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Abstract 

 
 

Pick and place robotic systems can be found in all major industries in order to increase 

throughput and efficiency. But most of the pick-and-place applications in the industry 

today have been designed through hard-coded, static programming approaches. These 

approaches completely lack the element of learning. This requires, in case of any 

modification in the task or environment, reprogramming from scratch is required every 

time.  This thesis targets this particular area and introduces the learning ability in the 

robotic pick-and-place operation which makes the operation more efficient, and 

increases its strength of adaptability. We divide this thesis into three parts. In the first 

part, we focus on learning and carrying out pick and place operations on various objects 

moving on a conveyor belt in a non-visual environment i.e., without using vision 

sensors, using proximity sensors. The problem under consideration is formulated as a 

Markov Decision Process (MDP). and solved by using Reinforcement Learning (RL). 

We train and test both model-free off-policy and on-policy RL algorithms in this 

approach and perform their comparative analysis.  In the second part, we develop a self-

learning deep reinforcement learning-based (DRL) framework for industrial pick-and-

place of regular and irregular-shaped objects tasks in a cluttered environment. We 

design the MDP and solve it by deploying the model-free off-policy Q-learning 

algorithm. We use the pixelwise-parameterization technique in the fully connected 

network (FCN) being used as the Q-function approximator. In the third and main part, 

we extend this vision-based self-supervised DRL-based framework to enable the robotic 

arm to learn and perform prehensile (grasping) and non-prehensile (non-grasping, 

sliding, pushing) manipulations together in sequential manner to improve the efficiency 

and throughput of the pick-and-place task. We design the MDP and solve it by using 

the Deep Q-networks. We consider three robotic manipulations from both prehensile 
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and non-prehensile category and design large network of three FCNs without creating 

any bottleneck situation. The pixel-wise parameterization technique is utilized for Q-

function approximation. We also present the performance comparisons among various 

variants of the framework and very promising test results at varying clutter densities 

across a range of complex scenario test cases.
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Chapter 1 
 

 
 

1 Introduction 
 

 
 

1.1  Background 
 

 
The term ‘Industry 4.0’ emerged around a decade ago and its whole world 

revolved around the aim of automation of the industry [1, p. 0]. It gradually 

introduced the industry to various leading-edge technologies such as Digital Twins, 

Cyber-Physical Systems, and Internet of Things (IoT), etc. The future of this 

industrial revolution has been very well-explained by prominent scholar Warren G. 

Bennis in 2016 [2] when he said that “The factory of the future will have two 

employees: a human and a dog. The task of the human will be to feed the dog. The 

dog will have the task to dissuade the human to touch the automated systems”. 

A common objective of Industry 4.0 is automation through the use of artificial 

intelligence (AI), robotics and the latest novel sensors. With the help of automation, 

the efficiency of the industrial operations can be improved, the operational costs can 

be reduced and the product quality can be enhanced. In addition to these advantages, 

even the safety of the workplace environment can be made better by preventing any 

workplace injuries due to the automation. The robotic automation of any industrial 

process means utilizing robots to perform a certain task that would otherwise be 

performed manually by human labor. A vast range of industrial tasks, ranging from 

simple assembly to complex manufacturing processes, can be performed by the 

robots after programming them. In today’s industry, most of the robotic automation 
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is hard-coded, where the robot is programmed in a static manner to perform tasks 

such as material handling, assembly, packaging etc. without having any ability to 

learn the task dynamically. This lack of learning ability needs the robots to be 

reprogrammed every time in case of any modification in the task. Introducing 

learning ability in these robotic arms is a key research area among the research 

community nowadays in order to avoid the reprogramming overhead in case of any 

changes in the task or working environment.    

The most common and important industrial robotic manipulation is pick-and-

place. A number of robotic solutions are currently deployed in various industries for 

the pick-and-place task. Existing robotic manipulation approaches work with vision 

systems, which with the help of latest sensors, can utilize advanced features such as 

full-color high megapixel resolution, 3D graphical data, etc. to improve the 

manipulation process. However, there are open questions and challenges.  Upon 

detailed literature review and analysis of the application areas, we were able to 

highlight following research gaps: 

 Tackling Non-visual Environments: There are some such industrial 

environments where vision-based sensors are not an option due to 

different factors. These factors can be shortage of installation space or 

high rate of dust or vibrations[3]. In some scenarios, even wash-up from 

the water jets at the scene is one of the major reasons to avoid vision 

sensors[3]. In such environments, learning of the pick-and-place is not an 

easy task. Most of the literature discusses various approaches using 

learning technologies such as deep learning and deep reinforcement 

learning for the pick-and-place operations with the help of vision sensors 

only. The learning algorithms for non-visual environments where some 
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other types of sensors are used such as proximity sensors still need to be 

addressed. 

 Tackling Vision-based Environment without additional overhead: A 

number of approaches have been presented for learning the pick-and-

place tasks in vision-based environment. Most of these approaches 

involve additional overhead due to use of techniques such as 

segmentation and singulation. These techniques were necessary in 

previous approaches because those approaches considered all objects to 

be picked-and-placed individually turn-by-turn. Not much work has been 

done to avoid these additional overheads. Therefore, such algorithms 

need to be designed where an alternate route is taken in a memory 

efficient manner without incurring additional overhead. 

 Learning combination of robotic manipulations for pick-and-place in 

clutter: Literature shows that there a number of robotic manipulations 

such as hand manipulations, grasping, pushing, stacking, target finding, 

dual block-stacking, etc. Grasping is commonly used to perform the pick-

and-place task. But in the case of objects in clutter, grasping alone is 

always not the answer. The learning of sequential combination of 

different robotic manipulations needs to be focused in order to improve 

the pick-and-place the objects in clutter. 

Reinforcement learning (RL) is one of the primary techniques used to enable the 

agent to learn in an interactive environment. As the name suggests, the key goal of an RL 

agent is to learn, which is achieved by discovering a policy through sequential decision-

making while maximizing the expected reward. RL gained vast popularity as it was found 

successful in learning various complex tasks such as playing board games [4] and video 

games [5]. Despite their complexity, RL agents mastered these games by deploying the 
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deep neural networks as function approximators. This utilization of deep neural networks 

in RL framework is known as Deep Reinforcement Learning (DRL).  RL-based 

approaches have been presented in the past to address the learning and performance of 

various robotic manipulations previously such as hand manipulations [6], [7], grasping 

[8], [9], pushing [10], [11], stacking [12], target finding [13], [14] and dual block-stacking 

[11], [15]. This study deals with the use of reinforcement learning to improve the 

performance of pick-and-place robotic manipulation through addressing the open 

challenges identified above.   

 

1.2 Research Question & Contributions 
 

 
The focus of this thesis is to answer the following research question:  

 
 

“Is it possible to improve the performance of vision-based pick and place systems 

through the use of reinforcement learning?” 

 

The question is broken down into the following research objectives: 
 
 

 Study existing state of art pick-and-place systems 

 Develop a reinforcement learning-based algorithm to learn and perform 

the pick-and-place task in a non-visual environment. 

 

 Develop a deep reinforcement learning-based algorithm to learn and 

perform the pick-and-place task in a vision-based environment. 

 

 Develop a deep reinforcement learning-based algorithm to learn and 

perform different robotic manipulations together. 

 

 Document and publish the research findings. 
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The abovementioned research objectives were fulfilled through the following 

contributions of this research thesis.  

 

Contribution I: 
 

 
Development and comparative analysis of RL-based off-policy and on-policy 

temporal difference algorithms for industrial pick-and-place with non-visual 

sensing [16] [17]. 

This presented approach allows the agents to learn the pick-and-place task 

through reinforcement learning in such industrial environments where vision 

sensors are not viable due to certain factors. These factors can be shortage of 

installation space or high rate of dust or vibrations. In some scenarios, even wash-

up from the water jets at the scene is one of the major reasons to avoid vision sensors. 

Most of the previously existing studies in this research area address the pick-and-

place robotic manipulation through vision sensors only.  

Therefore, this proposed algorithm addresses this research gap by enabling the 

agent to learn the pick-and-place task with the help of the ray-type proximity sensors 

instead of the vision sensors. We have trained and tested both off-policy (Q-

learning) and on-policy (SARSA) temporal difference algorithms. The results show 

that Q-learning play better role in our proposed solution. Through this approach, the 

agent successfully learns to select the best suitable XYZ coordinates for the 

operation in accordance with the varying positions, orientations of objects on the 

conveyor belt and random conveyor belt speeds. 

 
Contribution II: 

Development  of  a DRL-based algorithm for industrial pick-and-place of 

regular and irregular shaped objects in clutter with the help of vision sensors 

[18]. 
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This proposed framework enables the agent to learn and perform industrial 

pick-and-place of regular and irregular shaped objects in the clutter. There are 

various existing vision-based pick-and-place studies. But majority of them focus 

on first identifying the objects individually through different segmentation and 

singulation techniques resulting into additional overhead. Some other 

approaches require beforehand geometrical knowledge of the objects or domain 

specific knowledge. Our approach considers the whole workspace as one instead 

of dealing with objects individually using the pixelwise-parameterization 

technique and doesn’t require any sort of beforehand domain specific knowledge 

or any geometrical data about the objects. We utilize the off-policy temporal 

difference Q-learning algorithm in our approach. Instead of dealing each object 

in the clutter individually, with the help of pixelwise-parameterization 

technique, success probabilities (Q-values) are generated for each and every 

pixel of the workspace. In the RL world, these success probabilities are known 

as expected future reward.  This success probability of a pixel means the chances 

of success if the grasping action is carried out at that particular pixel location. 

 
Contribution III: 

 

 
Development of a DRL-based prehensile and non-prehensile robotic 

manipulation framework for industrial pick-and-place of regular and irregular 

objects in the clutter with the help of vision sensors[19]. 

This is an extended framework from our previous DRL-based pick-and-place 

approach. This extended approach enables the agent to learn and perform the 

industrial pick-and-place of regular and irregular shaped objects through sequence 

of prehensile and non-prehensile manipulations with the help of vision sensors. In 

existing literature, some approaches that tend to combine prehensile and non-
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prehensile motion can be witnessed. For instance, in such a way that prehensile 

motion (grasping) is performed during the non-prehensile motion or using non-

prehensile motion (pushing) to move the object to certain locations for already 

known grasping policies. The common limitations of most of these existing 

approaches are their need of beforehand domain specific knowledge such as 

pretrained policies or handcrafted information and their requirement to perceive 

objects individually with the help of segmentation and singulation techniques. We 

address these both limitations with the help of pixelwise-parameterization 

technique as explained before. 

Our approach addresses three actions grasping (prehensile), left-slide (non-

prehensile) and right-slide (non-prehensile) by training three individual end-to-end 

memory-efficient variants of the DenseNet-121 and ResNet-101 for pixelwise 

function approximation together simultaneously. Any approach in the past using 

these networks without proper and comprehensive memory management unlike us, 

suffers from bottleneck situation at the GPU end as it experiences the quadratic 

feature growth with time. Our approach also enables the agents to learn bi-

directional non-prehensile manipulation (left and right) as compared to the 

unidirectional and heuristic dependent previous approaches. 

1.3 Thesis Outline 
 

Part I: 
 

Chapter 2 presents the background knowledge of reinforcement learning and 

robotics in the industries. Section 2.1 presents the background of reinforcement 

learning; Section 2.2 discusses the vital role of robotic arms in the industry; Section 

2.3 presents the background and comparative analysis of the available robotic 

simulators. 
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Chapter 3 consists of 3 sub-sections and describes the works that are highly 

related to the robotic grasping and pick-and-place: Section 3.1 reviews the existing 

works on the model-based robotic grasping schemes; Section 3.2 describes the 

existing works on the model-free robotic grasping schemes; Section 3.3 illustrates 

the prehensile and non-prehensile robotic schemes from the available literature. 

 
Part II: 
 

Chapter 4 (Contribution I) presents a RL-based learning framework for robotic 

pick-and-place in non-visual industrial environment. This chapter addresses our 

objective of developing RL-based off-policy and on-policy algorithms for learning 

and performing the non-visual pick-and-place tasks. The foundation laid in this 

chapter also provides the basis of the vision-based approaches (Chapter 5 and 

Chapter 6) presented in this thesis. 

Chapter 5 (Contribution II) illustrates a DRL-based learning framework for 

robotic pick-and-place of regular and irregular-shaped objects with the help of vision 

sensors in an industrial environment. This chapter addresses our objective of 

developing DRL-based algorithms for learning and performing the vision-based 

pick-and-place tasks. The foundation laid in this chapter also provides the basis of 

the vision-based multiple robotic manipulation (Chapter 6) presented further in this 

thesis.  

Chapter 6 (Contribution III) describes the a DRL-based learning framework for 

robotic pick-and-place of regular and irregular-shaped objects using both prehensile 

and non-prehensile robotics manipulations with the help of vision sensors in an 

industrial environment. This chapter addresses our objective of developing DRL-

based algorithms for learning and performing the vision-based pick-and-place tasks 

by combination of different robotic manipulations. 

Part III: 
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Chapter 7 presents the conclusions and future works.
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Chapter 2 
 

 

2 Technology Overview 
 

 

2.1 Reinforcement Learning 
 

 
The term reinforcement learning emerged in engineering literature for the first 

time in 1960’s. In this area of machine learning, a problem is solved by taking 

sequential decisions through following a policy which is learnt while the process of 

expected reward maximization as shown in Figure 1. Initially, the RL agent observes 

the environment and its current state. Then agent performs one of the actions from 

the available list and ends up in the next state while earning the reward. The key 

point behind this whole practice is to make the agent able to select the optimal action 

every time so that the total accumulated reward is maximized.    

As this life cycle of the agent interacting with its environment continues, this 

forms a stochastic process known as Markov Decision Process (MDP). A MDP 

consists of a tuple (S, A, ẟ, R, γ) [20]. The state space comprising of all the states in 

the environment is represented by S. The list of all available actions is denoted by 

A. When an agent performs an action and ends up in the new state it is called 

transition and the function that controls it is known as transition function and is 

denoted by ẟ.  The rewards earned by the agent while performing actions and 

transitioning from one state to another are controlled by the reward function, 

denoted by R. The last element of the MDP tuple is known as discount factor which 

is represented by γ. The discount factor tells the agent to whether prefer the learning 

of the immediate rewards or the distant rewards in the future by discounting the 



11 

 
 
 

earned rewards. The value of γ is kept between 0 and 1. So that if value is kept at 0 

the agent will turn completely blind to the future rewards and only prefer the 

immediate rewards and vice versa. In nutshell, the RL agent at given state, s ∈ S, 

follows the policy π(s|θµ) and performs an action, a ∈ A, from the available action 

space where θµ represents the policy parameters. Once the action is performed, the 

agent transitions to the new state, s’ ∈ S, with the help of the transition function, s' 

= ẟ(s,a) : SxA→S, while earning a reward r = R(s,a) : SxA→S.  At any given 

timestamp t, the main objective is to maximize the expected return, E (st, at)~π∑t ϒ
t-1 

R(st, at).. 

 
 

2.1.1  Temporal-Difference Learning 

 
One of the key concepts in RL is temporal-difference (TD) learning. TD learning 

can be seen as amalgamation of the ideas from Monte Carlo methods and Dynamic 

Programming (DP). In TD learning, an agent learns from realistic experimentation 

with the environment instead of following a given model such as transition table. 

Therefore, TD learning is known as model-free learning. As it is not bound by any 

model, it is able to facilitate a large number of state-action pairs. The agent learns as 

Figure 1 Reinforcement Learning Cycle 
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it experiences the environment and has no clue about the results of its actions 

beforehand. In TD learning, the agent is allowed to learn at every timestep as the 

updating process is done at every timestep instead of the episode’s completion only. 

With each update the agent adjusts its older estimate as in Equation 1 in [20] : 

�������	
�� ← ������	
�� + ����������
���� − ������	
���                          (1) 

where ��
���� − ������	
��� is known as the ‘target error’. The target is calculated 

in this manner with the help of frequent updating.  

In short, in TD learning, the agent is introduced to the environment without having 

any heuristic about states, actions, rewards, or any model to follow. With each 

interaction with its environment the agent learns, because immediately after each 

interaction it updates its existing knowledge. We usually divide the TD methods into 

two categories off-policy TD methods and on-policy TD methods. 

2.1.1.1   Q-Learning 

 
In 1989, a major breakthrough was made in the field of RL when the off-policy 

model-free TD algorithm Q-learning was developed by Watkins [21]. In this 

algorithm learning is accomplished through performing action selection according 

to another policy. In off-policy algorithms, there is a policy which decides how the 

agent will behave in the environment, what action will be chosen at any state. This 

policy is known as behavior policy. Meanwhile, there is another separate policy 

being evaluated and improved known as estimation policy or target policy.  The 

Bellman equation represents this as follows 

����, 
� = ��� !" + ϒ� !$ + ϒ$� !% + ⋯ |�, 
�                                              (1) 

����, 
� = �() �� + ϒ����*, 
*�|�, 
�                                                               (2) 

 Where E and ϒ denotes the expected return and discount factor. In Q-learning the 

key objective is maximization of the Q-value with the help of policy and value 

iteration. In policy iteration the policy is evaluated and improved in a continuous 
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manner.  In policy evaluation, the greedy policy achieved from the last policy 

improvement is used to estimate the value function V, whereas the policy is updated 

with actions that will increase the V to the maximum level for each state in the policy 

improvement part of the loop. This loop continues until the convergence point is 

reached while all the updates are done through the Bellman equation. With the help 

of the optimal Bellman equation value function v is updated in value iteration, which 

can be stated as  

+∗��� = max
0

� �1 !" + ϒ+∗�� !"�|� = �, 2 = 
�                                             (3) 

 

+∗��� = max
0

∑ �(),4 ��*, �|�, 
��� + ϒ+∗��′��                                                       (4) 

 
 

 

2.1.1.2   SARSA 

 
In 1994, a new variant of existing Q-learning algorithm was introduced by 

Rummery and Niranjan [22]. At that time, it was name as ‘Modified Connectionist 

Q-Learning (MCQ-L)’ and later it was termed as SARSA, being abbreviation of 

state-action-reward-state-action. Actually, SARSA is a model-free on-policy TD 

algorithm. The on-policy TD algorithms such as SARSA have same policy for action 

selection and the policy which is being evaluated and improved at parallel. In other 

words, unlike Q-learning algorithm, the behavior policy and the estimation/target 

policy are same. At any timestep t, the RL agent in state s performs an action a, earns 

reward r and ends up in new state s’ to perform a new action a’. The updation is 

done as follows  

 

��� , 2 � ←  ��� , 2 �+, ϒ�1 !" + ��� !", 2 !"� −  ��� , 2 ��                                        (5) 

 
 

 

2.1.2  Deep Q-Learning 
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As we have seen in previous sections, Q-learning algorithm learns the Q-values 

through the process of trial-and-error. Q-values are initialized, an action is selected 

and performed by the RL agent, reward is received and Q values are update 

accordingly. It is evident that in the start randomness is a big factor but as the cycle 

continues and RL agents thoroughly explore and interact with the environment 

optimal Q-values are achieved. This whole concept is mathematically concluded in 

the form of the Bellman equation.  

This Q-learning practice seems good in a small state space and limited actions 

list scenario. But what if scenario changes and a large state and action space is 

involved? For instance, any game where agent in current state has next possible 

1000 states and 1000 actions to select from. This leads to a transition table of around 

million cells. This state space is still a small one considering complex games such 

as Chess and Go. Moreover, Q-learning cannot help with the unknown states 

because Q-values can’t be calculated from existing states data. So how to tackle 

such scenarios and make Q-learning magic working here?  This is where step into 

a new domain known as Deep Reinforcement Learning (DRL).     

As the name states, DRL is a blend of the deep learning and reinforcement 

learning ideas. As in case of enabling Q-learning for large state space scenarios, 

neural networks from the deep learning domain are borrowed for the approximation 

of Q-value instead of a transition table consisting of millions of cells. The 

implementation of this idea lead to the DeepMind’s Deep Q Learner algorithm, the 

master of Atari games[23]. So, in Deep Q-learning, the Q-value function 

approximation is achieved through the utilization of the neural networks. The neural 

network is fed the current state of the agent and in return it outputs the Q-values for 

all the possible available actions. The action corresponding to the biggest Q-value 

is chosen for execution then. Another beneficial thing to notice here is that the 
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application of neural network in Deep Q—learning is not restricted to fully 

connected networks only instead any kind of network can be utilized such as 

recurrent, convolutional, etc. according to the needs and requirements. The Figure 

2 shows the key difference between simple Q-learning and Deep Q-learning. 

2.2    Industrial Robotic Arms 
 

 

An industrial robotic arm constitutes of several parts where each part has own 

functions and helps other parts working in synchronization. Some parts can be 

mobile, moving from between places with the help of wheels and some parts can 

have gliders allowing them to move overhead from one plane to another. But out of 

all, the most critical element of an industrial robot is the robotic arm. All major work 

is handled by the robotic arm such as pick-and-place, sorting, lifting, welding etc. 

2.2.1 Parameters of Industrial Robotic Arms 

 
Today, around eight key parameters are used to define the industrial robotic arms 

are as follows 

 Number of Axes: This number tells about the flexibility of the robotic 

arm in the terms of movement. It is usually also represented as degree of 

freedom (DOF). Most of the robotic arms have 2 or more axes. Majority 

of robotic arms being used today are 6 DOF or 7 DOF. As the number of 

axes increases, more functionalities can be expected from the robotic 

arm.    

 Working Space: It is the area of the environment of the robotic arm with 

which it can fully interact without risking any kind of collision with any 

object.  
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 Working Envelope: This is the whole space that the robotic occupies 

when it stretches to its maximum ability.  

 Payload: It is the amount of load/weight the robotic arm can process/lift 

without breaking down during the process.  

 Motion Control: Within a particularly defined area of workspace, these 

movements are beforehand designed to operate for instance movement 

through the action of sliding and rotating the joints.  

 Compliance: This measure, upon application of force, defines the angle 

or distance the robotic joint will cover.  

 Repeatability: This measure defines the capacity of the robotic arm to 

perform the same task over and over without compromising the accuracy, 

speed and efficiency of the process. 

 Drive: This is the measure of the power generated by the motor of the 

robotic arm required for performing the tasks. Usually, it has a gear 

Figure 2 Q-learning vs Deep Q-learning 
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system in which one motion sparks the next one, constructed in a 

sophisticated manner leading to harmonious system. 

 

2.2.2  Uses of Industrial Robotic Arms 

 
In today’s industry, the robotic arms deployment is increasing day by day. These 

industrial robotic arms are utilized for a number of functions in manufacturing such 

as follows 

 Material Handling: The pick-and-place automation is a very crucial task 

in the process of manufacturing. The materials can be of large weight or 

may cause danger for humans while handling. It is also to be ensured that 

the whole process of pick-and-place goes completely collision-free. The 

pick-and-place task is a repetitive job and requires a certain speed for this 

repeatability without losing the accuracy. Therefore, the industrial robotic 

arms become the right solution for the task at hand. Robotic arms can be 

seen around various industries moving tons of weight around, which may 

otherwise have required a lot of manpower.  

 Machine Tending: In an assembly line, a number of people are required 

to unload the raw materials for processing required in the assembly line to 

manufacture the final product. This results in huge loss of time and 

wastage of manpower. To tackle this issue, a machine tending robotics 

arm will take over and save much time and manpower without trading off 

the accuracy and efficiency. As the process becomes smooth enough, the 

production process also becomes seamless.  

 Automated Painting: Robotic arms are utilized for painting job because 

human hand fails to create a uniform texture while painting and lacks the 

required smoothness level. For instance, a paint coat on a freshly 
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assembled car, requires optimal quality of action for not only aesthetic 

appeal but also protection against rusting problems. This optimal quality 

can only be ensured by a robotic arm not a human hand.  

 Assembly: Industries such as electronics, aerospace, automotive require a 

lot of assembling things together. Mostly, the parts to be put together are 

quite heavy and prone to error if the whole process relies on humans. For 

such scenarios, assembly line robotic arms are designed. These robotic 

arms have almost negligible margin of error in operation and also have 

ability to manage heavy loads without compromising on the demand of 

speed and accuracy. 

 Automated Welding: In industries such as aerospace and automotive, 

spot and arc welding are the most crucial jobs. With the help of spot and 

arc welding moving machineries like cars etc. are held together in one 

piece. This process of welding involves a high magnitude of heat and 

poses danger to human workers, therefore robotic arms are preferred. In 

manufacturing sector, these welding robotic arms make up more than 50% 

of all the robotic arm jobs.  

2.2.3  Benefits of Industrial Robotic Arms 

 
Within last few years, the robotic arms deployment in industries has increased by 

many folds. This upgradation is not by accident. It is due to the following benefits that 

robotic arms are now swarming in the industry 

 Safety: As the number of the robotic arms increased and the efficiency of 

robotic vision maximized, the number of the accidents in the industry 

decreased much due to less human works involvement. This modern world 

industrial revolution also leads to less chances of being sued and paying 
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huge amounts to an injured human worker. This degree of safety of 

industrial plants is expected to rise more as more advanced robotics arms 

are coming into play.   

 Speed: Satisfying the customer demand is not an easy task now a days. The 

consumption rates all around the globe are going sky, putting serious dent 

to the supply potentials. The industrial manufacturers require new 

techniques to increase the production without bargaining in the quality. The 

high-speed robotic arms are the right solution. Their factor of repeatability 

at faster rates makes them a valuable addition to the setup and at the same 

time also fails the human workers to compete.  

 Consistency: In manufacturing industry, quality control is of crucial 

importance. Raw materials being procured day by day from different 

sources may vary from each other, but it is manufacturer’s responsibility to 

even out any such variations so that the quality of finished products remain 

high. For such keen perfection, robotic arms are the best option. Their 

repeatability factor provides identical production feature leading to 

consistency and no fluctuations among different batches of the same 

product.  

 Accuracy: When robotic arms are relied upon for manufacturing, there is 

almost zero room for error left as opposed to error-prone production by 

human workforce. These robotics arms are fully programmable and repeat 

the task over and over using same procedures and techniques without 

compromising at all on the quality. This leads to the perfect accuracy score 

practically and also increased customer appreciation when they get 

identical fully accurate products available to them.   
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 Increased Production: Once you combine the factors of safety, speed, 

consistency and accuracy the resultant factor you get is is increased 

productivity. All the delaying factors common in human workforces are 

successfully avoided and uninterrupted unsupervised work supply is made 

possible by deploying industrial robotic arms. The amount of work 

expected from a number of human workers in number of days is delivered 

within hours by the robotic arms. This high production is critical for 

meeting up with the high demands of market.  

 Delicate Roles: In industries such as electronics, medical and 

pharmaceutical, industry cannot take chance to tarnish their reputation by 

producing defective items because along with their brand reputation, many 

lives are also at stake. For the production of extremely sensitive and 

delicate parts such as electricals parts, sensors or miniaturized medical 

materials, the industry cannot not rely on human workforce. For this level 

of work, only highly specialized robotic arms can be trusted.    

 Flexibility: One of the key benefits of the robotic arms is their flexibility. 

Doesn’t matter how specialized they are made, still one can reprogram 

them at any degree, even completely from scratch for a new role in the 

same industry. This quality kills the redundancy factor, making a robotic 

arm available for various roles throughout its lifespan of years and years. 

 Collaborative: In those areas of industry, where human labor involvement 

is still required, they are made to work alongside the robotic arms. Such 

industrial robotic arms are known as collaborative robotic arms. 

Collaborative robotic arms have shown that they can increases the 

workability among the human labor and are safe to work with. This 
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environment of collaborative robots working among human labor also 

addresses the fears of humans’ jobs loss due to automation of industries. 

  

2.3    Robotic Physics Simulators 
 

 

The robotics research is quite dependent on the physics simulators. These 

simulators are considered as a right place for testing the built theoretical models and 

frameworks without requiring the real physical robotics which can be rare, 

expensive and fragile in nature. The physics simulators instead provide cheap virtual 

environment where tester can design testbed of their own choice and interact with 

the robots. Moreover, simulations prove to be much faster than actual physical 

testing, can be run parallel or reset in no time unlike the real-world testing setups. 

A robotic physics simulator of today can be defined as a software application 

designed for the end-user having following features 

 Includes physics engine which aids in physical phenomenon modelling 

 Includes a Graphical User Interface (GUI) 

 Includes the ability to import any meshes and 3D scenes 

 Includes 3D models of robots and availability of joints, actuators, sensors 

 Includes collision detection mechanisms and friction modules 

 Includes APIs for various programming languages such as Python/C++ 

etc. 

Generally, the robotic simulators can be divided into different categories on the 

basis of their field of application. These categories include mobile robotics, marine 

robotics, medical robotics, aerial robotics, general manipulation and soft robotics, 

etc. A number of physics simulators fall under these categories designed specially 

to address the specific needs according to the respective field.  
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But here we discuss the simulators designed to help the feature of learning in the 

robotics. Within the last decade, learning in robotics have become a hot research 

area for the whole scientific community in the world. Majority of the RL 

algorithms suffer from the sample inefficiency problem and may have large state 

space and action space. While exploring such state spaces the real robots are 

vulnerable to execution failure or physical damage during the process. Therefore, 

most of the RL and DRL research works are initiated from physics simulators and 

then later transferred to the real robots. These learning practices can be introduced 

in any field which involves robotics. For instance, learning can be introduced in 

soft robotics. In such case, the respective simulator should not only be able to do 

the policy learning but also manage the soft contact ability while dealing with the 

materials. 

There is a very famous framework for RL algorithms training and evaluation 

known as OpenAI Gym [24]. It usually provides it readymade environments in a 

simulator called MuJoCo which are generally considered for comparing 

performance of the new RL algorithms [25]–[27]. MuJoCo [28] is a simulator well-

known in research for its ability of stable contact. The major disadvantage of 

MuJoCo is the absence of support for inverse kinematics and motion/path planning 

features. OpenAI Gym supports a number of other simulators too making them 

effective for the learning tasks. Gazebo [29] is one of these popular simulators 

being used in wide range of robotic applications including manipulations, mobile 

legged and wheeled robots. It provides the Robot Operating System (ROS) 

interface which makes the testing process easier in terms of control and also 

enables its transition from the simulator to the actual robot in a smooth manner. It 

also has an integrated library of inertial measurement unit (IMU), GPS and vision 

sensors. In Gazebo one can also import robotic models through Universal Robot 
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Description Format (URDF) files and external environments from various digital 

models, OpenStreetMap and SDF meshes. This simulator can run simulation for 

multiple robots at a time. There is a downside in a manner that it lacks the 

motion/path planning module but thanks to the ROS integration, ROS path 

planners can be utilized for the motion/path planning tasks. 

Another popular simulator like Gazebo is called CoppeliaSim which was 

previously known as V-REP[30]. Same like Gazebo it has wide range of 

application such as manipulation, mobile robotics, aerial robotics, etc. It is also 

classified as a rigid-body simulator, means it can support multiple robots at same 

time. It has a large built-in library of robotic models and numerous sensors such as 

camera, visual sensors, stereo camera, event camera, 2d/3d laser, accelerometer, 

gyro, GPS, etc. The motion/path planning functionality is provided in this 

simulator through the OMPL library. It also provides the support for forward and 

inverse kinematics functionality. Built-in APIs for python/C++ languages and 

ROS supporting modules add a lot to the overall functionality of the simulator. 

Webots is an open-source simulation application which has a wide range of sensors 

available in it such as cameras, GPS, LIDARS, accelerometers, IMU, radars, etc. 

A variety of environments, sensors and robotic models are available in this 

simulator. Maps importing can also be done in this simulator through the 

openDrive format. Included environments can be made more realistic through 

bringing in data from OpenStreetMap. One of these simulators is the Pybullet 

simulator [31]. Pybullet simulator is used in robotics research revolving around 

object collisions, deformable objects manipulation, pick and grasp dynamic, etc. 

Its key features helping the researchers include its support for forward and inverse 

kinematics, virtual reality functionality and RL environments. Raisim [32] is 

another physics simulator developed by ETH Zurich. It is not a as rich as other 
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simulator in terms of features but still it has played an important role in the 

development of high-fidelity contact dynamics models which are crucial for 

transition of controllers from simulation to the real-world.  

In the field of robotic learning, there a number of parameters which play vital role 

in making simulators adequate for learning the tasks. These parameters usually 

include external force application on the robot, force sensors, RGBD & LiDAR 

sensors, availability of different physics engines, and realistic rendering abilities. 

A generalized comparison of these robotic simulators in terms of learning is given 

in Table I. 

Table I Comparison of robotic simulators 

Simulator 

Name 

External 

Forces 

Force 

Sensor 

RGBD  

LiDAR  

Physics 

Engines 

Variety 

Realistic 

Rendering  

MuJoCo � � � � � 

Gazebo � � � � � 

CoppeliaSim � � � � � 

Webots � � � � � 

Pybullet � � � � � 

Raisim � � � � �  

2.4  Summary 
 

RL algorithms are being used in the engineering domain since early 1960’s. An 

agent is trained through a rewarding scheme in order to learn the optimal policy 

for optimal action selection. In RL domain, a sub-domain is known as TD 

learning. In TD learning, an agent is made to learn from realistic experimentation 
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with the environment instead of following a given model such as transition table. 

Therefore, TD learning is known as model-free learning. As it is not bound by 

any model, it is able to facilitate a large number of state-action pairs. TD 

algorithms can be classified into on-policy (SARSA) and off-policy (Q-learning) 

algorithms. For complex problems with large state spaces, Deep Q-learning is 

used where a neural network is utilized for Q-values approximation.  

Industrial robotic arms are increasing day by day now. They are being used to 

perform a number of functionalities such as material handling, machine tending, 

automated painting, assembly, automated welding, etc. These are the complex 

problems that we can make our robotic arms learn through the different learning 

technologies such as RL and DRL. For such learning practices, a number of 

physics simulators are now available such as Gazebo, CoppeliaSim PyBullets, 

MuJoCo, Raisim, Webots etc. These simulators have numerous sensors available 

in them along with multiple physics engines. Many other features such as 

motion/path planning, forward/inverse kinematics, collision detection/avoidance 

etc. are loaded in most of these simulators.  

In this thesis, we tend to make our RL and DRL agents learn manipulation tasks 

i.e. pick-and-place of industrial robotic arms by training and evaluating them in 

physics simulator.  
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Chapter 3 
 

 

3 Literature Review 
 

 
 

The deployment of robotic arms in industry has led to a number of benefits such 

as safety, speed, consistency, accuracy, increased production, flexibility, human-

robot collaboration, etc. Many different robotic pick-and-place approaches have 

been proposed so far. This chapter aims to present a comprehensive overview of the 

various robotic pick-and-place approaches in the existing literature. 

These robotic grasping approaches can be classified according to different logical 

criteria. A first criterion , generalization, classifies robotic pick-and-place 

approaches as either analytic/geometric [33] or data-driven/empirical methods [34]. 

The analytic or geometric approaches are those in which first the geometrical shape 

of the object is analyzed in order to identify suitable grasping poses. Whereas, the 

data-driven or empirical approaches are the ones dependent on machine learning 

algorithms. These data-driven approaches have gained much hype in last few years. 

These data-driven approaches have shown more progress as there have been 

advances in the algorithms and computational resources along with the recent rise 

in data availability. In this chapter, we also focus more on the data-driven/empirical 

approaches instead of the old analytical methods.       

A second categorization of robotic pick-and-place approaches is as model-

based and model-free. The model-based and model-free pick-and-place approaches 

can be differentiated on the basis of utilization of previously known information 

about the objects. If the approach already possesses and exploits some specific 

information about the objects under consideration such as a CAD model or some 



27 

 
 
 

other model in order to gain the required results, it is known as model-based 

approach. On the contrary, if no specific information about the objects is utilized 

for gaining the required results, it is known as a model-free approach. Usually the 

model-based approaches first perform the pose estimation process for grasping and 

then place the object. Whereas, in the model-free approaches direct grasp candidates 

are proposed for the grasping and then generalization can be achieved for the novel 

objects.    

A third criterion that can be adopted for categorization of the model-driven 

robotic pick-and-place approaches can be the type of machine learning an approach 

involves such as reinforcement learning, supervised deep learning, etc. The data can 

be manually annotated by humans or self-annotation can be achieved where 

automatic label generation is done. Such approaches can be further classified into 

two classes. In first type, known as discriminative approaches.  the grasping 

candidates are sampled initially and then fed to a neural network which outputs the 

ranking list [35], [36]. Whereas, in the later one, known as generative approaches, 

direct generation of eligible and suitable grasping poses is done [37], [38]. The 

approaches can also be differentiated on the basis of their training environment i.e., 

simulation, real-world or both. Some approaches may work in open-loop manner 

and some in closed-loop manner [39]–[41]. If feedback is taken and utilized to 

perform the correction of the trajectory of the robotic arm it is known as open-loop 

approach, and if no feedback is involved it is known as closed-loop approach. If 

continuous visual feedback is utilized it is known as visual servoing [41]. The 

approaches can also be differentiated on the basis of hardware such as gripper type 

i.e., suction, two-finger or three finger gripper or degree of freedom such as 4DOF 

or 6DOF. Some approaches can target pick-and-place of individually lying single 

object whereas some may consider multiple objects packed in a clutter. In the same 
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manner, some approaches can be about directly grasping the object for the pick-and-

place but some approaches can also perform some pre-grasping manipulations in 

order to get better chance at the grasping.    

 

3.1    Model-based Robotic Grasping 
 

 
Usually a model-based robotic grasping approach has three phases. In the first 

and second phase object pose and grasp pose estimation are done respectively. In 

third phase a collision-free kinematic path planning is done to grasp the object [42], 

[43]. This first part of estimating the rotation and translation of multiple objects in 

the workspace relative to frame of reference such as the camera is very crucial to 

the whole task. There are number of different factors which make this part difficult 

such as variations in light conditions, noise in sensors data, clutters and obstructions, 

and novel objects in the real world. Moreover, another issue to address is the 

ambiguities in the poses due to different symmetries of the objects [44]–[47]. These 

varying symmetries lead to different annotations even for same identical 

observations.   

Until the system performance reaches such a satisfactory level where it becomes 

adaptable to the novel objects, the approaches require object-specific knowledge in 

large amount [48]. The required object-specific knowledge includes the template 

parameters, and to achieve the pose estimation the feature matching method is also 

required [49], [50]. The defining and tuning of grasp poses in the real-world 

scenarios is also required [43]. Therefore, the model-based approaches target to 

reduce the manual input and get automatic configurations without requiring any 

tunings to be made by experts so that transition to novel objects can be achieved 

rapidly.    
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In autonomous robotic manipulation, 6D pose estimation is the process in which 

the object’s 6D pose stating its location and orientation is required. In order to 

benefit from the supervised learning technique in 6D pose estimation large amount 

of labelled data is mandatory for the training phase. The process of gathering large 

dataset of 6D poses of objects and then annotating them is a very time consuming 

and difficult process along with having the scalability issues [51]. This issue is 

usually addressed by working with simulations as there is plenty of synthetic data 

availability in simulations and the annotations are also automatically available as 

the ground truth. Later on various transfer techniques are available to perform the 

transition from simulations to the real-world [52], [53].   

In last few years, most of the approaches for 6D pose estimation have been based 

on the utilization of the convolutional neural networks (CNN). Some of these 

approaches resolve the 6D pose estimation task using regression [52], [54], [55] 

whereas other approaches perform the discretization and classification of the pose 

space respectively [56], [57]. An approach, known as deep object pose estimation 

(DOPE) [53], first takes a RGB image as input, create 3D bounding boxes of the 

objects, acquire 2D image coordinates of those objects and then deploy a 

perspective-n-point (PnP) algorithm [58] for 6D pose estimation for each single 

object. This whole DOPE model is completely trained in simulations on synthetic 

data and later its transition from simulated world to real-world is achieved through 

photorealistic rendering technique along with the domain randomization [59].  

For the fair comparison and transparent evaluation of state-of-the-art pose 

estimation approaches the benchmarking systems [60] and relevant challenges [61], 

[62] play a very vital role. The task of pose estimation of multiple objects in a clutter 

is a challenging problem and requires much focus. This scenario is usually 

experienced in industrial pick-and-place from bin scenarios as the clutter forms 



30 

 
 
 

obstruction in the pose estimation task. Such a bin-picking challenge was organized 

during IROS 2019 [62] where a very huge dataset of labelled 6D object poses from 

both simulated and real-world was used for training purposes [51]. For the 

evaluation of the approaches to the challenge, metrics presented by Brégier et al. 

[45], [47] were deployed which consider all objects having visibility more than 50% 

and is accounted for all the object symmetries.  

Most of the learning-based approaches are able to learn the plausible object pose 

configurations, therefore prove to be potentially successful to the obstructions and 

occlusions due to clutters. The challenge mentioned above was won by an approach 

named PPR-Net [54]. The PPR-Net approach works at the point cloud level. It 

deploys a feature learning technique known as PointNet++ [63] for the pose 

estimation of each point in the point cloud and later finalize the pose estimation after 

performing the clustering and then averaging each cluster. An approach better than 

PPR-Net in terms of precision was presented in [52] where the pose estimation task 

was taken as regression task on the noisy dataset from [45]. This approach proved 

to be much faster as compared to the PPR-Net because it doesn’t need any kind of 

post processing and provides very firm parameterization. This approach performs 

the discretization and regression of the 3D space and pose respectively. One of the 

major advantages of learning-based pose estimation techniques is that no manual 

parameter tuning is needed for the novel objects [49], [50]. Another advantage is 

that they can be purely trained only on synthetic data through physics engine 

simulators, for instance placing objects in random positions and orientations in a bin 

for bin-picking [51] or placing objects anywhere in scene for normal pick-and-place 

[53].  

3.2    Model-free Robotic Grasping 
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The model-free approaches for robotic grasping have become very popular in 

recent years. The reason these model-free approaches have become the center of 

research community’s attention is their power of generalization which allows them 

to entertain the unseen objects. The key factor behind growth of this particular area 

in robotic grasping domain is the zero requirement of object-specific knowledge. As 

there is no object-specific knowledge involved, there is no pose estimation phase 

involved which is completely opposite to the mode-based robotic grasping 

techniques. The model-free approaches mostly successfully adapt to the unknown 

novel objects and are trained in an end-to-end manner. Therefore, these approaches 

are well-suited to the pick-and-place tasks.  

 
 

3.2.1  Supervised Learning Approaches 

 
These are those robotic grasping learning-based approaches in which non-linear 

learning is achieved through the labelled/annotated training data. In this category of 

robotic learning, we can further classify approaches into classes known as 

discriminative or generative approaches. The differentiation between the 

discriminative approaches and generative approaches is based upon the fact that 

grasp configuration is being considered as input of the algorithm or being generated 

as the output of the algorithm. 

 

3.2.1.1  Discriminative Approaches 

 
In the discriminative approaches, initially sampling is performed on the grasping 

candidates, for instance using the cross entropy method (CEM) [64] and then they 

are ranked in order with the help of a neural network. The final grasping candidate 
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selected for the execution of robotic grasp is the one that scores the highest. These 

approaches usually don’t play very well in terms of duration, as for identifying the 

high-quality grasp candidates multiple forward passes of the neural networks are to 

be executed on the runtime. However, these approaches still prove their worth by 

evaluating a number of grasps because there are no limitations due to not being 

restricted to the discretization of grasp space only. Moreover, for the betterment of 

the grasping success rate, a refinement method can also be defined on the basis of 

gradient [65].  

Another learning-based approach was introduced in 2016 by Levine et al. [66] 

which focused on the hand-eye coordination in the robotic grasping. In this study, 

within a time period of two months, 14 robotic arms were deployed to gather labels 

for around 800,000 grasping candidates. First a grasping candidate is given to the 

trained CNN and then the current state of the bin in the form of a RGB image, and 

then the CNN as results predicts the success rate of the particular grasping candidate 

in that particular state of bin. And in the next stage it helps to servo the gripper 

accordingly for a successful grasp. This approach proves its worth by showing its 

learning capability but also lacks in a way that if there are any hardware 

modifications, the CNN requires a new dataset to be gathered for the retraining 

purpose. As stated above, it took two months to gather the dataset for training of the 

CNN, therefore this shortcoming can lead to a repetitive hectic and tedious process.  

An approach known as Dex-Net [35], [67] was proposed in which objects place 

on a plane in random poses were grasped in a simulated environment. The success 

label of the grasping candidate along with a cropped depth image of the location of 

the grasping is entered as an entry in the dataset. The CNN in this approach known 

as Grasp Quality Convolutional Neural Network (GQ-CNN) is trained on this 

dataset. After being trained, grasping candidate and the depth images are provided 
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to the GQ-CNN which outputs the success rate of the grasping candidate as result. 

Moreover, it also generalizes to new rigid or flexible objects which were unknown 

during the training phase. Authors have extended the same Dex-Net frameworks to 

dual-arm robot [68] and the robotic arm with suction grippers [36] too. In extension 

to dual arm robot, one arm has suction gripper and the other one has parallel jaw 

gripper. Now the algorithm learns to use which arm in order to successfully pick the 

whole clutter in the bin. Moreover, another study [69] presents a fully convolutional 

network (FCN) system in order to generate successful grasp candidates in a cost-

effective manner so that the costly procedures of sampling and ranking the grasping 

candidates can be avoided. 

 

3.2.1.2  Generative Approaches 

 
The generative approaches are those approaches where grasp candidate is the 

output of the algorithm. In this approach, one technique is known as robotic grasp 

detection. In this technique the potential grasping candidates for parallel jaw 

grippers are proposed through the detection of rectangles [70] in the RGB image. In 

this rectangle detection all parameters such as width of open gripper, location and 

orientation of the object are considered. However, a downside to this approach is 

that it is simply copy of object detection techniques [71]–[73] with an additional 

parameter of gripper orientation.  

In order to address the scenario of the grasping of an individual object in a plane, 

a system was proposed by Redmon et al. [38] in 2015. This system was named 

SingleGrasp system. This system was capable of taking a RGB-D image as an input 

and then generating oriented rectangle for grasping candidate and also performing 

the classification of the object as the output with the utilization of a neural network. 
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Afterwards, another system named MultiGrasp was also proposed which used to 

generate more than one poses for grasping of the object as in the real-world it is 

possible to grasp an object in various ways. This idea of multi-grasping is the one 

which laid the basis of You Only Look Once (YOLO) object detection technique 

[71], [73]. A learning-based study [74] presented by Lenz et al. in 2015 comprises 

of two-stage technique where in the first stage sampling of grasping candidates is 

performed and in the second stage these grasping candidates are ranked with the 

help of another neural network.  The study shows that this approach can be utilized 

for the real-world scenarios. The performance and success rate of such approaches 

can be enhanced and increased through the deployment of more sophisticated and 

efficient neural networks [39].   

An open-source dataset known as Cornell grasping dataset [75] is available for 

the robotic grasping. This dataset covers around 280 objects. It has around 1035 

images with manually annotated human grasps. But as the dataset is small in size, 

therefore heavy expansion is required to get satisfactory results [38]. On the other 

hand, there is also a large dataset for robotic grasping known as Jacquard dataset 

[76] which contains more than 50,000 images of more than 11,000 different objects 

and their grasping poses have been gathered from simulations. Due to large volume 

of samples, accurate grasping poses collected from simulation and large variety of 

objects the degree generalization to unseen and novel objects is high.  

With the help open-source public datasets, Generative Grasping Convolutional 

Neural Network (GG-CNN) approach [37], [77] has been proposed which not only 

generate the grasping candidate but also the estimation for all the pixels of the RGB 

image with the help of fully convolutional network (FCN) architecture. As the FCN 

designed is small in size and demand low computation resources, this approach is 

very suitable for closed-loop grasping in non-static or dynamic scenarios. Moreover, 
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this proposed approach has the training part done on individual isolated images but 

still it is capable to work in clutter scenarios because the operation of convolution 

is completely local.   

There is an approach [78] proposed by Zeng et al. in 2019 in which the robotic 

arm learns to throw various objects to given locations in order to enhances the 

reachability factor of the robotic arm. This approach is named as TossingBot where 

an end-to-end system is proposed through which the parameters of grasping and 

throwing are learnt together from images of the bin in trial-and-error fashion. In this 

manner, the system gradually learns in self-supervision mode the grasping poses 

which result in effective throwing. For the throwing part, simplification is achieve 

through only predicting the value of release velocity. A physics engine is used for 

the estimation of the release velocity and further adjustment tuning is done through 

the neural network.  

The generative approaches are considered faster than the discriminative 

approaches because they only require a single forward pass of the neural network 

unlike the discriminative approaches. Moreover, they mostly provide multiple 

grasping candidates and the one with the optimal quality is then finalized by the 

robotic arm for the execution of robotic grasp. 

 

3.2.2  RL-based Approaches 

 
The deep reinforcement learning (DRL) branch has recently produced promising 

techniques for learning policies in the trial-and-error fashion. Through these DRL-based 

techniques, the raw data from the variety of sensors such as RGB images, depth images 

etc. can lead to learning and performing complex behaviors.    

In clutter-based scenarios, rearranging the objects in order to enhance the grasping 

chances, shifting or pushing as pre-grasp robotic manipulations [79], [80] is very 
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important. RL-based approaches [79], [80] have been use to learn policies which not only 

learn the pre-grasp manipulations leading to better grasping opportunities but also exhibit 

the generalization property to deal with novel objects. But these approaches attempt to 

utilize complex FCNs but lack in proper memory management thus leading to bottleneck 

situations.   

A comparison study of RL-based robotic grasping techniques has been done in [81]. The 

QT-Opt approach [82] presented in 2018 involves a number of robotic manipulations 

schemes and also possess the ability to deal with any disturbances dynamically. The 

reward scheme is simply 1 and 0 for any successful or failed grasping operation 

respectively.  Their close-loop grasping framework is similar to the other approaches 

presented before [66], [83], [84]. The success rate of grasping unseen objects through this 

approach has been recorded at 96% after utilizing around 800 hours of 7 robots in the total 

time of four months.  

An approach known as Grasping in the Wild [85] has also been proposed which learns 

from the human demonstration and performs closed-loop 6D robotic grasping on even 

moving objects but with some speed factor restrictions. Some other RL-based approaches 

[86], [87] have also been proposed which use RL framework and rewarding scheme for 

category level pick-and-place, meaning the geometric knowledge of the class is already 

supplied to the framework and then other unseen objects from same classes are grasped 

through learning. But these approaches lack in multiple ways such as extensive training 

time requirement, around 12 hours for each class and failure to recognize the actual class 

of the object in the clutter comprising of the unseen objects from multiple classes.  

 

3.3   Prehensile & Non-Prehensile Robotic Manipulation  
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As discussed in the beginning of this chapter, there can be different criteria for 

categorization of robotic manipulation approaches. One of these criteria can be the 

types of robotic manipulations. We can divide the robotic manipulations into two 

categories the prehensile and the non-prehensile robotic manipulations. The 

prehensile manipulations are those which involve grasping and the non-prehensile 

manipulations are those which involve non-grasping motions such as pushing, 

shifting, sliding etc. In this section, we will discuss approaches focusing prehensile, 

non-prehensile and combination of these both robotic manipulations for the pick-and-

place task.   

There have been a number of grasping approaches presented previously. Some of 

these early approaches have been model-based and purely analytical in nature. These 

approaches involve modeling and measurement of contact forces and their resistance 

factor against externally applied wrenches [88], [89]. Whereas, some other 

approaches use the ability of restricting motion of an object for the ranking of 

grasping poses [90]. The general flow of such approaches’ implementation in real-

world scenarios is through using beforehand generated grasp configurations from any 

3D object database [91] and afterwards ranking them with point cloud to achieve the 

object pose estimation [92], [93]. But as evident from the description, these 

approaches and techniques require object-specific knowledge such as dynamics, 

poses, shapes, orientations, contact points, etc. This requirement of object-specific 

knowledge restricts the application of these approaches in the case of unseen and 

novel objects in environments not known before.     

In recent years, research community has focused on model-free data-driven or 

empirical approaches more. These approaches learn grasping policies to identify 

grasping opportunities on the basis of visual features instead of requiring any object-

specific such as dynamics, poses, shapes, etc.  [35], [38], [94]–[97]. In [97] pre-
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trained models have deployed for enhancing the overall performance. These models 

have been trained beforehand on various other tasks such as poking etc. In  [94] the 

utilization of FCNs has been shown for learning of policies with the help of  

affordances.  

Like prehensile manipulation, the non-prehensile manipulation such as pushing is 

also studied for decades. There have been various model-based analytical 

approaches. Some approaches tend to model the dynamics of non-prehensile 

manipulation involving the forces of friction [98], [99]. Most of these modeling 

approaches seem strong theoretically, but they don’t hold their ground in practical 

scenarios [100], [101]. As the friction factor is variable because it not uniformly 

distributed across the plane it can cause serious error in prediction through these 

friction modeling systems in the real-world scenarios. Like the prehensile 

manipulation research, in recent years some data-driven approaches have been 

proposed for the pushing of the objects but most of the approaches follow the 

principle of dealing one object at a time [102]–[104]. Tackling more complex 

scenarios such as clutter situation and variable friction issue in real-world systems is 

still a factor need to be addressed in these data-driven approaches.     

Another direction of robotic manipulation can be the combination or amalgamation 

of the prehensile and non-prehensile robotic manipulation for the pick-and-place 

tasks. This area of research is definitely an interesting one but still has much room 

for exploration because it has not been center of focus much yet. An approach 

presented in [105] proposes a framework which performs push-grasping i.e. pushing 

while grasping the object. This benefits in two ways, first it increases the probability 

of successful grasping through minimizing any uncertainties with pushing and 

secondly it also equips the system with an additional skill of sweeping which is 

helpful for rearranging the objects in the clutter. A downside to this approach is that 
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their policies are mostly handcrafted which pushes it in the domain of 

analytical/geometric methods requiring object and domain-specific knowledge. 

    There are some model-free approaches [106], [107] too which focus on 

performing such pushes so the objects end up at such locations which are considered 

favorite for the success of pre-designed handcrafted grasping operations. These 

beforehand known locations are used to train the pushing policies. Now if we try to 

design this approach as a model-driven approach it doesn’t make much sense as the 

policies continuously keep on changing and constant learning is achieved.  

 An RL-based approach proposed by Boularias et al. [108] perform training of its 

policies through RL so that they can choose whether to grasp or push objects in the 

clutter according to the manually handcrafted features. In this technique, first the state 

of the workplace received from the vision sensor in RGB format is segmented for 

identification of the objects. Once objects are identified, then multiple prehensile and 

non-prehensile manipulations options are sampled for each individual object. For 

each of these multiple manipulation options handcrafted features are generated and 

then the manipulation option with the highest expected reward is executed finally. 

One major limitation of this approach is that it is only suitable for convex objects. 

Another downside to this technique is that it requires beforehand handcrafted 

knowledge in case of non-prehensile manipulation such as the motion prediction once 

an object is pushed. For these predictions system is dependent on the simulator and 

the effect of this non-prehensile manipulation on the prehensile manipulation coming 

in future is also required to be known beforehand.  

3.4    Summary 
 

In the current available literature regarding pick-and-place and robotic grasping 

various analytical and data-driven approaches have been presented so far. In recent 
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years, the research community has been more focused on data-driven/empirical 

methods. Data-driven methods can also be called the learning-based methods 

because they are based on the principle of utilizing machine learning for learning 

the robotic grasping skills. The model-based data-driven approaches revolve around 

the object pose estimation function. These approaches have limitations such as pose 

ambiguities due to multiple object symmetries and these techniques become useless 

in scenarios where object-specific knowledge such as geometric knowledge is 

unavailable because object pose estimation require object-specific knowledge 

beforehand.     

Therefore, the model-free robotic grasping approaches are more popular because 

they don’t have object pose estimation function, so they don’t need object-specific 

information. Both the discriminative and generative approaches utilize supervised 

learning and are considered attractive due to their ability to generalize to unseen 

object effectively. But these both approaches suffer from limitation of requiring 

large annotated datasets for training. These large datasets require a lot of hard work 

and months of patience for building. Moreover, any hardware changes can nullify 

the whole previous training effort and require fresh training on a newly collected 

dataset. Moreover, the discriminative approaches have also been proven not time-

efficient because they require multiple forward passes of the neural network for 

identifying optimal grasps.  

Most of the RL-based approaches also suffer from limitation of requiring 

manually handcrafted features during the process. Mostly these approaches focus on 

the objects in workspace individually which requires them utilization of techniques 

such as segmentation, singulation etc., thus incurring addition overhead. Any 

approaches which reduce the additional overhead by considering the whole 

workspace as a single entity, suffer from poor memory management while deploying 
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complex neural network architectures, ending up in a bottleneck situation and 

choking hardware resources such as GPU.   

The following chapters of this thesis present learning frameworks which address 

not only these all limitations in vision-based robotic pick-and-place environments 

but also the non-visual robotic grasping environment learning which has not been 

focused before. The proposed data-driven learning-based frameworks make agents 

learn and perform the pick-and-place task in both vision-based and non-visual 

industrial setups, thus improving the efficiency and throughput of the pick and place 

system.
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Chapter 4 

4 RL-based Pick-and-Place Framework with Non-Visual 

Sensing 
 
 
 

4.1    Introduction 
 

 
This chapter presents a RL-based learning framework for robotic pick-and-

place in non-visual industrial environment. This chapter addresses our 

objective of developing RL-based algorithms for learning and performing the 

non-visual pick-and-place tasks. The foundation laid in this chapter also 

provides the basis of the vision-based approaches (Chapter 5 and Chapter 6) 

presented in this thesis.   

The industrial machine vision systems have played a very importation role in 

revolutionizing the industry. This evolution of vision systems led to various 

technological features such as full-color megapixel resolution, 3D graphical data, 

etc. Normally an industrial machine vision system is constituted of various modules 

such as lightning module, lens, capture board/sensor, processor and a 

communication module. Despite this advancement in industrial vision systems, still 

there are some scenarios which are considered not suitable for their deployment. At 

some occasions the high cost of the vision system becomes a hurdle whereas in some 

instances the installation space requirement causes the problem because only few 

centimeters are available at the site[3]. In some industrial setups, high vibrations or 

maximum dust factor also restrict the usage of vision systems[3]. In some scenarios 

even the washup from the water jets becomes the reason of avoiding the industrial 

machine vision systems[3].  
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All the existing learning-based approaches in the relevant literature discussed in 

Chapter 3 target only the vision system-based scenarios. One can witness a clearly 

visible research gap in the area of learning-based approaches for the non-visual 

scenarios. Therefore, this approach presented in this chapter, aims to develop a 

learning-based RL framework for the industrial pick-and-place task without 

involving the visions sensors. In this our designed framework, the vision sensors are 

replaced by the proximity sensors as our non-visual aid.        

4.2    Problem Scenario 
 

 

The approach presented in this chapter considers the problem of pick-and-

place in a smart production line. In this smart production line, a number of 

variable-shaped objects are being placed and moved on a running conveyor belt 

in different positions and orientations. The speed of the conveyor belt can change 

randomly during the process. If the speed of the conveyor belt becomes fast, 

obviously the objects will move at faster pace and if the speed of the conveyor 

belt become slow, the objects will move at slower pace. At one end of the 

conveyor belt, which is considered as the workspace, proximity sensors are 

installed which detect the object upon arrival and transmit signal to the robotic 

arm letting it know that the object has reached the workspace for being picked-

and-placed at the designated location. Once the robotic arm receives the signal 

from the proximity sensor, it attempts to grasp the object and place it at the 

designated location. In this way, we target to train and test such RL agents which 

can learn and perform the pick-and-place of different objects at random positions, 

orientations and conveyor belt speeds. 

4.3    MDP Design 
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As this chapter proposes an approach in which the robotic arm learns to pick-and-

place objects moving on the conveyor belt to the designated location. The objects 

moving on the belt can be at different alignment-wise positions such as left-aligned, 

center-aligned and right-aligned. The speed of the conveyor belt can also vary during 

the process such as slow speed, medium speed and fast speed. The objects under 

consideration are solid shapes such as cuboids, cylinders and spheres. This whole 

scene with variable-shaped objects at different positions can be seen in the Figure 3. 

To resolve any task at hand through RL, we need to develop and design its Markov 

Decision Process (MDP). The five elements of a MDP have been discussed before 

in the Chapter 2. This our pick-and-place can be transformed into an MDP. The five 

key elements of our designed MDP are as follows 

 State (s: C, N, G, speed, position, path) where the C represents any of 

the manually handcrafted XYZ coordinates according to the nature of 

the action; the N depicts the nature of the action which can be pre-pick, 

pick or place; the G is the potential grasping pose from the predesigned 

Figure 3 Conveyor belt scene 
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set; speed tells about the pace with which the object is moving on the 

conveyor belt i.e. slow, medium, fast; position represents the 

alignment of the object moving on the conveyor belt i.e. left-aligned, 

center-aligned, right-aligned; path represent the set of path points 

calculated last time from the initial position to pre-pick position, or 

from pre-pick to pick position, which are actually the XYZ coordinates 

represented by C, if any.  

 Action (C, N, G, path) where the C represents any of the manually 

handcrafted XYZ coordinates according to the nature of the action; the 

N depicts the nature of the action which can be pre-pick, pick or place; 

the G is the potential grasping pose from the predesigned set; path 

represent the set of path points calculated last time from the initial 

position to pre-pick position, or from pre-pick to pick position, which 

are actually the XYZ coordinates represented by C, if any.  

 Reward (R) where R represents the reward value. The agent is 

awarded reward 1 upon the accomplishment of the pick-and-place 

task. The agent gets 0.5 reward if the grasping is done successfully 

but placement has been failed. In the case of failing whole task, the 

grasping and placement both, 0 is given as reward to the agent. In 

some schemes, bonus and negatives rewards have also been tried to 

experiment with the learning ability of the agents. 

 Transition Function (ẟ) where ẟ denotes the transition function which 

is actually a stochastic function keeping track of the transitions of the 

agents from state to state in the environment – but this problem is being 

designed as a model-free RL problem therefore here the transition 

function will be discovered through trial-and-error method [109].  
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 Discount Factor (γ) where γ represents the discount factor and is kept 

between 0 and 1 in order to increase the importance of the future 

rewards and make the agents learn at faster pace. 

 

The MDP formulation of our task as stated above is then implemented through both 

off-policy and on-policy TD algorithms, as explained in the Chapter 2, which will be 

discussed in the further sections of this chapter. 

4.4    General Approach  
 

 
For gaining better pace of learning, we define the pick-and-place task in a 

modular fashion. The major part of our pick-and-place task is the grasping part. The 

grasping part in our approach consists of two subparts. The first subpart is to move 

the robotic arm gripper to the 3D coordinate near to the object, and then the other 

subpart is to move from this 3D coordinate to the object for grasping through 

following a linear path. These two sets of 3D coordinates, first which will bring the 

robotic arm near the objects, and second which lets the robotic arms go for grasping 

the object through a linear path, are manually handcrafted. For each combination of 

randomly varying factors like position, speed, shape, some 3D coordinates will be 

optimal and some will be worst.  

In this our proposed approach, we divide the whole task of pick-and-place into 

four phases. The first phase is known as the ‘Initial Phase’. The ‘Initial Phase’, as 

evident from the name, is the beginning phase where the robotic arm is waiting at 

standby to receive the signal from the ray-type proximity sensors installed at the 

workspace end of the conveyor belt. The signal transmitting from the proximity 

sensors not only convey the status of arrival of the object in workspace but also the 

alignment position and speed of the conveyor belt. Once the wait is over and 

proximity sensor emits the signal upon detecting the object in the workplace, the 
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second phase starts. The second phase is known as the ‘Pre-Pick Phase’. In this 

second phase, the agent selects the 3D coordinates from the first set of manually 

handcrafted pre-pick coordinates, and then calculates the path through motion 

planning module to make the end-effector reach that chosen pre-pick 3D coordinates 

(near to the object). Once the end-effector reaches the chosen pre-pick 3D 

coordinates, the approach enters the third phase known as the ‘Grasp & Pick Phase’. 

In this phase, with the end-effector currently at pre-pick coordinates, the agent goes 

forward and selects the 3D coordinates from the second set for the grasping. Once 

the selection is done, the linear path is calculated through the motion planning 

module from the pre-pick 3D coordinates to this freshly selected grasp 3D 

coordinates. One the end-effector reaches the grasp coordinates the gripper performs 

the grasping.   

The visualization of the manually handcrafted two 3D coordinates sets, pre-pick 

and grasping, is shown in Figure 4. Each ball-like instance is actually a unique 3D 

XYZ coordinate. The coordinates on the left, being shown in three adjacent lines, 

are the potential pre-pick coordinates. The coordinates on the right, being shown in 

a single line, are the potential grasping coordinates. This arrangement of coordinate 

being shown is only for describing the concept of positions of coordinates, the real 

accurate positions and number of coordinates in the testbed settings may differ. Now 

according to the Figure 4, the agent first selects the red coordinate from the pre-pick 

3D coordinates set. So, the agent calculates the path and reaches the red pre-pick 

coordinate. Afterwards, in the next phase, the agent selects the green grasp 

coordinate from the grasp 3D coordinates set, and the linear path is calculated from 

the red pre-pick coordinate to the green grasp coordinate and then the grasping is 

attempted.  

After the grasping attempt, the cycle enters the last phase known as the ‘Place 

Phase’. In this phase, with the object inside the closed gripper, path is calculated to 
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the designated placement 3D coordinates and after reaching the placement location 

gripper is opened to place the object. And then the loop reiterates from the start 

again. This whole cycle of our approach consisting of four phases is shown in the 

Figure 5. The motion planning part involved in all the four phases will be briefed 

later on in this chapter.  

The rewards are awarded to the agent on the basis of the success status of the 

grasping and the placement. The agent is awarded reward 1 upon the 

accomplishment of the pick-and-place task. The agent gets 0.5 reward if the 

grasping is done successfully but placement has been failed. In the case of failing 

whole task, the grasping and placement both, 0 is given as reward to the agent. In 

some schemes, bonus and negatives rewards have also been tried to experiment with 

the learning ability of the agents. These schemes allowed additional rewards for 

selecting the hand-marked optimal coordinates and negative rewards for failing the 

pick-and-place task completely. The results of these different rewarding schemes 

have also been compared and presented in the results section in this chapter.  

Figure 4 Pre-pick and Pick 3D coordinates 
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The main idea behind designing the MDP for this episodic pick-and-place task is 

to make the agents learn optimal policy through trial-and-error for the maximization 

of the future discounted reward. 

     � = � + 6� !" + 6$� !$ … 689"�8                                                                            (1)       

 

This designed MDP is implemented, trained and tested through both the off-

policy and the on-policy TD algorithms. For off-policy, Q-learning algorithm and 

for on-policy, SARSA algorithms have been utilized, which have been 

individually discussed in detail in Chapter 2. In the next section, we will briefly 

compare them for better understanding.  

4.4.1  Q-Learning vs SARSA 

 
This our proposed approach demonstrates the comparison of off-policy Q-

learning and on-policy SARSA TD algorithms. It is important to understand the 

key differences between the two. In off-policy TD algorithms such as Q-learning 

the agent learns the optimal policy while working with two separate policies. The 

agent interacts with the environment according to the behavior policy but at the 

same time updating and evaluation is done to the estimation/target policy. 

Through this method, without even deploying the actual greedy policy, the Q-

Figure 5 Phase cycle of the non-visual approach 
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learning algorithm learns to estimate expected reward and update value of 

expected new state [20]. On the contrary, in the on-policy TD algorithms, the 

behavior policy and the estimation/target policy are same, which means that the 

policy being used to interact with the environment is the same policy which will 

be updated. The agent follows the same policy throughout in order to converge 

[20].   

The pseudocodes of Q-learning and SARSA algorithm upon examination give 

away the key differences between two [110]. A major difference between the Q-

learning and SARSA algorithms is the way they both update the Q-values in their 

Q-table. In the Q-learning algorithm, the agent performs the updating by choosing 

the optimal action available in the new state which the agent has transitioned to. 

But in the SARSA algorithm, the action selection is done through following the 

same policy. Therefore, in SARSA algorithm, the action selection is not optimal 

always. If there are some unwanted or undesired states in the environment, the 

SARSA algorithm may end up the agent in them as the action selection is not 

optimal always. Due to this vulnerability, SARSA plays safely by following such 

a pattern which can reduce the risks of transition to an undesired state. On the other 

hand, the Q-learning algorithm doesn’t take this possibility of landing in undesired 

stated into consideration, and performs the action selection completely based on 

the Q-values in the Q-tables which have been updated through optimal action 

selection always. These contradicting behaviors of the both Q-learning and 

SARSA algorithms can be easily witnessed by examining their application on the 

popular cliff-walking problem [20]. 

4.4.2  Motion Planning Module 

 
Today in the field of robotics, a number of motion planner control solutions are 

available. For our proposed approach, different motion planning libraires and 
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frameworks were considered and reviewed such as Trajpot [111] and OpenRave 

[112]. Among all other considered option, Open Motion Planning Library 

(OMPL) [113] proved to be the most appropriate option due to its maximum 

degree of customization allowance. In OMPL, multiple control-based planners 

and geometric planners are available. Some of the popular sampling-based 

planners available in OMPL are Expansive Space Trees (EST), Single-query Bi-

Direction Lazzy (SBL), Probabilistic Roadmap Method (PRM), Rapidly-

exploring Random Trees (RRT), etc. The OMPL’s planner deployed in our 

approach is a single-query planner. It is known as RRT-Connect [114], which 

happens to be a bi-directional variant of the Rapidly-exploring Random Tree 

(RRT) planner. The main idea of a RRT-Connect planner is to create two RRTs, 

where one is located at the start point and the other one is located at the end point, 

and then connect both. Utilizing two RRTs simultaneously is the reason behind 

its ability to outperform the basic RRT planner.  

4.4.3  Simulation Environment 

 
We have discussed a number of physics engine-based robotic simulators in 

detail in the Chapter 2. Every simulator has its own advantages and disadvantages 

and it may be suitable for particular tasks only. According to our task requirement 

and resources, the Virtual Robot Experimentation Platform (V-REP) proved to be 

the most suitable one. The V-REP is actually a 3D robotic simulator which 

involves the integrated support for development and coding [30]. It is equipped 

with multiple physics engines such as ODE and Bullet variants in order to achieve 

the real-time emulation of all the objects during the simulations. The availability 

of multiple APIs and the functionalities such as threaded/non-threaded Lua 

scripting enables the V-REP to develop cross-platform application through 

combining platforms such as Python, C++, Java, etc. With the help of the python-
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based API, it was possible for us to create a python-based RL agent which was 

able to interact with the environment inside the V-REP being controlled through 

the Lua scripts. 

V-REP also provides the Forward and Inverse Kinematics calculation module. 

In Forward kinematics, joint parameters are supplied as input to the kinematics 

equations and the position of the end-effector is calculated as the output. On the 

contrary, in the Inverse kinematics, the required position of the end-effector is 

supplied as input and the joint parameters are calculated as the output [115].  

Another importation module of V-REP utilized in this approach is the collision-

detection and collision-avoidance module which detects and avoids any possible 

collision of the robotic arms with the environment. In our experimentation trials, 

we used the JACO robotic arm which is a 6 degree-of-freedom (DOF) robotic 

arm. For the grasping part, we attached a RG2 gripper to our JACO robotic arm. 

The grasping poses of our JACO robotic arm with RG2 gripper from our approach 

are shown in the Figure 6.   

4.5    Experimental Results & Discussion  
 

 

We trained and tested both RL agents, one with the off-policy Q-

learning TD algorithm implementation and the other with on-policy SARSA TD 

algorithm in our designed environment in V-REP simulator. Our experimental 

trials of training and testing are divided into two categories for better and clear 

assessment of the learning abilities and performance of our both Q-learning and 

SARSA agents. These categories are explained in detail in next sections.      

4.5.1  Individual Object Category Training & Testing 

 
In this category of experimentation, we trained and tested the learning 

performance of both Q-learning and SARSA agents separately for all three object 
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shapes we described earlier i.e., cuboid, cylinder and sphere. For more complex 

training and evaluation these individual categories were combined too which will 

be explained in the next section. In this section we discuss the performance of the 

both RL agents over individual object category.  

For each object category, we trained and evaluated the performance of both Q-

learning and SARSA agents for each of the object alignment settings and the 

conveyor belt speed settings separately. As described in previous sections, we 

designed three object alignment settings i.e., left-aligned, center-aligned and right 

aligned, and also three conveyor belt speed settings i.e., slow, medium and fast, in 

our framework. Table I shows the success rate of our off-policy Q-learning agent’s 

pick-and-place for each object category at each alignment option at a slow speed 

conveyor belt. In the same manner, Table II and III show the success rate of our 

off-policy Q-learning agent’s pick-and-place for each object category at each 

alignment option at medium and fast speed conveyor belts respectively.   

Figure 6 Grasping poses of JACO robotic arm 
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Table II   Q-Learning Agent’s Success Rate (%) At Slow Speed 

Object 

Category 

Training Performance Testing Performance 

Left Center Right Left Center Right 

Cuboid 89% 95% 91% 95% 99% 96% 

Cylinder 92% 91% 88% 94% 93% 93% 

Sphere 83% 88% 85% 92% 95% 91% 

 

 

 
Table III   Q-Learning Agent’s Success Rate (%) At Medium Speed 

Object 

Category 

Training Performance Testing Performance 

Left Center Right Left Center Right 

Cuboid 91% 93% 93% 96% 98% 96% 

Cylinder 89% 94% 90% 96% 99% 97% 

Sphere 84% 90% 87% 93% 94% 94% 

 
Table IV   Q-Learning Agent’s Success Rate (%) At Fast Speed 

Object 

Category 

Training Performance Testing Performance 

Left Center Right Left Center Right 

Cuboid 91% 95% 96% 97% 99% 95% 

Cylinder 93% 91% 90% 95% 95% 96% 

Sphere 78% 83% 85% 90% 91% 93% 

 

The testing results shown in Table I, II and III clearly indicate that the Q-learning 

agent has successfully exercised its ability to learn the optimal 3D coordinates for 

each object position alignment and conveyor belt speed option in all three object 

categories. Multiple inferences and conclusions can be drawn from these results 

such as that the Q-learning agent has struggled more in the learning of the pick-and-

place task for the sphere object category as compared to other two categories. This 

struggle is more visible in fast speed conveyor belt results but remains true for all 

speed options. 

Another observation which can be made seeing the testing results is that the Q-

learning agent has shown its best performance for all the object categories when 

they were center-aligned at medium speed as compared to other position and speed 

options. This means that the agent was most successful in identifying and learning 
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the optimal and accurate 3D coordinates and grasping poses for all center-aligned 

objects coming at medium speed. It clearly shows the level of efficient learning 

achieved by the Q-learning agent in the training phase.    

Table IV, V and VI show the success rate of our on-policy SARSA agent’s pick-

and-place for each object category at each alignment option at slow, medium and 

fast speed conveyor belts respectively.  

Table V   SARSA Agent’s Success Rate (%) At Slow Speed 

Object 

Category 

Training Performance Testing Performance 

Left Center Right Left Center Right 

Cuboid 83% 81% 80% 82% 82% 80% 

Cylinder 82% 80% 78% 80% 81% 78% 

Sphere 80% 79% 79% 78% 79% 77% 

 
Table VI   SARSA Agent’s Success Rate (%) At Medium Speed 

Object 

Category 

Training Performance Testing Performance 

Left Center Right Left Center Right 

Cuboid 81% 78% 75% 79% 77% 73% 

Cylinder 80% 78% 76% 78% 80% 77% 

Sphere 77% 77% 73% 78% 77% 72% 

 
Table VII  SARSA Agent’s Success Rate (%) At Fast Speed 

Object 

Category 

Training Performance Testing Performance 

Left Center Right Left Center Right 

Cuboid 79% 78% 72% 78% 78% 71% 

Cylinder 77% 78% 73% 78% 77% 72% 

Sphere 75% 72% 71% 76% 71% 69% 

 

These results confirm that our SARSA agent has also managed to gain learning 

of 3D coordinates for each object position alignment and conveyor belt speed option 

in all three object categories. However, the overall performance results of our 

SARSA agent have been lower as compared to our Q-learning agent results. A 

performance deterioration trend can also be seen in the SARSA agent results as the 

speed of the conveyor belt increases. This down trend means that the lacking and 

inefficiency in the learning of the optimal 3D coordinates of the agent was directly 

proportional to the magnitude of the conveyor belt’s speed. As much speed 
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increased that much learning decreased. Same as the Q-learning agent, the SARSA 

agent also suffered in performance with the spherical objects. The results also 

determine that SARSA agent did more justice to left-aligned and center-aligned 

objects at all the speeds as compared to the right-aligned objects.  

 

4.5.2  Random Objects Training & Testing  

 
In the previous section, we saw training and testing performance of all object 

categories individually at all position alignment and speed options separately. In this 

section, we take a step ahead and do performance evaluation of both Q-learning and 

SARSA agents by running episodes of random shape objects at random alignment 

positions and random conveyor belt speeds. From the training perspective, this 

random setting means that in first iteration of the episode agent has to pick-and-place 

a center-aligned cuboid object at medium speed, but in the very next iteration there 

could a right-aligned spherical object at fast speed and in the third iteration 

completely random options again. Both Q-learning and SARSA agents once trained 

in this random setting manner, are evaluated through specifically designed 5 test 

cases separately with 50 iterations in each. In test case 1, random objects at random 

speed are managed but it is made sure that each alignment position gets around one 

third of these random objects. In test case 2, random objects at random alignment 

positions are produced but it is made sure that each speed option gets around one 

third of these random objects. In test cases 3, 4 and 5 we keep the alignment positions 

and conveyor belt speeds completely random but at least 40% of the objects are 

cuboid, sphere and cylinder respectively. The testing view can be seen in the Figure 

7. Table VII shows the performance results of these abovementioned test cases.  

Table VIII  Random Test-Cases Success Rate (%) 

Test Case 
Q-Learning Agent’s 

Success Rate           

SARSA Agent’s 

Success Rate           

Test Case 1 93% 
82% 
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Test Case 
Q-Learning Agent’s 

Success Rate           

SARSA Agent’s 

Success Rate           

Test Case 2 95% 
81% 

Test Case 3 99% 
80% 

Test Case 4 83% 
77% 

Test Case 5 97% 
81% 

 

According to the random testing results, the average success rate of our Q-learning 

agent is around 93%.  The Q-learning agent managed to perform well in all test cases 

except the test case 4. The agent struggled to perform in the test case 4 as compared 

to other test cases because this test case contained large portion of spherical objects 

i.e., more than 40%. This lack in performance was also visible in the results of sphere 

objects category in the individual object categories testing. On the other hand, the 

SARSA agent’s average success rate was recorded around 80% and its least scoring 

test case was also test case 4 like the Q-learning agent. In overall performance 

Figure 7 Testing Scene of non-visual approach 
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comparison, it is clearly evident that the Q-learning agent outperformed the SARSA 

agent in the random testing too. SARSA was outperformed because of different 

reasons such as its failure to perform at higher speeds of the conveyor belt and failing 

to learn optimal 3D coordinates for the right-aligned objects.  

We have also compared the training performance of the Q-learning and SARSA 

agents. As described above, in this random training the agents experience the pick-

and-place of random shape objects at random alignment positions and random 

conveyor belt speeds. In the Figure 8 the success rate of both agents is plotted against 

the total training steps, which are 3000. The plotted graph clearly shows that the Q-

learning agent, in orange, completely outperformed the SARSA agent in blue. In the 

beginning, SARSA agent seemed better performing than Q-learning agent. Maybe it 

was because SARSA agent was preferring exploitation over exploration at that time 

but afterwards the scenario completely changed. 

 

 

4.5.3  Reward Scheme Variations  

 
As we discussed previously in this chapter, the rewards are awarded to the agent 

on the basis of the success status of the grasping and the placement. The agent is 

awarded reward 1 upon the accomplishment of the pick-and-place task. The agent 

Figure 8 Performance comparison of SARSA and Q-learning agents 
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gets 0.5 reward if the grasping is done successfully but placement has been failed. 

In the case of failing whole task, the grasping and placement both, 0 is given as 

reward to the agent.    

In order to enhance the learning abilities of agent and witness the role of 

rewarding scheme, we also trained variants of Q-learning and SARSA agents. These 

variants implement negative reinforcement learning and bonus rewarding. In 

negative reinforcement learning, the agent is awarded -1 instead of 0 upon failing the 

pick-and-place task completely and in bonus rewards, the agent is awarded an 

additional reward of 1 for choosing some selective manually identified optimal 3D 

coordinates. Figure 9 and Figure 10 present the performance comparison of the Q-

learning agent and SARSA agent with normal reward scheme and their variants with 

negative and bonus reward scheme respectively when trained for the same number 

of training steps. In both graphs, the blue line depicts the performance of normal 

reward scheme and the orange line presents the performance of the negative 

reinforcement learning and bonus reward scheme. In the Q-learning agent’s case, the 

negative and bonus reward scheme variant has performed better than the normal 

reward scheme. But on the contrary, the SARSA agent’s both variants, normal one 

Figure 9 Performance comparison of Q-learning normal reward scheme 

agent and negative reward scheme agent 
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and negative one, have not much difference in overall performance. This analysis 

tells us that Q-learning agent’s learning ability was increased when it was introduced 

to negative and bonus reward scheme, but SARSA agent’s lacking as compared to 

Q-learning agent are far enough to be covered by negative or bonus rewards. 

 

4.5.4  Discussion  

 
We designed the testbed in the simulated environment and then trained and tested 

both RL agents, the Q-learning agent and the SARSA agent. Both agents were 

trained and evaluated in terms of performance for individual object categories pick-

and-place and random object categories pick-and-place. In both scenarios, the Q-

learning agent performed better as compared to the SARSA agent.  

The SARSA agent has been seen struggling with the pick-and-place of the 

objects as the conveyor belt increased, leading to performance deterioration. Such 

downfall in performance has also been witnessed in the case of right-aligned objects 

in both individual object categories trials and random objects trials. The spherical 

Figure 10 Performance comparison of SARSA normal reward scheme 

agent and negative reward scheme agent 
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objects have been difficult for both of our RL agents but it is evident from the results 

that Q-learning agent dealt better with them as compared to the SARSA agent. 

 The reason behind the lacking in the SARSA agent’s performance as compared 

to the Q-learning agent can be the exploration-exploitation dilemma. As we know, 

the SARA agent always tends to follow a safer path in order to avoid any such event 

which can make it earn a very bad reward and transition to an undesired state. It 

may seem like a reasonable and logical approach but at the same time it has flaws 

too. This behavior makes the agent conservative and highly minimizes its intent to 

explore and discover any new optimal paths. But on the contrary, the Q-learning 

agent behaves differently. It doesn’t worry much about the consequences such as 

landing in an undesired state. It performs the action selection completely based on 

the Q-values of the Q-table and go for the optimal one. This difference of behavior 

has played vital role in the better performance and optimal convergence of the Q-

learning agent as compared to the SARSA agent.  

 

4.6    Summary 
 

 

This chapter presents an approach to address the problem of industrial pick-

and-place in a non-visual environment. There are various industry setups 

having a non-visual environment means they don’t have vision sensors 

installed in their setup. There can be different reasons behind restricting the 

vision sensors such as cost, space, vibrations, dust, wash up, etc. In our 

approach, we fill the gap of vision sensors with the ray-type proximity 

sensors. We formulated the pick-and-place problem as a MDP and solved it 

through a RL-based framework. We deployed both Q-learning off-policy TD 

algorithm and SARSA on-policy TD algorithm in the designed framework and 
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compared their performance. Both agents learnt pick-and-place of different 

shape objects at variable alignments positions and speeds.  

Our performance evaluation on random objects at random alignment 

positions and speeds showed that the average success rate of Q-learning agent 

and SARSA agent around 93% and 80% respectively. We also witnessed 

performance increase in the Q-learning agent upon negative and bonus reward 

schemes application.  

There are also some known limitations in the presented approach such as 

long training time requirements. On an Intel Core i7-3770 @ 3.40 GHz 

machine with 12 GB installed RAM it took around 4 to 5 hours for training 

for each object class. Geometric complexities of some objects such as 

spherical objects also become hurdle as no prior geometric knowledge is used 

in this approach and proximity sensors are used instead of the vision sensors. 

In the next chapter, we will develop the approach based on vision sensor in 

order to address these geometric limitations in this current non-visual 

approach. 
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Chapter 5 

5 DRL-based Pick-and-Place in Clutter using Vision Sensors 
 

 

5.1    Introduction 
 

 

This chapter presents a DRL-based learning framework for robotic pick-and-

place of regular and irregular-shaped objects with the help of vision sensors in an 

industrial environment. This chapter addresses our objective of developing DRL-

based algorithms for learning and performing the vision-based pick-and-place 

tasks. The foundation laid in this chapter also provides the basis of the vision-

based multiple robotic manipulation (Chapter 6) in this thesis. 

Due to recent advances in last years in the field of machine vision, the vision-based 

industrial robotic manipulations have been the focus of the researchers. Usually, the 

terms computers vision and machine vision are used interchangeably but they differ 

from each other in a sense. In computer vision, usually there is a computer processing 

data after digitizing an image and then performing some action accordingly. But the 

machine vision is purely industrial application of the computer’s ability to see and 

perceive. As this research area have been under focus of the research community from 

last few years, a number of approaches have been proposed which have been 

discussed earlier in the Chapter 3.  In the literature review earlier, we reviewed various 

learning-based data-driven vision-based robotic grasping and pick-and-place 

approaches. Some of those approaches were based on the idea of object pose 

estimation, which were limited by requiring geometric object-specific knowledge 

beforehand.  Therefore, such approaches are known as model-based approaches. We 

also reviewed the model-free approaches using supervised learning.  
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The novelty of the proposed approach in this chapter is as follows: 

 Unlike other mostly existing relevant approaches, the proposed 

approach considers the whole workspace as one instead of considering 

each object individually. Therefore, it doesn’t require any additional 

steps causing any additional overhead such as segmentation or 

singulation for the identification of individual objects in the clutter. 

 The proposed approach requires no geometric object-specific 

knowledge beforehand, unlike most of the existing approaches in the 

literature.   

The promising training and testing results of this approach and its comparison 

 with its some variants are also presented in this chapter. 

5.2    Problem Scenario 
 

The approach presented in this chapter considers the problem of pick-

and-place with the help vision sensors in a smart production line. In this smart 

production line, a number of regular and irregular-shaped objects are being 

produced in a clutter and moved on a running conveyor belt. In this clutter we 

make sure that there are a number loosely packed regular and irregular-shaped 

object at random positions and orientations so that there should be reasonable 

grasping opportunity available for every object. At one end of the conveyor 

belt, where the robotic arm is installed for the pick-and-place operation, is our 

workspace. The workspace is monitored by the installed vision-sensors from 

the top angle. Once the random loosely packed clutter of regular and irregular-

shaped objects reaches the workspace, and enters the field of view of the 

vision sensors, the conveyor belts stop for the pick-and-place operation. The 

vision sensors capture the scene of the workspace and feed it to our designed 

framework for the processing which will be explained in detail in the next 
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sections of this chapter. Our framework outputs the optimal location for 

grasping in the workplace to the robotic arm. As soon as the robotic arm, 

receives the signal, it goes for the grasping and then placement at the 

designated location, which is a basket in this case. Rewards are awarded and 

the cycle continues. In this way the robotic arm, clears the whole clutter and 

then the next clutter arrives for pick-and-place operation. In this way, this loop 

of pick-and-place operation continues.   

 

5.3    MDP Design  
 

As described earlier, in this proposed approach we present a self-learning 

framework for the pick-and-place of regular and irregular-shaped objects in clutter 

from the workspace area of the conveyor belt under the monitoring of the vision 

sensors. The RL agent is trained to grasp the objects and place them into the bin. 

The ability to learn is ensured by the deployment of the learning algorithms of the 

RL family.  

In order to resolve the problem as a RL problem, the first need is to design the 

Markov Decision Process (MDP) of the task at hand. Generally, in any MDP, 

initially the agent can be at a state st at any timestep t. As the agent follows a policy 

π, the agent can transition to the next state st+1 after taking an action at, meanwhile 

earning the reward rat(st, st+1) and the cycle continues. The main goal behind this 

whole continuous process is to discover and learn such an optimal policy π* which 

can ensure that maximum cumulative reward is scored in the future. The MDP 

designed for this approach which will be explained later in this section, is resolved 

through the model-free off-policy TD algorithm Q-learning. The Q-learning 

behaves as a greedy algorithm because it goes for highest action-value for the 

selection of action to be performed. An action-value can be defined as a measure of 

expected reward to be earned in the future if a certain action is taken in a certain 
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state. These action-value are also known as Q-values and are calculated through the 

Q-function. A Q-function can be depicted as Q(st, at) where agent is currently at 

state st and chooses the action at to be performed at any timestep t.  The Q-function 

approximation can be explained through the Equation 1 as follows 

��� , 
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Where < represents the discount factor which tells the agent to whether prefer the 

learning of the immediate rewards or the distant rewards in the future by discounting 

the earned rewards. The : denotes the learning rate or the step size of the algorithm, 

which determines the weight of the more recent experience as compared to previous 

ones.  

Our designed MDP for this approach consists of the following major elements: 

 States: In the proposed approach, vision sensors have been used for the 

pick-and-place task. Through these vision sensors, the current view of the 

workspace can be perceived. An area of 224x224 pixels on one end of the 

conveyor belt is designated as the workplace. The objects in clutter are 

grasped from this workspace and placed into the bin. We deploy two types 

of the vision sensors known as orthographic visions sensor and 

perspective vision sensor. These both vision sensors are different from 

each other only because of their field of view. The orthographic vision 

sensors have rectangular field of view and the perspective vision sensor 

have trapezoidal field of view. The location of installed sensors and their 

field of views can be seen in the Figure 11. Both of these vision sensors 

gather RGB-D images of the workspace and then these images are merged 

together to increase the RGB and depth details. An RGB-D images 

consists of two pars, the RGB part which stores the color-based 

information through three channels red, green, blue (RGB), and the D part 

stores the depth information through only one channel, which we call as 
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height-from-bottom channel (D). For the depth part of the RGB-D image 

each pixel is presented in relation to distance between the object in 

foreground and the background [116]. Once the RGB-D image showing 

the current state of the workspace is ready, respective RGB-D heightmaps 

are generated. RGB-D heightmaps are generated by following the 

technique presented in [94], where firstly the RGB-D data is projected 

onto a 3D point cloud and then it is back-projected upwards 

orthographically in the gravity direction. In this manner RGB-D 

heightmaps are generated using both the color (RGB) and depth (D) 

information. Each RGB-D heightmap is actually our state st at any 

timestep t. The RGB-D images used for the heightmap generation were 

of the workspace which is 224x224 pixel size, therefore the heightmaps 

or states are also of same size. Each state is actually composed of 50,176 

individual pixels, where each pixel represents a unique 3D location of the 

workspace.   

 

 Actions: This approach is designed for the pick-and-pace task, therefore 

we simply design two main actions, the pick and the place action. The 

Pick action is the action where the robotic arm gripper grasps an object, 

which is the actual task that needs to be learned. In each state st at any 

timestep t, which is a heightmap, a particular pixel p will be selected 

which have a corresponding 3D location p’ in the workspace as described 

in Equation 2.  

                                             � → �*  ∈ �                                          (2) 

 

This p’ is the location where the pick action will be performed by the 

robotic arm. This p’ is considered as the mid-point for grasping by the 
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parallel-jaw gripper of the robotic arm. The agent automatically adds 3 

cm to the Z-axis component of the 3D location p’, and then perform 

grasping. The other action, place action, is performed once the grasping 

is done successfully. The grasped objects are placed into the bin through 

this action. Motion planning and path calculation for these actions are 

done on the runtime and saved for any future reuse Motion planning 

module will be seen in a further section.  

 Transition Function: As we know, the transition function is 

responsible for keeping the transition records from one state to another. 

Our designed approach is completely model-free therefore it has no 

predetermined transition table, instead it is learnt through the 

experience. As we deploy the off-policy Q-learning TD algorithm, the 

Q-function is to be approximated to gain the Q-values. The Q-values, 

also known as action-values are actually the prediction of expected 

rewards in the future. For Q-function approximation we utilize the deep 

Figure 11 Vision sensors installation in the simulation 
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Q-networks [5], [23]. This pixelwise parameterization technique has 

also been utilized before in [94], but it was designed as a  deep learning 

based approach for pixelwise predictions in supervised manner using 

manually annotated datasets of RGB-D images, whereas we propose a 

RL-based self-supervised (with the help of rewards) framework in this 

chapter.  The Q-function in our approach is an FCN, which is supplied 

with the state (heightmap). It processes the state and outputs a pixelwise 

map of the Q-values. As the state is a RGB-D heightmap of size 

224x224 pixels, the pixelwise map generated as output is also of the 

same size. This means that each pixel of the state has a corresponding 

Q-value in output pixelwise map. In other words, the corresponding Q-

value from the pixelwise map predicts the expected future reward if the 

action is performed at that pixel p‘s corresponding 3D location p’ in the 

workspace as shown in Equation 3.   
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The FCN, being used as the Q-function, utilizes the architecture known 

as DenseNet-121[117]. We worked with its both variants, the pretrained 

and untrained. The factor which differentiates the DenseNet from other 

architectures of FCNs is the nature of links between its layers. Usually, 

a general FCN having L layers has L links but the DenseNet with L 

layers have L(L+1)/2 links among the layers. This enhanced 

connectivity among the layers in the DenseNet tackles multiple 

problems like vanishing gradient and other issues relevant to feature 

reuse and propagation. We deploy the basic architecture of Dense-121 

and extend it by adding two 1x1 layers along with ReLU activation and 

batch normalization. Two trunks are used, where one trunk is supplied 
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with the color data and the other trunk is supplied with the depth data. 

Moreover, a rotation function is also applied to RGB-D heightmaps 

before feeding to the FCN so that the degree of learning can be 

increased and multiple orientations can help in the process. The detail 

of this rotation function will be discussed in the Chapter 6.   

 Rewards: In this approach, we use the reward scheme as the one in 

non-visual approach given in Chapter 4 where the agent is awarded 

reward 1 upon the accomplishment of the pick-and-place task. The 

agent gets 0.5 reward if the grasping is done successfully but placement 

into the bin has failed. In the case of failing whole task, the grasping 

and placement both, 0 is given as reward to the agent. A failed grasp 

and placement are identified through a proximity sensor installed 

between the robotic gripper and in the bin respectively.  

 Discount Factor:  The discount factor and is kept between 0 and 1 in 

order to increase the importance of the future rewards and make the 

agents learn at faster pace.  

5.4    Training Specifications 
 

In this proposed scheme, the target is to make the agent learn the pick-and-place of 

the regular and irregular-shaped objects in a clutter on the conveyor belt once they 

reach the workspace area with the help of the orthographic and perspective vision 

sensors. The clutter size is kept between 10 to 15 regular and irregular-shaped objects. 

It is ensured that the clutter is loosely packed so that there should be reasonable 

grasping opportunity available for every object. Because this approach aims to prove 

that pixelwise-parameterization technique works efficiently in the process of learning, 

therefore initially complexity is reduced by keeping the clutter loosely packed. We 

extend this framework for increased complexity situations in the Chapter 6.  
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Once the loosely-packed clutter of 10 to 15 regular and irregular-shaped objects 

reach the workspace, the vision sensors capture the RGB-D state of the workspace. 

This RGB-D state is converted to RGB-D heightmaps which are fed to the FCN as 

input for the Q-function approximation. The FCN process the input through its all 

layers of the network and as result outputs a pixelwise map of the action-values or Q-

values. As we have deployed the off-policy Q-learning algorithm to resolve this task, 

the Q-learning goes for the most optimal option during the action selection process. 

Therefore, the pixel p with the highest corresponding action-value in the pixelwise map 

is selected for the grasping action. The grasp is attempted by the robotic arm gripper at 

the corresponding 3D location p’ to the chosen pixel p. The z component is 

automatically programmed to be incremented by 3 cm in order to make the grasp 

probability higher. Once the successful grasp is made, decided on the basis of the 

proximity sensor installed between the gripper jaws, the robotic arms move towards 

placing it in the designated location which is the bin. This practice is continued until 

all workspace is cleared and all the objects have been placed into the bin. 

This one complete cycle, as shown in Figure 12, of clearing the workspace by 

picking and placing all the objects is considered as an epoch. Such 3000 epochs are 

completed while training the agent. In each epoch, the clutter is designed randomly. In 

case of agent failing continuously for more than certain number of attempts in grasping 

an object the epoch is restarted to start from scratch again. 

 

In our FCN designed using the DenseNet-121 architecture, for the backpropagation part, 

Huber Loss function [118] is used as our loss function and the stochastic gradient descent 

(SGD) [119] is utilized as the optimizer. The important aspect of backpropagation in our 

approach to understand is that the pixel p selected out of total 50,176 pixels for performing 

action due to its highest action-value in the generated pixelwise map is the only pixel for 
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which the gradient passing procedure is done. The remaining 50,175 pixels experience zero 

loss backpropagation.  

5.4.1  Motion Planning Module 

 
Today in the field of robotics, a number of motion planner control solutions are 

available. For our proposed approach, different motion planning libraires and frameworks 

were considered and reviewed such as Trajpot [111] and OpenRave [112]. Among all 

other considered option, Open Motion Planning Library (OMPL) [113] proved to be the 

most appropriate option due to its maximum degree of customization allowance. In 

OMPL, multiple control-based planners and geometric planners are available. Some of 

the popular sampling-based planners available in OMPL are Expansive Space Trees 

(EST), Single-query Bi-Direction Lazzy (SBL), Probabilistic Roadmap Method (PRM), 

Rapidly-exploring Random Trees (RRT), etc. The OMPL’s planner deployed in our 

approach is a single-query planner. It is known as RRT-Connect [114], which happens to 

be a bi-directional variant of the Rapidly-exploring Random Tree (RRT) planner. The 

main idea of the RRT-Connect planner is to create two RRTs, where one is located at the 

start point and the other one is located at the end point, and then connect both. Utilizing 

Figure 12 Flow of vision-based pick-and-place approach 
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two RRTs simultaneously is the reason behind its ability to outperform the basic RRT 

planner.  

5.4.2  Simulation Environment 

 

According to our task requirement and resources, the Virtual Robot 

Experimentation Platform (V-REP) proved to be the most suitable physics engine-based 

simulator. The V-REP is actually a 3D robotic simulator which involves the integrated 

support for development and coding [30]. It is equipped with multiple physics engines 

such as ODE and Bullet variants in order to achieve the real-time emulation of all the 

objects during the simulations. The availability of multiple APIs and the functionalities 

such as threaded/non-threaded Lua scripting enables the V-REP to develop cross-

platform application through combining platforms such as Python, C++, Java, etc. With 

the help of the python-based API, it was possible for us to create a python-based RL agent 

which was able to interact with the environment inside the V-REP being controlled 

through the Lua scripts. 

V-REP also provides the Forward and Inverse Kinematics calculation module. In 

Forward kinematics, joint parameters are supplied as input to the kinematics equations 

and the position of the end-effector is calculated as the output. On the contrary, in the 

Inverse kinematics, the required position of the end-effector is supplied as input and the 

joint parameters are calculated as the output [115].  Another importation module of V-

REP utilized in this approach is the collision-detection and collision-avoidance module 

which detects and avoids any possible collision of the robotic arms with the environment. 

In our experimentation trials, we used the famous UR5 robotic arm of Universal Robotics 

which is a 6 degree-of-freedom (DOF) robotic arm. For the grasping part, we attached a 

RG2 gripper to our UR5 robotic arm. 

 



74 
 

5.5    Experimental Results & Discussion 

 

In this section we see the performance of our self-learning framework in the pick-

and-place task with the help of vision sensors in training and testing phases. 

 We present the performance results of number of experimental trials conducted to 

evaluate the learning capability of the RL agent through our self-learning vision-based 

pick-and-place framework. 

In order to compare the performance, we first set a baseline. For the baseline, we 

create another RL agent with same pixelwise parameterization scheme but switch the Q-

function’s architecture to pretrained ResNet-101 instead of the DenseNet. Only the Q-

function approximator’s architecture is changed, other elements in the scheme such as 

states, actions and reward scheme remain the same. ResNet is the abbreviation of the 

Residual Network. The residual network was primarily designed to tackle the vanishing 

gradient problem, which it accomplishes with the help of the skip connections. Our 

proposed approach is named as PnP approach and the baseline approach based on ResNet 

is named the ResNet-based approach. These both agents were trained according to the 

training specifications mentioned in previous sections. Both agents were trained for 3000 

epochs. The Figure 13 shows the performance graph of both agents while training. Our 

PnP approach, in red line, outperforms the baseline approach ResNet-based approach, in 

orange line, around by 16%. The suspected possible reason behind this performance 

margin between the two agents is feature learning mechanism difference. As the ResNet 

architecture is designed to apply feature summation, but the DenseNet architecture 

performs feature concatenation with the help of the L(L+1)/2 links among the L layers. 

This difference of summation and concatenation enables the DenseNet-based approach, 

the PnP approach, perform better due to the gain and enhancement through the feature 

reusability.  
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In order to get more insight of the learning process, we trained another two variants 

of our PnP approach. When we discussed the transition function of the designed MDP in 

the earlier section, we mentioned the utilization of the DenseNet-121 architecture in both 

pretrained and untrained formats. The DenseNet-121 architecture being used as Q-

function approximator in our PnP approach is the pre-trained variant. This pretrained 

variant has been trained on the ImageNet dataset. So, in order to evaluate the roles of 

weights from the ImageNet dataset training, we created the other variant which is to be 

trained from the scratch, named as No Pretrained Weights variant. 

Another important element in our PnP approach is the depth data (D) which we 

gather through our orthographic and perspective vision sensors along with the color data 

(RGB). This depth seems important and crucial to the learning because it contains the 

height-from-bottom information which is actually required to differentiate the background 

from the object in the foreground through the distance factor. So, for evaluating the role 

of depth data in the learning process, we designed a variant where the agent is similar to 

the PnP agent, but it never gets any depth data (D) but only color data (RGB). We named 

this variant as No Depth Channel variant. 

Figure 13 Performance comparison of our PnP approach and ResNet-based approach 



76 
 

These both variants, the No Pretrained Weights variant and the No Depth Channel 

variant were trained in the same manner as the PnP approach for 3000 epochs. The Figure 

14 shows the performance comparison of these two variants to the PnP approach. The red 

line shows the performance of the PnP approach and the blue line shows the performance 

of the No Pretrained Weights variant. It is clearly evident that there is not much difference 

between the success rates of these two. In fact, the early rise of the No Pretrained Weights 

variant shows that the pretrained weights in the PnP approach are causing a hurdle in the 

learning process. After some iterations, the agent manages to forget the pretrained weights 

and learn the new weights. The pretrained weights are supposed to be the reason of delayed 

convergence in the PnP approach. But the overall performance of both agents doesn’t show 

much difference. But on the other hand, the No Depth Channel variant represented through 

the magenta line tells completely opposite story. The unavailability of the depth data (D) 

to this variant cause a serious negative impact on the success rate. The results show a drop 

of around 34% in the success rate as compared to the PnP approach. This deterioration in 

the performance of the No Depth Channel variant as compared to the PnP approach clearly 

proves the significance and importance of the depth data in the designed framework. 

 

For the testing purposes, we design testcases on the basis of the number of objects 

in the clutter. We tested the performance of our proposed approach on three testcases 

having maximum 15 objects, 20 objects and 25 objects respectively. The best average 

success rate of around 85% was seen in the first test case where number of objects was 

kept less than 15. But as the number of objects increased in other two testcases the 

performance dropped a little. The average success rate of the second and third testcase 

were found to be around 81% and 78%. The major reason behind the performance drop in 

the testcases with more objects was the scarcity of grasping opportunities due to clutter 

becoming thicker as more objects were adjusted within the workspace. Even the clutter 
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was ensured to be lightly packed still some objects get blocked by the neighboring objects 

causing problems in the grasping. 

5.5.1  Discussion 

 
We conducted different experimental trials in order to evaluate the performance of 

our self-learning pick-and-place framework. We compared the training performance of 

our PnP approach to the baseline approach the ResNet-based approach. Our PnP approach 

clearly performed better than the ResNet-based approach. The major suspected reason 

behind the better performance of the PnP approach as compared to the ResNet-based 

approach revolves around the feature learning mechanism of these two. The PnP approach 

utilizes the DenseNet-121 architecture whereas the ResNet-based approach deploys the 

ResNet-101 architecture as the Q-function approximator. In the ResNet architecture 

feature summation is performed but in the DenseNet architecture the features are 

concatenated instead of summation. This difference of feature summation and 

concatenation allows the PnP approach to gain better performance owing to the feature 

reusability characteristic earned because of feature concatenation in the DenseNet 

Figure 14 Performance comparison of our PnP approach with No Pre-trained weights and 

No Depth Channel approach 
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architecture.  The L(L+1)/2 links between the L layers of the DenseNet play very vital role 

in the feature reusability. We also compared the performance of the PnP approach to the 

variants with no pretrained weights and no depth channel. The results show that there is 

not much role of the pretrained weights from the ImageNet dataset, in fact it negatively 

impacts by keeping the agent stuck in the local optima initially but as the new weights take 

over the agents starts learning but obviously experiences a delayed convergence as 

compared to the agent trained from scratch. The pretrained weights were not useful enough 

but the depth data was proven quite worthy when the PnP approach was compared with 

the No Depth Channel variant. The performance of the later one took a serious hit because 

of no height-from-bottom information. The lack of the depth information means that that 

agent has not intel to learn and differentiate the object in the foreground from its 

background which is critical for the grasping. The lack of depth data results into flaws in 

learning and inaccurate grasping moves, thus deteriorating the performance. In testing, it 

is found that the loosely packed clutters allow the agents to use their learning well and 

perform the pick-and-place at higher success rate. But as the number of objects keep 

increasing the workspaces becomes overpopulated and the clutter becomes thicker thus 

the grasping opportunities getting minimum. The objects get blocked by the neighboring 

objects due to the rush and the grasping opportunities vanish, which leads to the 

deterioration of the results. This limitation of the approach will be addressed in the Chapter 

6. 

5.6    Summary 
 

 

In this chapter we proposed a self-learning RL-based framework for the industrial 

pick-and-place of regular and irregular-shaped objects in lightly packed clutter with 

the help of vision sensors. This approach presented in this chapter doesn’t require 

object-specific geometric knowledge or domain-based knowledge beforehand. In 

this framework we designed, the agent learns to pick-and-place the regular and 
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irregular-shaped objects with the help of deep Q-networks and pixelwise 

parameterization technique. The Q-Function approximator, the end-to-end FCN, 

utilizes the pixelwise parameterization technique to predict the optimal 3D locations 

of the workspace for the robotic grasping. Rewards are awarded accordingly. Our 

results show that this proposed self-supervised RL-based framework enables the 

agent to gain learning and convergence to optimal policy within bounds of 

reasonable resources such as time. We also probe into the role and importance of 

various factors in the proposed approach such as the pretrained weights and the 

depth data from the vision sensors.    

The main limitation of this approach is that it works well for only lightly packed 

clutters. The lightly packed clutters are those where neighboring objects are not too 

close to each other, thus not blocking the grasping opportunities for the robotic arm. 

Upon breaching this condition by increasing the number of objects and 

overpopulating the workspace area, testing results show deterioration of 

performance as grasping opportunities get blocked by neighboring objects. In order 

to address this limitation, we further extend this framework by involving more 

robotic manipulations so that agent can learn to pick-and-place without worrying 

about the clutter size and thickness in the Chapter 6. 
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Chapter 6 

6 DRL-based Pick-and-Place in Clutter through Prehensile 

and Non-Prehensile Robotic Manipulation 
 

 

6.1    Introduction 
 

 
This chapter presents a DRL-based learning framework for robotic pick-and-

place of regular and irregular-shaped objects using both prehensile and non-

prehensile robotics manipulations with the help of vision sensors in an industrial 

environment. This chapter addresses our objective of developing DRL-based 

algorithms for learning and performing the vision-based pick-and-place tasks by 

combination of different robotic manipulations. The foundation laid in the 

previous chapter provides the basis of the vision-based multiple robotic 

manipulation presented in this chapter. We extend and enhance the framework 

presented in Chapter 5 in order to address the limitation of requiring only loosely 

packed clutters.  

It has been evident that with the development in machine vision field the 

research focus has been mostly on vision-based approaches in terms of robotic 

manipulations. The robotic manipulations can be mainly divided into two types, 

the prehensile [120] and non-prehensile [105] robotic manipulation. The 

visualization of prehensile and non-prehensile manipulation from [121] can be seen 

in the Figure 15. An agent learning coordination between these both robotic 

manipulations can yield high success rate in the pick-and-place operations. The 

reason behind being that these both robotic manipulations can aid each other. The 

non-prehensile robotic manipulation can create grasping opportunities by 

producing gaps between the tightly-packed objects and on the other hand prehensile 
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manipulation enables more efficient, accurate and collision-free pushing 

operations. In Chapter 3, where we reviewed the relevant vision-based pick-and-

place approaches in the existing literature, we also reviewed some approaches 

based on the principle of combining the prehensile and non-prehensile robotic 

manipulations for the robotic grasping or the pick-and-place tasks.  This area of 

research shows that it can be fruitful in terms of results but still there is room for 

further exploration and improvement. Some of these approaches are perform push-

grasping [105] i.e., pushing while grasping whereas other focus on pushing 

operations which bring the objects to predetermined grasping locations for pre-

designed handcrafted grasping operations. The major downside to these approaches 

is that they are analytical approaches requiring object and domain-specific 

knowledge beforehand. There are a few model-driven approaches too but to 

consider the objects individually in the clutter they perform segmentation first, 

causing additional overhead and they also require some prediction system for the 

non-prehensile manipulations. Some approaches not considering the objects in the 

clutter individually, instead consider the workspace as whole suffer from 

bottleneck situation due to memory constraints as the network grows therefore 

can’t handle multiple robotic manipulations efficiently. The approach proposed in 

Figure 15 An example of Prehensile and 

Non-prehensile manipulations 
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this chapter is designed to address these research gaps in the existing relevant literature 

and the limitations of the existing relevant approaches i.e. 

  Inefficient memory management  

 Unidirectional pushing   

 Additional overhead due to additional operations 

In this chapter, we present a data-driven DRL-based self-learning framework 

for industrial pick-and-place of regular and irregular-shaped objects in a cluttered 

environment using both prehensile and non-prehensile robotics manipulations with 

the help of vision sensors. The aim of this approach is to make the RL agent learn 

and perform the pick-and-place of regular and irregular-shaped objects in order to 

increase the level of efficiency and throughput in various industries. Initially the 

MDP is designed as required in a RL problem, and then the model-free off-policy 

TD algorithm Q-learning is applied to it. We use pixelwise-parameterization 

method, where Q-values are calculated for each pixel, as discussed in Chapter 5. 

But unlike the previous approach in Chapter 5, we design separate Q-function 

approximators for each robotic manipulation involved. Each Q-function 

approximators consist of an extended memory efficient variant of DenseNet-121 

architecture unlike our previous approach in Chapter 5 which uses the basic 

variants and remains vulnerable to bottleneck situations.  This technique of 

pixelwise parameterization has been used in a few other approaches [79], [94] 

too but these suffer from problems of bottleneck situation at the GPU end due 

to improper memory management for the quadratic feature growth.  As the 

state-space is large enough, we deploy an extended FCN based on DenseNet-121 

architecture in an end-to-end manner for the Q-function approximation, so that the 

Q-values are calculated through this FCN. Rewards are awarded according to the 

success status of the agent. This proposed approach doesn’t need any kind of 

geometric object-specific knowledge or any domain-specific information. This 
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approach also doesn’t require any kind of extraordinary resources such as any large 

annotated datasets, any manual handcrafted information, etc. Unlike other mostly 

existing relevant approaches, the proposed approach considers the whole 

workspace as one instead of considering each object individually. Therefore, it 

doesn’t require any additional steps causing any additional overhead such as 

segmentation or singulation for the identification of individual objects in the 

clutter. The promising training and testing results of this approach and its 

comparison with its some variants are also presented in this chapter. The key 

contributions of our extended framework can be listed as follows 

 A memory efficient data-driven DRL-based framework for the 

pick-and-place of regular and irregular objects through 

combination of prehensile and non-prehensile robotic manipulations 

in sequential manner with the help of pixelwise parametrization 

scheme. This pixelwise parametrization scheme has been seen in a 

few recent studies but suffer from bottleneck situations at the GPU 

end due to quadratic feature growth and the networks lack memory 

management. This limitation is addressed in the proposed approach 

through the deployment of memory-efficient variants of deep neural 

networks. 

 Framework enabled bidirectional (left and right) non-prehensile 

robotic manipulations whereas existing approaches are limited to 

unidirectional pushing mostly hard-coded and based on domain 

knowledge. 

 Minimizing the workload by skipping the additional operations 

causing additional overhead such as segmentation, singulation, 

etc., required by other approaches in order to identify the objects 

individually in the clutter. The proposed approach considers the 
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whole workspace as one therefore doesn’t require any additional 

steps, hand-designed features or heuristics. 

6.2    Problem Scenario 
 

The approach presented in this chapter considers the problem of pick-and-place 

with the use of vision sensors in a smart production line through sequence of 

prehensile and non-prehensile robotic manipulations. In this smart production line, 

a number of regular and irregular-shaped objects are being produced in a clutter and 

moved on a running conveyor belt. In this clutter - unlike the previous scenario in 

Chapter 5 of only loosely packed clutter - we allow the completely random 

allocation of the clutter in terms of object positions and orientations. The clutter can 

become as much tightly packed as possible randomly. We keep no checks regarding 

the gaps between the neighboring objects. At one end of the conveyor belt, where 

the robotic arm is installed for the pick-and-place operation, is our workspace. The 

workspace is monitored by the installed vision-sensors from the top angle. Once the 

random loosely packed clutter of regular and irregular-shaped objects reaches the 

workspace, and enters the field of view of the vision sensors, the conveyor belts stop 

for the pick-and-place operation. The vision sensors capture the scene of the 

workspace and feed it to our designed framework for the processing which will be 

explained in detail in the next sections of this chapter. Our framework outputs the 

optimal location for grasping or sliding in the workplace to the robotic arm. As soon 

as the robotic arm, receives the signal, it goes for the grasping or sliding, whatever 

action type is chosen. If the chosen action is grasping and it performs grasping 

successfully then it goes for the placement at the designated location, which is a 

basket in this case. But if the selected action is from non-prehensile manipulations, 

then the robotic arm performs the sliding. Rewards are awarded accordingly and the 

cycle continues. In this way the robotic arm, clears the whole clutter and then the 
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next clutter arrives for pick-and-place operation. In this way, this loop of pick-and-

place operation continues.  

 

6.3    MDP Design 
 

As we described earlier, we propose to resolve the problem of learning 

the pick-and-place of regular and irregular-shaped objects using prehensile and 

non-prehensile robotic manipulations through RL. We create a joint framework 

of end-to-end deep neural networks through which our RL agents learn and 

converge to optimal policies. These multiple separate end-to-end deep neural 

networks are trained together simultaneously. In an end-to-end network, all 

steps starting from the initial layer to the final output layer are learnt by the 

model, thus making the memory management a crucial requirement in order 

to avoid the bottleneck situation.  

Before resolving the task, we need to design the Markov Decision 

Process (MDP) of the task at hand. Generally, in any MDP, initially the agent 

can be at a state st at any timestep t. As the agent follows a policy π, the agent 

can transition to the next state st+1 after taking an action at, meanwhile earning 

the reward rat(st, st+1) and the cycle continues. The main goal behind this 

whole continuous process is to discover and learn such an optimal policy π* 

which can ensure that maximum cumulative reward is scored in the future. 

The MDP designed for this approach which will be explained later in this 

section, is resolved through the model-free off-policy TD algorithm Q-

learning. The Q-learning behaves as a greedy algorithm because it goes for 

highest action-value for the selection of action to be performed. An action-

value can be defined as a measure of expected reward to be earned in the 

future if a certain action is taken in a certain state. These action-value are also 

known as Q-values and are calculated through the Q-function. A Q-function 
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can be depicted as Q(st, at) where agent is currently at state st and chooses the 

action at to be performed at any timestep t. 

Our designed MDP for this approach consists of the following major 

elements:  

 States: Similar to the approach presented in chapter 5, our states in this 

MDP are actually RGB-D heightmaps. Each RGB-D heightmap is 

constructed from the current view of the workspace region on the 

conveyor belt. The current view of the workspace is received through the 

installed vision sensors. We deploy two types of the vision sensors known 

as orthographic visions sensor and perspective vision sensor. These both 

vision sensors are different from each other only because of their field of 

view. The orthographic vision sensors have rectangular field of view and 

the perspective vision sensor have trapezoidal field of view. The location 

of installed sensors and their field of views can be seen in the Figure 16. 

Both of these vision sensors gather RGB-D images of the workspace and 

then these images are merged together to increase the RGB and depth 

details. An RGB-D images consists of two pars, the RGB part which 

stores the color-based information through three channels red, green, blue 

(RGB), and the D part stores the depth information through only one 

channel, which we call as height-from-bottom channel (D). For the depth 

part of the RGB-D image each pixel is presented in relation to distance 

between the object in foreground and the background [116]. Once the 

RGB-D image showing the current state of the workspace is ready, 

respective RGB-D heightmaps are generated. RGB-D heightmaps are 

generated by following the technique presented in [94], where firstly the 

RGB-D data is projected onto a 3D point cloud and then it is back-

projected upwards orthographically in the gravity direction. In this 
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manner RGB-D heightmaps are generated using both the color (RGB) 

and depth (D) information. This each RGB-D heightmap is actually our 

state st at any timestep t as shown in Figure 17. The RGB-D images used 

for the heightmap generation were of the workspace which is 224x224 

pixel size, therefore the heightmaps or states are also of same size. Each 

state is actually composed of 50,176 individual pixels, where each pixel 

represents a unique 3D location of the workspace. 

 

 Actions: This approach is designed for the pick-and-pace of regular and 

irregular-shaped objects through prehensile and non-prehensile robotic 

manipulations, with the motive behind that non-prehensile manipulations 

will increase the chances of success of prehensile manipulations. 

Therefore, we design three main actions Grasp, Left-Slide and Right-

Slide. As evident from the names, the Grasp action is the prehensile 

robotic manipulation whereas the Left-Slide and Right-Slide actions 

Figure 16 Vision sensors installation and field of view 
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belong to the non-prehensile robotic manipulations category.  For any of 

these actions at, in state st at any timestep t, which is a heightmap, a 

particular pixel p will be selected which have a corresponding 3D 

location p’ in the workspace as described in Equation 1.  

                                             � → �*  ∈ �                                          (1) 

 

This p’ is the location where the selected action will be performed by the 

robotic arm. In the case of the Grasp action p’ is considered as the mid-

point for grasping by the parallel-jaw gripper of the robotic arm from the 

top as our vision sensors are also top-mounted. The agent automatically 

adds 3 cm to the Z-axis component of the 3D location p’, and then 

perform the grasping. Upon successful grasping, the grasped object is 

placed at the designated location i.e., the bin. But for the other both 

actions Left-Slide and Right-Slide, p’ is considered as the initiation point 

of an 8cm linear push in the left or right direction, depending upon the 

action selection, using the tip of the robotic arm parallel-jaw gripper. 

Both types of action, grasping and sliding, can be seen in the Figure 18. 

Motion planning and path calculation for these actions are done on the 

Figure 17 A sample of 224x224 RGB-D heightmap generated from the image of the workspace 
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runtime and saved for any future reuse. The motion planning module will 

be seen in a further section. 

 

  Rewards: Rewards are awarded according to the success status of the 

action performed by the agent. In this scenario, if grasping is performed 

and object is placed into the bin successfully, the agent is rewarded is 1. If 

the grasping is successful, which is signaled by the infrared sensor between 

the jaws of the gripper, but placement fails then the agent is rewarded 0.8. 

If any of the sliding action is performed successfully, the agent is awarded 

0.5. The success of the sliding action is measured through detecting any 

changes in the current workspace scene. If there is any changing in the 

scene, the sliding action is considered successful otherwise failure. In the 

case of failure in grasping or sliding the agent is rewarded 0.  

 Transition Function: The transition function is responsible for keeping 

the transition records from one state to another. Our designed approach 

Figure 18 Grasping and sliding actions: Frame 1 (Grasping) Frame 2-6 (Sliding) 
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is completely model-free therefore it has no predetermined transition 

table, instead it is learnt through the experience. As in Chapter 5, we 

deploy the off-policy Q-learning TD algorithm, the Q-function is to be 

approximated to gain the Q-values. The Q-values, also known as action-

values are actually the prediction of expected rewards in the future. But 

unlike Chapter 5, instead of using a single FCN as a Q-function 

approximator, we develop a joint framework of end-to-end deep neural 

networks. As we have three defined actions Grasp, Left-Slide and Right-

Slide, we allocate each action a distinct FCN for the approximation of Q-

values. This leads to a joint framework of three deep neural networks i.e. 

{FCN Grasp, FCN Left-Slide, FCN Right-Slide} which are trained simultaneously. 

For the Q-function approximation all three FCNs are supplied with the 

state(heightmap). Each FCN processes the state and outputs a pixelwise 

map of the Q-values. As the state is an RGB-D heightmap of size 

224x224 pixels, the pixelwise map generated by each FCN as output is 

also of the same size. This means that each pixel of the state has a 

corresponding Q-value in output pixelwise map. In other words, the 

corresponding Q-value from the pixelwise map predicts the expected 

future reward if the corresponding action is performed at that pixel p‘s 

corresponding 3D location p’ in the workspace.  These FCNs utilize the 

architecture known as DenseNet-121[117] as shown in Figure  19. We 

worked with its both variants, the pretrained and not trained. The factor 

which differentiates the DenseNet from other traditional architectures of 

FCNs is the nature of links between its layers. Usually, a general FCN 

having L layers have L links but the DenseNet with L layers have 

L(L+1)/2 links among the layers. The L links mean that each layer is 

connected to its predecessor and successor but on the other hand the 
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L(L+1)/2 links mean that each layer is receiving feature-maps from its all 

predecessor layers and supplying its own feature-map to all its successor 

layers. This enhanced connectivity among the layers in the DenseNet 

tackles multiple problems like vanishing gradient, achieves parameter 

reduction and addresses other issues relevant to feature reuse and 

propagation. But the enhanced linking among the layers and a joint 

framework of three FCNs, can easily lead to quadratic growth of features 

risking the bottleneck situation as the networks grows deeper. The 

remedy to this memory concern deployed will be discussed in the later 

section. For each FCN we deploy the basic architecture of Dense-121 and 

extend it by adding two 1x1 layers along with ReLU activation and batch 

normalization. The whole multi-model designed approach can be seen in 

the Figure 20. Two trunks are used, where one trunk is supplied with the 

color data through color channels (RGB) and the other trunk is supplied 

with the depth data through depth channel cloned thrice to equate the 

number of color channels (DDD). The reason behind this cloning is to 

enable the agent use the pretrained weights learnt on the RGB images in 

the ImageNet dataset which are missing the depth channels. Features 

being learnt from both these trunks are concatenated and then further fed 

to the 1x1 convolutional layers. Moreover, a rotation function is also 

applied to RGB-D heightmaps before feeding to the FCN so that the 

degree of learning can be increased and multiple orientations can help in 

Figure 19 DenseNet-121 architecture 
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the process. While exploring the role of the rotation function, we first 

rotated the input state heightmap by 90 degrees and generated 4 rotated 

heightmaps. Later on, we rotated the input state heightmap by 45 and 22.5 

degrees which led to generation of 8 and 16 rotated heightmaps as shown 

in the Figure 21. The first row in the Figure 21 presents the rotations at 90 

degrees, appending second row to it constitutes the rotations at 45 degrees 

and all the four rows together represent the rotations at 22.5 degrees. The 

maximum feature learning ability while exploiting maximum possible 

orientations was experienced when the input state heightmaps were 

rotated at 22.5 degrees generating 16 rotated heightmaps. With this setting 

of rotation function, each FCN gets supplied with 16 rotated heightmaps 

and generate 16 pixelwise maps as outputs. So, for each pass total 48 

pixelwise maps are generated, out of which 16 maps are for the Grasp 

action, 16 maps are for the Left-Slide action and 16 maps are for the Right-

Slide action. For the action selection, out of the total 48 pixelwise maps, 

Figure 20 The flow of prehensile and non-prehensile robotic manipulation-based approach 
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the map having the maximum Q-value, action corresponding its FCN is 

chosen. The action is performed at the 3D location p’ corresponding to 

the pixel p having the maximum corresponding Q-value in the pixelwise 

map as shown in Equation 2.   

   	
> ��� , 
 � = 	
> =DE�H40(G�� �, DE�IJK 9LMNOJ�� �, DE�PNFQ 9LMNOJ�� �A                                    (2) 

 

These FCNs are considered quite efficient Q-function approximators in 

the case of pixelwise situations owing to efficient computation schemes. 

In each forward pass, all three FCNs collectively calculate around 

2,408,448 Q-values within reasonable duration. The total number of Q-

values in each forward pass are calculated as 48 pixelwise maps of size 

224 x 224, which in total amounts to be 224 x 224 x 48. With the help of 

this pixelwise parameterization scheme along with the designed rotation 

Figure 21 Rotation function for RGB-D heightmaps (first row:90 

degrees, first and second row: 45 degrees, all rows: 22.5 degrees) 
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scheme helps the agent to learn and converge with reasonable amount of 

training data.  

 Discount Factor:  The discount factor and is kept between 0 and 1 in 

order to increase the importance of the future rewards and make the agents 

learn at faster pace.  

6.4    Training Specifications 

 
In this proposed approach we train our RL agents to learn pick-and-place of regular 

and irregular objects through prehensile and non-prehensile robotic manipulations 

with the help of the vision sensors.  

In each iteration, the vision sensors capture and merge the RGB-D images of the 

current state of the workspace. Then from this image the RGB-D heightmap is 

generated. This heightmap is then fed to the rotation function which was discussed 

in the previous section. As the output, the rotation function generates rotated 

heightmaps. These rotated heightmaps are supplied to each FCN as input and then 

each FCN generates pixelwise maps of Q-values as the output. Each pixelwise map 

consist of around 50,176 values, therefore due large volume of values these 

pixelwise maps can be represented through the heatmaps. The Figure 22 shows the 

pixelwise maps of the 16 rotated heightmaps (22.5 degrees) in the heatmap format. 

The areas appearing hotter are actually the pixels with the higher Q-values.  

In the backpropagation phase we utilize the Huber Loss function [118], which 

proves to be a decent trade-off between the mean square error (MSE) and the mean 

absolute error (MAE). In the backpropagation, we only pass the gradient for the 

pixel p in the particular FCN which generated the highest corresponding Q-value in 

the pixelwise map. For all the remaining pixels zero loss is backpropagated. Unlike 

the approach propose in Chapter 5, FCNs are trained using stochastic gradient 

descent with momentum [122] variant, which is considered more efficient and rapid 
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as compared to traditional stochastic gradient descent (SGD), and the reason being 

that traditional SGD calculates noisy derivatives of loss but with momentum variant, 

exponentially weighted averages are involved which are more close to actual loss 

instead of SGD’s noisy values, thus aiding gradient vectors move in right directions 

leading to faster convergence. According to the training specifications of our 

network values of momentum, learning rate, and weight decay were set at 0.9, 1e-2, 

and 1e-3 respectively. In our training phase, we also benefit from the feature of 

experience replay, where the agent keeps a record and reuses its experiences from 

the past. We follow the stochastic prioritization approach developed in [123] for the 

experience replay. In order to address the exploration vs exploitation dilemma, we 

deploy epsilon-greedy action selection, where the epsilon value is initialized at 0.3 

and gradually decays down to 0.1. In the terms of hardware, this our designed 

framework has been trained on NVIDIA GeForce RTX 2080/PCIe/SSE2 with 

dedicated 8 GB memory using Intel® Core™ i79700K CPU @3.60GHz × 8 

processor along with 16 GB RAM. For the development of the models and their 

training we used PyTorch 1.7.1 along with CUDA 11.4, cuDNN 8.2.2 and the 

NVIDIA Drivers 470.130.01. 

DenseNet is considered as one of most effective and efficient neural network 

architecture due to its maximized linking [L(L+1)/2] and enhanced feature map 

sharing among all the layers leading to maximum feature reuse, However, despite 

being efficient, if proper memory management is not ensured it becomes vulnerable 

to bottleneck situation at the GPU end due to quadratic growth of its feature maps 

because of its contagious convolutional operations. Therefore, in order to address 

this vulnerability of the base variant, we deploy the a memory-efficient variant of 

DenseNet-121 as in [124] where for the operations such as gradients, batch 

normalization and concatenation memory sharing schemes are utilized. In the 

deployed memory-efficient DenseNet-121 network the outputs generated from the 
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concatenation, batch normalization and the ReLU layers are stored in the temporary 

storage buffers instead of doing new memory allocations as in the base variant. In 

this manner the risk of the bottleneck situation due to the quadratic growth of the 

features as the network depth increases is avoided. 

When the simulated environment is initialized for the training, the workspace area 

designated on the conveyor belt contains a random clutter of N regular and irregular-

shaped objects. Unlike the approach proposed in Chapter 5, there is no requirement for 

ensuring the clutter to be loosely packed instead the clutter is completely random and can 

be as much as tightly packed as possible. Once the clutter is ready, the agent starts the 

pick-and-place operation and keeps continuing until the workspace is cleared. When the 

whole clutter has been placed inside the bin, the designated placement location, it is 

considered as one complete iteration. Immediately the next iteration starts and the 

random clutter reaches the workspace for the pick-and-place and the loop continues. In 

our training phase, we set the N=10, meaning 10 random regular and irregular-shaped 

Figure 22 Heatmap representation of 16 rotations of RGB-D heightmap at 

22.5 degrees 
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3D objects (as shown in Figure 23) randomly arranged in each clutter throughout the 

training cycle. The length of the training cycle is set at 3000 iterations.  

6.4.1  Motion Planning Module 

 
Today in the field of robotics, a number of motion planner control solutions are 

available. For our proposed approach, different motion planning libraires and frameworks 

were considered and reviewed such as Trajpot [111] and OpenRave [112]. Among all 

other considered option, Open Motion Planning Library (OMPL) [113] proved to be the 

most appropriate option due to its maximum degree of customization allowance. In 

OMPL, multiple control-based planners and geometric planners are available. Some of 

the popular sampling-based planners available in OMPL are Expansive Space Trees 

(EST), Single-query Bi-Direction Lazzy (SBL), Probabilistic Roadmap Method (PRM), 

Rapidly-exploring Random Trees (RRT), etc. The OMPL’s planner deployed in our 

approach is a single-query planner. It is known as RRT-Connect [114], which happens to 

be a bi-directional variant of the Rapidly-exploring Random Tree (RRT) planner. The 

main idea of the RRT-Connect planner is to create two RRTs, where one is located at the 

start point and the other one is located at the end point, and then connect both. Utilizing 

two RRTs simultaneously is the reason behind its ability to outperform the basic RRT 

planner.  

 

Figure 23 Ten regular and irregular-shaped randomly placed 3D objects 



98 
 

6.4.2  Simulation Environment 

 

According to our task requirement and resources, the Virtual Robot 

Experimentation Platform (V-REP) proved to be the most suitable physics engine-based 

simulator. The V-REP is actually a 3D robotic simulator which involves the integrated 

support for development and coding [30]. It is equipped with multiple physics engines 

such as ODE and Bullet variants in order to achieve the real-time emulation of all the 

objects during the simulations. The availability of multiple APIs and the functionalities 

such as threaded/non-threaded Lua scripting enables the V-REP to develop cross-

platform application through combining platforms such as Python, C++, Java, etc. With 

the help of the python-based API, it was possible for us to create a python-based RL agent 

which was able to interact with the environment inside the V-REP being controlled 

through the Lua scripts. 

V-REP also provides the Forward and Inverse Kinematics calculation module. In 

Forward kinematics, joint parameters are supplied as input to the kinematics equations 

and the position of the end-effector is calculated as the output. On the contrary, in the 

Inverse kinematics, the required position of the end-effector is supplied as input and the 

joint parameters are calculated as the output [115].  Another importation module of V-

REP utilized in this approach is the collision-detection and collision-avoidance module 

which detects and avoids any possible collision of the robotic arms with the environment. 

In our experimentation trials, we used the famous UR5 robotic arm of Universal Robotics 

which is a 6 degree-of-freedom (DOF) robotic arm. For the grasping part, we attached a 

RG2 gripper to our UR5 robotic arm.  

6.5    Experimental Results & Discussion 

 

In this section we conduct a series of experiments in order to evaluate the learning 

and performance of our self-learning framework in the pick-and-place task through 
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prehensile and non-prehensile robotic manipulations. The designed simulated 

environment for the training and testing can be seen in the Figure 24. 

The approach we designed and described in previous section is named as G&S 

approach, the abbreviation for Grasp and Slide. In order to assess the performance of the 

proposed G&S approach we need a baseline approach to compare with. As our G&S 

approach is a RL-based approach, we develop a DL-based approach for the comparison 

similar to the DL-approach presented in [94] where they used a manually annotated 

dataset. The baseline approach also utilizes the pixelwise parameterization technique but 

acts as a self-supervised binary classification scheme. There is no RL element involved in 

the baseline approach, therefore no rewarding schemes. The concept of states and actions 

remains same as in the proposed G&S approach. Three FCNs corresponding to three 

actions being trained simultaneously. The main difference from the G&S approach is that 

the FCNs in this baseline approach will be trained to through binary classification 

(Successful and Unsuccessful) in self-supervised manner while generating pixelwise map 

of affordances. This baseline approach is considered as self-supervised approach because 

there is not ready annotated dataset instead labels are generated at the runtime according 

to the success status of the performed action. For instance, if the grasping action is 

performed at a certain pixel with highest affordance value in the pixelwise map and the 

object is picked and placed successfully in the bin, the ‘successful’ label will be generated. 

If the pick-and-place fails the ‘unsuccessful’ label will be generated. In the same manner, 

in the case of Left-Slide or Right-Slide action if change is detected in the scene of 

workspace, ‘successful’ label will be generated otherwise the label will be ‘unsuccessful’. 

In the backpropagation phase, similar to the G&S approach, gradient passing is only 

performed in the chosen action’s corresponding FCN’s pixel in the pixelwise map with 

highest affordance value. For all the remaining pixels zero loss is backpropagated. This 

baseline approach follows a greedy policy as it goes for the action yielding highest 
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affordance value in the pixelwise maps at any timestep. The performance comparison of 

our proposed RL-based G&S approach and the DL-based binary classification baseline 

approach can be seen in the Figure 25. In both approaches the agents experienced 3000 

episodes in the training, where each episode consisted of a random clutter of 10 regular 

and irregular-shaped objects. An episode ends when the workspace is cleared of all the 

objects or the agent experiences 10 consecutive unsuccessful actions. A failed grasping or 

a slide yielding no change to the workspace scene is considered as unsuccessful action. 

The blue line presents the G&S approach with a success rate of around 84% whereas the 

green line shows the success rate of the binary classification baseline approach around 

57%. The success rate is calculated as the number of objects placed in the bin successfully 

over the number of actions performed in the whole episode. A suspected cause behind low 

success rate of the baseline approach as compared to our G&S approach is that the baseline 

Figure 24 Simulation Environment designed for training and testing 
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approach goes greedy without forming and following any strategies to learn the sequences 

of actions for future as our G&S approach do with the help of the reward schemes. 

Aside from the DL-based approach, we also designed a RL-based approach similar 

to the proposed G&S approach. The difference being the change of neural network 

architecture. This variant is designed by utilizing the ResNet-101 architecture with 

pretrained weights on ImageNet [125] dataset instead of the DenseNet. A ResNet [126] 

consists of residual blocks. The ResNet is designed in order to resolve the issue of the 

vanishing gradient problem which occurs when the depth of the network exceeds the 

threshold value after continuous addition of layers to the network. To address the 

vanishing gradient problem the ResNet utilizes skip connections. The skip connections 

are actually the identity shortcut connections which provide better flow of gradient 

through skipping a few layers. The performance graph of the ResNet-101-based approach 

against the G&S approach is given in the Figure 26. The graph shows that the ResNet-

101-based approach has been outperformed by our proposed G&S approach by a margin 

of around 13%. The possible explanation behind this lack of performance by the ResNet-

101-based approach is the fact that ResNet implements summation of feature maps but on 

Figure 25 Performance comparison of G&S approach with Binary Classification Baseline 

approach 
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the other hand, the DenseNet performs concatenation of the feature maps, Due to the 

ability to concatenate feature maps, DenseNet provides the maximum degree of feature 

reusability. The skip connections or the identity shortcut connections in the ResNet 

minimizes the representation strength but the DenseNet’s concatenation through the 

L(L+1)/2 links maximizes it. 

The basic aim behind combining the prehensile and non-prehensile robotic 

manipulations in this learning-based framework is to enable the agent to learn the 

sequence of both manipulations in order to facilitate the task of the pick-and-place and 

reach the convergence. In this framework we tried to explore the learning of non-

prehensile robotic manipulations (Left-Slide and Right-Slide) in such a manner which can 

lead to the increase of rate of success of the prehensile robotic manipulation (Grasp) and 

vice versa. In order to evaluate the contribution of non-prehensile robotic manipulations 

(Left-Slide and Right-Slide) to the learning process of the pick-and-place task, we trained 

another variant of the proposed G&S approach. The variation between the G&S approach 

and this variant is that we pulled the rule of 0.5 reward for successful non-prehensile 

manipulation from the designed reward scheme. We ensured that no reward is awarded 

Figure 26 Performance comparison of G&S approach with ResNet-based approach 
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for the Left-Slide or the Right-Slide actions. Reward scheme for the Grasp actions 

remained untouched. The Figure 27 shows the performance of the No Sliding Rewards 

variant in the cyan line against the proposed G&S approach in the blue line. Making the 

non-prehensile robotic manipulation rewardless for the agent results in as drop in 

performance of around 22%.  This drop in performance depicts the importance of the 

sliding operations for the grasping operations in our scenario. The graph shows delayed 

rise in the curve of performance which is evident for slow rate learning of the agent due 

to no rewards being provided the non-prehensile manipulations, therefore failing to 

understanding the importance of sliding operations in the pick-and-place task. We have 

already seen the performance deterioration when only grasping operations were available 

for the tightly packed clutters in the Chapter 5. With the absence of rewards for sliding 

operations, the agents learn a grasp-only kind of policy where the sliding importance can 

be perceived by the agent only indirectly when future grasping reward is earned after the 

rewardless sliding action. Therefore, the delayed curve rise as compared to the G&S 

approach represents the slow rate of improvement in the policy.   

As we discussed in previous sections that we implemented the DenseNet-121 

extended architecture in both manners, with pretrained weights and trained from scratch 

too. The G&S approach utilizes the pretrained DenseNet-121. The pretrained variant is 

trained on the subset [127] of the famous ImageNet dataset. This subset covers around 

1000 various object classes and contains around 1,431,167 images for training, validation 

and testing. In order to understand and evaluate the role of these pretrained weights in the 

overall learning process and the convergence of the policies by the agent, we created 

another variant of our G&S approach. In this variant, the DenseNet-121 extended 

architecture network was trained from scratch and no pretrained weights were involved. 

The Figure 28 presents the performance comparison of the proposed G&S approach in the 

blue color which utilizes the pretrained variant and the no pretrained weight approach in 

the orange color. It is evident from this performance comparison that the pretrained 
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weights from the ImageNet dataset doesn’t play much role in the learning of the agent 

because both variants show almost similar progress. Whereas usually the reason behind 

involving pretrained weights in training a network is to achieve faster convergence and 

higher accuracy while consuming minimal training time. But in our case, we didn’t get 

any sort of such boost from the pretrained weights. The probable cause for this in our 

opinion is the difference among the pixels pattern of our generated RGB-D heightmaps 

and the real-life images from the ImageNet dataset. The data we deal with is synthetic data 

whereas the pretrained weights were learnt after training on the real-life data. In fact, the 

early curve rise in the orange line as compared to blue line shows that the variant with no 

pretrained weights was not stuck in some local optima and started learning soon. Whereas 

the G&S approach was stuck with the pretrained weights which were causing hurdle 

instead of the expected boost, after some time gradually it grew out of those pretrained 

weights and started making progress.  

Another element whose importance was explored and evaluated was the depth data 

in the RGB-D images from the vision sensors. The two trunks were designed in order to 

entertain both the depth information and the color information. The depth information 

Figure 27 Performance comparison of G&S approach with No Sliding Rewards approach 



105 
 

which was supplied through the depth channel (DDD) where the color information was 

provided by the three-color channels (RGB). In order to evaluate the role of the depth 

information, we implemented another variant of the G&S approach, which was deprived 

of the depth channels. This no depth channels variant was only supplied with the color 

(RGB) images and heightmaps. As no depth data was to be entertained in this variant, 

therefore only on trunk dealing with color data was enough in the FCNs of this variant’s 

Q-function approximator. The Figure 28 presents the performance of the no depth 

channels variant in magenta color. Results show severe performance deterioration as the 

success rate falls to around 51%. The absence of the depth information means the lacking 

of the height from the bottom information which is crucial to differentiate the foreground 

and background in order to position the object. Once we deprive depth information, it 

means no features can’t be learnt regarding the depth element. This drop in the 

performance clearly highlights the vital importance of the depth channels and height from 

the bottom information for the agent and tells how critical these are for accurate learning 

of the policies and their optimal convergence. 

In order to evaluate the learning of the agent, we tested it under unseen 

circumstances. As we described earlier that when the simulated environment is initialized, 

the workspace area designated on the conveyor belt contains a random clutter of N regular 

and irregular-shaped objects. Once the clutter is ready, the agent starts the pick-and-place 

operation and keeps continuing until the workspace is cleared. When the whole clutter has 

been placed inside the bin, the designated placement location, it is considered as one 

complete iteration. Immediately the next iteration starts and the random clutter reaches the 

workspace for the pick-and-place and the loop continues. In our training phase, we set the 

N=10, meaning 10 random regular and irregular-shaped 3D objects randomly arranged in 

each clutter throughout the training cycle. The length of the training cycle is set at 3000 

iterations.  
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The G&S agent trained in the abovementioned manner was tested on clutters with 

varying densities. To categorize the varying densities, we develop three different 

categories of the clutters as shown in the Figure 29. We call the first category as minimum 

density clutter comprising of 6 to 10 random regular and irregular-shaped objects. In the 

second category we set the objects limits from 15 to 20 regular and irregular-shaped 

objects and name it as medium density clutter. The third and the last category is called the 

maximum density clutter and contains 25 to 30 random regular and irregular-shaped 

objects. Unlike the approach presented in chapter 5, these clutters are not ensured to be 

loosely packed, instead the thickness is kept completely random.  

Along with this density-based clutter testing, we also design various complicated 

scenarios for testing the performance of the G&S trained agent. In these complicated 

scenarios the object count ranges from at least 3 to at most 7. In each of these complicated 

scenarios, a few objects may be easy to grasp but most of the objects are in some kind of 

locking manner as shown in Figure 30 which is tricky for the agent and create maximum 

resistance for the agent to pick-and-place the objects in the workspace. The average 

Figure 28 Performance comparison of G&S approach with No Pre-trained weights and 

No Depth Channels approaches 
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performance success rate for the density-based clutter and complicated scenarios testing 

is shown in the Table IX.  

Table IX  Average Testing Results (%) 

Category Success Rate Grasping Success 

Minimum Clutter 84% 96% 

Medium Clutter 82% 95% 

Maximum Clutter 74% 82% 

Complicated 

Scenarios 

65% 73% 

 

 

In the results above, the average grasping success rate is also mentioned for all 

individual categories. The grasping success rate of each category is calculated as the 

number of successful grasp actions over the total grasps attempted in the complete episode. 

The results show that our G&S agent performs well overall in the case of minimum and 

medium density clutters but the performance dropped in the overall success rate and 

grasping success rate both in the maximum density clutters. The major visible reason 

behind this drop in performance is the objects getting placed over other objects in weak 

poses due to random arrangement in maximum density. This can also be witnessed in the 

maximum density clutter shown in Figure 29. The trouble of these weak posed objects 

placed over other objects is that as the robotic gripper RG2 forms contact with them to 

Figure 29 Categorization on the basis of clutter density 
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grasp, they slip due to weak balance and fell over thus failing the grasping attempt and 

lowering the success rate too. In the complicated scenarios, the objects are placed in such 

locking manners which can make the agent face maximum resistance while pick and 

placing the objects from the workspace. For instance, for some objects the gap to grasp 

becomes quite narrow whereas for some objects the gap may be too wide. These designed 

scenarios were completely new for the agent as the training was carried out on random 

clutters not such complex scenarios. Another major reason for lower success rate can be 

seen as the smaller number of objects in the workspace. For instance, if the workspace has 

only 3 objects in it and the agent successfully clears the workspace in only 4 actions. The 

agent has performed well in this scenario but according to the success rate metric it will 

be calculated as (3/4*100=75%). With respect to all this factors, we can say that our agent 

has performed quite well in our testing phase 

6.5.1  Discussion 

We conducted a series of simulated experimental trials to evaluate the performance 

of our RL-based self-learning agent for the pick-and-place of the regular and irregular-

Figure 30 Complicated scenarios designed with 3-7 regular and irregular-shaped objects in locking manners 
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shaped objects with the help of prehensile and non-prehensile robotic manipulations. The 

main goal behind these experimental trials was to evaluate the learning ability and 

convergence of the agent and the role of different factors in this learning. The overall 

results of our training and testing trials show that the agent successfully learns the 

sequence of prehensile (Grasp) and non-prehensile (Left-Slide and Right-Slide) robotic 

manipulations in order to pick-and-place the regular and irregular-shaped objects from the 

random clutters. 

Our proposed agent, G&S agent clearly proves its ability to learn the sequences of 

prehensile and non-prehensile robotic manipulations when it is compared to the DL-based 

binary classification baseline approach. The suspected reason behind this lead of our G&S 

agent is its ability to learn the optimal sequence of prehensile and non-prehensile robotic 

manipulations with the help of the rewarding scheme. In other words, the agent 

successfully learns to draw the link between the immediate major reward earned over 

successful grasping after earning the minor award over sliding. The role of the DenseNet-

121 architecture for the Q-function approximation in the learning and convergence of the 

proposed G&S agent can also be witnessed when it is evaluated against the ResNet-101-

based variant. The results show that proposed G&S agent has clearly an edge over the 

opponent due to the feature reusability trait through the feature concatenation capability 

of the DenseNet architecture owing to the maximum linking L(L+1)/2 among the layers. 

On the other hand, ResNet lacks this edge due to its feature summation policy instead of 

the feature concatenation.  

In order to verify the worth of the non-prehensile robotic manipulations in the 

learning and convergence of the agent, we tried killing the rewards for the non-prehensile 

manipulations which resultantly damaged the overall performance of the agent proving 

the worth and role of the non-prehensile manipulations. The proper rewarding for the non-

prehensile robotic manipulations helps the agent to learn the optimal sequences of 

grasping and sliding operations for the pick-and-place of the objects. In addition to these 
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we also evaluated the role of the pretrained weights and the depth information gained from 

the depth channels of the vision sensors. The role of the later one was found very crucial 

and critical to the overall success of the operation, whereas the role of the prior one was 

of not much worth, in fact discarding the pretrained weights made the agent learn earlier. 

The absence of the depth data led to the failure of agent’s ability to perceive the object 

under consideration separated from the background and foreground as the distance 

information was not available. This led to flawed learning and inaccurate grasps 

deteriorated the performance rate of the agent.  

The results of the density-based and complicated scenario testing clearly show the 

agent’s success in learning the sequences of prehensile and non-prehensile robotic 

manipulations and the convergence to the optimal policy. Despite the factors like 

overpopulated workspace, weak posed objects overlapping each other and complex 

locking pattern scenarios still the proposed G&S agent displays good performance and 

proves the worth of its learning and convergence during the training phase. 

 

6.6    Summary 
 

 

In this chapter we proposed a self-learning RL-based framework for the industrial 

pick-and-place of regular and irregular-shaped objects in clutter with the help of prehensile 

and non-prehensile robotic manipulations using the vision sensors. This approach 

presented in this chapter doesn’t require object-specific geometric knowledge or domain-

based knowledge beforehand. Unlike the approach presented in Chapter 5, this approach 

is not limited to the lightly packed clutters only, instead it can be subjected to any sort of 

random clutter.  

In this framework we designed, the agent learns to pick-and-place the regular and 

irregular-shaped objects with the help of sequence of prehensile (Grasp) and non-

prehensile (Left-Slide and Right-Slide) robotic manipulations using deep Q-networks and 



111 
 

pixelwise parameterization technique. For Q-function approximation, joint training 

framework is designed consisting of three individual end-to-end FCNs comprising of 

memory-efficient variant of DenseNet-121 architecture. Each FCN corresponds to each 

action and predicts the optimal pixel and its relevant 3D location of the workspace for the 

particular action. Rewards are awarded accordingly. Our results show that this proposed 

self-supervised RL-based framework enables the agent to gain learning of sequence of 

prehensile and non-prehensile robotic manipulations and the convergence to optimal 

policy. This approach deploys a memory-efficient neural network architecture therefore 

is not vulnerable to bottleneck situation like other approaches in the past due to lack of 

proper memory management. Unlike other approaches, it also enables agent to learn bi-

directional (left and right) non-prehensile manipulation and doesn’t incur any additional 

overhead for any additional computation such as segmentation, singulation, etc. We also 

probe into the role and importance of various factors in the proposed approach such as the 

non-prehensile manipulation rewards, pretrained weights and the depth data from the 

vision sensors. 
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Chapter 7 
 

 
 

7 Conclusion and Future Work 
 

 

 
 
 

The robotic arms used in industry today are hard-coded and only follow the set 

of instructions fed to them in order to perform the task. In case of any modification 

or a new task, the robotic arm needs new code. This shortcoming has been the focus 

of the research community from last few years. This thesis also addresses the same 

research gap by proposing a learning-based data-driven framework for the industrial 

robotic manipulations such as grasping and pick-and-place. This thesis considers a 

wide range of robotics-based industrial setups where some deploy the visions sensors 

and some use non-visual sensors such as proximity sensors. RL-based agents are 

trained using the off-policy i.e., Q-learning and on-policy i.e., SARSA TD algorithms 

for learning the industrial robotic pick-and-place. Resultantly, the agents learned to 

pick-and-place regular and irregular-shaped objects in clutter are at the designated 

location with the help of prehensile and non-prehensile robotic manipulations.   

 

7.1    Contribution 
 

 
The core contribution of this work is to propose, intelligent, self-learning pick-

and-place frameworks that can lead to enhanced results through increased 

efficiency and throughput. In order to achieve this target, we identified three main 

challenges to complete. The first challenge was to develop a learning-based 

framework for learning the industrial pick-and-place for the setups where there 
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were no vision sensors. In the second challenge we needed to develop a vision-

based framework for learning the pick-and-place of regular and irregular-shaped 

objects in clutter. The third challenge revolved around developing a vision-based 

framework for learning the pick-and-place of regular and irregular-shaped objects 

in clutter with combination of prehensile and non-prehensile robotic manipulations. 

The major contributions arising from this work include: 

 

Contribution I: 

Developed and presented a comparative analysis of RL-based off-policy and on-

policy temporal difference algorithms for industrial pick-and-place with non-visual 

sensing [16] [17]. 

 

This presented approach allows the agents to learn the pick-and-place task 

through reinforcement learning in such industrial environments where vision 

sensors are not viable due to certain factors. These factors can be shortage of 

installation space or high rate of dust or vibrations. In some scenarios, even wash-

up from the water jets at the scene is one of the major reasons to avoid vision 

sensors. Most of the previously existing studies in this research area address the 

pick-and-place robotic manipulation through vision sensors only.  

Therefore, this proposed algorithm addresses this research gap by enabling the 

agent to learn the pick-and-place task with the help of the ray-type proximity 

sensors instead of the vision sensors. We have trained and tested both off-policy 

(Q-learning) and on-policy (SARSA) temporal difference algorithms. The results 

show that Q-learning play better role in our proposed solution. Through this 

approach, the agent successfully learns to select the best suitable XYZ coordinates 

for the operation in accordance with the varying positions, orientations of objects 

on the conveyor belt and random conveyor belt speeds. 
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Contribution II: 

Developed  a DRL-based self-learning framework for industrial pick-and-place 

of regular and irregular shaped objects in clutter with the help of vision sensors 

[18]. 

 

This proposed framework enables the agent to learn and perform industrial pick-

and-place of regular and irregular shaped objects in the clutter. There are various 

existing vision-based pick-and-place studies. But majority of them focus on first 

identifying the objects individually through different segmentation and singulation 

techniques resulting into additional overhead. Some other approaches require 

beforehand geometrical knowledge of the objects or domain specific knowledge. 

Our approach considers the whole workspace as one instead of dealing with objects 

individually using the pixelwise-parameterization technique and doesn’t require 

any sort of beforehand domain specific knowledge or any geometrical data about 

the objects. We utilize the off-policy temporal difference Q-learning algorithm in 

our approach. Instead of dealing each object in the clutter individually, with the 

help of pixelwise-parameterization technique, success probabilities (Q-values) are 

generated for each and every pixel of the workspace. In the RL world, these success 

probabilities are known as expected future reward.  This success probability of a 

pixel means the chances of success if the grasping action is carried out at that 

particular pixel location. 

 

Contribution III: 

Developed a DRL-based prehensile and non-prehensile robotic manipulation 

framework for industrial pick-and-place of regular and irregular objects in the 

clutter with the help of vision sensors. 
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This is an extended framework from our previous DRL-based pick-and-place 

approach. This extended approach enables the agent to learn and perform the 

industrial pick-and-place of regular and irregular shaped objects through sequence 

of prehensile and non-prehensile manipulations with the help of vision sensors. In 

existing literature, some approaches that tend to combine prehensile and non-

prehensile motion can be witnessed. For instance, in such a way that prehensile 

motion (grasping) is performed during the non-prehensile motion or using non-

prehensile motion (pushing) to move the object to certain locations for already 

known grasping policies. The common limitations of most of these existing 

approaches are their need of beforehand domain specific knowledge such as 

pretrained policies or handcrafted information and their requirement to perceive 

objects individually with the help of segmentation and singulation techniques. We 

address these both limitations with the help of pixelwise-parameterization 

technique as explained before. 

Our approach addresses three actions grasping (prehensile), left-slide (non-

prehensile) and right-slide (non-prehensile) by training three individual end-to-end 

memory-efficient variants of the DenseNet-121 and ResNet-101 for pixelwise 

function approximation together simultaneously. Any approach in the past using 

these networks without proper and comprehensive memory management unlike us, 

suffers from bottleneck situation at the GPU end as it experiences the quadratic 

feature growth with time. Our approach also enables the agents to learn bi-

directional non-prehensile manipulation (left and right) as compared to the 

unidirectional and heuristic dependent previous approaches. 

7.2    Future Work 
 

 
Possible future extensions and improvements are as follows: 
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1.  Improving RL Algorithms 

 
 

 This thesis utilized the deep Q-learning for the proposed approaches. In order 

to further improve the results other schemes/variants of Q-learning can also 

be trained and tested such as double Q-learning, dueling Q-learning and 

delayed Q-learning. The double Q-learning [128] can tackle the problem of 

overestimating the rewards by separating the action selection from action 

evaluation through modifying the Bellman equation. The results have shown 

successful overestimation reductions leading to comparatively better final 

policies at the end. The improvement in results has also been seen in the case 

of dueling Q-learning [129] where the Q-values are split into value and 

advantage functions and in the delayed Q-learning [130] where the estimates 

are delayed until there is a statistically significant sample of observations.  

 

2.  Transition to Real-World 

 

Another future extension for the proposed approaches in this thesis can be the 

transition from the existing designed simulated environment to the real-life 

robotic arm in a physically designed industrial setup. The robotic operating 

system (ROS/ROS2) [131] can play a vital role in this transition.   

 

3.  Other Considerations 
 
 

 Some other improvements or modifications which can be considered involve 

extending the range of 3D designed objects in the experiments, real-life 

objects like cups, mugs, balls, etc., can be added to the list. In this thesis, 

sequential combination of robotic manipulation was achieved but it can be 

extended by adding more robotic manipulations such as stacking, rolling, etc., 
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and attempting them in parallel fashion instead of sequential to unearth more 

efficient and expert schemes.  
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