sa
l

N
or
th
er
n

h
ad

.2
7.
7a

H
ad

d
o
ck

in
D
iv
is
io
n
7.
a
(I
ri
sh

S
ea
)

M
el
an

og
ra
m
m
u
s
ae
gl
efi
n
u
s

0
A
S
A
P

29
D
em

er
sa
l

C
en
tr
al

h
ad

.2
7.
7b

-k
H
ad

d
o
ck

in
D
iv
is
io
n
s
7.
b
-k

(s
ou

th
er
n
C
el
ti
c
S
ea
s
an

d
E
n
gl
is
h
C
h
an

n
el
)

M
el
an

og
ra
m
m
u
s
ae
gl
efi
n
u
s

0
S
A
M

29
D
em

er
sa
l

S
ou

th
er
n

h
er
.2
7.
6a
7b

c
H
er
ri
n
g
in

d
iv
is
io
n
s
6.
a
an

d
7.
b
-c

(W
es
t
of

S
co
tl
an

d
,
W
es
t
of

Ir
el
an

d
)

C
lu
pe
a
ha

re
n
gu
s

1
S
A
M

62
P
el
ag
ic

N
or
th
er
n

h
er
.2
7.
ir
ls

H
er
ri
n
g
in

d
iv
is
io
n
s
7.
a
S
ou

th
of

52
°3
0’
N
,
7.
g-
h
,
an

d
7.
j-
k
(I
ri
sh

S
ea
,
C
el
ti
c
S
ea
,
an

d
so
u
th
w
es
t
of

Ir
el
an

d
)

C
lu
pe
a
ha

re
n
gu
s

1
A
S
A
P

63
P
el
ag
ic

S
ou

th
er
n

h
er
.2
7.
n
ir
s

H
er
ri
n
g
in

D
iv
is
io
n
7.
a
N
or
th

of
52

°3
0’
N

(I
ri
sh

S
ea
)

C
lu
pe
a
ha

re
n
gu
s

1
S
A
M

41
P
el
ag
ic

C
en
tr
al

h
ke
.2
7.
3a
46
-8
ab

d
H
ak
e
in

su
b
ar
ea
s
4,

6,
an

d
7,

an
d
d
iv
is
io
n
s
3.
a,

8.
a-
b
,
an

d
8.
d
,
N
or
th
er
n
st
o
ck

(G
re
at
er

N
or
th

S
ea
,
C
el
ti
c
S
ea
s,
an

d
th
e
n
or
th
er
n
B
ay

of
B
is
ca
y
)

M
er
lu
cc
iu
s
m
er
lu
cc
iu
s

0
S
S
3

44
D
em

er
sa
l

W
id
e
ar
ea

h
om

.2
7.
2a
4a
5b

6a
7a
-c
e-
k
8

H
or
se

m
ac
ke
re
l
in

S
u
b
ar
ea

8
an

d
d
iv
is
io
n
s
2.
a,

4.
a,

5.
b
,
6.
a,

7.
a-
c,
e-
k
(t
h
e
n
or
th
ea
st

A
tl
an

ti
c)

T
ra
ch
u
ru
s
tr
ac
hu

ru
s

0
S
S
3

40
P
el
ag
ic

N
or
th
er
n

m
ac
.2
7.
n
ea

M
ac
ke
re
l
in

su
b
ar
ea
s
1-
8
an

d
14

an
d
d
iv
is
io
n
9.
a
(t
h
e
n
or
th
ea
st

A
tl
an

ti
c
an

d
ad

ja
ce
n
t
w
at
er
s)

S
co
m
be
r
sc
om

br
u
s

0
S
A
M

42
P
el
ag
ic

W
id
e
ar
ea

m
eg
.2
7.
7b

-k
8a
b
d

M
eg
ri
m

in
d
iv
is
io
n
s
7.
b
-k
,
8.
a-
b
,
an

d
8.
d
(w

es
t
an

d
so
u
th
w
es
t
of

Ir
el
an

d
,
B
ay

of
B
is
ca
y
)

L
ep
id
or
ho

m
bu
s
w
hi
ffi
ag
on

is
1

**
37

B
en
th
ic

S
ou

th
er
n

m
on

.2
7.
78
ab

d
W

h
it
e
an

gl
er
fi
sh

in
S
u
b
ar
ea

7
an

d
d
iv
is
io
n
s
8.
a-
b
an

d
8.
d
(C

el
ti
c
S
ea
s,
B
ay

of
B
is
ca
y
)

L
op
hi
u
s
pi
sc
at
or
iu
s

0
a4
a

36
B
en
th
ic

S
ou

th
er
n

p
le
.2
7.
7a

P
la
ic
e
in

D
iv
is
io
n
7.
a
(I
ri
sh

S
ea
)

P
le
u
ro
n
ec
te
s
pl
at
es
sa

1
S
A
M

40
B
en
th
ic

C
en
tr
al

p
ok

.2
7.
3a
46

S
ai
th
e
in

S
u
b
ar
ea
s
4,

6
an

d
D
iv
is
io
n
3.
a
(N

or
th

S
ea
,
R
o
ck
al
l
an

d
W
es
t
of

S
co
tl
an

d
,

S
ka
ge
rr
ak

an
d
K
at
te
ga
t)

P
ol
la
ch
iu
s
vi
re
n
s

3
S
A
M

52
D
em

er
sa
l

N
or
th
er
n

re
g.
27
.5
61
21
4

G
ol
d
en

re
d
fi
sh

in
su
b
ar
ea
s
5,

6,
12
,
an

d
14

(I
ce
la
n
d
an

d
F
ar
o
es

gr
ou

n
d
s,
W
es
t
of

S
co
tl
an

d
,
N
or
th

of
A
zo
re
s,
E
as
t
of

G
re
en
la
n
d
)

S
eb
as
te
s
n
or
ve
gi
cu
s

5
G
ad

ge
t

46
D
em

er
sa
l

N
or
th
er
n

so
l.
27
.7
a

S
ol
e
in

D
iv
is
io
n
7.
a
(I
ri
sh

S
ea
)

S
ol
ea

so
le
a

2
X
S
A

50
B
en
th
ic

C
en
tr
al

so
l.
27
.7
e

S
ol
e
in

D
iv
is
io
n
7.
e
(w

es
te
rn

E
n
gl
is
h
C
h
an

n
el
)

S
ol
ea

so
le
a

2
X
S
A

51
B
en
th
ic

S
ou

th
er
n

so
l.
27
.7
fg

S
ol
e
in

d
iv
is
io
n
s
7.
f
an

d
7.
g
(B

ri
st
ol

C
h
an

n
el
,
C
el
ti
c
S
ea
)

S
ol
ea

so
le
a

1
S
A
M

50
B
en
th
ic

S
ou

th
er
n

w
h
b
.2
7.
1-
91
21
4

B
lu
e
w
h
it
in
g
in

su
b
ar
ea
s
1-
9,

12
,
an

d
14

(t
h
e
n
or
th
ea
st

A
tl
an

ti
c
an

d
ad

ja
ce
n
t

w
at
er
s)

M
ic
ro
m
es
is
ti
u
s
po
u
ta
ss
ou

1
S
A
M

40
P
el
ag
ic

W
id
e
ar
ea

w
h
g.
27
.6
a

W
h
it
in
g
in

D
iv
is
io
n
6.
a
(W

es
t
of

S
co
tl
an

d
)

M
er
la
n
gi
u
s
m
er
la
n
gu
s

0
S
A
M

41
D
em

er
sa
l

N
or
th
er
n

w
h
g.
27
.7
a

W
h
it
in
g
in

D
iv
is
io
n
7.
a
(I
ri
sh

S
ea
)

M
er
la
n
gi
u
s
m
er
la
n
gu
s

0
A
S
A
P

42
D
em

er
sa
l

C
en
tr
al

w
h
g.
27
.7
b
-c
e-
k

W
h
it
in
g
in

d
iv
is
io
n
s
7.
b
-c

an
d
7.
e-
k
(s
ou

th
er
n
C
el
ti
c
S
ea
s
an

d
ea
st
er
n
E
n
gl
is
h

C
h
an

n
el
)

M
er
la
n
gi
u
s
m
er
la
n
gu
s

0
S
A
M

22
D
em

er
sa
l

S
ou

th
er
n

*A
ge

an
d
le
n
gt
h
-s
tr
u
ct
u
re
d
m
o
d
el

w
it
h
se
p
ar
at
e
se
x
es
,
**

B
ay
es
ia
n
st
at
is
ti
ca
l
ca
tc
h
at

ag
e
u
si
n
g
ca
tc
h
es

in
th
e
m
o
d
el
.

102



maximum-productivity and density-dependent mortality Ricker model. To

estimate time-varying parameters, the Kalman Filter was implemented by

maximization of the likelihood within the DLM package (Petris et al. 2009) in

the statistical software R.

First, we estimated the time-invariant linearized Ricker model, using the

natural logarithm of the survival ration R/S (also termed the “killing power”,

Myers 2001). This model is stationary in its parameters because it assumes

that the parameters are constant across the entire time series of spawner and

recruit data. The time-invariant linearized Ricker model follows the function

below:

ln

(
Rt

St−τ

)
= at + bSt−τ + υt

υt ∼ N(0, σ2
υ)

(5.1)

where Rt is the recruitment in year t, St−τ is the spawning stock biomass in

time t (lag by the age of recruitment τ), a is the maximum-productivity, b is the

density-dependent mortality, and υt is an amalgam of process and observation

errors. The maximum-productivity coefficient (a) is the natural logarithm of

α in the traditional Ricker formulation, which is the maximum reproductive

rate and represents the product of the fecundity and density-independent

mortality integrated over time from spawning to recruitment (Ricker 1954).

The density-dependent mortality gives the rate at which recruitment is reduced

by density-dependent mortality.

For the second model, we estimated time-varying maximum-productivity. We

allow the stochastic parameter variation via a random walk process:

at = at−1 + ωt

ωt ∼ N(0, σ2
ω)

(5.2)

where ωt is the process error. We assumed a random-walk process for the

system equation because we had no a priori knowledge of temporal patterns

in the parameter. Besides, a random-walk model performed well at tracking a

wide variety of underlying temporal trends (Peterman et al. 2000; Dorner et al.

2008; Minto et al. 2014). The density-dependent parameter, b, in this model is

time-invariant. We calculated the signal-to-nose ratio (σ2
ω/σ

2
υ) for each stock
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to quantify the variance partitioned to the temporal trend compared with the

high-frequency variation (observation noise and high inter-annual frequency

process variation).

For the third model, we estimated time-varying density-dependent mortality,

following stochastic variation with a random walk process:

bt = bt−1 + ωt

ωt ∼ N(0, σ2
ω)

(5.3)

where ωt is the process error. The maximum-productivity parameter, a, in

this model is time-invariant.

For the fourth model, we estimate time-varying maximum-productivity and

density-dependent mortality by allowing both parameters to covary following

a correlated random walk:

[
at

bt

]
∼ N

([
at−1

bt−1

]
,

[
σ2
a ρσaσb

ρσaσb σ2
b

])
(5.4)

where ρ is the correlation between the process deviations of a and b.

Model comparison

To identify the best model for the given time series we used goodness-of-fit

statistics. We evaluated the models based on the model selection criterion AICc

(Akaike information criterion for small sample size; Burnham and Anderson

2004). The best-fitted model was judged by the difference (δ) between the

AICc values of the models, including the number of variance parameters and

the dimension of the state vector. The most parsimonious of the four model

fits per stock was the model with the lowest AICc value. Models within 2

AICc units of the lowest were considered equally plausible models. Models

with the lowest AICc with a difference of equal or more than 2 units were

considered to have substantial support or evidence. Models with 4 or more

units of difference have considerable more support than the models with higher

AICc.
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5.2.3 Celtic ecoregion stocks productivity trends

To understand temporal patterns in stock productivity we focus on the es-

timated at time series from the time-variant maximum-productivity models.

Being the density-independent parameter, time-varying maximum productiv-

ity influences stock recruitment regardless of spawner abundance (Dorner et al.

2008) and integrates the direct environmental signal.

Correlation analysis between stock’s productivity patterns

We estimated the Spearman rank pairwise correlation between stock-specific

time-varying trends in productivity. The estimated time series of at values

constituted our measure of productivity. We compared correlations across

stocks to quantify the extent to which similar patterns in the at parameter

are shared among stocks.

Dynamic factor analysis: Common productivity trends

We used dynamic factor analysis (DFA) to describe main common trends

among maximum-productivity time series of Celtic Seas ecoregion stocks. This

is a dimension-reduction technique specially designed for multivariate time

series data recommended to be applied in fisheries science (Zuur et al. 2003).

We used DFA to model shared temporal trends in maximum productivity

time series for the overall Celtic Seas ecoregion over the time period 1970

to 2022, because many stocks had considerable missing data prior to 1970.

The number of common trends was set to four to keep a reduced number of

trends but still have a reasonable model fit. We fit the model in R using the

package MARSS (Holmes et al. 2012). We use “dfa” configuration form with

a diagonal and unequal covariance matrix where the variances were allowed

to vary between stocks and covariances were assumed 0.

5.3 Results

Results are divided into two sections. First, we compared goodness-of-fit of

a time-invariant and three time-variant stock-recruitment model. For the

second part, we focused on correlations and common trends across the stocks

in time-varying maximum productivity.
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5.3.1 Time-varying parameter PPM model comparison

For 25 out of 28 stocks, at least one of the three time-varying parameter

models had a better fit than the time-invariant model (based on the difference

between two models’ AICc values). We found strong evidence that 24 stocks

had time-varying parameters because time-invariant models had considerably

less support (with AICc δ > 4; Table 5.2). Two stocks had considerable more

support for the time-invariant model (had.27.7a, had.27.7b-k), and one stock

had substantial more support (whg.27.7b-ce-k; Table 5.2).

Comparisons of model fits showed that the model with time-varying maximum-

productivity had the strongest support for 20 stocks, and the model with

time-varying density-dependent mortality had the strongest support for 4

stocks. However, for 9 stocks both time-varying parameters models were

equally plausible because they had similar AIC support (δ ≤ 2; Table 5.2).

For 14 stocks, the time-varying maximum-productivity had substantially more

support relative to the time-varying density-dependent mortality (δ > 2;

Table 5.2), and for 2 stocks time-varying density-dependence mortality had

substantially more support relative to the time-varying maximum productivity

(ple.27.7a, pok.27.3a46; Table 5.2). Models with both parameters covarying

in time never showed better AICc support because AICc penalized the use of

an excessive number of parameters (Table 5.2).

For most stocks, results of the time-variant maximum-productivity model

and the model with both parameters covarying showed similar trends for

both a and b parameters (Appendix A.3 Figure SM1, SM2). Thus, for

these models, density-dependent mortality was constant, with the excep-

tion of bss.27.4bc7ad-h, cod.27.6a, cod.27.7e-k, hke.27.3a46-8abd, ple.27.7a,

pok.27.3a46, reg.27.561214 (Appendix A.3 Figure SM2). Occasionally, in

the time-varying model the constant parameter had scaling differences with

the time-invariant estimate (Appendix A.3 Figure SM1, SM2). For stocks in

the Celtic Seas ecoregion, only had.27.7a had trends in time-varying density-

dependent mortality but not in time-varying maximum-productivity (Appendix

A.3 Figure SM1, SM2).

5.3.2 Celtic Seas ecoregion trends in stock productivity

For many of the stocks examined, temporal trends in the maximum-productivity

parameter showed differences in current productivity levels compared with the

time-invariant historical average productivity (dotted line in Figure 5.1). For
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some stocks, the current productivity level was substantially lower than at the

beginning of the time series (e.g. West of Scotland whiting, whg.27.6a), but

for other stocks current productivity was substantially higher (e.g. Irish Sea

herring, her.27.nirs) than or similar to historical productivity. The amplitudes

of the time-varying productivity (in logarithmic scale) vary from less than 1

(e.g. Faroes grounds and West of Scotland greater silver smelt, aru.27.5b6a)

to around 5 (e.g. northeast Atlantic blue whiting, whb.27.1-91214). This

variability corresponds to the recruit number per metric ton of the spawning

stock biomass on a logarithmic scale. The longest series available was for the

northeast Atlantic spurdog (1905-2020), in Figure 5.1, we included this time

series truncated because for most species the time series were considerably

shorter.

The fraction between the observation or measurement error and the pro-

cess variability is the signal-to-noise ratio. There were some cases where

the univariate method could not separate the observation noise from the

process variation, and so one of them was insignificant. For stocks with a

signal-to-noise ratio equal to 0, the process variation could not be estimated

properly (e.g. had.27.7a, hom.27.2a4a5b6a7a-ce-k8; Appendix A.3 Table

SM1). Irish Sea haddock (had.27.7a) and northeast Atlantic horse mackerel

(hom.27.2a4a5b6a7a-ce-k8) displayed productivity nearly constant, at the

same level as the time-invariant one with wide error intervals (Figure 5.1).

For some stocks (e.g. aru.27.5b6a, mac.27.nea; Appendix A.3 Table SM1)

the estimated observation noise was very small, resulting in a extremely high

signal-to-noise ratio.

With regards to Northern Celtic Seas ecoregion stocks, maximum productivity

has declined considerably for many stocks (Figure 5.1), e.g. West of Scotland

cod (cod.26.6a), North Sea, Rockall and West of Scotland saithe (pok.27.3a46),

West of Scotland whiting (whg.27.6a). West Scotland cod (cod.26.6a) and

North Sea, Rockall and West of Scotland saithe (pok.27.3a46) stocks are cur-

rently at depressed productivity levels. North Sea and West Scotland haddock

(had.27.46a20) also displayed declining productivity until 2012 with productiv-

ity increasing thereafter. West of Scotland whiting (whg.27.6a) showed a

steep decrease until 2009 and a stabilization since. West of Scotland and West

of Ireland herring (her.27.6a7bc) and West of Scotland saithe (pok.27.3a46)

displayed fluctuations with an overall declining long-term trend. Productivity

of Faroes grounds and West of Scotland greater silver smelt (aru.27.5b6a)

and Rockall haddock (had.27.6b) fluctuated, with a lower productivity point
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around 2009 (Figure 5.1).

In the central Celtic Seas ecoregion, stocks showed a large diversity of patterns

(Figure 5.1). Most stocks had higher time-varying productivity in the terminal

year compared to the time-invariant one, except for Irish Sea plaice (ple.27.7a).

Irish Sea sole (sol.27.7a) displayed decreasing productivity but with some in-

crease in recent years. North Sea, Irish Sea, English Channel, Bristol Channel,

and Celtic Sea seabass (bss.27.4bc7ad-h) displayed increased productivity with

a peak in the early 2000s and a decrease since then. The average time-varying

productivity was higher than the time-invariant productivity level (Figure

5.1). Irish Sea whiting (whg.27.7a) had a low productivity level in the early

1990s, productivity increased until the early 2000s and decreased since 2013

to levels similar to those at the beginning of the time series. A decreasing

trend was observed for Irish Sea cod (cod.27.7a) for all the time series. Irish

Sea herring (her.27.nirs) productivity was fairy stable at a low level for the

start of the time series and in the late 1990s has a marked increase with a

fairy stable period at a higher level since mid-2000s.

Southern Celtic Seas ecoregion stocks had higher levels of currently time-

varying productivity than the time-invariant one, except for Celtic Seas

cod which has a similar level (Figure 5.1). Celtic Seas cod (cod.27.7e-k)

productivity increased with a peak in the mid-1990s and has been decreasing

since to levels lower than those observed at the start of the series, with

a short increase in the last year of the time series. Similarly, Celtic Seas

whiting (whg.27.7b-ce-k) displayed an erratic decline in productivity since

1990. This productivity trend differed from those for other stocks in the

Southern Celtic Seas ecoregion. Irish Sea, Celtic Sea and southwest of Ireland

herring (her.27.irls) displayed fluctuations but did not display any long-term

trends. Productivity of West and Southwest of Ireland and Bay of Biscay

megrim (meg.27.7b-k8abd) and similarly Celtic Seas and Bay of Biscay white

anglerfish (mon.27.78abd) fluctuated with a slow long-term increasing trend.

Bristol Channel and Celtic Sea sole (sol.27.7fg) displayed erratic fluctuations in

productivity with increase in the most recent years. Western English Channel

sole (sol.27.7e) displayed a slow increase in productivity, similar to Celtic Seas

and English Channel haddock (had.27.7b-k).

Widely distributed stocks in the Celtic Seas ecoregion typically displayed

erratic fluctuations (Figure 5.1). Northern hake stock (hke.27.3a46-8abd)

productivity increased with a peak around 2009 and has declined since then.
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Figure 5.1: Estimated time series trends in maximum productivity (at) and
95% confidence intervals for stocks in the Celtic Seas ecoregion. The horizontal
dashed line is the time-invariant maximum productivity parameter. Colour
represent the region (red for northern stocks, green for central stocks, blue
for southern stocks and purple for wide area stocks). Stock description are
provided in Table 5.1.

Northeast Atlantic mackerel (mac.27.nea) displayed relatively constant pro-

ductivity until 2000, and a subsequent marked increase, then fluctuated

around a higher productivity level since. Northeast Atlantic spurdog displayed

relatively constant productivity until the late 1950’s and has subsequently

fluctuated erratically with no long-term directional trend (Figure 5.1). Iceland

and Faroes grounds, West of Scotland, North of Azores and East of Greendland

golden redfish (reg.27.561214) displayed a long-term trend in productivity
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slowly decreasing. Northeast Atlantic blue whiting (whb.27.1-91214) displayed

an erratic long-term trend in productivity slowly increasing.

Correlation analysis between stock’s productivity patterns

The correlation of time-varying maximum productivity across stocks showed

patterns in productivity within and among regions. Correlations within north-

ern Celtic Seas ecoregion stocks were mostly positive (Figure 5.2), suggesting

that regional-scale factors might be important drivers of changes in recruitment

productivity. However, West Scotland cod and Faroes grounds and West of

Scotland greater silver smelt showed negative or weak correlation with other

northern stocks. Among central Celtic Seas ecoregion stocks, some correlations

were strong, positive between Irish Sea whiting, haddock and herring, and

negative with Irish Sea cod and sole. In southern Celtic Sea ecoregion, most

stocks displayed weak correlations but there was a strong correlation between

Celtic Sea whiting and cod and between Western English Channel sole and

Celtic Seas and English Channel haddock. These stock pairs were negatively

correlated with each other. Celtic Seas and Bay of Biscay sole displayed weak

correlations with all the southern stocks. Widely distributed stocks typically

display weak or negative correlations between each other.

Occasionally, productivity time series had strong positive correlations among

stocks from different regions, e.g. West of Scotland and West of Ireland

herring and West of Scotland saithe are strongly correlated with central and

southern Northern Sea, Irish Sea, English Channel, Bristol Channel, and

Celtic Sea seabass, Irish Sea cod, Celtic Seas cod, and Celtic Seas whiting

(Figure 5.2). In other cases, productivity correlations with most stocks were

weak, e.g for northeast Atlantic mackerel, Irish Sea plaice, Celtic Seas and

Bay of Biscay white angler fish, and West and Southwest of Ireland and Bay

of Biscay megrim, suggesting unique patterns in recruitment productivity for

these stocks.

We found that correlations within species were strong and positive for some

species but could be negative in other cases. All cod stocks in the ecoregion

showed positive correlations in productivity patterns, and with some other

stocks from other regions, e.g. herring, saithe, and seabass (Figure 5.2).

Haddock stocks productivity time series are positively correlated for North

Sea and West of Scotland stock and Rockall stock, and for Irish Sea and Celtic

seas stocks, but these pairs of stocks were negatively correlated with each
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Figure 5.2: Estimated pairwise productivity correlation for stocks in the Celtic
Seas ecoregion (significance level of 0.01). Red represents positive correlations
and blue represents negative correlations. Stock description are provided in
Table 5.1. Dashed blue line squares represent regions in the ecoregion.

other (Figure 5.2).

Celtic Seas ecoregion productivity patterns

In the Celtic Seas ecoregion, there was more than one underlying common

pattern in productivity among stocks. Variability patterns of the productivity

time series for Celtic Seas ecoregion stocks could not be reduced to only one

main common pattern ( Appendix A.3 Table SM2), thus a four-trend dynamic

factor analysis was estimated. The four-trend model had 24 stocks that relate

to the trends with a percentage of variance explained higher than 50% (Table

5.3). The first common productivity trend gradually decreased until the early

1980s and increased subsequently, with a decline from 2005 until the early

2010s followed by an increase until the end of the time series (Figure 5.3).

Northern stocks positively related to this trend are haddock in North Sea,

West of Scotland and Skagerrak, haddock in Rockall, and West of Scotland

and West of Ireland herring (Table 5.3). In other regions, stocks related to

this trend are North Sea, Irish Sea, English Channel, Bristol Channel, and
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Celtic Sea seabass, West and Southwest of Ireland, and Bay of Biscay megrim,

Celtic Seas and Bay of Biscay white anglerfish, Bristol channel and Celtic

Seas sole, and northeast Atlantic blue whiting. All sole stocks in the ecoregion

are related to the first common productivity trend, with low loadings.

Table 5.3: Results of the four-trend dynamic factor analysis. Factor loadings
in bold are above the cutoff of 0.05 in absolute value. Stock description are
provided in Table 5.1.

Region Stock
Factor

loadings
trend 1

Factor
loadings
trend 2

Factor
loadings
trend 3

Factor
loadings
trend 4

% Variability
explained by
the trends

Northern region

cod.27.6a -0.18 0.08 0.06 0.09 95.74
had.27.46a20 0.13 -0.09 -0.01 0.08 93.47
had.27.6b 0.17 -0.1 0.07 -0.02 71.14
pok.27.3a46 0.01 0.02 0.05 0.1 82.34
whg.27.6a -0.08 -0.04 0.12 0.04 98.93
aru.27.5b6a -0.58 -0.03 0.38 -0.07 96.54
her.27.6a7bc 0.05 0.06 0.03 0.13 80.18

Central region

ple.27.7a -0.09 0.16 -0.02 0.04 50.75
sol.27.7a 0.03 -0.1 0.02 0.06 92.65
bss.27.4bc7ad-h 0.2 0.15 1e10−3 0.04 93.4
cod.27.7a -0.01 -0.02 6e10−4 0.11 100
had.27.7a -0.26 0.05 -0.01 -0.01 63.33
whg.27.7a -0.14 0.08 -0.13 -0.01 94.78
her.27.nirs -0.01 0.05 -0.13 -0.03 95.02

Southern region

meg.27.7b-k8abd 0.17 -0.06 0.04 0.02 46.05
mon.27.78abd 0.05 3e10−3 -0.12 -0.01 52.58
sol.27.7e 0.01 0.02 0.01 -0.11 99.09
sol.27.7fg 0.08 -0.13 2e10−3 -0.1 59.31
cod.27.7e-k 6e10−4 0.03 0.12 0.06 96.42
had.27.7b-k -0.02 -0.02 -0.18 1e10−3 99.75
whg.27.7b-ce-k -0.07 0.1 0.23 -0.03 85.07
her.27.irls -0.12 0.03 0.09 -0.03 32.88

Wide area

cod.27.7a -0.01 -0.02 6e10−4 0.11 100
dgs.27.nea -0.01 0.03 -0.11 0.03 29.53
hke.27.3a46-8abd -0.06 0.18 0.01 -0.02 93.59
reg.27.561214 0.13 0.02 -0.03 0.11 68.44
hom.27.2a4a5b6a7 -0.03 -0.2 0.03 -0.03 100
mac.27.nea 4e10−3 0.04 -0.13 -0.02 80.88
whb.27.1-91214 0.16 -0.01 -0.05 -0.03 43.79

The second common trend displayed a gradual decrease until the early 1980s

followed by an increase in productivity until late 2000s and a marked decline

thereafter (Figure 5.3). Most central stocks in the ecoregion are related

positively to this trend, except for cod and sole in the Irish Sea (Table 5.3).

Additionally, West of Scotland cod, West of Scotland and West of Ireland

herring, Celtic Seas whiting, and northern hake stock were strongly related to

this trend.

The third common trend displayed a productivity peak around the mid-1990s

followed by a marked decline until the late 2000s with stabilization until the

end of the time series (Figure 5.3). Most northern stocks are positively related

to this trend, except for North Sea, West of Scotland and Skagerrak haddock
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Figure 5.3: Four common productivity trends in the Celtic Seas ecoregion in
black. Coloured lines are the productivity of stocks with positive loading for
the trend. The colour represents the functional group.
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(Table 5.3). Celtic Seas cod, whiting and herring are also positively related to

this trend.

The fourth common trend displayed a consistent decrease in productivity with

a slight stabilization in the most recent years (Figure 5.3). Many northern

stocks are related to this trend, except for Rockall haddock and the greater

silver smelt stock. All cod stocks in the ecoregion are highly positively related

to this trend with important loadings (Table 5.3). Also, Irish Sea sole and

golden redfish in Iceland, Faroes grounds, West of Scotland, North of Azores,

and East of Greenland.

5.4 Discussion

We found evidence of non-stationary productivity for many stocks in the

Celtic Seas ecoregion manifested as important changes in the temporal trends

in recruitment productivity parameters. In this section, we consider the

important biological insights of PPM models, examine productivity dynamics

in the Celtic Seas ecoregion, explain data and method caveats, and remark

implications for management.

5.4.1 Biological insight of PPM models

Peterman’s productivity method enabled the identification of temporal pat-

terns in the parameters of the stock-recruitment model. The PPM permits

estimation of the integrated effects of underlying processes influencing re-

cruitment while reducing the confounding from random sources of noise or

variability independent of the trend (Holt and Peterman 2004; Peterman

et al. 2003). This improves estimates of systematic underlying changes in

productivity - revealing the underlying signal (Peterman et al. 2000; Dorner

et al. 2008). We showed that parameters of the stock-recruitment relationship

often vary over time which offers valuable insight into complex temporally

variable regulation processes in changing ecosystems. In the Ricker model, the

parameters have differentiated density-dependent effect of spawner abundance

on productivity and density-independent effects. However, detecting which

parameter varies in time, which is of great ecological interest, is difficult.

For some stocks, goodness fit differences between the time-variant models

(time-varying maximum-productivity and time-varying density-independent

mortality) were small. Applying ensemble modelling (Jardim et al. 2021)
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could be useful in cases when the understanding of the dynamics is incomplete

(i.e. averaging the weight of each time-variant model based on AIC).

Our analysis indicated that, for most stocks in the Celtic Seas ecoregion, time-

varying maximum-productivity was the best fit for the data, although changes

in density-dependence were also important for some stocks. The maximum-

productivity is the mean productivity at low stock sizes and captures variations

in recruitment separating environmental effects and maternal effects from the

effects of density in adult biomass. Preliminary univariate implementations

of PPM indicated that models with time-varying maximum productivity and

constant density-dependent mortality fitted best (Peterman et al. 2003; Dorner

et al. 2008). Additionally, multivariate implementations also show improved

goodness of fit of the time-varying maximum-productivity (Minto et al. 2014).

The Minto et al. (2014) results for density-dependence have shown it to be

relatively stable in time. We found that when both parameters were allowed

to covary in time, for many stocks, the density-dependent parameter remained

constant in time.

5.4.2 Productivity dynamics in the Celtic Seas Ecore-

gion

For most stocks in the Celtic Seas ecoregion recruitment productivity has

varied over time, which suggests that the productivity of many stocks is

non-stationary, as found also by Minto et al. (2014) for Atlantic cod stocks

and by Tableau et al. (2019) for New England stocks. The observed changes

in productivity might be caused by internal changes and multiple drivers and

mechanisms, which might depend on fish species or even stocks as life-history

characteristics of populations might differ (Subbey et al. 2014). Additionally,

the effect of these processes may change over time (Stige et al. 2006; Ottersen

et al. 2013). Hence, changes and timing are very stock dependent. Applying

PPM we can model how recruitment productivity change over time. We

observed long-term trends, for example, the overall decline in productivity for

stocks in the northern region of the Celtic Seas ecoregion with a considerable

positive correlation. This suggests that regional factors might be important

drivers of changes in productivity of the northern Celtic Seas ecoregion. For

other regions, we found no clear spatial patterns; some stocks with consistent

patterns but other stocks responded differently. This might reflect that fish

populations are affected by more than one driver or react differently to the same

116



drivers. Mechanistic understanding of why Celtic Seas stocks productivity

has changed is beyond the scope of this study but it would be important to

investigate in the future. In this section, we hypothesise some of the possible

reasons of changes in productivity.

We found some consistent patterns within stocks of the same species but also

inconsistent patterns. For example, patterns in productivity of haddock stocks

were positively correlated for neighboring stocks, and negatively correlated

between northern and central-southern stocks. The consistent patterns in

productivity observed between some stocks indicates that common factors

(e.g. environmental conditions) may influence those populations. However,

effects of climate variability on fish productivity can vary between regions

(Parsons and Lear 2001). Internal changes such as changes in age-structure

also influence stock productivity (Stenseth et al. 1999; Wright and Gibb 2005;

Ohlberger et al. 2022). These changes in stock structure can be caused by

fishing or climate change, and the Celtic Seas ecoregion has had high levels of

fishing pressure historically (Zimmermann and Werner 2019). For cod stocks,

there is a general decline in productivity, which suggests common processes

might be operating. The decline in productivity might have been caused

by overexploitation (Myers et al. 1996). Additionally, cod survival during

early life stages was found to decline with increasing temperatures in the

northeastern USA (Fogarty et al. 2008). Brander (2007) found significant effect

of environmental variability (NAO) when the spawning stock biomass was low.

The consequences of environmental-related regime shifts on cod productivity

were found to be accentuated when fishing mortality is high and populations

are small (Perälä et al. 2020). While being different populations, a combination

of these effects could be contributing to the downward productivity trend of

cod stocks.

5.4.3 Data and method caveats

The Ricker stock-recruitment model, used for this study has overcompens-

ation at higher spawner abundances, which does not happen for all species.

Time-varying Ricker parameters have been widely used for salmon populations

(Peterman et al. 2003; Holt and Peterman 2004; Peterman and Dorner 2012).

The Ricker model has been considered to provide a reasonable model for estim-

ating the slope at the origin of stocks (Myers et al. 1999). Minto et al. (2014)

applied PPM with time-varying parameters in a Ricker model for cod popula-
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tions, and Tableau et al. (2019) applied it to New England fish populations.

The Ricker model has the advantage of its easy linearization, which allowed the

use of the Kalman filter to estimate the time-varying parameters. Additionally,

the parameter separation into density-independent and density-dependent

components of the Ricker makes for a more straightforward interpretation.

Both the parameter α in Ricker models, and the slope at the origin for the

Beverton-Holt can be interpreted as the maximum annual reproductive rate

directly or by standardization (Myers 2001). The main difference between

these models would be caused by the different forms of density-dependent

mortality assumed by the model. Nonetheless, more research and development

is needed to be able to implement the PPM in other stock-recruitment models

such as the Beverton-Holt.

Data used to estimate recruitment productivity, i.e. recruits and spawner

abundance, are estimates from stock assessment models and have considerable

uncertainty and correlations associated (Brooks and Deroba 2015). Neverthe-

less, estimated recruitment variability in data-rich stocks with recruitment

indices is thought to be more robust to recruitment assumptions, and so the

recruitment variability signal in the data is sufficiently strong (Dickey-Collas

et al. 2015). The majority of the stocks in this study were category 1, i.e.

stocks with analytical assessments. Additionally, many of the stocks studied

were historically overexploited, which provided resolution and contrast on

population dynamics at low population abundance. The method would be

improved investigating the inclusion of assessment uncertainty and covariance

of the recruitment and spawning stock biomass estimates.

The univariate PPM approach failed to separate the measurement error and

the process variability for some of the stocks time series. This issue is related

to a flat likelihood around its maximum in the estimation process (Petris et al.

2009; Tableau et al. 2019). Although, this might be resolved with longer time

series, when longer time series are not available, estimating the time-varying

parameters collectively using a multivariate model could be a solution (Minto

et al. 2014). Moreover, estimating a common signal-to-noise ratio reduces the

number of parameters to estimate and is thought to be more robust to shorter

time series (Tableau et al. 2019). However, the univariate approach, used in

this study, is useful for assessing a single stock and getting a population’s

view on recruitment productivity variability in time. Potentially, knowing the

region’s signal-to-noise ratio could be used to inform the model and might

help in cases where the separation of observation error from process error is
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not robust. More generally, understanding how the signal to noise ratio varies

across regions may provide insights on the nature of change more globally.

5.4.4 Implications for management

Currently, constant stock-recruitment parameters over the available time

series are typically used to derive single-species reference points (stationary

stock-recruitment relationship). Such an approach is thought to include

average environmental and fishing conditions but is not robust if the ecosystem

changes. The maximum-productivity parameter, studied here, is one of the

most important parameter in population dynamics (Myers 2001), critical in

many problems in fisheries management because it affects the estimation

of reference points and sustainable harvest rates. We discovered long-term

trends and mismatches between time-invariant and time-varying maximum-

productivity. We showed temporal patterns in recruitment productivity of

Celtic Seas ecoregion stocks, which is relevant for management advice, specially

in the presence of long-term trends and depressed productivity levels. For

example, stocks that have continuously decline in productivity, i.e. stocks

related to common trend 4, would be immediate red flags of time-invariant

reference points.

Advice frameworks typically consider stock productivity regime shifts. When

regime shifts are detected a data window of spawner and recruit pairs are used

or time series are truncated (ICES 2021c). Choosing recruitment windows

to derive reference points can be problematic because shorter time series

increases uncertainty in reference points (Deurs et al. 2021) and because

productivity changes can be gradual (Collie et al. 2021). Incorporation of

ecosystem and climate information into stock assessments and advice has

shown to be necessary but challenging (Punt et al. 2014a; Bentley et al. 2021).

We argue that in the context of ecosystem changes affecting productivity,

tracking time-varying stock recruitment productivity, estimating dynamic

reference points, and measuring current productivity levels is crucial for

management (Collie et al. 2021; Silvar-Viladomiu et al. 2022b). Tableau

et al. (2019) demonstrated that the short-term forecast power for time-varying

productivity models generally outperformed time-invariant models. Beyond

forecasting, time-varying productivity models can directly inform sustainable

harvest practices (Collie et al. 2012; Collie et al. 2021). Stochastic dynamic

programming studies have shown that the time-invariant harvest control rule
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based on average productivity performed similarly as the dynamic harvest

control rule except at low productivity (Collie et al. 2021). This occurs because

changes in maximum productivity at low productivity have a stronger effect

on the optimal harvest rate than changes in the same parameter at high

productivity. Consequently, special care is needed at low productivity levels.

Implementations of time-varying productivity frameworks have shown ability

to improve on time-invariant management (Collie et al. 2012), with special

importance for management in the context of climate change (Collie et al.

2021). Dynamic methods, such as the PPM, that are capable of tracking

changes in stock productivity are outstanding because although a mechanistic

understanding of the processes that affect productivity is important ultimately,

is not needed for tactical decision making now (Minto et al. 2014; Collie et al.

2021; Silvar-Viladomiu et al. 2022b). In view of the evidence that Celtic

Seas ecoregion fish recruitment productivity is changing over time, fisheries

advice science should take it into account and management must respond to

be robust to these productivity changes.
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Chapter 6

General thesis discussion
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This thesis furthers understanding of reference points currently used for

fisheries management and the dynamic stock-recruitment modelling approach

(PPM) to account for productivity changes. Single-species reference points

were examined and the importance of ecosystem dynamics and temporal

productivity changes were revealed. The PPM, developed by Randall Peterman

and colleagues, is highlighted for adapting single-species reference points to

account for ecosystem change. In this general discussion, I go through the

main findings and conclusions of this thesis and discuss the implications for

scientific management advice and the potential for future research.

6.1 Research synthesis

Chapters 2 and 3 (Silvar-Viladomiu et al. 2021; Silvar-Viladomiu et al. 2022a)

provide a comparative research synthesis of reference points estimation and ret-

rospective reference point changes in the ICES region. Those synthetic efforts

offer a unique overview that enables the identification of common patterns

across a range of life histories and cross-comparisons between assessments

and stocks. In Chapter 2, patterns and inconsistencies in the estimation of

reference points were analysed across category 1 ICES stocks. Retrospective

analyses in Chapter 3 offer a unique view of historical past changes in stock

status providing comparative understanding of the relative impact of changes

in reference points and identifying important reasons for change. Collectively,

the results of Chapters 2 and 3 identify general patterns, highlight incon-

sistencies among stocks, and allow for the identification of areas for further

development (discussed in section 6.8 bellow).

These syntheses make a substantial contribution to improving reference point

estimation as a key step in the provision of scientific management advice.

For the creation of these Chapters, substantial information from assessments,

reports, working documents, etc. was collated and summarized. Two extensive

datasets were produced, containing information on reference point changes

and estimation details. The dataset with all ICES reference points estimation

details for all data-rich stocks can offer the base for studies on current general

practices across all stocks. In addition, the datasets can be used to make

informed comparisons with practices in other regions. The dataset with

quantitative measures of retrospective reference point changes, assessment

estimates outputs, and possible reasons for change provides extensive data

to further investigate these important changes and compare it to cases in
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other regions. Additionally, the method develop in Chapter 3 to decompose

changes can be applied to other regions or other indicators. These two chapters

revealed the value of synthesis and comparative studies and recommended

increased use of this kind of study in the future. Next, I delve in further detail

to discuss current ICES practices for the reference point estimation.

6.2 Reference points in the ICES framework

Reference point estimation is challenging and faces complications arising from

poor assumptions in some models (e.g. static or stationary), and lack of con-

trast and reliability in the data (Mace 2001; Caddy 1996). The framework for

reference points used for ICES advice has been carefully designed throughout

the years taking these challenges into account to estimate appropriate reference

points that are precautionary and aim for the sustainability of the stocks.

Chapter 2 shows how the ICES framework has evolved in an intergovernmental

setting influenced by policy and the legal needs of the countries that use the

advice and scientific developments, starting with the precautionary approach

and expanding to integrate the maximum sustainable yield approach. In ICES,

there has been an increasing focus on the role of reference points and the

processes used to estimate them, several ICES working groups have addressed

and identified concerns related to reference points (e.g. ICES 2020c; ICES

2021e). As an international advisory agency, it is crucial to understand ICES

reference points (interpretation and estimation) underlying their scientific ad-

vice. For this reason, the outcomes of Chapter 2 on reference point estimation

are valuable. Chapter 2 shows how multiple precautionary components and

sources of stochasticity and uncertainty are included into the current reference

point ICES framework.

In the ICES framework, the biomass limit reference point (Blim) is the key

precautionary approach reference point and plays a pivotal role in classifying

the condition of the stock and determining if recruitment is likely to be

impaired. Chapter 2 revealed that the framework for selecting the method used

to estimate Blim needs to be simplified. This is crucial because the choice of

the estimation method is the most influential factor in the value of Blim (Deurs

et al. 2021). This framework, currently, depends on the classification of stocks

into stock-recruitment typologies based on stock graphical characteristics

(recruitment, spawning stock biomass and stock-recruitment relationship).

This critically important classification would benefit from simplification and the
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development of quantitative criteria to assess the characteristics of the stocks.

Additionally, new scientific research should be included in the framework.

A recent study on the allee effect (depensation at low population sizes) has

important implications to define Blim; Perälä et al. (2022) demonstrated for

Newfoundland Atlantic cod that there is allee effect and identified the allee-

effect threshold below which recovery is impaired. To be more precautionary,

the allee effect should be analysed to define Blim (Perälä et al. 2022).

The ICES working group WKREF1 has proposed to reduce the framework to

3 types to define Blim: (1) with a clear stock-recruitment break point, (2) with

no clear break point, and (3) spasmodic recruitment. They have also proposed

to include the possibility to determine Blim as a percentage of the unfished

biomass (B0) based on biological principles and life history of the stocks for

stock with no clear break point (ICES 2022b). In other regions, such as the

United States, the biomass limit reference point can be based on percentages

of B0, which is not presently included in the ICES guidelines. Current ICES

guidelines recommend when no impaired recruitment has been observed and

no clear relationship between recruitment and spawner biomass is present,

that the Blim should be set to the lowest biomass observed (Bloss). The lowest

biomass observed has been considered to have no biological underpining (ICES

2022b). Percentages of B0 proxy reference points are typically used in areas

where spawner and recruitment data are not sufficiently informative for many

stocks (i.e. productivity at low sizes is highly uncertain)(Preece et al. 2011).

The level of B0 in relation to Blim depends on life history characteristics and

therefore is stock specific (Mace 1994). For some stocks, appropriate levels of

B0 might be difficult to find within safe biological levels (ICES 2022c). During

WKREF2 there was no consensus on whether the suggestions to simplify

the framework made in WKREF1 should replace the current guidelines, and

further work and tests on reference point candidates were recommended (ICES

2022c). For simplifying the method to select Blim, a better understanding of

these proxy is needed. It would be helpful to compare selected percentages of

B0 with current values of Blim in a stock basis. Suggestions for improvements

of the ICES framework based on this thesis research are discussed in the

section 6.8 below.

A particularly challenging type of stock to manage is a stock with spasmodic

recruitment, where single data points can be highly influential (Licandeo

et al. 2020; Spencer and Collie 1997). For stocks with these characteristics,

productivity is complex because they have sporadic year classes with very
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high recruitment but these are difficult to predict (Licandeo et al. 2020).

Spasmodic stocks (stock type 1), in ICES, are characterized by having sporadic

recruitment year classes considerably higher than the rest of year classes (ICES

2021c). Classifying a stock as spasmodic is not straightforward; in Chapter

2 a criterion is developed based on cumulative distribution functions which

have the potential to help the classification of stocks. Using the cumulative

distribution function, after removing low frequency variability, can be used to

identify high variance and infrequent strong recruitment.

The empirical review of reference points in the ICES region, conducted in

Chapter 2, highlights that the relationship and historical context of stock and

recruitment is crucial for MSY-based and limit reference points. Understand-

ing the stock-recruitment relationship is pivotal to reliably estimate non-proxy

MSY reference points (Punt 2010; Shepherd 1982; Conn et al. 2010). Having

contrast in spawning stock biomass and recruitment data is important to

help understand this relationship. However, high variability in recruitment

and non-stationarity can hinder the ability to understand this relationship

(Minto et al. 2008; Perälä et al. 2017; Minto et al. 2014; Hilborn and Wal-

ters 1992; Myers 1994; Myers 2001; Thorson et al. 2014). The ICES tool

EqSim to estimate stochastic reference points can model stock-recruitment

relationship including several functional forms and implementing autocorrela-

tion and stochastic predictive distribution of recruitment plus the simulated

observation error (Chapter 2). This aims to account for stock-recruitment

model structure uncertainty and recruitment interannual variability. High

variability in recruitment and catches can be accounted for by the exclusion of

extreme values (Chapter 2). Dealing with recruitment variation and variable

stock-recruitment relationship is crucial and has important implications for

the estimation of reference points (Sharma et al. 2019). Many of the points

made further in this discussion relate to this issue.

Chapter 2 identifies that an improved framework would involve better doc-

umentation and extended guidelines for estimating and updating reference

points. Reference points estimation need transparency (Hilborn 2002); a

major recommendation in Chapter 2 is to provide a well documented, trans-

parent and reproducible framework to estimate reference points such as

the recently developed TAF (Transparent Assessment Framework; https:

//taf.ices.dk/app/about). The TAF is an online resource of ICES stock

assessments for each assessment year, where the assessment (code, data input

and output) can be openly found. This framework, extended to reference point

125

https://taf.ices.dk/app/about
https://taf.ices.dk/app/about


estimation, would allow access to estimation details and enable the ability to

re-run the estimation with new data or methods.

6.3 Changes in reference points over time

Typically reference points are estimated as long-term targets or limits (Rindorf

et al. 2017b; Chapter3) but used on a short-term basis to set Total Allowable

Catches. Many agencies report on the status of fish stocks relative to reference

points and recent high-profile papers report on the status of assessed fisheries

globally via aggregating status indicators and reporting on global trends

relative to the reference point representing the sustainability goal (Fernandes

and Cook 2013; Hilborn et al. 2020). However, in practice, reference points

are considered to be valid in the medium term by most advice agencies,

particularly MSY-based reference points (ICES 2019a). Reference points are

commonly reviewed and re-estimated as required by changes in environmental

and ecological conditions and new scientific information and understanding

(ICES 2021a). In Chapter 3, we showed that reference points change over

time, reflecting changing population and fishery dynamics and understanding

thereof, which suggests that reference points are better described as reference

series. Instead of assessing historical status of stocks relative to the most

recent reference point (such as done in the previously mentioned studies),

reference series should also be used when inferring historical sustainability

and reporting on global trends.

Notably, changes in reference points are often not compensated by changes in

the state or fishing rate of the stock, which has a significant impact on the stock

sustainability status (Chapter 3). During the ICES review process in bench-

mark meetings, a blend of changes can occur: (i) changes in understanding and

methodology, (ii) new data, (iii) updated parameters (e.g. natural mortality,

maturity, weights-at-age), (iv) change in the reference point technical basis,

and (v) regime shifts detection. In Chapter 3, important reasons for changes

in reference points were changes to the definition and technical basis for

their estimation. Separating and assessing fundamentally different reasons for

change is valuable but difficult and can only be achieved if the framework is

transparent and reproducible and there is extensive documentation (discussed

in section 6.8 below).

Management advice on fishing opportunities is based on stock sustainability

126



status indicators (Punt 2010; ICES 2021a). As demonstrated in Chapter

3, changes in reference points affect the perception of status and therefore

fishing advice with important implications for management. The occurrence

of these changes is unavoidable as policy can evolve, the science advances, our

understanding improves, and new tools are developed. For example, during

WKREF1 and WKREF2 (ICES 2022b; ICES 2022c), changes to the ICES

reference point framework were proposed. Implementation of changes to the

framework can risk social license and therefore should be extensively docu-

mented with clear terminology and rationale (ICES 2022c). Besides, changes

in stock productivity (Vert-pre et al. 2013; Minto et al. 2014; Clausen et al.

2018) and climate change can impact reference points (Free et al. 2019). Not

taking into account these important productivity changes in reference points

could undermine social license (Silvar-Viladomiu et al. 2022b), but commu-

nication with managers and stakeholders is crucial in this process, otherwise

they may view changes in reference points as reflecting poor knowledge or

previous errors (Rindorf et al. 2017b).

6.4 Adaptations to changes in productivity

During the process of reviewing reference points, the presence of regime

shifts influencing productivity was evaluated (Chapter 2; Chapter 3). In

ICES, full spawning and recruitment time series are used unless there is very

strong evidence of regime change, when the time series was truncated to

estimate reference points (Chapter 2, Chapter 3). Most current approaches

to deal with productivity changes in reference points estimation are mainly

developed for changes of an abrupt nature that are persistent over time (i.e.

one regime shift). Given an abrupt change, a shorter time series of recent

data is thought to perform better at informing on the current population

status (Zhang et al. 2021b). Common approaches to deal with regime shifts

are defining a moving window or truncating the time series used (A’Mar et al.

2009; King et al. 2015). To truncate or shorten the time series, the main

difficulty is the identification and selection of the data that represents the

present regime (Punt et al. 2014c). Variability in recruitment can hinder the

ability to detect regime changes in productivity (King et al. 2015). Selection

of the data can be done by expert assessment or using algorithms. A widely

used algorithm to identify regime shifts is the Sequential Test Algorithm of

Regime Shifts (STARS; Rodionov 2004). Another method is the Bayesian
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online change-point detection (BOCPD) which demonstrated the ability to

detect productivity regime shits in Atlantic cod stocks (Perälä and Kuparinen

2015). Using algorithms in the ICES framework could improve the selection

of time series to derive reference points, although shortening the time series

still has limitations.

Shortening time series data to estimate reference points risks losing relevant

information from earlier periods and, therefore, creates errors in reference

point estimates (ICES 2021e). Deurs et al. (2021) found that biomass limit

reference points are sensitive to the length of the time series used being a

major source of uncertainty. Truncating time series might translate into losing

contrast over short time series and therefore unreliable referent point estimates.

Short time series data reduce the ability to account for measurement error

due to reduced sample size (Zhang et al. 2021b). Reducing time series can

also lead to greater variance and greater risk when there are no such changes

(Szuwalski and Punt 2013; Punt et al. 2014a). The uncertainty associated

with incorrectly identifying changes in productivity may depend on the life

history of the species (Berger 2019). Investigations on regime shift approaches

in management strategy evaluations showed that truncating time series may

lead to imprecise reference points when the regime was not captured exactly

(e.g. when using relatively few data points creates noisy estimates, or when

the system is non-regime based) (Szuwalski and Punt 2013).

Changes in productivity are important and difficult to both detect and take

into account in the estimation of reference points (Collie et al. 2021; Peterman

et al. 2003; King et al. 2015). Most current approaches are focused on regime

shifts, nevertheless, changes in productivity can be of a different nature (e.g.

gradual). The use of dynamic B0 was proposed as a dynamic proxy reference

point to account for changes in productivity (Berger 2019; King et al. 2015;

Punt et al. 2014c). The use of Feco has been proposed to adapt fishing

mortality to changes in productivity, using the outputs of an ecosystem model

of the region (Bentley et al. 2021; ICES 2020b; Howell et al. 2021). In the

next section, I elaborate on why the method highlighted in Chapter 4 can

contribute to the evolution of MSY-based reference points in the context of

changing ecosystems by tracking temporal changes in productivity.
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6.5 Peterman’s Productivity Method as a link

to non-stationary ecosystem concerns

In Chapter 4 (Silvar-Viladomiu et al. 2022b), Peterman’s productivity method

(PPM) is highlighted as a possible link between stationary single-species

reference point approaches and changing ecosystem concerns by using dynamic

models for defining reference points for fisheries advice. Professor Randall

Peterman and colleagues developed this method which includes time-varying

parameters in the stock-recruitment model (Peterman et al. 2000). This is a

state-space method that permits separating important temporal trends from

less important inter-annual variation, which is one of the biggest challenges

faced by fisheries scientists and managers when trying to detect changes in

productivity (Peterman et al. 2003; Dorner et al. 2008; Minto et al. 2014; Holt

and Peterman 2004).

The MSY is based on a long-term equilibrium paradigm, by definition, MSY

is “the highest theoretical equilibrium yield that can be continuously taken

(on average) from a stock under existing (average) environmental conditions

without affecting significantly the reproduction process” (FAO 1995a). How-

ever, environmental conditions are not stable and the ecosystems which stocks

inhabit are dynamic (Fogarty et al. 2016). Additionally, climate change will

bring new challenges, as the productivity of individual stocks change affecting

reference points (Free et al. 2019). Global analyses have shown that if refer-

ence points do not account for non-stationary changes in productivity, the

underlying management theory, with respect to sustainable yield, is incorrect

and time-invariant equilibrium-based reference points will be inefficient or

risky (Vert-pre et al. 2013; Britten et al. 2017).

Initial static and deterministic interpretations of equilibrium reference points

have evolved to account for variation and include stochastic elements (Chapter

2). In current time-invariant approaches, the stock-recruitment relationship

is typically modelled as a stationary process with an error around constant

parameters. The next step could be towards estimating dynamic reference

points to define sustainability in changing ecosystems using PPM which is

capable of accounting for temporal changes in the underlying productivity via

time-varying parameters (Minto et al. 2014; Peterman et al. 2003). With this

approach fishing, population and ecosystem processes affecting recruitment

would be integrated into reference points to help inform management decisions.
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Current stationary stock-recruitment models fail to explain the data and the

temporal variation (Mueter et al. 2007; Dorner et al. 2018; Chapter4). This is

clear evidence of the existence of temporal changes in recruitment productivity.

Current approaches, like the ones used by ICES (Chapter 2), take into account

autocorrelation for the recruitment residuals of the stock-recruitment model

according to an AR(1) process, while the PPM takes into account shifts in

productivity and captures the dynamics of the integrated signal on recruitment

by including a process on the parameter describing variation in time (Peterman

et al. 2003; Dorner et al. 2008; Minto et al. 2014):

αt+1 = αt + ωt (6.1)

This is fundamentally different from projecting the residuals of a static stock-

recruitment relationship with an autocorrelated process because the latter

assumes reversion to the mean. In a mean-reverting process, the parameter

will revert to the long-term mean or averaged level of the data.

Overall, PPM has proved capable of capturing the underlying ecosystem

signal in recruitment in several studies (e.g. Minto et al. 2014; Tableau et al.

2019). PPM provides a more holistic view of the ecosystem temporal dynamics

reflected in time-varying parameters of recruitment productivity (Dorner et al.

2008; Minto et al. 2014) and allows for more flexibility in the estimation of

time-varying reference points (Chapter 4). Thus, this approach may provide

an excellent opportunity to deliver on some of the requirements of EBFM in

tactical fisheries management (Minto et al. 2014; Chapter4).

The main advantages of the PPM approach are that it is not necessary

to understand and project ecosystem changes nor to identify the current

ecosystem regime and there is no need to shorten the time series. As discussed

in Chapter 4, this method does not investigate mechanistic insights into the

processes affecting productivity, but, how productivity is changing. Contrary

to ecosystem models (e.g. Bentley et al. 2021) or multispecies models (e.g.

Plagányi et al. 2014) that need extensive amounts of data (e.g. stomach

content, environmental variables, ecological variables), this method is capable

of increasing model complexity and inferring on the underlying signal without

requiring additional data. An important advantage is its immediate application

to management advice, as it can be applied without understanding the process

that caused the change (Peterman et al. 2003; Minto et al. 2014; Chapter4).

These advantages are critical in fisheries issues because time and data are
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important constraining factors, as advice on fishing opportunities for many

stocks is given annually and often data is limited in stock assessments (ICES

2022c; Chapter 2).

Including PPM in the estimation of reference points capture productivity dy-

namics and offers a view of how productivity changes, providing a link between

single-species models and non-stationarity ecosystem concerns (Chapter 4).

PPM has been shown to improve short-term forecast power compared to

time-invariant models (Tableau et al. 2019). Notably, the utility of PPM goes

beyond forecasting because it can directly inform sustainable harvest practices,

such as the research of Collie et al. (2012) and Collie et al. (2021). Using

stochastic dynamic programming Collie et al. (2021) contrasted static, myopic

(where the future productivity is unknown; Walters and Parma 1996) and op-

timal parameter harvest control rules over future horizons. They demonstrated

the importance of updating reference points according to PPM adapting to

changes in productivity, especially at low stock sizes.

Estimability problems can arise on state-space models (Auger-Méthé et al.

2016). Difficulties have been found when estimating parameters, particularly

when the measurement or observation error is much larger than the process

variation. Estimability problems, such as the ones found in Chapter 5 for the

univariate model, might be resolved with longer time series or multivariate ap-

proaches (Minto et al. 2014; Tableau et al. 2019). Whilst further investigation

into robust estimation methods is needed, attempting to separate low from

high-frequency variability and interannual noise in recruitment productivity is

more general than fixing the parameters or using static parameters that only

allow for observation error around a constant recruitment function (Peterman

et al. 2003; Holt and Peterman 2004; Dorner et al. 2008; Minto et al. 2014).

Areas of improvement of PPM are discussed in section 6.8 below.

6.6 Stochastic recruitment productivity dy-

namics in Celtic Seas ecoregion

The ICES Celtic Seas ecoregion is an important region for commercial fishing

for many countries in the European Union (ICES 2019b). The findings in

Chapter 5 could have critical implications for management advice of Celtic

Seas ecoregion stocks. Changes in productivity over time were identified for

many stocks and intriguing differences were found between time-invariant and

131



present time-varying productivity levels for some stocks.

Overall, in the Celtic Seas ecoregion, there was no evidence of one coherent

trend in fish recruitment productivity. These trends may be describing the

response of fish stock productivity to the underlying dynamics in the ecosystem.

The analysis presented in Chapter 5 suggests that Celtic Seas stocks are

responding to combined multiple effects (e.g. fisheries and climate). Free et al.

(2019) found different responses in the direction and magnitude of population

productivity to warming. Other studies of time-varying productivity have

found coherent signals for nearby stocks of the same species (Minto et al.

2008; Tableau et al. 2019; Peterman and Dorner 2012). Minto et al. (2014)

analyzed temporal productivity trends of Atlantic Cod and found that adjacent

stocks exhibited similar productivity patterns with the strength of covariation

declining over distance. In the Celtic Seas ecoregion, correlated productivity

patterns were found for cod, but this did not hold for all stocks of the same

species (Chapter 5).

Findings in Chapter 5 permit us to conclude that there are trends in pro-

ductivity in the Celtic Seas ecoregion. Given our incomplete knowledge of the

dynamic processes linking ecosystem change and stock productivity, tracking

how productivity changes with PPM is crucial and can inform management

decisions (Dorner et al. 2008; Minto et al. 2014). These should be accounted

for in science, advice and management, with the exploration of dynamic

productivity in management strategy evaluations for example. If there is

an ecosystem trend driving a directional fish productivity trend, then the

stationary assumptions of the single-species approach of historical long-term

time-invariant productivity do not hold and there will be increasing bias as

time passes. This is especially significant in the presence of long-term trends

of declining productivity (e.g. cod stocks in the Celtic Seas ecoregion) for

which there might be important bias in time-invariant reference points.

Reference ranges for management plans have been estimated for some stock in

the Celtic Seas ecoregion (e.g. Rockal haddock, western English Channel and

southern Celtic Seas cod, western english Channel sole, southern Celtic Seas

and western English Channel whiting). These upper and lower levels of fishing

mortality are consistent with ranges resulting in no more than 5% reduction

in long-term yield compared with MSY (Rindorf et al. 2017a), which gives

flexibility to the reference point. For salmon stocks in Ireland, river-specific

reference points ranges have been estimated, incorporating natural variability
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(White et al. 2016). Estimation of time-varying reference points applying PPM

for the Celtic Seas ecoregion stocks would integrate temporal productivity

variation into the reference point (Chapter 4). Including time-varying reference

points into the evaluation of the stocks and investigating the trade-off of not

responding to changing productivity would be valuable for the management

of the stocks in the ecoregion (Chapter 5).

6.7 Time-varying recruitment productivity and

management advice

An increasing number of studies are finding evidence of time-varying para-

meters in the stock-recruitment relationship (Dorner et al. 2008; Minto et al.

2014; Britten et al. 2016; Tableau et al. 2019; Malick and Cox 2016; Peterman

and Dorner 2012; Szuwalski et al. 2019; Chapter 5). These studies show that

temporal changes in productivity can be of different natures, e.g. abrupt,

persistent, fluctuate, gradual increases or declines. These changes in recruit-

ment productivity affect reference points (Holt and Michielsens 2020; Zhang

et al. 2021a; Chapter4). As empirical evidence in fish populations accumu-

lates, management advice is required to revisit the traditional assumptions

of constant long-term MSY and reference points and emphasise the need

for EBFM. As mentioned in the previous section, when applying PPM to

estimate dynamic reference points, changes in productivity are tracked and

the integrated underlying ecosystem signal on recruitment is incorporated.

However, there are unresolved questions in terms of their application:

1. What is the form of the change? The form of the stochastic evolution

can move from ARMA or random walks to other processes. Whatever

their form is, trends in productivity have important implications for

management (Walters 1987). Simulations showed that random walks

performed well at tracking a wide variety of true underlying temporal

trends (Peterman et al. 2000). Decadal random walks have been found

to fit time-varying stock-recruitment parameters well across multiple

studies with a wide range of stocks (e.g. Dorner et al. 2008; Minto et al.

2014; Holt and Peterman 2004; Tableau et al. 2019).

2. Will the change in productivity persist? In terms of management, it is

imperative to consider the uncertainty about whether the change will last

(Holt and Michielsens 2020). Ignoring persistent changes or long-term
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directional trends in productivity, especially if productivity declines over

time, results in unreliable time-invariant reference points. An important

focus should be the analysis on detecting if there is a significant trend

and taking it into account in management advice. If there is a regime

shift from a higher productivity regime to a low-productivity regime

the reference point will be biased and there will be an increased risk of

overfishing (Vert-pre et al. 2013). Management advice should adapt to

the change with caution in case the regime shifts back. When there is

high uncertainty that the change in productivity will persist, changes in

productivity in time-varying reference points can be used complementary

to the time-invariant reference points to give insight to managers into

stock productivity changes.

3. How should management respond to changes in productivity to achieve

management goals? Implementing major changes in reference points

and advised catch levels on an annual basis might be untenable (Tableau

et al. 2019), therefore time-varying reference points need to be designed

to account for changes in productivity in an optimal way for the overall

management system. Management Strategy Evaluation (MSE) frame-

works have a critical role in testing the tactical models and reference

points (De Oliveira et al. 2009; Punt et al. 2014b). The question of how

quickly and how much to respond to changes in estimated productivity

parameters can be tested in simulation frameworks such as MSEs. These

frameworks can be applied for testing tactical models and decisions

made based on knowledge of productivity changes (King et al. 2015).

Developing a full MSE applying PPM could be used to define how

to optimally take into account variability in productivity for meeting

management objectives (Randall Peterman personal communication).

Studies with MSE could also be used to compare the effectiveness of

different methods of dealing with non-stationarity (Randall Peterman

personal communication). An MSE framework should be used before

using time-varying reference points to inform management decisions. As

suggested by Holt and Michielsens (2020), MSEs can be used to test time-

varying productivity frameworks and determine whether time-varying

productivity should be accounted for when estimating stock-recruitment

parameters and deriving benchmark estimates. Simulation frameworks

can evaluate the consequences of ignoring the changes in productivity

when providing management advice. The choice of whether to adopt
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PPM to estimate reference points to account for changes in productivity

will depend on the choice of reference points and how they are used

to inform management decisions and the underlying dynamics (Holt

and Michielsens 2020). In simulations with dynamic B0, Berger (2019)

demonstrated that the performance of time-invariant and time-varying

reference points is dependent upon combinations of stock productivity

regime, fishing mortality regime, and species life history. Simulation of

sustainable harvest strategies, similar to Zhang et al. (2021a), can test

for case-specific time-varying parameters under different assumptions

and their impacts on reference points.

6.8 Recommendations for future research

The reference point review in Chapter 2 conducted in the thesis pointed out

several recommendations. Future research should focus on finding the best

choices for Blim definition due to its importance in the ICES reference point

framework. Research is needed to develop quantitative criteria to define stock

characteristics (i.e. spawning stock biomass, fishing mortality, and recruitment)

and the choices of Blim, to help the classification and to support reference

point definition respectively. Findings in Chapter 3, on the importance of

retrospective changes in reference points, revealed the value of identifying

the reasons for change. Implementation of a transparent framework (similar

to TAF) for estimating reference points would facilitate a reference point

estimation process that could be replicated and allow for the separation of

causes of change in reference points and estimate their relative impact.

Furthermore, the research conducted in Chapters 4 and 5 identified several

areas for further development of PPM and the inclusion of ecosystem non-

stationary concerns in fisheries advice for management. This section presents

the main research fields identified:

Identifying the stock-recruitment parameter that varies in time is challenging

(Chapter 5). Other studies have allowed both parameters to vary over time

but independently (Britten et al. 2016; Szuwalski et al. 2019). More research

is needed to refine statistical model selection criteria, and develop statistical

tests to identify which parameters are varying. Simulation studies have shown

that information criterion (AICc and BIC) while useful, tend to favour time-

invariant models despite bias in parameter estimates (Holt and Michielsens
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2020). Moreover, investigation is needed on application of ensemble models

(Jardim et al. 2021) for different configurations of time-varying models.

While Peterman used the Kalman filter for the linearized Ricker model, PPM

is not restricted to the use of the Kalman filter on the linearized Ricker.

Most of the previous studies that apply PPM, implement the Ricker stock-

recruitment model (e.g. Peterman et al. 2003; Dorner et al. 2008; Minto et al.

2014; Tableau et al. 2019). The Ricker parameter, α, is useful because it

measures the maximum reproductive rate at low stock sizes (Ricker 1954).

Although Ricker’s model is convenient because of its easy linearization (Myers

2001), more research is needed to explore the estimation of time-varying

parameters for other functional forms. In addition, other methods could be

used to estimate time-varying parameters under different recruitment model

structures (e.g. Laplace approximation in ADMB or TMB and MCMC). The

Kalman filter has been widely used because it provides a powerful mechanism

for estimating parameters and detecting various sources of noise (Zeng et al.

1998). More research is needed on how to implement these other estimation

methods to expand the methodology.

Further work should evaluate the propagation of uncertainty from the stock

assessment. In the reference point derivation, the parameters of the stock-

recruitment relationship can be estimated inside or outside the stock assessment

model (Sharma et al. 2019). In the areas advised by ICES, reference points

are typically estimated outside the stock assessment model. On the one hand,

a drawback of this approach is that both variables (stock size measured in

spawning stock biomass and recruitment) are estimates of the assessment

model and therefore have associated uncertainties and covariations (Brooks

and Deroba 2015). Recruitment time series are sensitive to the assumptions

of the model used to estimate them, which can impact the perception of

variability (Dickey-Collas et al. 2015). Outside post hoc analyses have been

considered to not adequately account for uncertainty and to overlook potential

bias in assessment estimates and correlation between estimates (Brooks and

Deroba 2015). On the other hand, the approach of estimating reference points

inside the assessment model, typically used in integrated assessments (Punt

et al. 2013), adds structure to the assessment model and can mitigate the

error-in-variables problem. However, this is more susceptible to structure

uncertainty if the model is misspecified (Carvalho et al. 2017). In addition,

these approaches often fix stock-recruitment parameters. Overall, for both

approaches, investigation is needed on accounting for uncertainty propagated
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from the assessment when applying PPM. There is a need to develop methods

to incorporate uncertainty from the assessment model in recruitment and

spawning stock biomass in the PPM analysis (e.g. MCMC samples from

recruitment and spawning stock biomass estimation distribution).

The debate on whether stock assessment estimates can be used as data in

subsequent analysis, has raised concerns about whether time series of stock

dynamics were being determined by the models used to generate them rather

than by the underlying ecological phenomena (Dickey-Collas et al. 2015). In

real data applications, both assessment-based (Minto et al. 2014; Tableau et al.

2019) and survey-based (Perälä et al. 2017) dynamic recruitment productivity

studies have found temporal changes in stock-recruitment parameters, but no

studies have compared assessment-based and survey-based signals. Comparis-

ons of external and internally estimated signals would help inform the debate

on what is the integrated signal and what is the post-assessment artefact. To

throw light on this issue it would be crucial for a study to compare results

from survey-derived and assessment-derived PPM signals to assess the impact

of the uncertainty carried from the previous model that estimates recruitment

and spawning stock biomass. Some of this work is underway in the NOAA-

funded Climate and Fisheries Adaptation funded project (Understanding

Climate Impacts on Fish Stocks and Fisheries to Inform Sustainable Fisheries

Management led by Jeremy Collie).

As discussed in the previous section, it is crucial to find appropriate man-

agement responses when productivity is changing. Simulation frameworks

such as MSEs that offer a better understanding of management systems

are key to evaluating the performance of using PPM and how to deal with

productivity change (Holt and Michielsens 2020). Changes in productivity

in simulation frameworks should be further explored to test non-stationary

impacts, appropriate management responses, and outcome uncertainty. These

can help analyse how to incorporate and propagate uncertainty and evaluate

the consequences of violating the common assumptions and ensure outcomes

are robust. More research is needed on how to optimally manage with time-

varying reference points. Further work is needed comparing the performance

of different management policies over future scenarios (such as Collie et al.

2021). FLBEIA is a bio-economic model that follows a MSE approach, which

can evaluate different policies for multiple stocks and fleets (Garcia et al. 2017).

Investigating dynamic recruitment productivity and time-varying reference

points within FLBEIA and mixed fisheries contexts would be most relevant.
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Lastly, in terms of EBFM, additional challenges remain. Further research is

needed to have a holistic view of the system (especially in the context of climate

change), for example, on ecosystem processes, geographic changes in spatial

distribution (such as Payne et al. 2022), and impacts in non-target species. In

particular, further research efforts should be made to identify environmental

and biological drivers and improve understanding of the mechanism and

process by which productivity change. This would improve predictability

when forecasting future productivity to inform management decisions. Further

research is needed to include biological and environmental drivers in state-space

models. Tableau et al. (2019) applied PPM to model dynamic productivity

of New England fish stocks and included sea surface temperature, the north

Atlantic oscillation, the mid Atlantic cold pool, and the Gulf stream north

wall index. However, no strong links were found. Knowledge of environmental

drivers is relevant for understanding time variation in the productivity of

fish stocks, therefore, further investigation would be very valuable to help

understand those relationships.
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Perälä, T. and A. Kuparinen (2015). ‘Detecting regime shifts in fish stock

dynamics’. In: Canadian Journal of Fisheries and Aquatic Sciences. doi:

10.1139/cjfas-2014-0406.
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R. D. Pillans, J. T. Thorson, E. A. Fulton, A. D. M. Smith, F. Smith, P.

Bayliss, M. Haywood, V. Lyne and P. C. Rothlisberg (2014). ‘Multispecies

fisheries management and conservation: tactical applications using models

of intermediate complexity’. In: Fish and Fisheries 15.1, pp. 1–22. doi:

10.1111/j.1467-2979.2012.00488.x.

Planque, B., J. M. Fromentin, P. Cury, K. F. Drinkwater, S. Jennings, R. I.

Perry and S. Kifani (2010). How does fishing alter marine populations and

ecosystems sensitivity to climate? doi: 10.1016/j.jmarsys.2008.12.018.

Preece, A., R. Hillary and C. Davies (2011). Identification of candidate limit ref-

erence points for the key target species in WCPFCWCPFC-SC7-2011/MI-

WP-03. Tech. rep.

Privitera-Johnson, K. M. and A. E. Punt (2020). ‘Leveraging scientific uncer-

tainty in fisheries management for estimating among-assessment variation

in overfishing limits’. In: ICES Journal of Marine Science 77.2. Ed. by

Shijie Zhou, pp. 515–526. doi: 10.1093/icesjms/fsz237.

158

https://doi.org/10.1126/science.aac9819
https://doi.org/10.1139/F2012-063
https://doi.org/10.1139/f03-069
https://doi.org/10.1139/cjfas-57-1-181
https://doi.org/10.1007/b135794_2
https://doi.org/10.1111/j.1467-2979.2012.00488.x
https://doi.org/10.1016/j.jmarsys.2008.12.018
https://doi.org/10.1093/icesjms/fsz237


Punt, A. E. (2010). ‘Harvest Control Rules and Fisheries Management’. In:

Handbook of marine fisheries conservation and management. Oxford Uni-

versity Press, Inc., pp. 598–610.

Punt, A. E., T. A’mar, N. A. Bond, D. S. Butterworth, C. L. de Moor, J. A. A.

De Oliveira, M. A. Haltuch, A. B. Hollowed and C. Szuwalski (2014a).

‘Fisheries management under climate and environmental uncertainty: con-

trol rules and performance simulation’. In: ICES Journal of Marine Science

71.8, pp. 2208–2220. doi: 10.1093/icesjms/fst057.

Punt, A. E., D. S. Butterworth, C. L. de Moor, J. De Oliveira and M. Haddon

(2014b). ‘Management strategy evaluation: best practices’. In: Fish and

Fisheries 17.2, pp. 303–334. doi: 10.1111/faf.12104.

Punt, A. E., J. Day, G. Fay, M. Haddon, N. Klaer, R. L. Little, K. Privitera-

Johnson, A. D.M. Smith, D. C. Smith, M. Sporcic, R. Thomson, G. N. Tuck,

J. Upston and S. Wayte (2018). ‘Retrospective investigation of assessment

uncertainty for fish stocks off southeast Australia’. In: Fisheries Research

198, pp. 117–128. doi: 10.1016/j.fishres.2017.10.007.

Punt, A. E., T. Huang and M. N. Maunder (2013). ‘Review of integrated

size-structured models for stock assessment of hard-to-age crustacean and

mollusc species’. In: ICES Journal of Marine Science 70.1, pp. 16–33. doi:

10.1093/icesjms/fss185.

Punt, A. E., A. D. M. Smith, D. C. Smith, G. N. Tuck and N. L. Klaer (2014c).

‘Selecting relative abundance proxies for BMSY and BMEY’. In: ICES

Journal of Marine Science 71.3, pp. 469–483. doi: 10.1093/icesjms/

fst162.

Quinn, T. J. (2003). ‘Ruminations on the development and future of population

dynamics models in fisheries’. In: Natural Resource Modeling 16.4, pp. 341–

392. doi: 10.1111/j.1939-7445.2003.tb00119.x.

Quinn, T. J. and J. S. Collie (2005). ‘Sustainability in single–species population

models’. In: Philosophical Transactions of the Royal Society B: Biological

Sciences 360.1453. Ed. by J. R. Beddington and G. P. Kirkwood, pp. 147–

162. doi: 10.1098/rstb.2004.1577.

Quinn, T. J. and R. B. Deriso (1999). Quantitative fish dynamics. Oxford

University Press, p. 560.

Ralston, S., A. E. Punt, O. S. Hamel, J. D. Devore and R. J. Conser (2011).

‘A meta-analytic approach to quantifying scientific uncertainty in stock

assessments’. In: Fishery Bulletin 109, pp. 217–231.

159

https://doi.org/10.1093/icesjms/fst057
https://doi.org/10.1111/faf.12104
https://doi.org/10.1016/j.fishres.2017.10.007
https://doi.org/10.1093/icesjms/fss185
https://doi.org/10.1093/icesjms/fst162
https://doi.org/10.1093/icesjms/fst162
https://doi.org/10.1111/j.1939-7445.2003.tb00119.x
https://doi.org/10.1098/rstb.2004.1577


Reid, P. C., R. E. Hari, G. Beaugrand, D. M. Livingstone, C. Marty, D. Straile,

J. Barichivich, E. Goberville, R. Adrian, Y. Aono, R. Brown, J. Foster,
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Figure  SM1.  Recruiment  time series for  stocks with  time series over 20 years.  Blue line

represents a loess model (span = 0.3). The blue area represents the 95% CI.



Figure SM2.  Empirical cumulative distribution function of recruitment relative to maximum

recruitment.  Colour  shows  stated  stock-recruit  type  and  dashed  lines  represent  the



cumulative probability of the recruitment proportional to the maximum. Pink area shows the

theoretical expected 80% interval for CDFs of time series of lognormal variance = 1. 

Figure SM3. Sequential changes in ICES category 1 stocks reference points (B lim, FMSY and 
MSY Btrigger) since WKMSYREF4. 
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Table SI1. Table with the list of events of change in reference points. The super-indexes 
represent: 1, stocks with no comparable reference points (i.e. use of a different definition of F); 2, 
stocks with substituted relative reference point for their absolute value; 3, duplicated stock. 
Asterisks for relative reference points or substituted values. The events 1 and 3 were removed 
from the analysis. 

ID event
FMSY  

(y-1)
FMSY 

(y)
MSYBtrigger  

(y-1)
MSYBtrigger  

(y) Stock Key Description Scientific name Abbreviated name

1 ank.27.8c9a 20121 0.43 1.00* NA NA Black-bellied anglerfish in divisions 8.c and 9.a (Cantabrian 
Sea, Atlantic Iberian waters)

Lophius budegassa Black-bellied 
anglerfish in CaS,AI

2 bli.27.5b67 2016 0.07 0.12 NA NA Blue ling in subareas 6-7 and Division 5.b (Celtic Seas, 
English Channel, and Faroes grounds)

Molva dypterygia Blue ling in 
CS,EC,FG 

3 bss.27.4bc7ad-h 2016 NA NA 8000 12673 Seabass in Divisions 4.b-c, 7.a, and 7.d-h (central and 
southern North Sea, Irish Sea, English Channel, Bristol 
Channel, and Celtic Sea)

Dicentrarchus labrax Seabass in 
NS,IS,EC,BC,CS 

4 bss.27.4bc7ad-h 2018 NA NA 12673 13465 Seabass in Divisions 4.b-c, 7.a, and 7.d-h (central and 
southern North Sea, Irish Sea, English Channel, Bristol 
Channel, and Celtic Sea)

Dicentrarchus labrax Seabass in 
NS,IS,EC,BC,CS

5 bss.27.4bc7ad-h 2019 0.20 0.17 13465 14439 Seabass in Divisions 4.b-c, 7.a, and 7.d-h (central and 
southern North Sea, Irish Sea, English Channel, Bristol 
Channel, and Celtic Sea)

Dicentrarchus labrax Seabass in 
NS,IS,EC,BC,CS 

6 cod.27.22-24 2012 0.24 0.25 NA NA Cod in subdivisions 22-24, western Baltic stock (western 
Baltic Sea)

Gadus morhua Cod in wBS

7 cod.27.22-24 2014 0.25 0.26 23000 36400 Cod in subdivisions 22-24, western Baltic stock (western 
Baltic Sea)

Gadus morhua Cod in wBS

8 cod.27.22-24 2015 NA NA 36400 38400 Cod in subdivisions 22-24, western Baltic stock (western 
Baltic Sea)

Gadus morhua Cod in wBS

9 cod.27.22-24 2019 NA NA 38400 21876 Cod in subdivisions 22-24, western Baltic stock (western 
Baltic Sea)

Gadus morhua Cod in wBS

10 cod.27.24-32 2013 0.30 0.46 NA NA Cod in subdivisions 24-32, eastern Baltic stock (eastern 
Baltic Sea)

Gadus morhua Cod in eBS 

11 cod.27.47d20 2015 0.19 0.33 150000 165000 Cod in Subarea 4, Division 7.d, and Subdivision 20 (North 
Sea, eastern English Channel, Skagerrak)

Gadus morhua Cod in NS,eEC,S 

12 cod.27.47d20 2017 0.33 0.31 165000 150000 Cod in Subarea 4, Division 7.d, and Subdivision 20 (North 
Sea, eastern English Channel, Skagerrak)

Gadus morhua Cod in NS,eEC,S 

13 cod.27.5b1 2017 0.32 0.23 40000 29226 Codin Subdivision 5.b.1 (Faroe Plateau) Gadus morhua Cod in FP

14 cod.27.6a 2016 0.19 0.17 22000 20000 Cod in Division 6.a (West of Scotland) Gadus morhua Cod in WS 

15 cod.27.6a 2019 0.17 0.29 NA NA Cod in Division 6.a (West of Scotland) Gadus morhua Cod in WS 

16 cod.27.7a 2016 0.40 0.37 NA NA Cod in Division 7.a (Irish Sea) Gadus morhua Cod in IS 

17 cod.27.7a 2017 0.37 0.31 10000 8616 Cod in Division 7.a (Irish Sea) Gadus morhua Cod in IS 

18 cod.27.7a 2018 0.31 0.44 NA NA Cod in Division 7.a (Irish Sea) Gadus morhua Cod in IS 

19 cod.27.7e-k 2015 0.40 0.32 NA NA Cod in divisions 7.e-k (eastern English Channel and 
southern Celtic Seas)

Gadus morhua Cod in eEC,CS 

20 cod.27.7e-k 2016 0.32 0.35 NA NA Cod in divisions 7.e-k (eastern English Channel and 
southern Celtic Seas)

Gadus morhua Cod in eEC,CS 

21 dgs.27.nea 2016 NA NA 963700 964563 Spurdog in Subareas 1-10, 12 and 14 (the Northeast Atlantic 
and adjacent waters)

Squalus acanthias Spurdog in NA 

22 dgs.27.nea 2018 NA NA 964563 683340 Spurdog in Subareas 1-10, 12 and 14 (the Northeast Atlantic 
and adjacent waters)

Squalus acanthias Spurdog in NA 

23 had.27.46a20 2017 0.30 0.19 NA NA Haddock in Subarea 4, Division 6.a, and Subdivision 20 
(North Sea, West of Scotland, Skagerrak)

Melanogrammus 
aeglefinus

Haddock in 
NS,WS,S 

24 had.27.6a 20173 0.30 0.19 NA NA Haddock in Division 6.a Melanogrammus 
aeglefinus

Haddock in NS

25 had.27.5b 2017 0.25 0.16 35000 22843 Haddock in Division 5.b (Faroes grounds) Melanogrammus 
aeglefinus

Haddock in FG 

26 had.27.6b 2014 0.30 0.20 NA NA Haddock in Division 6.b (Rockall) Melanogrammus 
aeglefinus

Haddock in R 

27 had.27.6b 2016 NA NA 9000 10200 Haddock in Division 6.b (Rockall) Melanogrammus 
aeglefinus

Haddock in R 

28 had.27.6b 2019 0.20 0.17 10200 3712 Haddock in Division 6.b (Rockall) Melanogrammus 
aeglefinus

Haddock in R 

29 had.27.7a 2017 NA NA 3093 2944 Haddock in Division 7.a (Irish Sea) Melanogrammus 
aeglefinus

Haddock in IS 

30 had.27.7a 2018 0.27 0.28 2944 4280 Haddock in Division 7.a (Irish Sea) Melanogrammus 
aeglefinus

Haddock in IS 

31 had.27.7b-k 2014 0.28 0.33 NA NA Haddock in Divisions 7.b-k (southern Celtic Seas and 
English Channel)

Melanogrammus 
aeglefinus

Haddock in CS,EC 

32 had.27.7b-k 2015 0.33 0.40 7500 10000 Haddock in Divisions 7.b-k (southern Celtic Seas and 
English Channel)

Melanogrammus 
aeglefinus

Haddock in CS,EC 

33 her.27.1-24a514a 2018 0.15 0.16 5000000 3184000 Herring in subareas 1, 2, 5 and divisions 4.a and 14.a, Clupea harengus Herring in NA,AO 
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Norwegian spring-spawning herring (the Northeast Atlantic 
and Arctic Ocean)

34 her.27.20-24 2015 0.28 0.32 NA NA Herring in subdivisions 20-24, spring spawners (Skagerrak, 
Kattegat, and western Baltic)

Clupea harengus Herring in S,K,wBS 

35 her.27.20-24 2018 0.32 0.31 110000 150000 Herring in subdivisions 20-24, spring spawners (Skagerrak, 
Kattegat, and western Baltic)

Clupea harengus Herring in S,K,wBS 

36 her.27.25-2932 2013 0.16 0.26 NA NA Herring in subdivisions 25-29 and 32, excluding the Gulf of 
Riga (central Baltic Sea)

Clupea harengus Herring in cBS 

37 her.27.25-2932 2015 0.26 0.22 NA NA Herring in subdivisions 25-29 and 32, excluding the Gulf of 
Riga (central Baltic Sea)

Clupea harengus Herring in cBS 

38 her.27.28 2015 0.35 0.32 NA NA Herring in Subdivision 28.1 (Gulf of Riga) Clupea harengus Herring in GR 

39 her.27.3031 2013 0.19 0.15 200000 316000 Herring in Subdivisions 30 and 31 (Gulf of Bothnia) Clupea harengus Herring in GB 

40 her.27.3031 2017 0.15 0.21 316000 283180 Herring in Subdivisions 30 and 31 (Gulf of Bothnia) Clupea harengus Herring in GB 

41 her.27.3a47d 2016 0.27 0.33 NA NA Herring in Subarea 4 and divisions 3.a and 7.d, autumn 
spawners (North Sea, Skagerrak and Kattegat, eastern 
English Channel)

Clupea harengus Herring in 
NS,S,K,eEC 

42 her.27.3a47d 2018 0.33 0.26 1500000 1400000 Herring in Subarea 4 and divisions 3.a and 7.d, autumn 
spawners (North Sea, Skagerrak and Kattegat, eastern 
English Channel)

Clupea harengus Herring in 
NS,S,K,eEC 

43 her.27.6a7bc 20172 0.25* 0.16 NA NA Herring in divisions 6.a and 7.b-c (West of Scotland, West of 
Ireland)

Clupea harengus Herring in WS,WI 

44 her.27.irls 2014 0.25 0.37 NA NA Herring in divisions 7.a South of 52°30’N, 7.g-h, and 7.j-k 
(Irish Sea, Celtic Sea, and southwest of Ireland)

Clupea harengus Herring in IS,CS 

45 her.27.irls 2015 0.37 0.26 61000 54000 Herring in divisions 7.a South of 52°30’N, 7.g-h, and 7.j-k 
(Irish Sea, Celtic Sea, and southwest of Ireland)

Clupea harengus Herring in IS,CS 

46 her.27.nirs 2017 NA NA 9500 11800 Herring in Division 7.a North of 52°30’N (Irish Sea) Clupea harengus Herring in IS 

47 hke.27.3a46-8abd 2014 0.24 0.27 NA NA Hake in subareas 4, 6, and 7, and divisions 3.a, 8.a-b, and 
8.d, Northern stock (Greater North Sea, Celtic Seas, and the 
northern Bay of Biscay)

Merluccius merluccius Hake in NS,CS,nBB 

48 hke.27.3a46-8abd 2016 0.27 0.28 46200 45000 Hake in subareas 4, 6, and 7, and divisions 3.a, 8.a-b, and 
8.d, Northern stock (Greater North Sea, Celtic Seas, and the 
northern Bay of Biscay)

Merluccius merluccius Hake in NS,CS,nBB 

49 hke.27.3a46-8abd 2019 0.28 0.27 45000 56000 Hake in subareas 4, 6, and 7, and divisions 3.a, 8.a-b, and 
8.d, Northern stock (Greater North Sea, Celtic Seas, and the 
northern Bay of Biscay)

Merluccius merluccius Hake in NS,CS,nBB 

50 hke.27.8c9a 2016 0.24 0.25 NA NA Hake in divisions 8.c and 9.a, Southern stock (Cantabrian 
Sea and Atlantic Iberian waters)

Merluccius merluccius Hake in CaS,AI

51 hom.27.2a4a5b6a7a-ce-
k8 2017

0.13 0.11 634577 911588 Horse mackerel in Subarea 8 and divisions 2.a, 4.a, 5.b, 6.a, 
7.a-c,e-k (the Northeast Atlantic)

Trachurus trachurus Horse mackerel in 
NA

52 hom.27.2a4a5b6a7a-ce-
k8 2019

0.11 0.07 911587 1168270 Horse mackerel in Subarea 8 and divisions 2.a, 4.a, 5.b, 6.a, 
7.a-c,e-k (the Northeast Atlantic)

Trachurus trachurus Horse mackerel in 
NA

53 ldb.27.8c9a 2014 0.18 0.17 NA NA Four-spot megrim in divisions 8.c and 9.a (southern Bay of 
Biscay and Atlantic Iberian waters East)

Lepidorhombus boscii Megrim in sBB,AI 

54 ldb.27.8c9a 2016 0.17 0.19 NA NA Four-spot megrim in divisions 8.c and 9.a (southern Bay of 
Biscay and Atlantic Iberian waters East)

Lepidorhombus boscii Megrim in sBB,AI 

55 mac.27.nea 2015 0.25 0.22 NA NA Mackerel in subareas 1-8 and 14 and division 9.a (the 
Northeast Atlantic and adjacent waters)

Scomber scombrus Mackerel in NA 

56 mac.27.nea 2017 0.22 0.21 3000000 2570000 Mackerel in subareas 1-8 and 14 and division 9.a (the 
Northeast Atlantic and adjacent waters)

Scomber scombrus Mackerel in NA 

57 mac.27.nea 2018 0.21 0.23 2570000 2500000 Mackerel in subareas 1-8 and 14 and division 9.a (the 
Northeast Atlantic and adjacent waters)

Scomber scombrus Mackerel in NA 

58 meg.27.8c9a 2016 0.17 0.19 910 980 Megrim in divisions 8.c and 9.a (Cantabrian Sea and Atlantic 
Iberian waters)

Lepidorhombus 
whiffiagonis

Megrim in CaS,AI 

59 mon.27.8c9a 2016 0.19 0.31 NA NA White anglerfish in divisions 8.c and 9.a (Cantabrian Sea and 
Atlantic Iberian waters)

Lophius piscatorius White anglerfish in 
CaS,AI 

60 mon.27.8c9a 2018 0.31 0.24 5400 6283 White anglerfish in divisions 8.c and 9.a (Cantabrian Sea and 
Atlantic Iberian waters)

Lophius piscatorius White anglerfish in 
CaS,AI 

61 pil.27.8c9a 2019 0.12 0.03 446331 252523 Sardine in divisions 8.c and 9.a (Cantabrian Sea and Atlantic 
Iberian waters)

Sardina pilchardus Sardine in CaS,AI 

62 ple.27.420 2015 0.25 0.19 NA NA Plaice in Subarea 4 (North Sea) and Subdivision 20 
(Skagerrak)

Pleuronectes platessa Plaice in NS,S 

63 ple.27.420 2017 0.19 0.21 230000 564599 Plaice in Subarea 4 (North Sea) and Subdivision 20 
(Skagerrak)

Pleuronectes platessa Plaice in NS,S 

64 ple.27.7a 2019 0.17 0.20 10392 8757 Plaice in Division 7.a (Irish Sea) Pleuronectes platessa Plaice in IS 

65 ple.27.7d 20152 0.15* 0.25 NA NA Plaice in Division 7.d (eastern English Channel) Pleuronectes platessa Plaice in eEC 

66 ple.27.7e 20151,2 0.24 0.56* 1650 2400* Plaice in Division 7.e (western English Channel) Pleuronectes platessa Plaice in wEC 

67 pok.27.3a46 2015 0.30 0.32 NA NA Saithe in Subareas 4, 6 and Division 3.a (North Sea, Rockall 
and West of Scotland, Skagerrak and Kattegat)

Pollachius virens Saithe in 
NS,R,WS,S,K 

68 pok.27.3a46 2016 0.32 0.36 200000 150000 Saithe in Subareas 4, 6 and Division 3.a (North Sea, Rockall 
and West of Scotland, Skagerrak and Kattegat)

Pollachius virens Saithe in 
NS,R,WS,S,K 

69 pok.27.3a46 2019 0.36 0.36 NA NA Saithe in Subareas 4, 6 and Division 3.a (North Sea, Rockall 
and West of Scotland, Skagerrak and Kattegat)

Pollachius virens Saithe in 
NS,R,WS,S,K 

70 pok.27.5b 2014 0.28 0.30 NA NA Saithe in Division 5.b (Faroes grounds) Pollachius virens Saithe in FG 
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71 pok.27.5b 2017 NA NA 55000 41400 Saithe in Division 5.b (Faroes grounds) Pollachius virens Saithe in FG 

72 pra.27.3a4a 20151 1.00 0.62 NA NA Northern shrimp in divisions 3.a and 4.a East (Skagerrak and 
Kattegat and northern North Sea in the Norwegian Deep)

Pandalus borealis Northern shrimp in 
S,K,NS 

73 pra.27.3a4a 2019 0.62 0.60 NA NA Northern shrimp in divisions 3.a and 4.a East (Skagerrak and 
Kattegat and northern North Sea in the Norwegian Deep)

Pandalus borealis Northern shrimp in 
S,K,NS 

74 sol.27.20-24 2013 0.38 0.30 NA NA Sole in subdivisions 20-24 (Skagerrak and Kattegat, western 
Baltic Sea)

Solea solea Sole in S,K,wBS

75 sol.27.20-24 2014 0.30 0.32 NA NA Sole in subdivisions 20-24 (Skagerrak and Kattegat, western 
Baltic Sea)

Solea solea Sole in S,K,wBS 

76 sol.27.20-24 2015 0.32 0.23 2000 2600 Sole in subdivisions 20-24 (Skagerrak and Kattegat, western 
Baltic Sea)

Solea solea Sole in S,K,wBS 

77 sol.27.4 2015 0.22 0.20 35000 37000 Sole in Subarea 4 (North Sea) Solea solea Sole in NS 

78 sol.27.7a 2016 0.16 0.20 3100 3500 Sole in Division 7.a (Irish Sea) Solea solea Sole in IS 

79 sol.27.7d 2015 0.29 0.30 NA NA Sole in Division 7.d (eastern English Channel) Solea solea Sole in eEC 

80 sol.27.7d 2017 0.30 0.26 8000 19251 Sole in Division 7.d (eastern English Channel) Solea solea Sole in eEC 

81 sol.27.7d 20192 0.26 0.19* 19251 1572* Sole in Division 7.d (eastern English Channel) Solea solea Sole in eEC 

82 sol.27.7e 2016 0.27 0.29 2800 2900 Sole in Division 7.e (western English Channel) Solea solea Sole in wEC 

83 sol.27.7fg 2016 0.31 0.27 2200 2400 Sole in divisions 7.f and 7.g (Bristol Channel, Celtic Sea) Solea solea Sole in BC,CS 

84 sol.27.7fg 2019 0.27 0.30 2400 2228 Sole in divisions 7.f and 7.g (Bristol Channel, Celtic Sea) Solea solea Sole in BC,CS 

85 sol.27.8ab 2016 0.26 0.33 13000 10600 Sole in divisions 8.a-b (northern and central Bay of Biscay) Solea solea Sole in BB 

86 spr.27.22-32 2013 0.35 0.29 NA NA Sprat in Subdivisions 22-32 (Baltic Sea) Sprattus sprattus Sprat in BS 

87 spr.27.22-32 2015 0.29 0.26 NA NA Sprat in Subdivisions 22-32 (Baltic Sea) Sprattus sprattus Sprat in BS 

88 spr.27.4 2015 1.20 0.70 NA NA Sprat in Subarea 4 (North Sea) Sprattus sprattus Sprat in NS 

89 whb.27.1-91214 2014 0.22 0.30 NA NA Blue whiting in subareas 1-9, 12, and 14 (Northeast Atlantic 
and adjacent waters)

Micromesistius 
poutassou

Blue whiting in NA 

90 whb.27.1-91214 2016 0.30 0.32 NA NA Blue whiting in subareas 1-9, 12, and 14 (Northeast Atlantic 
and adjacent waters)

Micromesistius 
poutassou

Blue whiting in NA 

91 whg.27.47d 2018 0.15 0.17 241837 166708 Whiting in Subarea 4 and Division 7.d (North Sea and 
eastern English Channel)

Merlangius merlangus Whiting in NS,eEC 

92 whg.27.7b-ce-k 2014 0.36 0.32 21000 40000 Whiting in divisions 7.b-c and 7.e-k (southern Celtic Seas 
and eastern English Channel)

Merlangius merlangus Whiting in CS,eEC 

93 whg.27.7b-ce-k 2016 0.32 0.52 40000 35000 Whiting in divisions 7.b-c and 7.e-k (southern Celtic Seas 
and eastern English Channel)

Merlangius merlangus Whiting in CS,eEC

4



Table SI2. Description of covariates.

Covariate Definition

Common (1) Revision_Assessment_Stock_definition Revision of the stock definition. Occurrence of a modification of stock definition, e.g.  
stocks merged, separated, added divisions.

(2) Revision_Assessment_input_data_
FisheriesDependent

Revision of assessment data fisheries dependent. Occurrence, e.g. inclusion, exclusion 
or revision of discard and commercial index, revision of weights at age. 

(3) Revision_Assessment_input_data_
FisheriesIndependent

Revision  of  assessment  data  fisheries  independent.  Occurrence,  e.g.  inclusion, 
exclusion or revision of survey index. 

(4) Revision_Assessment_maturity Revision  of  assessment  maturity.  Occurrence  of  revision  of  maturity,  e.g.  updates,  
revised assumptions, modify estimation method. 

(5) Revision_Assessment_M Revision of assessment natural mortality (M). Occurrence of revision of natural mortality 
parameter, e.g. multispecies model update of M, modification of assumptions or method 
to estimate M. 

(6) Revision_Assessment_methodology Revision of assessment methodology. Occurrence of heterogeneous group of revisions 
comprising,  e.g.  modify  settings  and  assumptions  of  the  model,  estimation 
improvements and corrections of the models, methodological updates and revision of 
age range for F. 

(7) Revision_Assessment_type Revision of assessment type model. Categories of revision of the selected assessment  
model by levels of previous post modification of assessment model. Assessment types:

XSA -Extended Survivor Analysis
SAM -State-space assessment model
ADAPT -Age Structured Assessment Procedure
AartsPoos - Aarts and Poos Model
SS3 -Stock Synthesis 3

FMSY (8) Revision_RP_FMSY_definition Revision of FMSY  definition of technical basis, categories specifying levels by previous 
post type of modifications.  FMSY definitions:
 FMSY

 Proxies from per recruit analysis: Fmax, F0.1, FSPR50%, FSPR40%, FSPR30%, FSPR35%

 FMSY provisional derived from simulation frameworks
 FMSY analogy from other stocks
 FP.05 upper F limit that is considered precautionary for MSY rules
 FPA Precautionary approach fishing mortality

(9) Revision_RP_SR_functional_form Revision of stock recruitment functional form or combination of forms selected to model 
the stock recruitment relationship. Occurrence of revision of the functional from used to 
estimate stock-recruitment relationship 

(10) Revision_RP_input_timeseriesRecruitment Revision of input recruitment time series to estimate the reference point. Occurrence of 
revision of the time-series of recruitment input for the estimation of FMSY, e.g. shorter 
recruitment time series, longer recruitment window. ICES guidelines recommends full 
time series unless strong evidence exists that a consistent change has occurred.

(11) Revision_RP_input_parameterstimeseries Revision  of  input  parameters  time  series  related  to  the  productivity  of  the  stock.  
Occurrence of  revisions of  time window of  biological  parameters  (weights,  maturity,  
natural  mortality)  or  fishery  parameters  (selectivity)  imputed  to  estimate FMSY,  ICES 
guidelines  recommend  by  default  be  derived  from the  last  10  years  but  it  can  be 
shortened (5 years) when persistent trends are present or longed, when there is no 
evidence of temporal trends. 

MSBtrigger (12) Revision_RP_MSYBtrigger_tb Revision of MSYBtrigger  technical basis. Categories with levels of specific re-evaluations 
of MSYBtrigger technical basis. For instance, some technical basis of MSYBtrigger can be:
    • Bpa

    • MSYBtrigger as the 5th percentile on the distribution of SSB when fishing at FMSY

    • Other stock specific

(13) Revision_RP_Blim_tb Revision of Blim  technical basis.  Categories with levels of specific re-evaluations of B lim 

technical  basis.  The  selection  of  Blim  depends  on  the  type  of  stock  recruitment 
relationship. For instance, some technical basis of Blim can be:
    • Bloss

    • Break point of the segmented regression
    • Other stock specific 

(14) Revision_RP_Bpa_tb Occurrence  revision  of  Bpa  technical  basis  e.g.  revision  of  technical  basis  or  how 
uncertainty is taken into account. 

5



Fig. SI1  Relationship between simultaneous changes in  FMSY and  MSYBtrigger, measured in 
percentage change relative to the preceding assessment.  The plot numbers correspond to 
the event id in Table SI1.
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Fig. SI2. Relative fishing mortality rate (F/FMSY) time series when a change in FMSY was 
implemented. Colour shows the assessment year (y). The horizontal dotted line represents status 
= 1. 
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Fig. SI3. Relative biomass (SSB/MSYBtrigger) time series when a change in MSYBtrigger was 
implemented. Colour shows the assessment year (y). The horizontal dotted line represents status 
= 1. 
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Fig. SI4. Timelines of relative fishing mortality rate (F/FMSY) proportional changes of assessment 
year (y) relative to the previous (y-1), for assessments in which changes in FMSY were 
implemented.
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Fig. SI5. Timelines of relative fishing mortality rate (SSB/MSYBtrigger) proportional changes of 
assessment year (y) relative to the previous (y-1), for assessments in which changes in 
MSYBtrigger  were implemented.
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Fig. SI6. Marginal relationship between average change in status and δ, proportional change 
in reference point, at the top panel; and γ, proportional change in rate (left) or state (right), at 
the bottom panel considering the recent 5 years of overlap. Grey line shows the expected 
change with a change in δ or γ.
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Fig. SI7. Distribution of changes in FMSY segregated by covariate. Warm colours are increase and 
cool colours are decrease of FMSY advised value. Covariates are ordered vertically based on 
frequency of observed changes, more frequent in lower panels. 
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Fig. SI8. Distribution of changes in MSYBtrigger segregated by covariate. Warm colours are 
percentage increase and cool colours are percentage of decrease of MSYBtrigger advised value. 
Covariates are ordered vertically based on frequency of observed changes, more frequent in 
lower panels. 
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Fig. SI9. Probability of observing revision “A” when observing revision “B” for changes in FMSY. 
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Fig. SI10. Probability of observing revision “A” when observing revision “B” for changes in 
MSYBtrigger.
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Figure SM1. Results of maximum-productivity parameter (at) and the 95%confidence 
intervals for the Celtic Seas ecoregion stocks; blue represent time-varying maximum-
productivity model, yellow represents time-varying density-dependent mortality model, and 
red represents both parameters covarying model. Dashed black line represents time-invariant
model. 



Figure SM2. Results of density-dependent mortality parameter (bt) and the 95% confidence 
intervals for the Celtic Seas ecoregion stocks; blue represent time-varying maximum-
productivity model, yellow represents time-varying density-dependent mortality model, and 
red represents both parameters covarying model. Dashed black line represents time-invariant
model. 



Table SM1. Time-varying maximum-productivity model summary. 
Stock key Year range Signal-to-

noise ratio
(σ2

ω/σ2
v)

Process error
(σ2

ω)
Observation 
error
(σ2

v)

Maximum-
productivity
at 

Density-
dependent 
mortality 
b

aru.27.5b6a 1995-2017 262.56E+03 1.61E-03 6.12E-09 1.18E+00 -11.71E-06

bss.27.4bc7ad-h 1985-2021 211.11E-03 127.49E-03 603.88E-03 2.51E+00 -154.35E-06

cod.27.6a 1981-2020 45.70E-03 16.93E-03 370.42E-03 95.09E-03 -32.02E-06

cod.27.7a 1968-2018 142.99E-03 52.23E-03 365.27E-03 2.45E+00 -148.80E-06

cod.27.7e-k 1980-2020 126.40E-03 55.85E-03 441.85E-03 1.14E+00 -150.15E-06

dgs.27.nea 1905-2020 12.86E+00 642.55E-06 49.96E-06 982.94E-03 -2.18E-06

had.27.46a20 1972-2022 355.26E-03 171.24E-03 482.01E-03 4.88E+00 -8.45E-06

had.27.6b 1991-2020 13.28E+00 1.18E+00 88.57E-03 2.07E+00 -99.91E-06

had.27.7a 1993-2021 20.69E-09 21.72E-09 1.05E+00 5.01E+00 -127.24E-06

had.27.7b-k 1993-2021 3.09E-03 1.98E-03 640.67E-03 3.62E+00 -39.65E-06

her.27.6a7bc 1957-2017 701.98E-03 37.24E-03 53.04E-03 2.26E+00 -1.32E-06

her.27.irls 1958-2021 159.75E-03 43.28E-03 270.93E-03 2.47E+00 -7.89E-06

her.27.nirs 1980-2021 127.48E-03 18.23E-03 142.98E-03 3.18E+00 -38.16E-06

hke.27.3a46-8abd 1978-2022 41.38E-03 5.96E-03 144.12E-03 2.96E+00 -6.91E-06

hom.27.2a4a5b6a7
a-ce-k8

1982-2021 1.53E-06 940.87E-09 613.55E-03 959.20E-03 -262.82E-09

mac.27.nea 1980-2021 365.35E+39 9.62E-03 26.32E-45 1.04E+00 -222.36E-09

meg.27.7b-k8abd 1984-2021 93.13E+03 24.58E-03 263.91E-09 2.61E+00 -21.91E-06

mon.27.78abd 1986-2021 1.75E+00 90.76E-03 51.88E-03 1.08E+00 -30.33E-06

ple.27.7a 1981-2020 489.44E-03 12.38E-03 25.29E-03 2.12E+00 -147.67E-06

pok.27.3a46 1967-2019 1.13E+00 66.94E-03 59.29E-03 239.47E-03 -3.30E-06

reg.27.561214 1971-2017 705.61E-03 162.87E-03 230.82E-03 421.65E-03 -6.43E-06

sol.27.7a 1970-2019 418.19E-03 84.47E-03 201.98E-03 1.83E+00 -448.45E-06

sol.27.7e 1969-2019 5.08E-03 406.03E-06 79.92E-03 349.54E-03 -35.34E-06

sol.27.7fg 1971-2020 377.74E-03 20.16E-03 53.36E-03 1.82E+00 -374.53E-06

whb.27.1-91214 1981-2020 638.27E+03 308.01E-03 482.57E-09 3.36E+00 -501.06E-09

whg.27.6a 1981-2021 111.90E-03 17.48E-03 156.25E-03 3.34E+00 -17.27E-06

whg.27.7a 1980-2021 205.87E-03 22.17E-03 107.69E-03 4.77E+00 -65.34E-06

whg.27.7b-ce-k 1999-2021 2.84E+00 81.22E-03 28.59E-03 4.22E+00 -28.53E-06



Table SM2. Summary of dynamic factor analysis models. 
Trend
s

Log-
Likelihood

AIC AICc BIC

1  -1122.12 2356.239 2362.048 2639.191

2  -915.3479 2356.239 2009.703 2416.072

3  -625.0607 1996.696 1491.047 2018.868

4 -450.8007 1468.121 1205.037 1846.666

5 -265.8199 1169.601 898.0349 1645.97

6 -106.1323 847.6397 641.9074 1488.807

7 -3.591069 574.2647 500.1821 1438.885

8 79.87587 288.2483 396.5189 1420.058

9 163.0088 161.9825 293.2229 1394.846

10  211.5845 102.8309 258.5081 1431.697

11 276.0768  9.846385 191.1782 1429.661



Figure SM3. Four trend DFA model fit and stock data. 
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The International Council for the Exploration of the Sea (ICES) has provided scientific stock advice based on reference points to manage fisheries
in the North Atlantic Ocean and adjacent seas for decades. ICES advice integrates the precautionary approach with the objective of achieving
maximum sustainable yield. Here, we examine ICES reference point evolution over the last 25 yr and provide a comprehensive empirical review of
current ICES reference points for data-rich stocks (Category 1; 79 stocks). The consistency of reference point estimation with the ICES guidelines
is evaluated. We demonstrate: (1) how the framework has evolved over time in an intergovernmental setting, (2) that multiple precautionary
components and sources of stochasticity are included, (3) that the relationship and historical context of stock size and recruitment are crucial for
non-proxy reference points, (4) that reference points are reviewed frequently, taking into account fluctuations and multiple sources of variability, (5)
that there are occasional inconsistencies with the guidelines, and (6) that more comprehensive and clearer documentation is needed. Simplifying
the stock-recruit typology and developing quantitative criteria would assist with this critically important classification. We recommend a well-
documented, transparent, and reproducible framework, and periodic syntheses comparing applications across all stocks.
Keywords: ICES region, limit and target reference points, maximum sustainable yield, precautionary approach, stock population dynamics, synthesis.

Introduction

Reference points are key to providing fisheries advice and en-
abling effective management of fish stocks (Sissenwine and
Shepherd, 1987; Hilborn et al., 2020). A crucial considera-
tion in reviewing reference points is how they are currently
used and interpreted in advice products. Target and limit ref-
erence points can be used to evaluate stock and fishery sta-
tus and can also be used in, or for the evaluation of, Harvest
Control Rules (HCRs) that apply harvest strategies to set al-
lowable catch (Punt, 2010). Internationally, most advice re-
cipients use similar terminology around the need to establish
limit reference points, such that “Limit reference points set
boundaries to constrain harvesting within safe biological lim-
its so stocks can produce maximum sustainable yield” and
target reference points, where “Fishery management strate-
gies shall ensure that target reference points are not exceeded
on average” (UN, 1995). The UN Fish Stocks Agreement in
1995 set out the principles for the conservation and man-
agement of fish stocks. Under this agreement, management
should be designed to maintain or restore stocks to levels ca-
pable of producing Maximum Sustainable Yield (MSY) and
must be based on the Precautionary Approach (PA) and the
best available scientific information. Many fishing jurisdic-
tions agree to provide advice that integrates the PA with MSY
and embraces the ecosystem approach, e.g. the Common Fish-
eries Policy (EC, 2013), the UK Fisheries Act (Anon, 2020),
and the Magnuson-Stevens Fishery Conservation and Man-
agement Act (MSA, 2007) in the United States. These are typ-
ical foundations for the basis of reference point estimation.
Whilst there are common paradigms and similar terminology,
there are many different approaches to setting and estimating
reference points (Ricard et al., 2012), depending on the re-
gion, jurisdiction, and the HCR used to trigger management
decisions.

Reference points are commonly expressed in terms of a
stock’s biomass or spawning stock biomass (SSB) state and
fishing mortality rate (F). Reference points that would produce
MSY can be derived from per-recruit analyses coupled with
the stock–recruit (SR) relationship in a stochastic projection
using, in addition, biological parameters and fishery patterns
from the stock assessment (Hilborn and Walters, 1992). Re-
cruitment productivity is often based on the stock–recruitment
(SR) relationship. Common functional forms to model the
SR relationship are the Ricker (Ricker, 1954), the Beverton–
Holt (Beverton and Holt, 1957), and segmented regression or
hockey-stick (Mesnil and Rochet, 2010). Despite its impor-
tance, estimating SR parameters is challenging because the re-
lationship is not well understood for many stocks due to a lack
of data or the relationship itself being weak because of recruit-
ment variation (Shepherd and Cushing, 1990; Myers, 2001;
Thorson et al., 2014). Other factors that limit our knowl-
edge of SR relationships are process and observation errors;
uncertainty in variables (recruitment or SSB estimates); and
non-stationarity (Hilborn and Walters, 1992; Dickey-Collas
et al., 2014; Minto et al., 2014; Perälä et al., 2017). Proxy ref-
erence points based on percentages from per-recruit analysis
can be used when MSY-based estimates cannot be obtained
(Geromont and Butterworth, 2015). However, these exclude
the SR relationship and other stock information that can make
them unreliable. In the northeast Atlantic, yield-per-recruit
(YPR) proxies were commonly used proxies for FMSY (ICES,
2007) because they rely on few data but are still useful to pro-
vide management recommendations for some stocks. Some US
regions set percentages of spawner-per-recruit (SPR) or un-
fished biomass (B0) as MSY reference point proxies (Wetzel
and Punt, 2017). Preferred proxies and percentages used vary
between regions. These are usually based on meta-analysis of
data-rich stocks. Setting the appropriate proxy and level for a
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reference point depends on life history features, and all avail-
able information on the SR relationship should be used (Mace,
1994; Cadrin, 2012).

Biomass limit reference points have a key role in identify-
ing safe biological limits. These reference points could be in-
terpreted as the level of stock biomass at which recruitment is
impaired, or where there is recruitment overfishing. Recruit-
ment overfishing occurs when a population has been fished
down to a point where spawning biomass is so low that re-
cruitment decreases substantially (Cushing, 1975; Sissenwine
and Shepherd, 1987). Estimation of biomass limit reference
points varies a lot regionally, and the estimation method im-
pacts the level and the associated uncertainty of the reference
point (Deurs et al., 2021). Some regions define biomass refer-
ence points as a chosen percentage below BMSY, e.g. 0.5 BMSY

or higher in the United States (Punt et al., 2014). However, re-
cent stock size trends and fluctuations might not be informa-
tive regarding BMSY, in addition to the SR relationship possi-
bly not being well understood. Also, a percentage of unfished
biomass, B0, can be used as the basis for a biomass limit ref-
erence point in parts of the United States (Wetzel and Punt,
2017). Fishing mortality limit reference points, such as Flim,
also have an important role in safeguarding safe biological
limits. Fishing mortality should always be below that which
will drive the spawning stock to the Blim threshold.

Fish stocks display marked variability in life history, recruit-
ment, and historical exploitation (Caddy and Mahone, 1995).
To estimate reliable reference points, these important features
need to be taken into account, i.e. natural patterns of fluctua-
tion in the dynamics of biomass, recruitment, and changes in
fishing pressure and selectivity over time. In particular, recruit-
ment temporal dynamics are complex and are challenging to
deal with in the estimation of reference points (Sharma et al.,
2019). For instance, sporadic large recruitment can influence
the estimates of SR parameters. Additionally, there must be
sufficient contrast in the SSB data to accurately understand
the underlying SR relationship and estimate reference points
(Anon, 1999). If the contrast is small, estimates could be de-
termined mainly by process or measurement error and thus
could be unreliable. In these cases, the choice of reference
point should be more precautionary (Anon, 1999). Addition-
ally, uncertainty related to the modelling tools, management,
and advice implementation has to be dealt with when setting
reference points (Kell et al., 2005).

The International Council for the Exploration of the Sea
(ICES) has been providing scientific stock advice to govern-
ment and international regulatory bodies that manage fish-
eries in the North Atlantic Ocean and adjacent seas for
decades. ICES advice is diverse and based on requests from
a range of requestors, including governments, governmental
agencies, RFMOs, commissions, etc. The current approach in-
tegrates the PA with the objective of achieving MSY in accor-
dance with the international guidelines to manage fish stocks
(ICES, 2021a). The ICES interpretation of MSY is maximiz-
ing the average long-term yield from a given fish stock while
maintaining the stock in productive condition. When provid-
ing fisheries advice for stocks with full analytical assessments,
ICES refers to two types of reference points: PA reference
points and MSY reference points.

Within ICES, several relevant discussions on reviewing
reference points have occurred in recent workshops (ICES,
2020a, 2021b), which has led to the Workshop on ICES
reference points (WKREF1 and WKREF2). The purpose of

WKREF1 and WKREF2 was to review and re-evaluate ICES
reference points and produce clear evidence-based recommen-
dations to the Advisory Committee (ACOM), and produce a
road map to implementation to develop user-friendly guide-
lines and tools for the future. Both target and limit reference
points were considered in terms of how they can be used in
the evaluation of stock status, the ICES MSY advice frame-
work, and more generally in management strategy evaluations
(MSEs) to define if HCRs are both precautionary and in ac-
cordance with the MSY approach.

In this article, we reviewed reference points used in ICES
fisheries advice up to 2021. We start by examining the evolu-
tion of the ICES reference point framework over the past 25
yr, followed by a summary of the current approach. Then, we
investigate (i) most recent updates in ICES reference points; (ii)
the key role of ICES biomass limit reference point (Blim) and
its relationship with SR typologies in the guidelines; (iii) the
estimation of MSY reference points and how uncertainty and
variability are included; and (iv) interdependencies among ref-
erence points, particularly the impact of Blim changes on other
reference points. Finally, based on this comprehensive empiri-
cal review, we summarize six concluding points and give rec-
ommendations for the future.

Evolution of ICES-advised reference points

The ICES reference point framework has been strongly in-
fluenced by policy needs and drivers but also by the avail-
ability of tools to estimate reference points in a consistent
way (Figure 1). The ICES Study Group on the Precaution-
ary Approach (SGPA) in 1998 defined Blim as the biomass
“below which recruitment becomes impaired or the dynam-
ics of the stock are unknown” (ICES, 1998). The word “im-
paired” is synonymous with the concept that, on average, re-
cruitment becomes systematically reduced as biomass declines
below a certain point. During the early 2000s, the various
SGPA meetings developed understanding of precautionary ref-
erence points considerably (ICES, 2001, 2002, 2003a). This
culminated in the Study Group on Precautionary Reference
Points for Advice on Fisheries Management (SGPRP) in 2003,
which was the first systematic attempt to estimate PA refer-
ence points for most data-rich ICES stocks (i.e. Category 1,
stocks for which a full analytical assessment could be con-
ducted; ICES, 2003b). ICES advised on the state of the stock
relative to a limit reference point (Blim) that should be avoided
to ensure that stocks remain within safe biological limits, i.e.
a high probability that SSB is above Blim and that fishing mor-
tality is below a value Flim that will drive the SSB to Blim. At
that stage, ICES had already started to define SR types based
on SR plot categorization, and use segmented regression to
estimate breakpoints in the SR relationship. The definition of
Blim was “the SSB below which is a substantial increase in the
probability of obtaining reduced (or ‘impaired’) recruitment
i.e. the estimate of Blim should be risk-averse so that when
the stock is at Blim the probability that recruitment is substan-
tially impaired is still small, but below Blim that probability
increases”.

In 2002, the Johannesburg Declaration of the World Sum-
mit on Sustainable Development (WSSD; UN, 2002) called
for an ecosystem approach and rebuilding fisheries to max-
imum sustainable yield (MSY). In 2007, the ICES Work-
shop on Limit and Target Reference Points (WKREF) was
established with terms of reference that included review of
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Figure 1. The working group timeline that produced key developments in the evolution of ICES Precautionary Approach and Maximum Sustainable Yield
reference points. Acronyms used are: SGPA (Study Group on the Precautionary Approach), SGPRP (Study Group on Precautionary Reference points for
Advice on Fisheries Management), WKREF (Workshop on Limit and Target Reference Points), WKFRAME (Workshop on Implementing the ICES FMSY

framework), WKGMSE (Workshop on guidelines for management strategy evaluations), WKMSYREF2 (Workshop to consider reference point for all
stocks), WKMSYREF3 (Workshop to consider the basis for FMSY ranges for all stocks), WKMSYREF4 (Workshop to consider FMSY ranges for stocks in
ICES categories 1 and 2 in Western Waters), WKNSMSE (Workshop on North Sea stocks Management Strategy Evaluation), WKREBUILD (Workshop
on Guidelines and Methods for the Evaluation of Rebuilding Plans), WKRPCHANGE (Workshop of Fisheries Management Reference Points in a
Changing Environment), WKREF (Workshop on guidelines for reference points), CFP (Common Fisheries Policy), and EU MAPS (European Union
regional Multiannual Plans).

reference points with respect to regime shifts and the science
and implementation of MSY-based approaches (ICES, 2007).
Various problems with limits and targets were identified, and
there was no consensus on a way forward. It was thought
“that distance between Bpa and Blim could take into account
the uncertainty due to different regimes”. From the review of
the scientific and management literature, WKREF concluded
that MSY is a difficult concept for management purposes be-
cause it is difficult to assess, unstable over time, and only ap-
plicable in a single species context. Single-species MSY and
BMSY will not work for predators and prey at the same time
(May et al., 1979; Walters et al., 2005).

The Workshop on Implementing the ICES FMSY framework
(WKFRAME) in 2010 and 2011 was tasked with drafting
technical guidelines to assist ICES expert groups in the im-
plementation of the ICES MSY framework for advice (ICES,
2011). A trigger biomass point, MSY Btrigger, was defined as
a low biomass that is encountered with a low probability if
a stock is exploited at FMSY. This differs from BMSY, which
is the expected average biomass if the stock is exploited at
FMSY. These workshops discussed the role of MSY Btrigger and
indicated “it should be selected as a biomass that is encoun-
tered with low probability if FMSY is implemented” and that
“under MSY exploitation it should be a property of the ex-
pected distribution of SSB”. However, ensuring compatibility
with the PA was also raised as an issue, including the need to
avoid Blim in the long term, taking model error into account.
At this stage, generic tools that were easily and widely applica-
ble started to develop. The methodology PlotMSY was devel-
oped in AD-Model Builder to perform deterministic equilib-
rium yield analysis coupled with stochastic simulation proce-
dures (ICES, 2010), using the assessment summary and sen-
sitivity data. In PlotMSY, SR model uncertainty was taken

into account by model averaging of three functions (Ricker,
Berverton–Holt, and smooth hockey-stick). The tool was used
by the ICES community to provide robust estimation of MSY
estimates (ICES, 2014), which was a major step forward to
stochastically estimating reference points.

Various ICES advice recipients developed strong policies to
implement an ecosystem and MSY approach in their fisheries
management systems. Within the EU, legal obligations to im-
plement MSY management and establish multiannual plans
reflecting the specificities of different fisheries based on the
best available science were set out in the reformed CFP (EC,
2013). There were significant technical developments around
Management Strategy Evaluations (MSEs; ICES, 2013a; Punt
et al., 2016), and work on developing a new ICES tool to
estimate MSY reference points began (the stochastic equilib-
rium software EqSim). EqSim provides MSY reference points
based on the equilibrium distribution of stochastic projec-
tions. In EqSim, parameters related to productivity (i.e. natu-
ral mortality, maturity, growth) are randomly re-sampled from
a specified period of the assessment and recruitments are re-
sampled from their predictive distribution (ICES, 2014). This
methodology can take into account the uncertainty in the
SR model by applying model averaging of different SR func-
tional forms, as well as incorporate advice error. After lim-
ited progress at the Workshop to consider reference points for
all stocks (WKMSYREF), there was significant development
as EqSim was more widely tested at WKMSYREF2 (ICES,
2014). A joint ICES/MYFISH (https://www.myfishproject.eu/)
“Workshop to consider the basis for FMSY ranges for all
stocks” (WKMSYREF3; ICES, 2015a, b), systematically esti-
mated MSY reference points and FMSY ranges for the North
Sea and Baltic stocks to address a special request from the EU
for MSY ranges for their regional multiannual plans (MAPS;
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EC, 2013). A year later, the “Workshop to consider FMSY

ranges for stocks in ICES categories 1 and 2 in Western Wa-
ters” (WKMSYREF4) developed the approach further and
estimated MSY ranges for demersal stocks in western wa-
ters (ICES, 2017a). The ICES technical guidelines to estimate
“ICES fisheries management reference points for category 1
and 2 stocks” were published in 2017 (ICES, 2017b).

Since 2017, several ICES expert groups have identified
challenges and suggested developments in reference point
estimation (Figure 1)—including the ICES Workshop on
North Sea stocks Management Strategy Evaluation in 2018
(WKNSMSE), the ICES Workshop on Guidelines and Meth-
ods for the Evaluation of Rebuilding Plans in 2019 (WKRE-
BUILD), the third ICES Workshop on Guidelines for Man-
agement Strategy Evaluations in 2019 (WKGMSE3), the ICES
Workshop on Management Strategy Evaluations of Mackerel
in 2020 (WKMSEMAC), and the ICES Workshop of Fish-
eries Management Reference Points in a Changing Environ-
ment in 2020 (WKRPCHANGE). Current guidelines (ICES,
2021c) were criticized in various working groups as they were
thought to be complex, convoluted, and not always well un-
derstood or followed by assessment practitioners. There is lit-
tle documentation on EqSim to help those at benchmarks with
implementation and interpretation. Other issues highlighted
were that determination of Blim requires a subjective classifi-
cation of the SR pairs into types (ICES, 2020a); discrepancies
were found between reference points from the standard ICES
approach and MSEs (ICES, 2019); major sources of uncer-
tainty in reference points were related to changes over time in
biological and SR parameters (ICES, 2021b); and determin-
ing the time period used to derive reference points was con-
sidered challenging because estimation becomes unreliable as
time series are reduced (ICES, 2021b). In recent years, ICES
has been in the process of reviewing and modifying their ref-
erence point estimation guidelines through two workshops
WKREF1 and WKREF2 (Figure 1). We argue that part of the
reform must consider exactly how current procedures are im-
plemented comparatively across stocks. Hereafter, as a part of
the continual process to improve ICES reference point estima-
tion, we provide an empirical review of how category 1 refer-
ence points are currently derived. Such synthesis enables cross-
comparisons of stocks displaying consistencies, highlights in-
consistencies, and points towards further improvements.

ICES current reference points approach

Recently, ICES published updated guidelines for estimating
reference points (ICES, 2021c). The emerging five-step proce-
dure for estimating reference points was strongly linked to the
advice framework and the need to ensure that the ICES MSY
advice rule (AR) was also consistent with the ICES PA (ICES,
2021c; Figure 2). The ICES MSY AR is a HCR that leads to
catch advice corresponding to a fishing mortality of equal to
FMSY when SSB is at or above MSY Btrigger but reduced relative
to FMSY when the stock is below MSY Btrigger (ICES, 2021a).
The ICES approach aims to maximize long-term yield while
safeguarding against low SSB. Thus, more caution is needed
below Blim (see dashed line below Blim in Figure 2). The ad-
vised catch might be zero when there is not a high (95%) prob-
ability of SSB ≥ Blim; otherwise, it is capped by the catch that
leads to a 95% probability of SSB ≥ Blim after the advice year.

The current five steps to estimate reference points involve (i)
identifying appropriate data (truncate time series or not), (ii)

identifying SR type (six different types are described with dif-
ferent recommended actions; Table 1), (iii) estimating biomass
limit reference points, (iv) deriving PA reference points from
limit reference points, and (v) estimating MSY reference points
without and later with the AR. First, the value of FMSY is cal-
culated, including stochasticity and advice error. Second, the
MSY Btrigger is selected without advice error. For most stocks
that lack data on fishing at FMSY, MSY Btrigger is set at Bpa

(ICES, 2021c). For stocks with evidence of fishing mortality
being at or below FMSY, MSY Btrigger is selected to be the max-
imum value between the fifth percentile of the distribution of
SSB when fishing at FMSY (excluding advice error but includ-
ing stochasticity in population and fishery) and Bpa (Figure
2). Then, the ICES MSY AR is evaluated via stochastic simu-
lation with FMSY and MSY Btrigger and checked that the fishing
mortality that results in a low long-term probability (≤0.05)
of SSB to be below Blim (called the precautionary criterion or
Fpa) is lower than the initial FMSY. If FMSY > Fpa, then the ad-
vised FMSY is capped to the value of Fpa (Figure 2).

Key steps for estimating ICES reference points are identify-
ing SR stock type and deriving biomass limit reference points.
These steps are related because the technical basis for Blim is
generally determined by the classification of stock character-
istics into SR typologies (Table 1). In the ICES guidelines, his-
torical fishing mortality is not considered when deciding the
stock typology, but it is relevant for some SR types when set-
ting Blim (Table 1). To estimate MSY-based reference points,
it is typically assumed that the associated parameters remain
constant or vary around a historical long-term mean. ICES
considers MSY reference points to be valid only in the short
and medium-term (5–10 yr) as ecosystems and fisheries are
dynamic over time. Therefore, reference points are subject to
regular reviews (ICES, 2021a).

Methods

ICES category 1 reference point database

Estimation of reference points is dependent on the definition
or technical basis used, method settings, and data/output used.
We assembled a database of reference point estimation data
for 79 ICES category 1 stocks. All stock-specific available
documentation was reviewed, including benchmark and inter-
benchmark reports, working group reports, special requests,
expert group reports, and specific working documents (spe-
cific topic documents submitted during benchmarks that sup-
port the main assessment). Collated data relate to reference
points and their estimation, including re-evaluation year, esti-
mation framework, Blim and FMSY technical basis, SR type,
SR settings, assessment error settings, time-period settings,
references, EqSim settings, and hitting precautionary bounds
(Table 2). We developed an R code to clean the information as
collated from the documents (see Table 2 for cleaning details).
This comprised grouping categories to summarize informa-
tion expressed in different texts into homogenized terms. For
stocks that used EqSim (eqsim_run from the R package msy;
https://github.com/ices-tools-prod/msy), we also revised raw
reported information to fill in default values, assuming: (a) if
SR truncation was not stated, then the data were not trun-
cated; (b) if autocorrelation, process error, recruitment, and
catch trimming of extreme values were not stated, then we as-
sume EqSim function default (i.e. autocorrelation: on, process
error: on, recruitment trimming of extreme values: restrict the
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Figure 2. The ICES advice rule (Category 1 stocks) integrates the precautionary approach (yellow) with the Maximum Sustainable Yield (blue). If Frecent

has been in the vicinity of FMSY for 5 or more years, then the fifth percentile of SSB, when fished at FMSY [Q(0.05; FMSY)] is used as the trigger point,
otherwise Bpa is used. The precautionary criterion (Fpa, also called Fp.05) is a fishing mortality that results in >95% annual probability that SSB remains at
or above Blim in long-term equilibrium and caps FMSY.

range of recruitment deviations to +/− three standard devia-
tions on the log scale, catch trimming of extreme values: off).
We did not assume default values on the assessment uncer-
tainty parameters and period selection of biological and se-
lectivity parameters because the function defaults differ from
the guidelines. When an SR type was not stated in the report,
it was inferred from SR plot characteristics by following ICES
guidelines for SR type identification (ICES, 2021c) and using
expert knowledge among the authors.

Stock biomass and fishing mortality features

We estimated spawning stock biomass and fishing mortality
metrics to assess the consistency with the SR typology guide-
lines (Table 1). We extracted stock assessment results (fishing
mortality, spawning size biomass, and recruitment data) from
the ICES Stock Assessment Graphs database via XML pars-
ing (ICES, 2021d). All the calculations were made using the
most recent assessment for each stock. We calculated the co-

efficient of variation of the full time series of SSB assuming a
log-normal distribution (CV SSB) as a stock-level summary of
the stock biomass spread. To summarize the history of stock
fishing mortality, of relevance to Blim choice, we calculated the
mean F relative to FMSY over the full time series.

where t is the year and n is the number of years in the time
series for a given stock.

Spasmodic stocks categorization

Spasmodic stocks (SR type 1; Table 1) are defined by ICES
as “stocks with occasional large year classes” (ICES, 2021b).
To assist the identification of spasmodic stocks and deter-
mine the consistency of the spasmodic stock definition, we
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Table 1. ICES Stock type classification for category 1 stocks and limit point estimation option (ICES, 2021c).

Stock characteristics Blim settings options
SR type Recruitment SSB SR plot

Type 1
Spasmodic
stocks

Occasional large year
classes

- - Blim is based on the lowest SSB that
produced large recruitment unless F has
been low throughout the observed history,
in which case Bloss = Bpa.

Type 2 - Wide dynamic
range

Impaired recruitment has been
observed

Blim = segmented regression change point.

Type 3 - Wide dynamic
range

Impaired recruitment has been
observed, but no clear asymptote

Blim may be close to the highest SSB
observed. The estimate depends on an
evaluation of the historical fishing
mortality.

Type 4 - Wide dynamic
range

Recruitment increases as SSB
decreases

No Blim from this data, only the PA
reference point. (Bloss would be a candidate
for Bpa).

Type 5 - - No impaired recruitment has been
observed, no clear relation

Blim = Bloss.

Type 6 - Narrow dynamic
range

No impaired recruitment has been
observed, no clear relation

No Blim from this data, only the PA
reference point (Bloss could be a candidate
for Bpa, however, this depends on an
evaluation of the historical fishing
mortality).

Table 2. ICES category 1 reference point database.

Data variable Description EqSim specific Cleaned

Refpt_framework Reference point framework No Homogenize terms
SR_type SR stock type No No
SR_type_n Inferred SR stock type, assigned to stocks with no stated

typology in reports
No No

Blim_tecbasis Blim technical basis No Homogenize terms
Blim Blim value No No
FMSY_tecbasis FMSY technical basis No Homogenize terms
FMSY FMSY value No No
SR_model SR functional form model No Homogenize terms
SR_modelweights SR models weights Yes No
Breakpoint.fixed.at Breakpoint of the fixed segmented regression Yes Homogenize terms
SR_data_truncated Whether data was truncated (Yes/No/Not stated) No Assumed No if not

stated
AutocorrelationR Whether autocorrelation parameter was used

(TRUE/FALSE/Not stated)
Yes Assumed TRUE if not

stated
SR_period Year period of SR pairs period used to derive reference

point
No No

process.error Whether process error parameter was used
(TRUE/FALSE/Not stated)

Yes Assumed TRUE if not
stated

recruitment.trim Whether recruitment trimming was used (Yes/No/Not
stated)

Yes Assumed Yes c(−3,3)
if not stated

FCV Value set for the coefficient of variation of F (FCV) Yes No
FPHI Value set for the autocorrelation of F (Fϕ) Yes No
SSBCV Value set for the coefficient of variation of SSB (SSBCV) Yes No
bio.years Year period used for biological parameters Yes Calculation of number

of years
Selectivity_pattern_period Year period used for biological parameters Yes Calculation of number

of years
extreme.trim Whether extreme catch values trimming was used

(Yes/No/Not stated)
Yes Assumed No if not

stated
Hitting.precautionary.bounds.
FMSY.Fpa

Whether the precautionary bounds were hit (FMSY > Fpa

or FMSY < Fpa or not stated)
No Homogenize

Report_reference Reference from which the information was extracted No No

Description of data collated, whether they are an EqSim specific or cleaning procedure for each data variable.

evaluated the variance of recruitment time series. First, we
fitted a loess smother with a 0.3 span to the natural loga-
rithmic transformed recruitment. A span of 0.3 (a trade-off
between over-smoothing and over-fitting) would capture ap-
proximately decadal-scale long-term changes, which we seek

to remove in our assessment of spasmodic stocks. Such low-
frequency variability could be caused by historic fishing pat-
terns reducing SSB and thus reducing recruitment and does
not reflect the high amplitude variation of spasmodic stocks
(Spencer and Collie, 1997). To characterize the high frequency
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variability, we calculated the empirical cumulative distribu-
tion function (CDF) of the detrended recruitment propor-
tional to the maximum. We also calculated the CDF of the
raw recruitment time series proportional to the maximum to
compare results (detrended or not). The CDF is useful as it
displays the fraction of the observed values less than a given
value and thus informs on how infrequent specific recruitment
events are. Intuitively, spasmodic recruitment would be typi-
cally low recruitment events with occasional large recruitment
events, which translates into a steeply climbing CDF. To iden-
tify time series with high variance, we estimated the theoretical
expected 80% interval for CDFs of time series with lognormal
variance of 1. We used a variance value of 1 as this is the 90th

quantile of detrended residuals from the Ram Legacy Stock
Assessment Database (version 4.44) across all stocks in the
database. The criteria used identify an extreme pattern for a
given variance. To estimate the theoretical expected interval,
we used 42 yr, which is the median length of the SR pairs
across all the studied stocks (this could be tailored for indi-
vidual stocks).

Changes in reference points database

For a total of 79 stocks, we also acquired retrospective data of
past assessments, from the year of the working group WKM-
SYREF4 to the most recent assessment year (2016–2021). We
accounted for the change in 2017 of the codes that are used
to identify each stock (stock label key). We obtained refer-
ence points data (FMSY, MSY Btrigger, Blim, and Bpa), and time-
series data on stock size, fishing mortality, and recruitment.
We retained only assessments that used “SSB” in the stock
size description. Changes in reference points between sequen-
tial assessments were identified for analysis; we calculated the
change in reference point (RP) as the proportional change rel-
ative to the preceding assessment (RPy–RPy−1)/RPy−1, where
y is the assessment year, following the method in Silvar-
Viladomiu et al. (2021). Simultaneous changes in FMSY and
Blim, and MSY Btrigger and Blim were visualized.

Consistency of current ICES reference points

In this section, we present the results from evaluating the
consistency of 2021 ICES reference points with the guide-
lines (ICES, 2021c). We evaluated reference point updates, SR
type classification in relation to Blim technical basis and stock
characteristics (SSB, fishing mortality, SR relationship, and re-
cruitment variability), the framework to implement stochastic
MSY, and simultaneous changes in reference points.

Evaluation and update of reference points

Currently, from the 79 stocks classified as ICES category 1,
most reference points have been changed within the last 5 yr
(81.01% for FMSY and 75.95% for Blim), with two stocks with
long-established reference points (northeast Arctic capelin in
2001 and cod in 2003; Figure 3). There are four stocks with
recent estimates of FMSY but older estimates of Blim. This might
reflect changes to the ICES reference points guidelines to cap
from FMSY to Fpa (the F that would lead to SSB ≥ Blim with
a 95% probability in the long term, previously known as
Fp.05; Figure 3).

Figure 3. Year of the most recent evaluation for FMSY and Blim reference
points for the current advice of ICES category 1 fish stocks.

Stock SR typology and biomass limit reference
points

For many stocks, the SR type was not specified in the doc-
umentation, reflecting difficulties to assign it (not stated SR
type in the reports n = 40). The typologies were often consis-
tent with the selection of Blim recommended in the guidelines
(Figure 4; Table 1). For type 1 stocks (spasmodic stocks), three
Blim technical bases were used, Blim was Bloss (lowest observed
SSB), a fraction of Bpa, or the lowest SSB where recruitment
was good/high or not impaired. The basis recommended in the
guidelines was the lowest SSB, where large recruitment is ob-
served. Stocks categorized as type 2 (evidence that recruitment
is or has been impaired) typically define Blim as the breakpoint
of the segmented regression. The lowest SSB where recruit-
ment was good/high or not impaired was also used to define
Blim for several type 2 stocks (Figure 4). There is one case (her-
ring in the northeast Atlantic and Arctic Oceans, her.27.1–
24a514a) where the Blim technical basis for a type 2 stock is
MBAL, which refers to the old minimum biological acceptable
level, commonly including a buffer. For SR type 3 stocks (wide
dynamic range of SSB and evidence that recruitment is or has
been impaired, with no clear asymptote in recruitment at high
SSB), selection of Blim was the lowest SSB where recruitment is
good/high or not impaired. However, the recommended choice
is the SSB close to the highest observed value, depending on
an evaluation of the historical fishing mortality. There was no
stock SR type 4 reported; however, we inferred that herring
in Iceland grounds (her.27.5a) could fall under that category
given that recruitment increases as SSB decreases. The Blim ba-
sis for that stock was SSB with a high probability of impaired
recruitment. For SR type 5 (no impaired recruitment or no
clear relation between stock and recruitment), the most fre-
quent technical basis for Blim was Bloss. For stocks of type 6
(narrow dynamic range of SSB and showing no evidence of
past or present impaired recruitment), Blim cannot be directly
derived and so it was used a fraction of Bpa. Other techni-
cal bases for Blim based on spawner per-recruit or unfished
biomass analysis, e.g. 35% SPR, 20% B0, were occasionally
used (Figure 4).
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Figure 4. Crosstabulation of reported and inferred SR typology and Blim technical basis. Showing the number of inferred SR type stocks above and the
number of stated SR type stocks below in brackets.

Figure 5. Relative fishing mortality and variability in SSB by inferred or stated SR type of the 79 ICES category 1 stocks that were analysed. Frel is the
average fishing mortality relative to FMSY over the data period, and CV SSB is the coefficient of variation of SSB for log-normally distributed data on a
proportion scale. The shape of data points represents if the SR type has been inferred in this study or stated in the reports.

Stock typology, SSB range, and historical fishing
mortality

Some assigned typologies adhere well to their definitions (e.g.
type 6—narrow range of SSB), whereas there are examples
of similar degrees of variation in SSB being categorized dif-
ferently across stocks (e.g. narrow for one stock but wide
for another; Figure 5). Most stocks that were categorized as
SR types with wide SSB ranges (i.e. types 2, 3, and 4) had
larger SSB variation, but there were some exceptions, e.g. her-
ring in the northeast Atlantic and Arctic Ocean (her.27.1–
24a514a), witch in the North Sea, Skagerrak, Kattegat, and

eastern English Channel (wit.27.3a47d), and sole in the North
Sea (sol.27.4), which were categorized as type 2 but showed
relatively low SSB variation (Figure 5).

Historical fishing pressure showed an important relation-
ship with the SR type. Predominantly type 2 stocks, which
present evidence of impaired recruitment, showed high aver-
age historical fishing mortality, e.g. cod in the eastern Baltic
Sea (cod.27.22–24) and sardine in the Cantabrian Sea and
Atlantic Iberian waters (pil.27.8c9a) in Figure 5. Exceptions
could be related to the perception of fishing pressure over
time in long time series, e.g. stocks that have been fished over
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Figure 6. The empirical cumulative distribution function of recruitment relative to maximum recruitment by inferred SR type. Colour shows stated SR
type. The pink area shows the theoretical expected 80% interval for CDFs of time series (length = 42) of lognormal variance = 1.

FMSY only in recent years. Herring in the northeast Atlantic
and Arctic Ocean (her.27.1–24a514a; Figure 5) was catego-
rized as type 2 but showed low relative fishing mortality in the
last three decades. Stock SR types 5 and 6, with no evidence
that recruitment is or has been impaired (no clear relationship
between stock and recruitment), showed different ranges of
SSB variation but typically lower fishing pressure over time,
e.g. herring in the Gulf of Bothnia (her.27.3031) and horse
mackerel in Atlantic Iberian waters (hom.27.9a) in Figure 5.
However, there were some stocks categorized as SR type 5
but with high relative fishing mortality, e.g. cod in the east-
ern English Channel and southern Celtic Seas (cod.27.7e-k)
and haddock in Rockall (had.27.6b) in Figure 5. Also, stocks
that have been historically fished over FMSY but used truncated
SR data to define the typology could result in selecting a SR
type with no evidence of impaired recruitment, e.g. type 6 for
the North Sea, eastern English Channel, and Skagerrak cod
(cod.27.47d20; Figure 5).

Stock typology and recruitment variability

Recruitment dynamics impact the choice of SR typology,
specifically, spasmodic stocks that are classified as SR type
1 according to the guidelines. Low frequency trends in re-
cruitment, which absorbed the effect of historical fishing,
showed multiple patterns across all stocks (Supplementary
Figure S1). Three stocks classified as SR type 1 (spasmodic)
were identified as having high detrended recruitment vari-
ability (Figure 6). These stocks were cod in East and South
Greenland (cod.2127.1f14), haddock in the northeast Arc-

tic (had.27.1–2), and haddock in the North Sea and West of
Scotland (had.27.46a20), inferred in this study (Supplemen-
tary Figure S2). Recruitment time series for these stocks dis-
play a clear pattern of occasionally large year classes (Figure
7a). One SR type 1 stock showed comparatively lower vari-
ance for both recruitment and detrended recruitment. This
was herring in the Irish Sea, Celtic Sea, and southwest of
Ireland (her.27.nirs; Figure 7a and Supplementary Material
S2). Two SR type 1 stocks, horse mackerel in the north-
east Atlantic (hom.27.2a4a5b6a7a-ce-k8) and haddock in
the southern Celtic Seas and English Channel (had.27.7b-
k), showed high variability for recruitment but not for de-
trended recruitment (Supplementary Figure S2). This could
result from occasional large recruitments occurring only early
(or only once) in the time series with significant lower vari-
ability thereafter, e.g. horse mackerel in the northeast Atlantic
(hom.27.2a4a5b6a7a-ce-k8; Figure 7b).

We also found stocks with high recruitment variability and
possibly spasmodic but not classified as SR type 1. We identi-
fied high detrended recruitment variability for two stocks clas-
sified as SR type 2, cod in the western Baltic Sea (cod.27.22–
24), and sole in the North Sea (sol.27.4). The recruitment
time series for these stocks also showed infrequent strong re-
cruitment (Figure 7b). Two stocks classified as difficult to as-
sign showed high detrended recruitment variability (Figure 6),
Greenland halibut in the northeast Arctic (ghl.27.1–2) and
Capelin in the northeast Arctic and Barents Seas (cap.27.1–
2). One stock inferred as SR type 2 showed high detrended re-
cruitment variability; this refers to cod in the northeast Arctic
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Figure 7. Recruitment time series proportioned to the maximum recruitment year class for a selection of category 1 stocks. The top panel (a) shows all
stocks inferred as SR type 1 (spasmodic); the bottom panel (b) shows examples of high variability in recruitment time series for other SR types. Colour
reflects stated SR type (purple: SR type 1, blue: SR type 2, grey: not stated).

(cod.27.1–2). Golden redfish in Iceland and Faroes grounds,
West of Scotland, North of the Azores, and East of Greenland
(reg.27.561214), which was inferred as type 5, showed rela-
tively high detrended recruitment variability (Figure 6), due
to sporadic high recruitment year classes (Figure 7b). Sev-
eral stocks showed high recruitment variability but not af-
ter removing the trend (Supplementary Figure S2), e.g. sprat
in Skagerrak, Kattegat, and North Sea (spr.27.3a4), sardine
in Cantabrian Sea and Atlantic Iberian waters (pil.27.8c9a),
and haddock in Iceland grounds (had.27.5a), and in Faroes
grounds (had.27.5b).

Stochastic frameworks to estimate MSY-based
reference points

The modelling framework used for estimating ICES category
1 MSY-based reference points was substantially homogeneous
(Figure 8a), with the majority of the stocks estimated with
the generic tool for stochastic simulation framework EqSim
(n = 54). For 11 stocks, mostly short-lived pelagic species,
simulation frameworks developed specifically to conduct full
feedback MSEs were used applying the ICES guidelines. Ref-
erence points were estimated within the Gadget assessment
model for four stocks. For spurdog in the northeast Atlantic,
reference points were estimated within the age-length and sex-
structured assessment model. Northeast Arctic haddock refer-
ence points were estimated with a framework called PROST—
Projection Stochastic (Figure 8a).

Key recruitment considerations for the derivation of MSY-
based reference points are the choice of SR functional form,
accounting for variability and temporal dynamics, and deter-
mining and accounting for regime shifts. Accounting for tem-
poral dynamics is achieved by including autocorrelation in re-
cruitment, process error, and trimming of occasional extreme
values. For stocks that used EqSim, autocorrelation and pro-
cess error were mostly included as a default setting and thus
typically accounted for in the estimation (Figure 8b left). Au-
tocorrelation is included for the recruitment residuals of the
SR model according to an AR(1) process. Process error is in-

cluded with the stochastic predictive distribution of recruit-
ment plus the simulated observation error. Removal of recruit-
ment extreme values was often applied, and the option of trim-
ming extreme catch values was occasionally used (Figure 8b
left). The issue of regime shifts is linked to the classic dilemma
between using full-time series or selecting a reduced-time se-
ries. Stock recruitment pairs were truncated for the estima-
tion of reference points for 10 stocks (Figure 8b left). Time
windows for biological productivity or selectivity parameters
were 10 yr for the majority of stocks unless patterns were
found in the data, in which case 5 or 3 yr were typically used
(Figure 8b centre).

The uncertainty of the advice (FCV, Fϕ) within EqSim was
often set with default values (FCV n = 27, Fϕ n = 33, Figure
8b right). In WKMSYREF4, parameters for assessment error
were evaluated and the following values were assigned as de-
fault values: assessment error in the advice year (FCV) = 0.212;
autocorrelation in assessment error (Fϕ) = 0.423. These val-
ues are the medians of the results for five stocks for which the
evaluations were completed in WKMSYREF3.

Changes in reference points

Reference points have changed relatively frequently, with sub-
stantial changes between years (once or twice in the last 6 yr;
Supplementary Material Figure 3). Given the reference point
technical basis, changes in MSY Btrigger are directly related to
changes in Blim, though changes in FMSY are typically not re-
lated to changes in Blim. The main impact of changes in Blim
was on changes in MSY Btrigger (Figure 9a), as MSY Btrigger is
often defined as Bpa, which is often a multiple of Blim. How-
ever, revisions of the technical basis of MSY Btrigger and Bpa can
cause changes in MSY Btrigger not related to a Blim change. For
example, the technical basis for MSY Btrigger for many stocks
was set to Bpa because the criterion of being fished at or be-
low FMSY for around 5 yr was not met. As stocks are fished
consistently with FMSY, they may change to a MSY Btrigger cor-
responding to the fifth percentile of SSB when fishing at FMSY.
The majority of changes in Blim were not related to changes
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Figure 8. Summary plots of reference point estimation frameworks and settings used for ICES category 1 stocks as of November 2021. Top panel (a)
count plot of used reference point estimation frameworks in assessments. Bottom panel (b) with data treatment in EqSim-based estimation of reference
points (left), parameter period settings (middle), and assessment uncertainty settings (right).

Figure 9. Simultaneous changes in reference points. Impact of changes in Blim on the ICES biomass trigger point MSY Btrigger (a); Impact of changes in
Blim on FMSY for the most recent 5 years (b). Colour shows whether stocks are currently hitting precautionary bounds (FMSY > Fpa) and therefore there is
a capping on FMSY.

in FMSY (Figure 9b). Nevertheless, changes in Blim might have
had an impact on FMSY where the value of FMSY is capped and
set at Fpa due to a higher than 5% probability of SSB going
below Blim, where an increase in the value of Blim is related to
a decrease in the FMSY value (Figure 9b).

Conclusions

In this paper, we have extensively reviewed the evolution of
ICES reference points and the estimation procedure currently
used for management advice within the ICES framework. The
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review has addressed historically important events related to
the evolution of the ICES reference point framework and eval-
uated how guidelines link with current reference point estima-
tion. We have also examined the settings and processes consid-
ered in the estimation of reference points. What conclusions
do we have after the review?

1. ICES reference point framework has evolved in an in-
tergovernmental setting. Reference points used in ICES
advice have evolved and are influenced by policy and
scientific development. As an intergovernmental agency,
ICES advice recognizes several international agreements
and responds to the policy and legal needs of ICES
member countries that use the advice as to the scien-
tific basis for management. Advice basis and therefore
reference points have evolved with their requirements,
starting with the PA and expanding to integrate the
MSY approach. Additionally, the ICES framework also
evolves along with new available research and tools (e.g.
EqSim).

2. ICES reference points incorporate multiple precaution-
ary aspects and sources of stochasticity. The objective
of ICES AR is to maximize long-term average yield
with a safeguard against low SSB and staying within the
precautionary bounds. The current system incorporates
many features of the precautionary approach, particu-
larly as it pertains to recruitment overfishing.

(i) ICES recognizes that fish stocks should be above Blim
and fish at a level that keeps fish stocks above Blim.
The biomass limit reference point is the central refer-
ence point to the precautionary approach. It is set by
graphic rules based on SR data pairs. The choice of
Blim aims to ensure that the biomass below which re-
cruitment is impaired is detected (ICES, 2021c). The
lowest level of biomass (Bloss) is typically used as a
biomass limit reference point when there is no clear
SR relationship. We note that the typologies of SR data
pairs are not hypothesis-driven, which provides flex-
ibility but also leaves the process open to subjective
decisions across stocks.

(ii) The EqSim framework is the standard ICES software,
which was used to estimate reference points for the
majority of the ICES stocks studied. The framework
enables the implementation of stochasticity in bio-
logical and fisheries processes and therefore is more
precautionary. Including stochastic processes in the
estimation of MSY has been demonstrated in sur-
plus production models to lead to more conservative
reference points (Bousquet et al., 2008; Bordet and
Rivest, 2014). Advice error can be applied on the tar-
get F (FCV and Fϕ), usually using the default values.
These values were the median evaluated values for five
ICES stocks (her.27.3a47d, sol.27.7d, pok.27.3a46,
sol.27.4, ple.27.420). This advice uncertainty is sup-
posed to represent how uncertain estimates of fishing
mortality are in the advice year.

(iii) Within the ICES process for estimating reference
points, FMSY and MSY Btrigger are evaluated to check
that they meet the precautionary criterion. The pre-
cautionary criterion reference point (Fpa) represents
the fishing mortality corresponding to 5% probability
of SSB being below Blim in the long term, estimated by
stochastic simulation (i.e. biological and fishery vari-

ability and advice error included). When the precau-
tionary criterion is lower than the estimated FMSY,
then the FMSY is capped to its value.

(iv) The MSY-based biomass reference point should be
below typical natural variation (here, the fifth per-
centile), and its selection safeguards against unex-
pected low SSB when fishing at FMSY. Therefore, the
technical basis adopted for the biomass reference
point MSY Btrigger depends on the fishing history rela-
tive to the FMSY. The MSY Btrigger is set to Bpa, a more
precautionary value, when there are no more than 5
yr of fishing mortality equal to or lower than FMSY.

3. The relationship and historical context of stock size and
recruitment are crucial for non-proxy reference points
and are embedded in ICES guidelines. On the one hand,
ICES reference point estimation is typically external to
the assessment process; therefore, the understanding of
the SR relationship and the choice of SR functional form
is key. The graphical characteristics of the SR relation-
ship are what define the SR type classification and im-
pact the consequent Blim choice. For the estimation of
MSY-based reference points, the choice of SR relation-
ship functional form (e.g. the commonly used Beverton–
Holt model, segmented regression model, and Ricker
model) impacts the reference point value. The EqSim
software can fit a combination of SR models and im-
plement a goodness-of-fit model weighting. Usually, as
a first step, to account for SR functional form uncer-
tainty, all three SR models are examined, and depend-
ing on the weighted results, the models that have signif-
icant contributions are chosen. The segmented regres-
sion model can estimate the break-point or have it fixed
at the biomass limit reference point as a way to restrict
the breakpoint when there is no reliable data for its es-
timation. On the other hand, due to limit and MSY-
based reference points only being entirely informed if
the stock has been overexploited (Tsikliras and Froese,
2019), regional historical evolution of the stock deter-
mines the data available to inform reference points. His-
torically, many fish stocks in the North Atlantic have
been heavily exploited (Fernandes and Cook, 2013). Al-
though exploitation pressure has decreased during the
last decades, there is evidence of historical overfishing
in the data for many of the stocks. The historical ex-
ploitation patterns result in having a high contrast in
SSB data and evidence of stocks where recruitment is
impaired. Having a contrast in SSB may give evidence
of how recruitment is impacted, which can inform the
estimation of FMSY. Whereas in other areas, where there
is a lack of contrast, proxies are derived.

4. Reference points are reviewed frequently, taking into
account fluctuations and multiple sources of variabil-
ity. We found that reference points have changed fre-
quently and substantially. These changes in reference
points have been shown to have an important impact
on stock status (Silvar-Viladomiu et al., 2021). The fre-
quency of PA reference point evaluations can differ
from the MSY reference point evaluations. Simultane-
ous changes in Blim and MSY Btrigger reference points are
correlated because Blim is typically used to estimate Bpa,
and Bpa is commonly used as an MSY Btrigger. Reference
points are revised in benchmarks to update productivity
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change concerns, along with assessment methodology
and data updates. In the estimation of reference points,
variation in processes related to productivity can be in-
cluded in several ways. The SR variation pattern is as-
sessed to detect regime changes. If strong evidence of a
regime shift is found, the time series may be truncated,
though there are reasons not to truncate: reduction to
shorter time series might increase the uncertainty as-
sociated with the reference point (Deurs et al., 2021),
and changes are often gradual, in which case choos-
ing a time window might not be appropriate (Collie et
al., 2021). EqSim settings enable accounting for varia-
tion and uncertainty, for example, process error in the
SR relationship (stochastic uncertainty around the SR
model), which is typically included in the estimation.
Temporal dynamics can be accounted for by autocor-
relation in recruitment and trimming of occasional ex-
treme values. Trimming of extreme values to account
for high variability can be also applied to catch data.
Selection for the data window of productivity parame-
ters (i.e. natural mortality, weights-at-age, maturity, and
fishery selection pattern) is shortened when persistent
trends are found in the data.

5. There are occasionally inconsistencies with the guide-
lines. By reviewing all stocks, it becomes apparent that
the current SR type and consequent choice of Blim have
some occasional inconsistencies with the guidelines. We
identified that a high percentage of stocks were found
difficult to classify by assessors, which might be a reflec-
tion of ambiguity in SR types in the current guidelines.
The implementation of the classification framework de-
pends on whether assessors can determine if there is a
clear SR relationship, which may be challenging. Com-
parably across all stocks, SSB measures show inconsis-
tencies with the description in the SR types for some
stocks. For example, some SR type 2 stocks show no
evidence of a wide dynamic range in SSB, e.g. her.27.1–
24a514a. In some cases, even when stocks appear to
have impaired recruitment (type 2), the segmented re-
gression change point was not chosen as the Blim value,
e.g. the Blim value for cod.27.22–24 is the lowest SSB
where recruitment is good/high or not impaired. The
current SR type classification definitions might have
gaps, e.g. how to classify a stock with evidence of im-
paired recruitment but with a narrow dynamic range.
For stocks with no clear SR relationship, the choice of
Blim was more consistently Bloss or a fraction of Bpa for
stocks with a narrow SSB range. The classification of
spasmodic stocks was shown to be difficult, as well as
the consequent choice of an appropriate Blim level for
these stocks.

6. More comprehensive and clearer documentation of ref-
erence point estimation is needed. Documentation on
assessors’ decisions made for reference point estimation
(e.g. settings) lacked consistency across stocks and de-
tails were sometimes missing or difficult to find. The
code used for the estimation was only occasionally at-
tached to the reports. Although there are guidelines on
general steps for the estimation of ICES fisheries man-
agement reference points (ICES, 2021c), there is a lack
of a detailed document of guidelines for the use of the
EqSim framework.

Recommendations for the future

Advice based on reference points is requested by governments
to manage their fisheries. For most data-rich stocks, fisheries
managers in the northeast Atlantic require annual advice on
fishing opportunities to be able to set advice on catch for the
next year. Best practice involves validation, verification, trans-
parency, and repeatability within very strict time constraints
to produce yearly fishing advice. The current ICES framework
can deliver at that level. Based on our review of the frame-
work, we offer the following recommendations and research
suggestions to improve the reference point framework for the
near future.

The biomass limit reference point plays a key role in clas-
sifying the condition of the stock and determining if recruit-
ment is likely to be impaired. The choice of Blim is related to
the classification of SR types, which was found to lead to am-
biguous results in several cases. In WKREBUILD, it was high-
lighted that the determination of Blim used a more or less sub-
jective classification of the SR pairs into types (ICES, 2020a).
We found that a significant number of stocks were difficult to
classify for assessors. A simplified and reduced framework of
classification for the choice of SR types may help reduce ambi-
guity. In addition, the development of quantitative criteria and
analytical tools that establish cut-offs to assist in the decision
of SR type may be useful. For example, use measures of SSB
range and SSB variation to define “narrow dynamic range”
and “wide dynamic range”. Also, developing criteria to de-
fine spasmodic stocks, such as CDFs intervals, would help the
classification to be less subjective and more transparent. Addi-
tionally, developing generalized quantitative criteria to estab-
lish Blim, e.g. give specific details on how to define the lowest
SSB for good/high or not impaired recruitment.

Stocks with spasmodic recruitment are common for some
fish species, and their management is particularly challenging
(Licandeo et al., 2020). In ICES, spasmodic stocks (SR type
1) are defined as “stocks with occasional large year classes”
(ICES, 2021c). Spencer and Collie (1997) identified spasmodic
stocks as those having the highest variation in their study, with
low-frequency components without clear periodicities. Stocks
with spasmodic recruitment may have long periods of weak
recruitment with infrequent or irregular strong recruitment,
which has complex links to stock productivity. More research
is needed to define spasmodic criteria, as well as on simulation
frameworks to evaluate how to define reference points and
manage this type of stock (e.g. Atlantic redfish in Licandeo et
al., 2020).

In WKRPCHANGE, it has been suggested that addressing
PA/MSY needs to take better account of changing produc-
tivity drivers, e.g. growth, reproduction, recruitment, density-
dependence, and survival (ICES, 2021b). Marine ecosystems
are dynamic and might be affected by climate change impact-
ing reference points. The productivity of fish stocks has been
observed to vary globally in a non-stationary manner (Vert-
pre et al., 2013; Minto et al., 2014; Britten et al., 2016; Perälä
et al., 2017). In the ICES reference point framework, there
are tools to account for temporal dynamics, and reference
points are evaluated regularly at benchmarks to revisit their
assumptions on future productivity. However, more research
is needed on regime shifts and the consequences of, for in-
stance, truncating data time series. Truncating the data can
have significant impacts on the resulting parameter estimates.
It has been observed that reducing the length of time series
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used to estimate reference points increases the uncertainty as-
sociated with them, particularly with biomass limit reference
points (Deurs et al., 2021). It is still relatively unclear how
to determine the period to use to estimate reference points. A
better understanding of the nature of recruitment variability
and the impact of changes will be key for estimating refer-
ence points. Research on how to detect when there has been a
significant change in productivity (e.g. Peterman and Dorner,
2012; Minto et al., 2014; Perälä et al., 2017; Tableau et al.,
2019) could clarify recommendations to deal with productiv-
ity change. Furthermore, more research is needed to improve
our understanding of ecosystem dynamics and their impact,
and how to integrate these concerns into the framework for es-
timating reference points (Collie et al., 2021; Silvar-Viladomiu
et al., 2022).

As estimation of ICES reference points is typically made
outside the assessment model, there is associated uncertainty
in current abundance estimates, recruitment, and current fish-
ing mortality regarding models and data used. Propagating
the assessment uncertainty into the reference point estimate is
important. We found that mainly default advice error values
were used to account for advice uncertainty. These values were
calculated as the median of five ICES stocks, and it would be
an improvement to guide the estimation of more stock-specific
values. While there is some guidance in the WKMSYREF3 re-
port (ICES, 2015a), more documentation is needed along with
extending the research on estimation and the inclusion of ad-
vice uncertainty and dealing with short time series.

WKGMSE3 recommended the consideration of using more
flexible MSE simulation frameworks for estimating reference
points. MSEs have the potential to identify and account for
more sources of uncertainties associated with reference points,
e.g. density-dependent changes in underlying biological pro-
cesses, SR pair time period error, and assessment/advice for-
mulation error (ICES, 2020b). Simulation models can also
help develop management procedures and HCRs that are ro-
bust to perceived uncertainties, e.g. about recruitment. Fur-
ther research is needed to develop guidelines for when and
how reference points should be extracted from an MSE when
one is conducted, using clear terminology and on how to deal
with different outcomes with regard to precaution in refer-
ence point estimation and MSEs. Communication is extremely
important because the decisions and assumptions taken to
build MSEs are key to understanding the results. In gen-
eral, WKGMSE3 recommended improving communication
between scientists and managers (ICES, 2020b).

Overall, moving forward, we recommend improving com-
munication and transparency related to reference points in
order to facilitate access to methods and data used. Exten-
sive documentation consistent across stocks is needed for both
general (cross-framework) and specific (EqSim) decisions and
setting choices. In the same way, TAF (Transparent Assessment
Framework; https://taf.ices.dk/app/about) was developed for
assessments in order to achieve retrospective implementation
of the full procedure. We should also be able to replicate ref-
erence point estimation at any historical time point by, for ex-
ample, embedding reference point estimation within TAF.

In an environment like ICES, there is a significant varia-
tion in the ability, experience, and knowledge among experts
conducting these analyses. For reference point estimation, it
is difficult to find a balance between preserving some flex-
ibility and having scientifically underpinned guidelines that
are precise and detailed (rather than general steps and rec-

ommendations). Furthermore, those guidelines should be eas-
ily interpreted and understood by assessors. Given the differ-
ences between stocks, species, and surrounding ecosystems,
some experienced scientists want flexibility to make the best
scientific choices and apply their preferred analytical tools.
In general, the priority for the framework should be to of-
fer well-documented guidance with clearly stated assumptions
but without being too prescriptive. In order to achieve this,
the process might benefit from a more simplified methodology
and terminology, which may reduce ambiguity. Additionally,
as noted in WKRPCHANGE (ICES, 2021b), the process of
updating reference points in the context of ICES advice would
benefit from specific additional guidelines clarifying when ref-
erence points should be re-evaluated, how to test for non-
stationarity or regime shifts, and when to re-evaluate assump-
tions (i.e. changes in fishing patterns and productivity).

Finally, we recommend periodic syntheses such as these that
take a detailed comparative look at what is being done across
all stocks. These syntheses can then be compared and con-
tribute to practices worldwide to continually strive to improve
reference point estimation as a key step in the provision of sci-
entific management advice.
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Abstract
For many environmental indicators, the sustainable status can change because of 
changes in either the monitored state or the policy goal. Fisheries provide an in-
tensively monitored setting to investigate the relative impacts of such change. Key 
fisheries sustainability indicators comprise the ratio between fishing pressure or bio-
mass and their respective reference levels. We developed a retrospective database 
of population status, reference point changes and reported reasons for changes for 
all data- rich stocks in the ICES region. We derived methods to distinguish the impacts 
of either source of change (monitored state or policy goal) on sustainable status. 
We found that reference points changed frequently (64% of populations had refer-
ence point changes) with varying magnitudes. Contrary to expectation, reference 
point changes were often not compensated by changes in the state thus significantly 
impacting inferred sustainability status and dependent scientific advice. Across a 
range of life histories and assessments, changes in reference points dominate retro-
spective revisions in status over the full time series. Overall, status before and after 
the change of reference point had no significant directional differences that would 
suggest reference point change effecting movement towards or away from sustain-
ability. Although multiple factors have contributed to reference point changes, our 
results show that the reference point definition and the technical basis for estimation 
were the most important reasons for change. Recognizing that reference points are 
not constant in time but rather form reference series is paramount to quantifying 
present and historical sustainability. Properly documenting, justifying and quantify-
ing the impacts of such change is an ongoing challenge.

K E Y W O R D S

Fisheries management, North Atlantic Ocean, population monitoring and assessment, 
sustainable targets and limits, UN sustainable development
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1  | INTRODUC TION

Within the United Nations 2030 Agenda, goal 14 for sustainable 
development relates to life below water and targets improved un-
derstanding of the status of commercial fish stocks (FAO, 2020). 
Historically, overfishing has been widespread concern and the most 
decisive factor driving the collapse of marine ecosystems and losses 
of ecosystem biodiversity (Jackson, 2001; Worm et al., 2006). The 
ability of fishery management systems to maintain fishing pressure 
at levels that can sustain productive fisheries depends on the avail-
ability of stock information and the capacity to adjust harvest in 
response to changes in stock abundance. Recent analyses demon-
strate that on average assessed fisheries are improving with respect 
to management goals in regions where there are research, assess-
ment, and management plans (Fernandes & Cook, 2013; Hilborn 
et al., 2020; Ricard et al., 2012; Worm et al., 2009).

Fisheries science has made substantial progress in developing 
tools to assist in achieving policy goals. Management goals, com-
monly referred to as goalposts by fisheries managers, are expressed 
as reference points for a sustainable harvest. Quantitative mea-
sures of stock status relative to reference points are used to provide 
advice on sustainable catches, often in conjunction with harvest 
control rules (Kvamsdal et al., 2016). The status of a stock can be 
estimated in terms of both the fishing pressure level (typically fish-
ing mortality rate, F) and abundance state level (typically biomass or 
spawning stock biomass, SSB) relative to their reference point, often 
at Maximum Sustainable Yield (MSY). The ratio of F to FMSY (termed 
relative fishing mortality) indicates how far a stock is being fished 
from an optimally sustainable rate. Similarly, the ratio of SSB to the 
biomass reference point (termed relative biomass) shows if a stock is 
at a size that will provide MSY in the long term.

The concept of MSY is a common management goal underpinning 
reference points (Mace, 2001). MSY can be defined as “the highest 
theoretical equilibrium yield that can be continuously taken on av-
erage from a stock under existing average environmental conditions 
without significantly affecting the reproduction process” (EC, 2013). 
The precautionary approach (PA) plays an important role in fisher-
ies management and is necessary, but a not exclusive condition for 
MSY. The International Council of the Exploration of the Sea (ICES) 
provides advice in accordance with MSY when data are available, 
that is consistent with the PA (ICES, 2019a); populations need to be 
maintained within safe biological limits to make MSY possible. ICES 
advice is based on the fishing mortality reference point FMSY, and 
the biomass trigger point MSYBtrigger (see Table 1 with definitions of 
those and related reference points). For data- rich stocks, advice on 
sustainable catch focuses on attaining a fishing mortality rate of no 
more than FMSY (fishing mortality status lower than 1) while main-
taining the stock above full reproductive capacity. When SSB de-
clines below MSYBtrigger (biomass status lower than 1), management 
must take action to reduce fishing mortality (ICES, 2019a).

The production of scientific fisheries management advice in-
volves feedback loops of data and analysis, review, and decision- 
making (Privitera- Johnson & Punt, 2020). The assessment type 

performed for each stock and the type of advice given depends 
mainly on available knowledge. In ICES, stocks are classified into six 
main data categories; for categories 1 to 4, there are guidelines to 
estimate reference points (ICES, 2017a, 2018). ICES provides advice 
according to their MSY approach for category 1 and 2 stocks and 
PA advice for category 3– 6 stocks. Through the ICES framework, 
most stocks undergo benchmarks every 3– 5 years, where the meth-
ods and data used in given assessments are externally reviewed to 
determine assessment quality. Reference points used in ICES stock 
assessments are thought to be valid only in the short and medium 
term due to changes in marine ecosystems (ICES, 2021). As part of 
the benchmark process, reference points are reviewed to ensure that 
they reflect the current understanding of stock dynamics and are 
updated if necessary (ICES, 2019a). Since reference points are esti-
mated from assessment outcomes, they are impacted by revisions (to 
the underlying assumptions, data input and methods) made not only 
to the assessment but also to the process specific to their derivation.

Previous studies have investigated how fishing mortality and/or 
biomass estimates vary among assessments over time using several 
approaches to measure variation (Evans, 1996; Ralston et al., 2011; 
Wiedenmann & Jensen, 2018). While investigating changes in the 
numerator of a sustainability indicator (e.g. F/FMSY) is important, we 
highlight the importance of changes in both the numerator and de-
nominator (i.e. the defined sustainable target or limit). To our knowl-
edge, no study has analysed the sources and the relative impact of 
changes in reference points on the inferred stock status, which is of 
critical concern to management. Changes to reference points may 
be seen as “moving the goalposts” in one direction or another. To 
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improve understanding of changes in fisheries status it is necessary 
to discern how components that comprise status (i.e. numerator 
and denominator) change. Using an extended ICES assessments 
database, we disentangle changes in key stock status indicators 
such as relative fishing mortality (F/FMSY) and relative biomass 
(SSB/MSYBtrigger). In addition, we present an analysis of reasons for 
changes among assessments to identify important sources of varia-
tion and uncertainty in reference points. Our key research questions 
thus comprise (i) how have reference points changed in the region?; 
(ii) how do changes in reference points impact sustainable stock sta-
tus?; and (iii) what drives changes in reference points?

2  | METHODS

2.1 | Time series and reference points datasets

International Council of the Exploration of the Sea (ICES) stock as-
sessments provide detailed analyses of the dynamics and status of 
almost 200 stocks representing important commercial fisheries for 
the European Union and neighbouring countries. We obtained as-
sessment output and reference points from ICES stock assessments 
accessed by XML query portal System (http://stand ardgr aphs.ices.
dk/Stand ardGr aphsW ebSer vices.asmx/) or from the relevant ICES 
reports (http://stock datab ase.ices.dk/Defau lt.aspx).

A total of 124 Stocks were subsetted to those that have refer-
ence point estimates. These were mainly category 1 stocks although 
six of the selected stocks were re- categorized during the timeframe 
of the study (either downgraded or upgraded in data/advice catego-
ries). In 2017, ICES changed the codes that are used to identify each 
stock (stock label key). These changes were incorporated into our 
analysis. For the stock label keys in our list, we acquired and inte-
grated time series data on fishing mortality rate (F), spawning stock 
biomass (SSB) and MSY reference points (FMSY and MSYBtrigger). These 
data were downloaded on 17 April 2020. We excluded Nephrops 
stocks due to the comparatively short length of the time series and 
the predominant use of proxy yield- per- recruit reference points. 

Changes in reference points between sequential assessments were 
identified for analysis. Change in reference point (RP) was calculated 
as the proportional change relative to the preceding assessment (RPy- 
RPy−1)/RPy−1, where y is the assessment year. The cleaning of the da-
tabase was supported by reference to the relevant published reports. 
We filtered changes due to rounding and to being relative reference 
points to the time series mean of fishing mortality or spawning stock 
biomass. Adjustments were made to stocks that had non- comparable 
reference point values (different measurement definitions used be-
tween assessments), see Table S1. Status analysis was not performed 
for reference points with substituted values because, for example, 
the fishing mortality definition relative F in these assessments could 
not be compared to absolute values in the other assessments.

2.2 | Status change decomposition

For a given assessment and year, status is calculated by dividing time 
series of estimated fishing mortality rate (F) or biomass state (SSB) 
by the relevant reference point. Sustainability status can change de-
pending on changes to the numerator (F or SSB) or denominator (FMSY 
or MSYBtrigger). We derived expectations for the effect of changes in 
both numerator and denominator on sustainability status. To ana-
lyse changes in status between assessments, we first introduced 
the notation y to denote the assessment year and t the actual year 
of the time series, for example Fy = 2020t = 2000 , denotes the fishing mortal-
ity in year 2000 as estimated in the assessment of 2020. For each 
stock, year, and pair of consecutive assessments, we defined the 
inter- assessment change in status Dt as the proportional difference 
in status for a given time series year t:

where X is either fishing mortality rate or spawning stock bio-
mass and XMSY is the relevant reference point. Pairs of consecutive 

(1)Dt =
XytXyMSY

− Xy − 1tXy − 1MSY
Xy − 1tXy − 1MSY

Reference point Definition

MSYBtrigger Maximum sustainable yield biomass trigger is defined as the 5th 
percentile of the distribution of SSB when fishing at FMSY, but for most 
stocks that lack data on fishing at FMSY, MSYBtrigger is set at BPA

BPA Precautionary approach biomass reference point is a stock status 
reference point above which the stock is considered to have full 
reproductive capacity. Typically defined such that there is a 5% 
probability that the actual biomass is below Blim taking account of 
assessment error.

Blim Biomass limit reference point is the key reference point, from which 
all other PA reference points are estimated. Blim is the deterministic 
biomass limit below which a stock is considered to have reduced 
reproductive capacity

FMSY Fishing mortality that provides maximum yield given the current 
assessment/advice error and biology and fisheries parameters.

TA B L E  1   The main reference points 
used in the ICES advice rule
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assessments were categorized according to whether or not a change 
in a reference point occurred. We visualized time series of inter- 
assessment differences (Equation 1) to understand how much sta-
tus changes between consecutive assessments with reference point 
changes.

We estimated mean status before and after the change in refer-
ence point and an unequal variances t test was used to compare the 
values and evaluated if there were significant directional changes. 
We also compared the magnitude of the variability of the changes in 
F and SSB for the complete data set (containing all pairs of sequential 
assessments) to the variability of the subsetted data set containing 
only pairs when a change in reference point occurred. For that pur-
pose, we measured the median absolute deviation (MAD) of the dif-
ference in mean rate F and state SSB.

For the status decomposition analysis, we used the subsetted 
data when a change in the reference point occurred. Change in sta-
tus among sequential assessments was quantified by the change in 
average status between consecutive assessments over either the 
entire overlapping time series or the last 5 years of overlap (to infer 
recent status changes). The difference in average status can be de-
composed into mean effects of the influence of changes in rate or 
state between consecutive assessments (i.e. the numerator) and 
changes in the reference point (i.e. the denominator). This decom-
position comprises two parameters: δ, which encapsulates the pro-
portional change in the reference point XyMSY = �Xy − 1MSY ; and γ, which 
encapsulates the proportional change in average rate (F) or state 
(SSB) over time (

∑ nt = 1Xty∕n = �
∑ nt = 1Xty − 1∕n). We derive the ex-

pected difference in status using γ and δ:

The mean proportional status change (w) is obtained by dividing 
the expected difference in status by the expected previous status:

The impact of either change cannot be isolated (as the derivatives 
with respect to each naturally depend on the other). Nevertheless, 
we can empirically evaluate given changes to determine how much 
the relative status changes with respect to changes in either com-
ponent. The mean change in status with respect to the proportional 
change in the reference point (δ) and with respect to the propor-
tional change in estimate time series (γ) can be estimated with the 
following differential equations:

We used a Pearson correlation test to evaluate the relationship 
between the two estimated parameters of proportional change.

2.3 | Covariates of change dataset

We review relevant advice reports for assessment years y and y-1 
to collect information on modifications that may have impacted the 
value of the reference points. Information on specific important revi-
sions in assessment or benchmark meetings was typically presented 
in the advisory reports. Information regarding the technical basis for 
a reference point is presented at the reference point summary table. 
However, detailed information on settings for the estimation of the 
reference point was extracted from extensive reading of the refer-
enced document, for example assessment reports or reference point 
estimation working group WKMSYREF (ICES, 2013; 2017b). These 
reports are available at the ICES library website (http://www.ices.
dk/publi catio ns/libra ry/Pages/ defau lt.aspx).

Every event of reference point change might have been asso-
ciated with multiple modifications, typically within a benchmark 
assessment process. For example, the North Sea, eastern English 
Channel, Skagerrak cod (Gadus morhua, Gadidae) assessment was 
benchmarked in 2015, resulting in changes to the input data struc-
ture, maturity, natural mortality and model settings causing refer-
ence points to be re- estimated. Besides, the MSY fishing mortality 
reference point was updated from Fmax to FMSY from Eqsim (stochas-
tic equilibrium reference point software) analysis, and the rationale 
for Blim was changed from Bloss to the SSB associated with the last 
above- average recruitment.

For every event of change in a reference point, the relevant in-
formation was collated into a new database and summarized as ref-
erence point covariates. We defined covariates based on the most 
frequent changes and modifications made. We aim to summarize re-
vision generalized across all stock assessments. Covariates comprise 
categorical variables of occurrence and factor variables of a varying 
number of levels (Table S2). “Assessment” covariates were used for 
the analysis of both fishing mortality and biomass reference points. 
These comprised modifications such as (1) modification of stock 
definition; (2) revisions of input data both fisheries- dependent; and 
(3) independent (e.g. inclusion or exclusion of fisheries- dependent 
and fisheries- independent data, e.g. discards, commercial index, 
survey index); (4) re- assessed maturity; (5) re- assessed natural mor-
tality; and (6) a heterogeneous group encompassing other revisions 
and updates of assessment methodology, additionally (7) revision of 
the assessment type, which includes information of changes in the 
model selected to assess the stock, with categories representing lev-
els by the combination of the previous and subsequent model.

For most ICES assessments, derivation of FMSY is typically a 
separate process that uses assessment outputs for age- based 
models, and so we evaluated changes in FMSY with “Assessment” 
covariates and covariates specific to its derivation (“RP” covari-
ates). These comprise (8) modifications to the definition of FMSY, 
(9) change in the functional form of the stock– recruitment rela-
tionship, (10) revisions to the time frame of recruitment data input 
and (11) the time window of productivity parameters (growth, 
maturity, natural mortality, selectivity). The two former were in-
cluded because ICES guidelines (ICES, 2017a) recommend the 

(2)E( Xy
XyMSY

− Xy − 1
Xy − 1MSY

) = �E(Xy − 1)
�Xy − 1MSY

− E(Xy − 1)
Xy − 1MSY

w =
E( Xy

XyMSY
− Xy − 1

Xy − 1MSY
)

E( Xy − 1
Xy − 1MSY

) = �
�
− 1

dwd� = 1
�
;dwd� = − �

�2
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use full time series of recruitment unless strong evidence exists 
of a regime shift; and the use of the last 10 years of biological pa-
rameters (weights, maturity, natural mortality) and fishery param-
eters (selectivity) unless there is evidence of persistent trends. 
Revision to the definition of FMSY was categorized according to the 
information provided regarding the initial and subsequent choice 
of advised FMSY, for example changes from the use of certain FMSY 
proxies to the use of FMSY.

Following the ICES MSY approach (Table 1, ICES, 2017a), for 
MSYBtrigger we included in the covariates the re- evaluation of the 
technical basis of MSYBtrigger and related reference points (BPA and 
Blim). This framework includes transition rules, for example when a 
stock is fished at or below FMSY for 5 or more years then the basis 
is MSYBtrigger changes from BPA to the 5th percentile of BMSY. For 
ICES stock assessments, the biomass reference point Blim is the 
main precautionary reference point, and BPA is usually derived from 
it accounting for assessment uncertainty. Thus, to analyse changes 
in MSYBtrigger we included covariates that are involved in setting 
MSYBtrigger as (12) the revaluation of the technical basis of MSYBtrigger 
and its related reference points (13) Blim and (14) BPA.

2.4 | Reference point change analysis

We conducted an a posteriori regression analysis of sources of 
those historical changes collated from the published reports. 
The influence of covariates on reference points was analysed by 
a multiple linear regression taking the proportional change in the 
reference point (δ) as the response. All covariates relevant to the 
reference point were first included as main effects to explain pro-
portional changes in reference points; all possible combinations of 
sub- models were then fit and ranked by the Akaike information cri-
terion (AIC), we used the R function glmulti() for the model selection 
(Calcagno & Mazancourt, 2010). Finally, we conducted a two- sided 
F- test ANOVA to the best- supported multiple linear model and in-
vestigated the percentage of the variance explained by the selected 
covariates.

3  | RESULTS

3.1 | Reference point changes

We identified that 50 stocks (21 species) have had changes in MSY- 
based reference points between 2011 and 2019 (Figure 1). This 
represents 64% of the stocks with estimates of absolute reference 
points. There were a total of 79 events of change in FMSY and 51 in 
MSYBtrigger, of which 42 were simultaneous changes in both refer-
ence points. Of all stocks, North Sea, eastern English Channel and 
Skagerrak cod 2015 and West of Scotland cod 2019 had the highest 
increase in FMSY (74%). Cantabrian Seas and Atlantic Iberian waters 
sardine (Sardina pilchardus, Clupeidae) 2019 had the greatest de-
crease (73%), which is considerably larger than the magnitude of any 

other decreases. The biomass reference point, MSYBtrigger, increased 
by 145% for North Sea, Skagerrak plaice (Pleuronectes platessa, 
Pleuronectidae) 2017, when MSYBtrigger changed from BPA to the 5th 
percentile of BMSY. The largest decrease in MSYBtrigger occurred in 
Rockall haddock (Melanogrammus aeglefinus, Gadidae) in 2019 (64%).

For some stocks, reference points continually declined or in-
creased, for example Baltic Sea sprat (Sprattus sprattus, Clupeidae) 
FMSY and seabass (Dicentrarchus labrax, Moronidae) MSYBtrigger, but 
importantly for many stocks with multiple reference point changes, 
these included a mixture of decreases and increases (Figure 1). This 
raises the question of whether those changes reflect short- term 
productivity fluctuations or difficulties estimating suitable refer-
ence points. We found that simultaneous changes in both reference 
points showed no relationship between increases or decreases in 
FMSY and MSYBtrigger (Figure S1).

3.2 | Sustainability status changes

Examining timelines of changes in status (F/FMSY and SSB/
MSYBtrigger) between assessments in which reference points 
changed (Figures S2 and S3), we observed a variety of temporal 
patterns in the nature and magnitude of the changes (Figures S4 
and S5). In some cases, the changes of reference point caused al-
most indiscernible changes in status (e.g. relative fishing mortality 
of Western Baltic Sea sole (Solea solea, Soleidae) 2014 in Figure 2), 
while elsewhere important status changes occurred when refer-
ence points changed (e.g. relative fishing mortality Cantabrian 
Seas and Atlantic Iberian waters sardine 2019). Occasionally, the 
sign of the change in status cross- over, meaning that the status 
trajectories between the assessments intersect, for example 
Skagerrak and Kattegat, western Baltic Sea sole 2015 in Figure 2. 
Status often varied markedly in the most recent years due to 
variability in fishing mortality rate (F) or biomass state (SSB) esti-
mates, which are typically more variable in terminal years owing 
to a lack of convergence of the estimates (e.g. as caused by co-
horts just entering the fishery and assessment). For example, in 
Cantabrian Seas and Atlantic Iberian waters sardine, a change 
to the 2019 assessment caused a relative increase in the F/FMSY 
estimates that decreased in magnitude from 2010 to 2019 while 
a change to the 2015 assessment for Rockhall haddock caused 
a positive trend in the relative decrease of SSB/MSYBtrigger from 
2012 to 2015 (Figure 2). Several cases showed significant fluc-
tuations in the magnitude of the relative change in status; some 
with a clear pattern (e.g. Rockhall haddock 2019) and others with 
a steady directional trend (e.g. Celtic Sea, Irish Sea herring (Clupea 
harengus, Clupeidae) deviation in 2013, Figure 2). To reflect these 
differences, we analysed status changes using both the complete 
time series and only the last 5 years to capture trends in changes 
in recent years.

Overall, while there are many examples of large changes in status 
for individual stock, there is no clear movement away from or towards 
sustainability (Figure 3 top panel). For the most recent five years, the 
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changes in relative fishing mortality and relative biomass state showed 
greater spread than when all years were included. Changes in status 
were not directional based on unequal variances t test of the status 
before and after the assessment update (change in average relative 
fishing mortality recent: t(159,46) = −0.04, p = .965; complete time se-
ries: t(164,81) = −0.06, p = .95; change in average relative biomass recent: 
t(101,23) = −0.19, p = .849; complete time series: t(99,41) = 0.05, p = .957). 
The changes in average F or SSB, when a change in reference point 

occurred, had similar or greater variability than when all pairs of se-
quential assessments are considered (change in average relative fish-
ing mortality recent: MADchange = 1.49, MADall pairs = 0.03; complete 
time series: MADchange = 1.48, MADall pairs = 0.009; change in average 
relative biomass recent: MADchange = 4,807.33, MADall pairs = 5,187.62; 
complete time series: MADchange = 2,494.93, MADall pairs = 1,490.71). 
Therefore, the changes in sequential estimates of F and SSB were more 
marked when a change in reference point occurred.

F I G U R E  1   Changes in reference points for stocks assessments for the period 2011– 2019, measured in percentage change relative to the 
preceding assessment. Stocks are ordered by species. Acronyms used in stock description are: BB, Bay of Biscay; BC, Bristol Channel; CS, 
Celtic Sea; BS, Baltic sea; CaS, Cantabrian Sea; AI, Atlantic Iberian waters; EC, English Channel; FG, Faroes grounds; GR, Gulf of Riga; GB 
Gulf of Bothnia; FP, Faroes Plateau; IS, Irish Sea; NA North Atlantic; AO, Arctic Ocean; NS North Sea; S, Skagerrak; K, Kattegat; R, Rockall; 
WS West of Scotland; c, central; n, northern; e, eastern; w, western [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E  2   Example of changes in status timelines. Top- panel shows relative fishing mortality rate (F/FMSY); and bottom panel shows 
relative biomass state (SSB/MSYBtrigger) proportional changes of assessment year (y) relative to the previous (y- 1), for assessments in which 
changes in reference points were implemented [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  3   Mean status before and after at changes in reference points. Top- panel shows mean status on logarithmic scale in terms of 
relative fishing mortality (a) and relative biomass (b), over last five recent years (a1, b1) and complete time series (a2, b2). Bottom panel shows 
the distribution of the difference of status between before and after the reference point change. Black point and dashed line represents 
median values
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3.3 | Effect of reference point changes on 
sustainability status

We define δ as the proportional change in the reference point and 
γ as the proportional change in average rate (F) or state (SSB) over 
time. There was some evidence of a weak positive relationship 
between changes in rate or state and reference point (Figure 4), 
which was significant only for biomass over the recent part of the 
time series (rho = 0.33, p = .018) and over the complete time se-
ries (rho = 0.53, p < .001). Where the proportional changes in the 
numerator and denominator were equal, no change in status oc-
curs (1:1 line in Figure 4). However, particularly looking at the data 
for the complete time series, average status changes were mainly 
due to changes in reference points (horizontal spread of points in 

Figure 4a2, 4b2). Some of the greatest changes in relative fishing 
mortality were associated with changes in FMSY, for example increase 
in relative fishing mortality for sardine in 2019 (Figure 4a point 61); 
and decrease in North Sea, eastern English Channel, Skagerrak cod 
in 2015 (Figure 4a point 11). Similarly for relative biomass, large 
changes were related mainly with changes in MSYBtrigger, for example 
Rockhall haddock in 2019 (Figure 4b point 28) and North Sea and 
Skagerrak plaice in 2017 (Figure 4b point 63). Yet, eastern English 
Channel sole 2017 had important changes in both the biomass esti-
mate and MSYBtrigger (Figure 4b point 80). Only occasionally were the 
changes in rate or state compensated by changes in reference point 
over the most recent period such that no change in status occurred. 
This counters a common belief that changes in the estimated state 
will be compensated for by changes in the reference points, which 

F I G U R E  4   Change in sustainability status decomposition. Relationship between proportional change in average rate or state (γ) and 
proportional change in reference point (δa = FMSY y/FMSY y−1; δb = MSYBtrigger 

y/MSYBtrigger 
y−1), background colour represents impact in status 

change for relative fishing mortality rate, F/FMSY (a) and relative biomass state, SSB/MSYBtrigger (b), over recent years (a1, b1) and the complete 
time series (a2, b2). The plot numbers correspond to the event numbers in Table S1: (2) 2016 blue ling in Celtic Seas, English Channel and 
Faroes grounds; (11) 2015 cod in North sea, eastern English Channel, Skagerrak; (15) 2019 cod in West of Scotland; (28) 2019 haddock in 
Rockall; (39) 2013 herring in gulf of Bothnia; (40) 2017 herring in gulf of Bothnia; (51) 2017 horse mackerel in North Atlantic; (61) 2018 white 
anglerfish in Cantabrian Sea and Atlantic Iberian waters; (80) 2017 sole in eastern English Channel; (91) 2018 whiting in North Sea and 
eastern English Channel [Colour figure can be viewed at wileyonlinelibrary.com]
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are caused by new information on processes. There were examples 
of where this compensation occurred: relative fishing mortality of 
Gulf of Bothnia herring (Figure 4a point 39); and relative biomass of 
Northeast Atlantic horse mackerel (Scomber scombrus, Scombridae; 
in Figure 4b point 51), and North Sea and eastern English Channel 
whiting (Merlangius merlangus, Gadidae; in Figure 4b point 91).

The marginal relationship between mean status change (over the 
complete time series) and proportional change in reference point dis-
played a curvilinear inverse response adhering to the expected rela-
tionship (Figure 5 top panel). As the reference point is the denominator 
of status (F/FMSY and SSB/MSYBtrigger), if the numerator compensated 
for the change in the denominator one would expect a flat relation-
ship in Figure 5. We found that reductions in reference points (δ < 1) 
resulted in steeper increases in status, whereas increases in reference 
points (δ > 1) resulted in more moderate reductions in status (e.g. from 
the theoretical proportional change in mean status �

�
− 1, a 10% reduc-

tion in the reference point would result in an approximate 11% increase 
in status whereas a 10% increase in the reference point would result in 

an approximate 9% increase in the status where γ = 1). This negative 
relationship between changes in status and the change in the refer-
ence point appears stronger (less variable) for relative fishing mortality 
than for the relative biomass (Figure 5 top panel). Occasionally, there 
were assessments where the reference point decreased but status 
also decreased, or where both increase. The observed marginal rela-
tionship with the proportional change in rate or state (γ) was diffuse 
compared to the theoretical relationship (Figure 5 bottom panel). Over 
recent years of overlap, the marginal relationship of changes showed 
in general more variability for the proportional change in reference 
point and less variability in the marginal relationship with the propor-
tional change in rate or state estimates (Figure S6).

3.4 | Possible reasons for reference points change

Across all the covariates, the distribution of the magnitude of change 
in both reference points displayed heterogeneous patterns with wide 

F I G U R E  5   Marginal relationship between average change in status and δ, proportional change in reference point, at the top panel; and 
γ, proportional change in rate (left) or state (right), at the bottom panel considering the complete time series. Grey line shows the expected 
theoretical change with a change in δ (top) or γ (bottom)
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ranges; no covariate showed a clear directional effect (Figures S7 
and S8). Most changes in reference point occurred due to a combi-
nation of effects rather than a single cause; we found that covariates 
occurred simultaneously, they might be correlated and also interact 
(Figures S9 and S10).

Events of change in both FMSY and MSYBtrigger presented sim-
ilar frequency of occurrence for “Assessment” covariates. Input 
fisheries- dependent and fisheries- independent data were revised for 
roughly 20% of the cases. The assessment model was modified in ap-
proximately 15% of the cases, the most frequent change being from 
XSA to SAM (n = 5). Re- assessment of natural mortality was found in 
11% of the cases for FMSY and 6% of the cases for MSYBtrigger. Changes 
in natural mortality estimates comprise revision of assumptions (e.g. 
using a new single species method, introducing multispecies esti-
mates), or updates (e.g. time- varying mortality updated, multispecies 
estimates using a new multispecies model run). Less frequently en-
countered covariates (>10% of the cases) were the revision of matu-
rity estimates and the revision of the definition of the stock.

Although multiple factors have contributed to changes in refer-
ence points, our results showed that the evolution in the definition 
for fishing mortality reference point (FMSY) and re- evaluation of the 
technical basis for limit biomass reference point (Blim) were the most 
important (Table 2). Revision of fishing mortality reference point 
definition was the most frequent covariate identified (n = 30, 40% of 
the cases). This key covariate explained the largest part of the vari-
ance (39.8%) of the model (F- statistic(13) = 3.6, p = .0004, Table 2). It 
presented the change of many previous definitions (e.g. proxy values) 
and diversity of stochasticity implementation methods, to a unified 
FMSY estimation framework Eqsim (Figure 6a). We found that advised 
FMSY based on analogies from other stocks (n = 2) or provisional from 
simulation frameworks (n = 8) were on average higher than subse-
quent FMSY; however, per- recruit proxies were lower based on small 
sample sizes (Fmax n = 8; F0.1 n = 4). Only one observed change was 
related to a revision of the fishing mortality reference point from 
the calculated value (FMSY) to Fp0.5 established by stochastic simula-
tions when the precautionary criterion is not met (Figure 6a). For the 
biomass reference point, revision of Blim technical basis explained 
29.94% of the variance of the model (F- statistic(13) = 2.23, p = .04, 
Table 2). Blim technical basis was revised for 19% of the cases and 
MSYBtrigger for 16%. From the re- evaluations of MSYBtrigger (n = 13), 
for 23% of the cases the technical basis was changed from BPA to the 
5th percentile of BMSY (Figure 6b). The most frequent revision found 
was re- evaluation of the technical basis of BPA (23% of the cases), 
which involves modification of how the assessment uncertainty is 
accounted for. Both selected models to explain changes in reference 
points had large residual variability at 44.62% and 21.02% for FMSY 
and MSYBtrigger, respectively (Table 2) likely reflecting the binary na-
ture of the covariates without the magnitude of change.

The different nature of ICES fishing mortality target and biomass 
threshold reference point was reflected in the analysis. As FMSY is 
a model estimate output, it is impacted by modifications to input 
data (e.g. selection pattern and biological parameter) and under-
lying assumptions (i.e. stock– recruitment relationship functional 

form). We found that to derive FMSY, the assumption of the stock– 
recruitment relationship functional form was revised for 24% of the 
cases (n = 19). Modelling of the stock– recruitment relationship (a key 
density- dependent process) remains a challenge and this is known 
as the main source of variation (ICES, 2015; Simmonds et al., 2011). 
During workshops to consider the basis for FMSY ranges for all stocks, 
WKMSYREF (ICES, 2015; 2017b) several stock– recruitment models 
were investigated from functional form combinations to the use of 
segmented regression. In terms of data input to derive reference 
points, we found that the time series to estimate FMSY was revised 
in 11% of the cases for recruitment and 7.5% for productivity pa-
rameters. Time series of recruitment and SSB to model the stock– 
recruitment relationship are re- evaluated to ensure the selection 
of the relevant period when there is a change in the perception of 
the productivity regime (i.e. shifts or trend). Both, revision of stock– 
recruitment functional form and selected time series of recruitment, 
were important variables in the model, which explained around 5% 
of the variance each (p < .05, Table 2). In contrast, MSYBtrigger (when 
set to BPA) is based on biomass assessment estimates, because is 
often derived from Blim (typically set by stock– recruitment typology 
rules). Therefore, it is more sensitive to changes affecting the esti-
mates of biomass, for example revision of assessment model type, 
fishery- dependent and fishery- independent data, methodological 
revisions and re- assessment of maturity (Table 2).

4  | DISCUSSION

4.1 | Evolution of sustainable targets and thresholds

Reference points play a key role in fisheries management by providing 
targets and thresholds to guide management actions (Mace, 2001). 
Reference points may change, not only reflecting the non- stationary 
nature of the ecosystem but also our ability to capture those changes. 
The frequency at which reference points are updated varies globally, 
for example, tuna Regional Fisheries Management Organizations 
and North Pacific Fisheries Management council update reference 
points with each assessment (Kell et al., 2016). ICES stocks provide 
a unique opportunity in terms of breadth and frequency of change 
(Figure 1) to investigate the impact of changes in reference points. 
By using ICES stocks for this analysis, we gained a data- rich and de-
tailed overview of the evolution of reference points and their key 
management use in measuring sustainability status. Stock status 
before and after a change in a reference point had no significant di-
rectional differences (Figure 3) that would suggest a retrospective 
movement towards or away from sustainability. But there have been 
important effects of reference point changes for specific stocks with 
implications for sustainable harvest advice and perceived conserva-
tion status. We showed that, across a range of life histories and as-
sessments, changes in reference point dominate changes in status 
over the full time series (Figure 4). Analysis of recent years shows 
more variability due to terminal estimate variability and bias (known 
as retrospective pattern in assessment updates (ICES, 2020)) but 
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also highlights the importance of changes in reference points on 
status. For simultaneous changes in FMSY and MSYBtrigger, we would 
expect an inverse relationship (i.e. a decrease in FMSY would be as-
sociated with an increase in MSYBtrigger and vice versa), assuming that 
the same method was used and only new information in processes 
was included. However, a substantial number of events deviated 
from the expected direction (Figure S1), which might be indicative of 
changes in perceived productivity.

Reference point changes reflect simultaneously the evolution of 
management policy and scientific understanding and methodology. In 
2009 ICES adopted the MSY framework on top of their precautionary 
framework and began adapting the advice provided (Lassen et al., 2014). 
The framework includes transition rules; for example, when a stock is 
fished at or below FMSY for 5 or more years then the basis if MSYBtrigger 
changes from BPA to the 5th percentile of BMSY (ICES, 2017a). This is be-
cause productivity and BMSY estimates may change as stocks increase 
when fishing mortality is reduced to more sustainable levels (i.e. FMSY). 
Another occurrence was the re- estimation of FMSY and precautionary 
reference points during the workshops WKMSYREF (2013– 2015). This 
was stimulated by the request of the European Commission for ad-
vice on potential intervals above and below FMSY for selected stocks. 
Evaluations of MSY were made using Eqsim or similar methods to im-
plement stochasticity (ICES, 2013; 2017b). Changes in software used 

to derive FMSY are important because the underlying uncertainty as-
sumptions and the way stochasticity is implemented may vary, which 
affects the estimates (ICES, 2017b; 2019b).

Across different regions, past studies of the variability among 
historical assessment and projection simulations have shown that 
there are numerous potential causes for changes in assessment es-
timates over time (Privitera- Johnson & Punt, 2020; Punt et al., 2018; 
Ralston et al., 2011; Wiedenmann & Jensen, 2018). Previous studies 
have shown sensitivity of MSY- based reference points to the func-
tional form and parameters of the stock– recruitment relationship 
(Simmonds et al., 2011; Zhu et al., 2012). A recent study initiates the 
research on the uncertainty associated with biomass limit reference 
points (Deurs et al., 2021). They were found to be sensitive to the es-
timation method, time series length, and stock development trends. 
However, to our knowledge, no study has systematically quantified 
the impact and reasons for changes in reference points over time. We 
explored the effect of modifications to reference points that were 
stated in assessment reports. Were we to also re- run the assessment 
models and reference point estimation procedure it would be pos-
sible to investigate the deterministic impact of any given changes 
singularly or in combination. This mechanistic approach would be 
greatly facilitated through transparent frameworks for data and mod-
elling and advice such as the recently developed ICES Transparent 

F I G U R E  6   (a) Average change in adviced reference point FMSY with levels of revision in definition of fishing mortality reference point: 
FMSY, yield- per- recruit proxies (F0.1, Fmax), spawner biomass per- recruit proxies (FSPR30, FSPR35,FSPR40, FSPR50), FPA, reference point from analogy 
of other stocks and provisional reference point; and (b) average change in adviced reference point MSYBtrigger with levels of revision of the 
technical basis: BMSY, BPA, Break point, Bloss, proxy from Spict model. The width of the line shows the number of occurrence of that specific 
revision. Warm colours are mean increase and cool colours mean decrease of reference point advised value [Colour figure can be viewed at 
wileyonlinelibrary.com]
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Assessment Framework (https://taf.ices.dk/app/about last accessed 
August 15th, 2020). Such an analysis is beyond the scope of this work 
but would be extremely useful and could be operationalized where 
changes are proposed. Our analysis sets the groundwork for future 
mechanistic investigation of the causes underlying changes in refer-
ence points and status on a stock- by- stock basis.

4.2 | Implications for fisheries management

Time- varying reference points will become increasingly important for 
management given: (i) continual improvements in stock assessments 
(in terms of new and improved data and estimation) and continually 
improved knowledge of stock biology; (ii) the development of opera-
tional ecosystem approach and the increasing inclusion of ecosys-
tem concerns in assessments (Marshall et al., 2019; Skern- Mauritzen 
et al., 2016); and (iii) growing evidence of dynamics, shifts in produc-
tivity, and the influence of climate change, which emphasizes the 
need to adapt reference points (Britten et al., 2017; Collie et al., 2012; 
Minto et al., 2014; Szuwalski & Hollowed, 2016; Table au et al., 2019; 
Vert- pre et al., 2013). These changes in reference points will require 
inclusion in future interpretations of stock status (Hilborn, 2020).

We underscore the importance of keeping track of changes and 
modifications to understand their impact and allow comparisons 
across stock assessments that underpin fisheries management. Our 
results also highlight the continual importance of accounting for sci-
entific uncertainty to distinguish it from real changes in the ecosystem 
or the fishery, which are fundamentally different. We emphasize the 
many examples in Figure 1 of where reference points decrease and 
then increase or vice versa and posit that these cases will offer useful 
insights into the general process lending towards further investigation 
of the stability and performance of management advice under true 
and perceived change. Given the challenges faced by estimation and 
the use of reliable reference points for management (Hilborn, 2002), 
reference points are better seen as reference series. The relevant ref-
erence point in the reference series should also be time- dependent 
(possibly with lags) when inferring historical sustainability rather than 
assessing historical status relative to the most recent reference point. 
We recommend careful documentation of changes to assessment as-
sumptions and data inputs (Punt et al., 2018), as well as the revision 
in estimation or selection of reference points and detection of shifts 
in productivity (Clausen et al., 2018). Communicating, explaining and 
justifying the changes is remarkably important to understand them 
and their relevance. Nowadays, this can be readily achieved using 
changelogs that are common in other continual development pro-
cesses such as software development.

Although this work is tailored for ICES reference points, the 
approach to decompose changes in status into components can be 
applied to other regions and globally (e.g. using the RAM Legacy 
Database). Methods developed here are applicable in settings where 
the ratio of a state to a changing goal is used to indicate status (e.g. 
Sustainable Development Goals: 6 Clean Water and Sanitation; 13 
Climate Action; 15: Life On Land).
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Target and limit reference points are fundamental management components used to define sustainable harvest strategies. Maximum Sustainable
Yield (MSY) and the precautionary principle underpin many reference points. Non-proxy reference points based on MSY in age-based single-
species assessments depend on the stock–recruitment (SR) relationship, which can display complex variability. Current reference points ignore
persistent dynamic change by assuming that the SR relationship is stationary and with constant recruitment parameters over selected time
periods. We highlight Peterman’s productivity method (PPM), which is capable of tracking temporal dynamics of recruitment productivity via
time-varying SR parameters. We show how temporal variability in SR parameters affects fishing mortality and biomass MSY-based reference
points. Implementation of PPM allows for integrated dynamic ecosystem influences in tactical management while avoiding overwrought and
sometimes ephemeral mechanistic hypotheses tested on small and variable SR datasets. While some of these arguments have been made in
individual papers, in our opinion the method has not yet garnered the attention that is due to it.
Keywords: EBFM reference points, non-stationary productivity, scientific fisheries management advice, stochastic processes, stock–recruitment relationship,
time-varying parameters.

Introduction

Reference points play a key role in the provision of scientific
advice for fisheries management (Garcia, 1996). They pro-
vide the basis to define targets and limits that establish opera-
tional objectives, necessary for effective fisheries management
(Sissenwine and Shepherd, 1987; Schnute and Haigh, 2006;
Hilborn et al., 2020). Reference points provide benchmarks
to promote the sustainability of the stocks and reliant fish-
eries (Mace, 1994). By identifying limits that should not be ex-
ceeded and targets that should be achieved, they support har-
vest control rules (HCRs) that guide management decisions
(Punt, 2010; Kvamsdal et al., 2016). They have an essential
role in current management frameworks, to provide recom-
mendations for fishing strategies and to define tactical man-
agement measures, e.g. catch and effort limits, and the design
of management plans.

Major paradigms used to define reference points interna-
tionally are Maximum Sustainable Yield (MSY) and the pre-
cautionary approach (FAO, 1995a). The Food and Agriculture
Organization (FAO) of the United Nations defines MSY as:
“the highest theoretical equilibrium yield that can be continu-
ously taken (on average) from a stock under existing (average)
environmental conditions without affecting significantly the
reproduction process”. Managing fish stocks under the pre-
cautionary approach and MSY has been generally advocated
by international agreements (FAO, 1995a; UN, 1995, 2002).
The UN Fish Stock Agreement contains guidelines for ap-
plying a precautionary approach within an MSY framework.
During the World Summit on Sustainable Development, or-
ganized by the UN in 2002, it was agreed in the Johannes-
burg Declaration to, “maintain or restore stocks to levels that
can produce the MSY with the aim of achieving these goals

for depleted stocks on an urgent basis and where possible not
later than 2015” (UN, 2002). These concepts are embraced by
intergovernmental organizations and are reflected in impor-
tant fisheries policies, e.g. Common European Fisheries Pol-
icy (EC, 2013) and Magnuson–Stevens Fisheries Conservation
and Management (MSA, 2007) in the United States.

While MSY has been criticized from multiple angles
(Larkin, 1977), a change in focus, away from MSY as a tar-
get catch state towards a target and limit fishing mortality
rate at MSY (Mace, 2001), has made it one of the main
operational guides for sustainability in global fisheries man-
agement (Worm et al., 2009; Marchal et al., 2016). Indeed,
given difficulties in establishing economic management objec-
tives, MSY emerges as a default fall-back option (Beverton
and Holt, 1993), if not the appropriate economic objective in
itself considering all components of the overall fishing sector
(Christensen, 2010).

One of the main criticisms of MSY is whether it is possible
to take ecological aspects into account (Larkin, 1977; May
et al., 1979; Mace, 2001). Studies highlight the challenge of
achieving MSY simultaneously for cohabiting species (Mack-
inson et al., 2009). There is also indication that single-species
MSY may need to be adapted when ecological interactions
are present—i.e. predation, competition—(May et al., 1979;
Gislason, 1999; Collie and Gislason, 2001). Additionally, the
growing evidence of regime shifts (Vert-pre et al., 2013; Perälä
et al., 2017); and the effect of climate change in fish stocks
(Free et al., 2019) emphasize the presence of non-stationary
population processes, which mean that reference points will
also vary.

The need to adopt a more holistic approach to fisheries
management has been globally accepted (FAO, 2003). Thus,
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the ecosystem approach is included in most fisheries’ inter-
national agreements and policies. Ecosystem-based fisheries
management (EBFM) requires comprehension of the broader
picture (biophysical interactions, biodiversity, food-web struc-
ture, ecological processes, and ecosystem functioning). There-
fore, the science for its operationalization and implementation
is often considered challenging (Cowan et al., 2012; Dolan
et al., 2016). It is crucial to develop reference points as op-
erationally powerful as those currently used in single-species
management advice yet in accordance with ecosystem con-
cerns. There is still no agreement on how to evolve the MSY
concept and what should be considered targets and limits
within EBFM (Rindorf et al., 2017b). The MSY concept ap-
plied correctly might be more useful to EBFM than other data-
demanding methods (Pauly and Froese, 2021).

There is a “gap” between single-species methods that pro-
vide reference points for advice to trigger tactical manage-
ment and ecosystem-based methods that often do not have
clearly defined operative standards for tactical management
(Fogarty, 2014). This gap is difficult to bridge because more
complex models present greater modelling challenges (Quinn,
2008), making the outcomes less suitable for management.
Both methods are needed to support: (a) tactical advice able
to make management decisions in an immediate term and (b)
strategic advice based on the understanding of the system and
the study of ecosystem drivers and their effects. In this arti-
cle, we focus on how to deal with changing ecosystems within
tactical fisheries management. We present a possible bridge to
align stock reference points with ecosystem concerns.

In our opinion, the keystone lies in the static assump-
tions to model recruitment productivity, made in most single-
species reference point estimations, which do not reflect non-
stationary behaviours shown in fish productivity (Peterman et
al., 2000; Minto et al., 2014; Perälä et al., 2017). We briefly re-
view reference point estimation in single-species contexts and
highlight how time-varying approaches provide operational
objectives for management reflective of a dynamic ecosystem.
We believe that the framework for doing this is available, we
provide due recognition to the originators—Professor Ran-
dall Peterman and his group—, and look to challenges and
future developments. We conducted hypothetical numerical
simulations to show the role of temporal variability in stock–
recruitment (SR) relationship parameters and their impact on
reference point estimates. For our example, we chose to ex-
plore the commonly applied Beverton–Holt SR model to com-
plement previous research on non-stationary SR relationships,
which used the linearized Ricker model. Finally, we propose
priority research areas in this field that will improve model
development and application.

Status quo of single-species reference points

Globally, there is broad agreement regarding the concepts
underlying reference points used to assess the status of fish
stocks for management advice. Nevertheless, the interpreta-
tion and application of reference points have evolved and dif-
fered among regions (Ricard et al., 2012; Hilborn, 2020). We
give an overview of the status quo of single-species reference
points, focusing on approaches used in areas with advanced
fisheries management systems: e.g. the United States and Eu-
rope (ICES region). This background provides an entry point
for our arguments regarding Peterman’s productivity method
(PPM).

MSY reference points

Understanding how population productivity varies with abun-
dance is crucial in determining maximal surpluses and thus
defining single-species reference points (Quinn and Deriso,
1999). Reference points are usually expressed in terms of fish-
ing mortality rate (F) and biomass, typically spawning stock
biomass (SSB). The scientific concept of MSY was introduced
with the aggregated Schaefer model (Schaefer, 1954), which
assumes that population growth is density-dependent with a
linear decrease in per-capita rate of population growth with
increasing abundance, resulting in a logistic population model
that is decremented by given catches. The logistic model has
production as a quadratic function of abundance. In Schaefer
surplus production model (Schaefer, 1954), MSY is obtained
at half of the carrying capacity or equilibrium level. Subse-
quently, (Pella and Tomlinson, 1969) proposed an extension
to allow for asymmetric production curves.

For surplus production models, MSY reference points (FMSY

and BMSY) are internally estimated as functions of model pa-
rameters. These methods, also called biomass dynamic mod-
els, focus on population growth and mortality. The produc-
tivity of the stock is modelled with a limited set of parameters
including the intrinsic growth rate and carrying capacity of
the population. Surplus production models are often used for
data-limited stocks because they are less data demanding, al-
though Bouch et al. (2020) highlight estimation challenges
associated with data availability with respect to the stock his-
tory.

Age- or length-structured methods allow the cohorts to be
followed, and so they use data structured in age or length
classes to analyze population changes. These methods provide
a more complete analysis of the stock by following the dy-
namics of individual cohorts. Age- or length-structured meth-
ods contain three basic components: growth, mortality, and
recruitment (Quinn and Deriso, 1999). In addition to age
and length information of the population, the required in-
puts (which may sometimes be estimated) are biological infor-
mation including growth parameters, mortality, and maturity.
Whereas the majority of contemporary data-rich stock assess-
ments use age-structured models, the choice of model type is
usually region-specific (Dichmont et al., 2016). Integrated as-
sessments (Maunder and Punt, 2013), that allow many data
types in a single analysis, are becoming more popular, e.g.
Stock Synthesis SS3 (Methot and Wetzel, 2013) in the west
coast of the United States; as are state–space models such as
SAM (Nielsen and Berg, 2014) in the ICES region.

In age-structured assessments, to estimate MSY, the produc-
tivity and hence yield from a population is modelled as a func-
tion of fishing mortality rate and pattern, and from this, the
relationships of yield to biomass and fishing mortality are de-
rived. The age-based MSY has arisen from fundamental pop-
ulation dynamics models based on per-recruit theory (Bever-
ton and Holt, 1957), and is derived from three relationships
(see example Figure 1): (i) spawning stock biomass per-recruit
(SPR) that models the spawning mass productivity for a given
recruit as a function of fishing mortality SPR(F); (ii) SR rela-
tionship that models the relationship between the number of
recruits to the spawner biomass; and (iii) yield per-recruit that
models the mass removed from the population per-recruit by
fishing. The per-recruit analysis is related to biological vari-
ables (i.e. maturity or fecundity, growth/weight at age, and
natural mortality), fishery parameters (i.e. selectivity), and rate
of removals. In age-structured methods, MSY-based reference
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Figure 1. Reference points (virgin, crash, MSY, and per-recruit proxies) and relationships between SSB and F, recruitment and SSB, yield and F, and Yield
and SSB at equilibrium with fitted Beverton–Holt functional form for North Sea Skagerrak plaice (Plaice in IV); plots modified from output of FLBRP
analysis from FLR package in R (https://flr-project.org/doc/Reference_points_for_fisheries_management_with_FLBRP.html). Grey dots represent data
observations for ICES stock Plaice in IV division at the assessment in 2018 (ICES, 2018b), being 2018 the terminal year and the dots observations in
preceding years.

points were typically estimated externally to the assessment
model. Although integrated assessment methods can estimate
reference points internally as functions of model parameters,
sometimes fixing parameters of the SR relationship.

The relationship between stock size and recruitment defines
the reproductive productivity of the stock and is, therefore,
key to the estimation of non-proxy reference points. Under-
standing the SR relationship is crucial for MSY-based refer-
ence point estimation (Shepherd, 1982; Conn et al., 2010).
The inverse of the equilibrium SPR(F) provides a slope that
intersects with the SR function at the equilibrium level of
recruitment (Figure 1). The most popular functions devel-
oped to understand the SR relationship are: Beverton–Holt
model (Equation (1); Beverton and Holt, 1957), Ricker model
(Ricker, 1954), and hockey-stick segmented regression (Bar-
rowman and Myers, 2000; Mesnil and Rochet, 2010). These
models determine the density-dependent form and hence the
compensation of the stock before recruitment. The parame-
ters of the SR model relate to the reproductive potential of
the stock and the rate at which recruitment changes with in-
creasing eggs or abundance. For example, in the commonly
used Beverton–Holt equation,

R = αSSB
β + SSB

, (1)

where recruitment increases towards an asymptote as spawn-
ing stock increases, α is the maximum number of recruits pro-

duced, and β is the spawning stock needed to produce (on
average) recruitment equal to α/2. The SR relationship is typ-
ically modelled as stationary (parameters are averages across
time) and so assumed constant over time (Hilborn and Wal-
ters, 1992).

Despite its importance, the SR relationship is challenging
to model for many stocks because of insufficient contrast and
a high degree of variability. For stocks where recruitment in-
formation is lacking or there is high recruitment variability,
per-recruit analysis can offer proxies to use as reference points
(Gabriel and Mace, 1999). The validity of per recruit levels as
proxies for MSY reference points is highly dependent on the
life history characteristics of the stock (Mace, 1994). It is rec-
ommended to support the choice of appropriate proxy with
the SR information available (Cadrin 2012). Spawner per-
recruit levels are commonly used as proxies for MSY-based
reference points in the US (Maunder and Deriso, 2014; Wet-
zel and Punt, 2017), where they are developed for individual
stocks and designed to work in a precautionary sense.

Biomass limit reference points

Limit reference points are critically important for defining
HCRs. HCRs are a structured framework for providing sci-
entific management advice (Punt, 2010) and are considered
a key component of the precautionary approach to fisheries
management (FAO, 1995b). In HCRs, biomass limit reference
points are used to indicate the level of biomass below which
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Figure 2. SR relationship of the North Sea and Skagerrak plaice. Left panel shows the relationship between SSB and recruitment with fitted
Beverton–Holt functional form; right panel shows the temporal evolution of residuals of the SR relationship (top), and the relationship between residuals
at year t with residuals at year t+1 (bottom). Dots represent data observations, colour scale represents the assessment year, and the blue line is a gam
model of the residuals with a first-order penalty.

reproductive potential is impacted to avoid recruitment over-
fishing; typically interpreted as the SSB under which recruit-
ment declines. There are several ways to set biomass limit ref-
erence points (Punt et al., 2014b) depending on the HCRs in
which they are to be used. The approach chosen to estimate
biomass limit reference points impacts both the level and the
amount of uncertainty associated (Deurs et al., 2021). In the
United States, a percentage of BMSY is typically used to define
limit biomass reference points. In situations when the SR re-
lationship is not well understood, a fraction of the unfished
biomass (B0) can be used to define the biomass limit refer-
ence point and occasionally also as a proxy for MSY biomass
reference point. In ICES, the key biomass reference point is
Blim, which is defined as the deterministic limit of biomass be-
low which a stock is considered to have reduced reproductive
capacity. This reference point is determined following SR ty-
pology rules that account for how stock biomass relates to
recruitment at the window of data available (ICES, 2017a).
A commonly used biomass limit reference point is the low-
est observed biomass (Bloss) for stocks with no clear relation
between stock and recruitment. The biomass limit reference
point is the basis of all precautionary reference points in the
ICES advice rule used to estimate other precautionary refer-
ence points.

Stochastic MSY

Initial static and deterministic interpretations of equilibrium
MSY were thought to be inappropriate because they ignore
the fact that fish populations fluctuate in abundance (Mace,
2001). Most current MSY interpretations aim to deal with
those dynamics and account for sources of uncertainty. The
processes for taking into account uncertainty in reference
point vary; different methods to assess stocks deal with in-
cluding variance and uncertainty differently (Patterson et al.,
2001; Dichmont et al., 2016).

In assessments, biological information (growth, mortality,
and maturity) vary by age structure and can vary over time
(Methot and Wetzel, 2013; Nielsen and Berg, 2014; Dichmont
et al., 2016). To derive reference points when biological vari-
ables vary over time, a typical approach is to estimate their

average value and account for temporal variability with para-
metric bootstrap or random sampling methods. A temporal
window of biological information time series might be used,
e.g. ICES guidelines state to use a 10-year time window (ICES,
2017a) unless temporal patterns are found, in which case the
time-window is shortened.

Recruitment typically fluctuates considerably, reflecting
that this is often the most variable component in assessments
(Maunder and Thorson, 2019). Complete time series of re-
cruitment are typically used to derive reference points unless
regime shifts are detected. The SR relationship is modelled as
a stationary process with some variability (Figure 2). Fluc-
tuations in recruitment are commonly treated as a random
process (e.g. log-normal) around an assumed relationship be-
tween stock size and recruits. Reference points are based on
the long-term mean SR relationship (fixed parameters of the
functional form chosen), and independent or mean-reverting
autocorrelated process errors. Commonly no process error in
the parameters is incorporated (i.e. process uncertainty of the
model structure reflecting the natural variability of the pro-
cesses affecting the dynamics). The residuals of the fitting fre-
quently have temporal patterns with autocorrelation of resid-
uals sometimes being stronger than the SR relationship itself
(e.g. North Sea and Skagerrak plaice, Figure 2). The stochastic
equilibrium software for MSY modelling has been developed
by ICES to implement stochasticity in reference point estima-
tion (Eqsim, https://github.com/ices-tools-prod/msy). Eqsim
performs random sampling of the biological and fishery vari-
ables and samples from the predictive recruitment distribu-
tion. Simulated autocorrelation in recruitment can be included
if shown to be important. Eqsim can also deal with structural
uncertainty of the SR functional form by applying the averag-
ing of a combination of models (ICES, 2017b).

Simulations of the entire system in Management Strategy
Evaluation frameworks (MSE; Punt et al., 2016) play a key
role in identifying sources of uncertainty and stochastic ele-
ments, and in testing the precautionary criteria (Kell et al.,
2005). In an MSE, the whole management system is mod-
elled in the operating model (reality system or true state) and
the management procedure (perceived state). The MSEs have
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become crucial to evaluate reference points and the perfor-
mance of HCRs relative to agreed management goals (De
Oliveira et al., 2009). Development of MSEs is impacting the
choice of reference points, which to be precautionary must
consider uncertainty in both the science (stock assessment and
reference point estimation) and the management process. A
present focus of MSE is evaluating the ICES precautionary
criteria, specifically, if advised reference points ensure the pop-
ulations are maintained within safe biological limits under
given uncertainties (ICES, 2017a).

Reference points for changing ecosystems

Ecosystems are non-stationary, often presenting complex dy-
namical behaviour (Sugihara et al., 2012; Fogarty et al., 2016).
Globally, the productivity of assessed fish stocks has been ob-
served to fluctuate in a non-stationary manner (Vert-pre et
al., 2013; Perälä et al., 2017; Britten et al., 2017). Changes in
productivity constitute a challenge for defining management
reference points. A major limitation of single-species manage-
ment is that interactions with ecosystem drivers are usually
not accounted for. An important element in transitioning to
EBFM would be to include these ecosystem concerns in the
estimation of single-species reference points. In this section,
we address approaches to deal with changing ecosystems in
the calculation of reference points.

Ecosystem concerns

Tools for EBFM comprise a heterogeneous group of models,
used for multiple objectives (see Geary et al., 2020 for a com-
plete overview on ecosystem models). Each marine ecosystem
has its own features and functional responses with spatial
and temporal scales that are still relatively unknown (Hun-
sicker et al., 2011). Modelling tools that include ecosystem
considerations increase in complexity to incorporate ecolog-
ical interactions, environmental drivers, and human impact
(Collie et al., 2016). When complexity increases it also in-
creases the knowledge needed to build the models, the param-
eters to estimate, and the uncertainty propagated (Hollowed
et al., 2011). Therefore, complexity translates to an increase
in data demand and a potential decrease in predictive abil-
ity (Geary et al., 2020). Despite this, ecosystem models have
developed substantially in the last decades and have proved
fundamental for strategic management advice (Nielsen et al.,
2018), offering a key holistic view of the system (Benson and
Stephenson, 2017). Including ecosystem concerns, while bal-
ancing complexity, e.g. Models of Intermediate Complexity
for Ecosystems (MICE models), helps improve understanding
of the processes and disentangle important ecological compo-
nents (Plagányi et al., 2014). Studies on empirical reference
points from multispecies and ecosystem approaches, i.e. mul-
tispecies MSY (Gislason, 1999; Collie and Gislason, 2001;
Moffitt et al., 2016), aggregate biomass MSY (Gaichas et al.,
2012), ecosystem global MSY (Trenkel, 2018), have shown
intriguing mismatches with single-species reference points. Al-
though generally not used for tactical management, these stud-
ies emphasize that incorporating ecosystem effects does alter
MSY-based reference points.

In the United States, a food web ecosystem model of in-
termediate complexity was used to estimate ecological refer-
ence points for Atlantic Menhaden (Chagaris et al., 2020).
In this way, information on ecosystem drivers and predator–

prey interactions were incorporated into the assessment and
management. To our knowledge, this is the only case where
an ecosystem model was used to set an alternative ecologi-
cal reference point. Additionally, ecosystem model informa-
tion was proposed as guidance within the ICES stock advice
framework. In the EU, where several stocks and fleets share the
same space, reference ranges—developed from the concept of
Pretty Good Yield (Hilborn, 2010)—are used to give flexibil-
ity around fishing mortality at MSY in mixed fishery contexts
(Kempf et al., 2016; Rindorf et al., 2017a). The ICES working
group WKIRISH (ICES, 2020) has suggested that indicators
from an ecosystem model can be used to provide information
on ecosystem conditions and make recommendations regard-
ing where in the precautionary F ranges we should be setting
fishing mortality from an ecosystem point of view, so called
Feco (Bentley et al., 2021; Howell et al., 2021). In these cases,
the ecological drivers selected depend on the stock interaction
with the ecosystem studied.

Incorporation of holistic ecosystem considerations can be
done at the simulation level to evaluate alternative manage-
ment strategies. If there is an ecosystem model developed for
the region, MSE can incorporate that ecosystem model as the
operating model (see Perryman et al., 2021 review). Higher
complexity and descriptive properties of the ecosystem model
as the operating model provides the capacity to evaluate the
performance of an HCR taking into account ecosystem con-
siderations (Lucey et al., 2021). For example, the end-to-end
ecosystem model, Atlantis, has been used in an MSE for the
Southeast Australian fisheries (Fulton et al., 2014).

Inclusion of mechanistic drivers

A huge array of factors (biological interactions, climatic forc-
ing, maternal effects, climate change, and so on) can influ-
ence stock productivity. Inclusion of ecosystem drivers in
an explicit mechanistic way requires a significant expansion
of assessment frameworks to enable a more data and time-
intensive assessment approach (Burgess et al., 2017). These
ecosystem considerations are currently seldom included in
stock assessment or at the HCR level. Skern-Mauritzen et
al. (2016) found a diversity of ecosystem drivers and ap-
proaches based mainly on expert knowledge and specific to
a certain fishery. Most cases were identified among US and
ICES stocks. But in general, these were rarely included in op-
erational management advice. Their inclusion is limited by the
high level of understanding required, and the complexity of
the interactions, relationships, and their stability, which can
be ephemeral (Myers, 1998; Sugihara et al., 2012).

1. Inclusion of trophic interactions. The most typical
trophic interaction included in assessments is the
predator–prey relationship, which can be incorporated
in parameters of natural mortality and growth rate. Pre-
dation mortality rates can be estimated from stomach-
content analysis with multispecies models. Multispecies
dynamic models are extensions of single-species assess-
ment models that integrate trophic predator–prey inter-
actions with the mortality caused by the predator de-
rived from the predator diet data (Trijoulet et al., 2019).
Addition of mechanistic trophic interactions has been
observed to greatly impact reference points (Gislason,
1999; Trijoulet et al., 2020). In some cases, parameter es-
timates from multispecies models are thought to be more
realistic than estimates from single-species approaches
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(Hollowed, 2000). Hence, natural mortality parameters
from multispecies models are occasionally used in stock
assessments. For example, several North Atlantic stocks
assessed by ICES use the natural mortality estimates
from a Stochastic Multi Species model (SMS; Lewy and
Vinther, 2004) in the single-species assessment to provide
management advice (ICES, 2018a). Predation also im-
pacts and can be incorporated into the SR relationship
to help understand trophic interactions in recruitment
dynamics (Swain and Sinclair, 2000; Minto and Worm,
2012; Collie et al., 2013).

2. Inclusion of environmental and ecological variables.
Environmental and ecological variables have shown a
strong impact on population dynamics. Examples of en-
vironmental drivers include temperature (e.g. sea sur-
face temperature), hydrodynamics, precipitation, wind-
mixing energy, North Atlantic Oscillation index, up-
welling index, and river input. Other influential eco-
logical drivers might be zooplankton, chl a (hence pri-
mary productivity), and eutrophication. The environ-
ment is considered to primarily affect recruitment dy-
namics showing relatively rapid responses, especially
for short-lived species (Clausen et al., 2018). Apart
from stock responses to these variables being specific to
species and systems, ecosystems are non-stationary, and
therefore, different states may have different influential
drivers (Skern-Mauritzen et al., 2016). Resulting in the
inclusion of environmental drivers being challenging (see
Crone et al., 2019 for good practices). Including envi-
ronmental variables in the SR model has often failed,
which might be due to non-stationary relationships or
because multiple variables were tested without correct-
ing for multiple tests (Myers, 1998; King et al., 2015).
Besides, the link between SR and environmental drivers
might not be linear (Subbey et al., 2014). Several assess-
ment models can include environmental drivers, but in
practice, their inclusion results in little improvement with
respect to management performance (Punt et al., 2014a;
Haltuch et al., 2019). Therefore, environmental driver
inclusion remains rare and most reference points and
HCRs do not explicitly incorporate those relationships
(Haltuch et al., 2019).

Re-estimation of reference points

Currently, reference points reflect average ecological and envi-
ronmental conditions over the time period of the data. By def-
inition, MSY-based reference points are estimated given pre-
vailing average environmental conditions (MSA, 2007; EC,
2013). Average fishery and population dynamics of a stock
along with environmental conditions are inherently included
in their estimation (integrated in the average SR, growth,
post-recruit mortality, and maturity parameters). The FAO
Fish stock assessment manual establishes that reference points
must be regularly updated, taking into consideration possible
changes in the biological parameters or exploitation patterns
(FAO, 2003). If reference points are not changed once estab-
lished, they will not reflect the dynamic nature of the ecosys-
tem (Kell et al., 2016). Hence, reference points are usually re-
evaluated in the light of environmentally and stock density
induced changes in stock productivity and changes in species
interactions (ICES, 2021a). In theory, the faster the dynam-

ics evolve, the more often reference points would need to be
updated (Burgess et al., 2017).

Typically, reference points are revised with varying regu-
larity. ICES considers reference points to be valid only in the
medium term (5–10 years), and therefore, they should be up-
dated according to new population and fishery information,
and process understanding (ICES, 2021b). During assessment
benchmarks, data and parameters (biological, fishery, and SR
relationship) are revised and observed changes are taken into
account. In the ICES region, reference points have been ob-
served to change frequently impacting the perception of sus-
tainability status (Silvar-Viladomiu et al., 2021). The ICES
working group WKRPCHANGE (ICES, 2021a) identified sev-
eral reference points that are allowed to vary according to
prevailing conditions. In the United States, the National Stan-
dards guidelines state that because MSY is a long-term aver-
age, it does not need to be estimated annually, but should be
re-estimated as required by changes in long-term environmen-
tal or ecological conditions, fishery technological characteris-
tics, or new scientific information (NOAA Fisheries, 2016).
Even so, certain agencies update reference points with each
assessment, e.g. North Pacific Fisheries Management Council
(check SMART tool; NOAA Fisheries, 2021).

In updating reference points, changes in productivity or
regime shifts are generally taken into account by the revi-
sion of the time series used for their derivation. Regime shifts
or trends present can be identified ad hoc or through regime
detection algorithm (e.g. STARS; Rodionov, 2004). Some ap-
proaches to deal with regime-shifts and changes in productiv-
ity are: (i) moving window, which includes modelling recruit-
ment from a specified number of years (King et al., 2015); (ii)
use of a detection algorithm to select the data with which to
base reference points (Punt et al., 2014a); and (iii) tailoring
or truncation of the data series to a temporal window after a
shift has been detected (Szuwalski and Punt, 2013). A com-
mon difficulty, however, is how to decide which time period
to choose as representative of present dynamics. Estimation of
reference points might become unreliable as the time series is
reduced (Deurs et al., 2021). Particularly, where one param-
eter (e.g. density-dependent asymptotic recruitment) may not
be updated at all given recent ranges of the stock but the slope
at the origin might be. Truncating data in this case risks losing
relevant partial information from earlier periods.

Dynamic proxy reference points

A reference point that takes into account shifts in the under-
lying productivity of the stock has been proposed for the vir-
gin biomass. In the United States, where the virgin biomass
reference point is extensively used for HCRs, a time-varying
approach called dynamic virgin biomass was developed—
dynamic B0 (A’Mar et al., 2009; Field et al., 2010). Contrary to
the static virgin biomass, which is an equilibrium-based mea-
sure, dynamic virgin biomass is a reference population state
representing the biomass that would have resulted across time
in the absence of fishing. The dynamic B0 approach uses the
values of the parameters estimated in the assessment to project
the population over time with no fishing, obtaining a time se-
ries of B0. The biomass varies in time because of the estimated
recruitment deviations and time-varying growth and natural
mortality. The population is simulated typically under the as-
sumption of a stationary SR relationship or driven by a sepa-
rable function of environmental drivers and stock size.
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Dynamic B0 is increasingly being used because it can track
population productivity over time if fishing had not occurred
(Punt et al., 2014a), but explicit mechanisms involved in the
change in productivity do not need to be identified. A’Mar
et al. (2009) evaluated a management strategy with dynamic
virgin biomass and showed that management and estima-
tion performance was improved by adjusting the exploitation
rate based on recent recruitment. Dynamic B0 performs bet-
ter than static B0 when stock productivity shifts directionally
(Berger, 2019). The Inter-American Tropical Tuna Commis-
sion (IATTC) recommends the use of dynamic virgin biomass
when trends in productivity or regime shifts are detected
(Maunder and Deriso, 2014).

PPM: dynamic recruitment productivity

Methods capable of modelling dynamic processes and detect-
ing process variation over time are increasingly used (Auger-
Méthé et al., 2021). Dynamic state–space models to fit time-
series data have been implemented both within age-based as-
sessment models (Aeberhard et al., 2018) and for the estima-
tion of population biomass dynamics and productivity (Wal-
ters, 1986; Pella, 1993; Schnute and Richards, 1995; Millar
and Meyer, 2000). State–space models allow simultaneous es-
timation of variability in ecological dynamics and measure-
ments (Thorson and Minto 2015). Several estimation meth-
ods have been developed to fit state–space models: the Kalman
filter and non-linear extensions, ADMB (Automatic Differen-
tiation Model Builder) Laplace and higher-order quadrature
approximations, TMB (Template model Builder) approxima-
tions, EM (Expectation-maximization algorithm), particle fil-
ters, and MCMC (Markov chain Monte Carlo methods). The
well-known Kalman filter is an optimal linear Gaussian es-
timation and forecasting method designed to extract signals
from noisy data.

Peterman et al. (2000) first introduced the use of the
Kalman filter to identify temporal patterns in recruitment pro-
ductivity parameters. This method was built on earlier appli-
cations of the Kalman filter in fisheries (Walters, 1986; Sulli-
van, 1992; Pella, 1993; Gudmundsson, 1994; Schnute, 1994),
though these were not explicitly implemented on SR param-
eters. The entry of new recruits into the population modelled
by the SR relationship is a fundamental part of stock produc-
tivity. Recruitment productivity represents the most important
and largest source of variation in population processes (Quinn
and Collie, 2005). Randall Peterman and colleagues modelled
the SR relationship as a dynamic process by allowing process
variation in the parameter governing recruitment productiv-
ity.

In this article, we assign the term Peterman’s productivity
method (PPM) to estimation, filtering and smoothing meth-
ods, based in the first instance on the Kalman filter, where SR
parameters are part of the dynamic state process, and thus al-
lowed to vary over time (Peterman et al., 2000). The method
enables recruitment productivity to be modelled as a dynamic
process with temporal dimension, by allowing the process sig-
nal to be absorbed by the time-varying parameters. These pa-
rameters track the variability of productivity dynamics and re-
construct estimates of stock productivity in the past, allowing
us to better predict recovery times based on present produc-
tivity (Peterman et al., 2003).

Minto et al. (2014) extended the PPM to a multi-stock set-
ting and studied the variation in the maximum reproductive

rate parameter of the SR relationship for North Atlantic cod
stocks. They showed that recruitment productivity of North
Atlantic cod populations has varied markedly over time and
that populations go through long periods of both high and
low productivity. Multivariate developments on PPM enable
the strength of the correlation between the populations to be
estimated within the model. Thus, providing increased un-
derstanding of the similarity or dissimilarity of productivity
dynamics inter- and intra-species within and across regions.
Tableau et al. (2019) expanded the methodology exploring
links with environmental variables and evaluating differences
between species and areas in the Northwest Atlantic. The
number of estimated parameters were reduced because they
assumed a common signal to noise ratio among stocks. The
multi-stock estimation allows us to disentangle and account
for the different sources of uncertainty (i.e. measurement and
process) and increases the robustness of the estimates even
with limited length of the data time-series. Links with envi-
ronmental drivers can be easily incorporated in the PPM. Nev-
ertheless, prior work found relatively few relationships be-
tween productivity and the selected covariates (Tableau et al.,
2019). Adjacent stocks of the same species exhibited similar
productivity patterns with the strength of covariation declin-
ing over distance, which shows that the method is powerful
for detecting coherent ecological signals rather than tracking
noise.

The PPM enables us to model a stochastic process on some
or all parameters of the SR relationship, and in theory sepa-
rate signal from noise in the recruitment productivity process.
But, how sensitive are management reference points to chang-
ing recruitment productivity? Either the density-dependent or
density-independent parameters, or both, can vary in time and
impact biomass or fishing mortality reference points differ-
ently. To visualize the effects of changes in either parame-
ter in MSY-based reference points, we ran a simulation ex-
ample based on the North Sea and Skagerrak plaice stock.
We projected the stock forward 50 years under a hypothet-
ical random walk on either parameter with a process varia-
tion of 0.2 on the annual deviations and estimated the result-
ing dynamic reference points. We chose a random walk over
an explicit mechanism for illustration. When, in a Beverton–
Holt SR functional form [Equation (1)], the α parameter
varies in time we found that it has a strong impact on the
biomass MSY reference point. Being the maximum recruit-
ment, the α parameter affects mainly density-dependent reg-
ulation of the population (Figure 3a). Time-varying β pa-
rameter, which is mainly related to density-independent pro-
cesses, caused strong impact on the fishing mortality reference
point because it affects the slope at the origin of the SR re-
lationship (Figure 3b). Note that in this common formula-
tion of the Beverton–Holt density-independent and density-
dependent processes are present in both parameters (Bever-
ton and Holt 1957) but dominate as above. Dynamic refer-
ence points estimated with PPM, which incorporate the in-
tegrated signal on recruitment, are fundamentally different
approach to dynamic B0. In dynamic B0, temporal changes
in stock dynamics and underlying productivity are accounted
for by implementing stochasticity through variability in re-
cruitment deviations assuming a static SR relationship. Mod-
elling time-varying SR parameters also differs from projecting
a population forward under a mean-reverting autocorrelated
process that assumes deviations return to the expected static
form.
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Figure 3. Impact on reference points of SR parameter temporal dynamics. Simulated projections of time-varying parameter α (a, left) and parameter β

(b, right); and below the impact in estimated recruitment productivity, and fishing mortality and spawning biomass MSY-based reference points. Black
line represents static reference points. Simulations are based on Plaice in IV data (ICES, 2018b) (ICES, 2018b) with Beverton–Holt SR model, using for
reference point calculation FLBRP from FLR R software (starting values: α0 = 12 633 thousands, β0 = 93 995). Both parameters are allowed to vary
according to a random walk on the log scale with deviations from a normal distribution with mean zero and a standard deviation of 0.2. Colour scale
represents the assessment year.

We show that including time-varying productivity parame-
ters can impact biomass and fishing mortality reference point
estimates. Being able to track these changes in time can
provide substantive improvements when biological or fish-
eries conditions are changing. In which case, estimated ref-
erence points using time-varying SR parameters are less bi-
ased (Holt and Michielsens, 2020). The PPM not only al-
lows us to estimate present productivity and historical trends
but also to capture the underlying change in recruitment pro-
ductivity. These dynamic reference points can be used in har-
vest policies based on dynamic productivity forecasts to pro-
vide catch advice; applications of dynamic HCRs result in
higher catches and reduced risk (Collie et al., 2012) and
are more robust to climate change impacts (Collie et al.,
2021).

The PPM does not explicitly model measurement error in
SSB (Peterman et al., 2003). Although recruitment and SSB are
the best estimates currently available, there is inherent uncer-
tainty associated with them (Brooks and Deroba 2015). This
uncertainty from the previous model can potentially be prop-
agated in the subsequent analysis. Uncertainty propagation
could be implemented by drawing from the estimator of SR
parameters either by assuming multivariate normality using
the estimated Hessian matrix or by using MCMC to sample
from the posterior distribution. It may also be possible to di-
rectly use the covariance matrix in the estimation likelihood
in TMB as a known measurement error component (Thorson
et al., 2015).

Towards a dynamic future

Status quo reference points include stochasticity, yet assume
that fluctuation in biological parameters (growth and mortal-
ity), the SR relationship, and the resulting stock productivity
are centred on a stationary mean at a given harvest rate. Refer-
ence points are subject to updates but regime shifts are notably
difficult to predict and defining time windows can be difficult.
In stochastic implementations of MSY, random variability is
usually added as an error around average expected recruit-
ment; but this is unlikely to completely capture the dynamics
of the process in time (Kell et al., 2016). Marine ecosystems
are not stationary; long-term trends are present, including
those induced by climate change (Szuwalski and Hollowed,
2016). Population dynamics have multiple complex interac-
tions with the ecosystem (top panel Figure 4), and dynamics
thereof (Deyle et al., 2013). Beyond direct influence of envi-
ronmental drivers and direct trophic effects, population dy-
namics are affected indirectly by changes in food-web struc-
ture, composition, and processes within the food-web, e.g.
trophic cascades (Frank et al., 2005; Casini et al., 2008). The
relationship between early life history (recruitment) and stock
size, which has strong influence on population dynamics, has
shown marked variation over time for many stocks (Minto et
al., 2014; Britten et al., 2016; Perälä et al., 2017; Szuwalski
et al., 2019; Tableau et al., 2019). The challenge is to man-
age fisheries to sustainability in light of scientific uncertainty,
natural variability, and changing ecosystems. Current advice
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Figure 4. In reality, many ecosystem drivers influence population dynamics (top panel). We argue that time-varying parameters as available via PPM
provide a bridge between stationary and mechanistic modelling of recruitment productivity.

frameworks may not sufficiently address the dynamic nature
of MSY and reference points (Sissenwine et al., 2014). So far,
pretty good yield ranges have been proposed in the EU to al-
low flexibility around MSY fishing mortality reference points
in mixed fisheries contexts (Rindorf et al., 2017a).

How can we bridge the gap between current MSY reference
points and EBFM? On the one hand, current advice is based on
the assumption that SR is stationary (left bottom panel Figure
4). On the other hand, the dynamics created by the ecosystem
are complex and manifold and so it can be difficult to use di-
rect ecosystem process information to inform management de-
cisions. Mechanistic inclusion of drivers in the SR relationship
(right bottom panel Figure 4) is risky because effects might be
direct or indirect, linear or non-linear, and multiple ecological
factors may interact and vary over time. We argue that mod-
elling dynamic productivity using PPM might bridge the gap
and ultimately reconcile the MSY concept and EBFM (cen-
tre bottom panel Figure 4). Dynamic parameter models have
demonstrated potential to implicitly incorporate the response
of the stock to ecosystem change without specifying the exact
driver or functional mechanism involved (Minto et al., 2014;
Nesslage and Wilberg, 2019). Dynamic parameters applied to
the SR relationship enable estimation of MSY-based reference
points that take into account temporal changes in recruitment
productivity. Several studies have shown that in the presence
of temporal variability in stock productivity, dynamic pro-
cesses should be accounted for to estimate reliable reference
points (Berger, 2019; Mildenberger et al., 2019; Zhang et al.,
2021). Given that productivity is non-stationary, rather than
reference points based on past average productivity, PPM pro-
vides a more informative picture of the present productivity
and its dynamics and therefore enables the estimation of ref-
erence points in tune with the current state of the ecosystem
(Britten et al., 2017; Tableau et al., 2019).

While EBFM comprises broader concerns than recruitment
productivity in fisheries management, we believe that using
PPM has an important role to include the influence of chang-
ing ecosystems on current fish stock management. It would
be very valuable for managers and assessment scientists to
fully understand the ecosystem processes and ecological mech-
anisms causing these dynamics. That is not always possible,
but this should not stop us considering the implications of
these processes, even if they are not completely understood.
The main advantage of this method for immediate applica-
tion in management is that it can be applied without under-
standing the process that caused the change in stock produc-
tivity. Presently, time-varying productivity relationships may
be where we have the greatest opportunity to empirically de-
liver on some of the requirements of EBFM in tactical fisheries
management (Minto et al., 2014). Sustainable harvest depends
critically on compensatory processes such as the SR relation-
ship. Application of PPM in the SR relationship to estimate dy-
namic reference points might be a first step towards account-
ing for changing ecosystems in a MSY management goal. Pre-
vious studies have demonstrated the strengths of PPM in cap-
turing complex dynamics in recruitment productivity, improv-
ing recruitment forecast, and enabling sustainable dynamic
harvest practices (Peterman et al., 2000; Collie et al., 2012;
Minto et al., 2014; Britten et al., 2016; Tableau et al., 2019;
Holt and Michielsens, 2020). Also, reference points from PPM
within HCRs have recently been shown to provide resilience
to climate-induced effects (Collie et al., 2021).

Incorporating ecosystem variability in reference points
could make communication with stakeholders more challeng-
ing. Usually the more complicated the modelling approach the
more difficult it becomes to communicate, particularly when
those lead to a reduction in fishing opportunities. As we de-
velop more complex models we also have to think harder
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about how we communicate these models so that social license
is not lost. It is important to encourage engagement in partic-
ipatory science for management, e.g. stakeholders should be
aware of why it is important to include productivity dynamics.
Social license is not only obtained with simple models, social
license is also obtained by including elements that are relevant
to include. For instance, by not accounting for ecosystem con-
cerns in reference points social license might be removed. The
work developed in WKIrish (ICES, 2020) is an example of
where a more complex understanding of the system improved
social license. In that project, fishers and stakeholders were
recognized as knowledge experts of the system, and so their
understanding of the system was included. By the end, fishers
and stakeholders had a very good understanding of the com-
plex analysis performed.

While PPM has much potential, important issues remain
on how to manage stocks with dynamic reference points. As
to Quo Vadimus—we propose the following four priority re-
search areas to further PPM:

1.Estimability—can time-varying SR parameters be reli-
ably estimated? Does PPM have the ability to detect
change where there is change and reject it where there is
no change? Estimated covariation from independent as-
sessments (Minto et al., 2014; Tableau et al., 2019) sug-
gests that real ecological changes are tracked. But state–
space models are difficult to estimate (Auger-Méthé et
al., 2016), time series length can be constraining, and
some convergence issues were found when both param-
eters of the SR relationships were allowed to vary over
time (Szuwalski et al., 2019).

2.Uncertainty propagation—we use estimated recruitment
and SSB that have associated uncertainties and covaria-
tions (Dickey-Collas et al., 2014; Brooks and Deroba,
2015). We disagree that these outputs should not be
considered “data” (Brooks and Deroba, 2015), how-
ever, as we consider “data” in a broad information con-
text rather than restricted to raw observations. Many
stock assessments use model-derived indices as “data”
input. A main goal of stock assessments is to estimate
abundance state and exploitation rate, often fitting and
tracking independent survey-derived recruitment indices.
We argue that in the context of much ecosystem un-
certainty, estimated recruitment is some of the best in-
formation we have on productivity dynamics. We cer-
tainly need to propagate uncertainty correctly but the
message that these data should only be used with ex-
treme caution could hamper enormous potential for de-
livering on EBFM. With respect to the stock assessment
model, comparisons of external and internally estimated
signals would help guide practitioners. Stock-assessment
free methods, such as (Perälä et al., 2017) also have great
potential to inform the debate on what is signal and what
is post-assessment artifact.

3.What are the consequences of poorly estimated time-
varying reference points vs. well-estimated static rela-
tionships? Juxtaposing the relative risks of managing un-
der the presumption of no change when there is change
and vice versa. So far, estimators of the model quality,
e.g. AIC, have been used to compare time-varying mod-
els and static approaches. Statistical inference for these
models is an active area of research such as prediction
error variance. In addition, time-varying approaches can

be evaluated with MSE or stochastic programming meth-
ods (Collie et al., 2021). Generally, evaluation within
MSE is recommended before using these reference points
to inform management decisions (Holt and Michielsens,
2020).

4.Nature of change—the Kalman filter is restricted to
linear Gaussian processes. Available integration meth-
ods for latent variables such as Laplace approximation
(TMB) or MCMC enable a great variety of stochas-
tic processes (including regimes, hidden Markov states,
HMM filter, extended Kalman filter, unscented Kalman
filter, Kim filter, and continuous processes in non-linear
systems) to be considered and compared. These meth-
ods can be applied to time-varying parameters under
different recruitment model structures (e.g. Beverton–
Holt model). Of particular importance is where change
happens more abruptly than the process expects it to
and takes more time to adjust, essentially the Kalman
filter smooths over an abrupt jump (Peterman et al.,
2000). Perälä et al. (2017) addressed this with a Bayesian
change point model with stationary processes within
each regime. While the nature of the process and estima-
tion method may change we believe that using the term
“Peterman’s productivity method”, applies for all set-
tings where the SR parameters evolve in time and recog-
nizes the originator for a set of methods that will broaden
from the original Kalman filter.

Finally, we note that by using PPM we may gain an un-
derstanding of how productivity has changed, but without
knowledge of the mechanism, we cannot predict where it is
going (in the medium to long term). While we may track pro-
ductivity and manage accordingly, we must recognize the need
for continual mechanistic insights at broader levels to inform
strategic management. All the while, we rest on the feedback
nature of HCRs to compensate for our ignorance (Collie et
al., 2021).
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