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Abstract 

The Internet of Things (IoT) has connected billions of devices and its proliferation 

will continue. As IoT grows, so do the volumes of data it produced and exchanged. 

The challenge lies in efficiently processing the massive amounts of IoT data. 

Moreover, IoT applications prioritize extracting meaningful knowledge rather than 

building connections with multiple devices. This results in a mismatch between the 

host-centric nature of the current Internet and the information-centric demands of IoT 

applications. 

To address these challenges, this thesis presents an Information Centric Networking 

(ICN) based collaborative edge computing framework for distributed IoT data 

processing. Firstly, the functional architecture is investigated to enable in-network 

data processing in IoT edge environments. Within this architecture, three software 

components, namely Computation Manager, Computation Executor and Function 

Repository, collaborate to resolve, deploy and execute IoT jobs. This thesis leverages 

the powerful and prevalent MapReduce paradigm in the architecture design. The 

ICN-based implementation empowers MapReduce job execution by categorizing 

Computation Executors as mappers and reducers, developing a distributed 

computational job tree construction protocol for the Computation Manager, and 

defining an ICN naming scheme for request expression and data/function acquisition. 

The Function Repository is distributed and maintained by each Computation 

Executor, which retrieves and saves functions by parsing users' requests. 

Experimental simulations have verified the feasibility of the proposed design and 

demonstrated its effectiveness in reducing network traffic. 

Secondly, this thesis improves the proposed ICN-based computing framework by 

considering the resource constraints of heterogenous edge devices. It classifies edge 

devices into two types: processing-capable nodes (i.e. mappers and reducers) and 

forwarding-only nodes (called forwarders). Both types of nodes join in the 

computational job tree construction procedure. A job maintenance scheme is 
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developed to disseminate IoT jobs to appropriate devices and coordinate their 

collaboration in serving multiple jobs simultaneously. Performance evaluation tests 

have confirmed the effectiveness of the proposed framework, indicating decreased 

network traffic compared to the centralized data processing approach. 

Thirdly, this thesis enhances the proposed framework to ensure exactly once data 

computation. Interruptions in IoT network connections during edge collaboration can 

lead to data loss or duplicated data transmission and processing, which is 

unacceptable for IoT applications with exactly once computation requirement. 

Although checkpoint-based schemes have been successfully developed in traditional 

big data processing frameworks to achieve exactly once data delivery/processing, it 

is challenging to directly apply these solutions in IoT scenarios due to the differences 

between IoT networks and datacentre environments. This thesis identifies three 

specific challenges of achieving exactly once computation in IoT collaborative edge 

scenarios and devises a five-phase protocol to address them. The proposed protocol 

consists of a job execution procedure for normal job operations and a job recovery 

procedure to handle network failures. Simulation tests have shown that the proposed 

design outperforms the checkpoint-based benchmark solution in terms of network 

traffic and job execution time. 
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1 Introduction 

1.1 Research Motivation 

The Internet of Things (IoT) refers to physical objects with sensing and/or 

processing ability to capture and exchange data with each other over the Internet [1]. 

In recent years, IoT has emerged as a crucial facilitator for numerous smart systems 

[2] and its growth and adoption have been steadily increasing. The report from DELL 

Technologies [3] estimates that the number of IoT devices will be 41.6 billion in 

2025, which could generate 79.4 zettabytes of data. As a result, two significant 

challenges have arisen. The first challenge is efficiently processing the enormous 

volumes of data from IoT devices. The second challenge involves refining the IoT 

data processing mechanism to better align with the information-oriented nature of 

IoT applications, ensuring optimal performance and relevance. 

Edge computing [4] moves the data computation and storage to the edge of the 

network, which has emerged as a widely accepted model for IoT data processing due 

to the following reasons. Firstly, although cloud servers have rich power and 

resources, the influx of enormous IoT data poses non-trivial challenges for cloud-

only computing [5]. Edge computing is valued as the complementary of cloud 

computing by bringing cloud capabilities at the proximity of IoT devices. Secondly, 

it is the fact that many IoT systems are deployed spanning across wide geographical 

areas, such as Smart City [6] and Industrial IoT (IIoT) [7]. These data samples are 

collected in geographically dispersed locations and they can be processed practically 

without adversely affecting each other. Thirdly, a growing number of IoT-connected 

devices have computing capabilities thanks to the advances in hardware technologies. 
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The potential of edge devices should be explored to prune and/or aggregate data 

before transmission, thereby reducing IoT network traffic. 

Along with the above benefits, edge computing meanwhile brings challenges in 

processing data in IoT scenarios. When compared with cloud servers, edge devices 

are still constrained on processing capability and storage space. Consequently, the 

execution of computationally intensive tasks may overwhelm an individual edge 

server. Moreover, the utilization of multiple edge devices becomes essential for 

completing an IoT task because of its widespread nature of sensing data. To this end, 

many factors are involved to successfully execute an IoT task using edge computing 

paradigm, such as generating task-specific execution plans, distribution and 

deployment of IoT tasks across edge devices and the synergy scheme to coordinate 

multiple edge nodes participating in one IoT task.  

More challenges arise in consideration of the information-oriented nature of IoT 

applications which prioritizes to obtain meaningful knowledge analysed from lots of 

raw data. It is not the primary concern of IoT applications to know which edge device 

processes specific data samples (although security concerns necessitate identity 

verification, which is out the range of this thesis). In addition, it is impractical for IoT 

users to be aware of the capabilities of each IoT edge device and then establish 

connections with the corresponding ones for task allocation. As a result, the existing 

host-centric Internet communication model inherently falls short in meeting the 

above requirements. The novel Information Centric Networking (ICN) [8] addresses 

these limitations by focusing on the data/information itself rather than its physical 

location. It provides name-based content forwarding, which aligns more effectively 

with the information-oriented nature of IoT applications than the current Internet 
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Protocol (IP). Thus, ICN offers the possibility to be a more appropriate network 

substrate to build an IoT edge computing paradigm. 

1.2 Research Question 

The aim of this thesis is to answer the research question defined below: 

“Is it possible to build an ICN based edge computing framework to efficiently 

process massive amounts of data for various IoT applications?” 

The research question is broken down into the following research objectives: 

• Propose an ICN based computing framework to support in-network data 

processing for IoT edge environments, encompassing both IoT and edge 

devices. 

• Design the protocol(s) for computational tasks deployment and execution with 

the proposed framework considering IoT edge device capabilities. 

• Design the protocol(s) to meet the requirements of different computational 

tasks, with a focus on exactly once data processing. 

The expanding IoT has led to the interconnection of billions of devices. However, 

the current capacity of cloud remains insufficient to handle the immense volume of 

data generated by numerous IoT devices on a continuous basis. Moreover, it is 

inefficient and wasteful to transmit non-valuable data, e.g. noisy data samples, to the 

cloud. In this context, edge computing emerges as a viable solution by alleviating the 

burden on the cloud by undertaking less complex IoT tasks or part of the complicated 

IoT tasks. Examples include data filtering at the source nodes and data aggregation 

on the fly. This thesis aims to tackle the following challenges to deploy and execute 

IoT tasks in edge environments.  
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(1) Data processing scheme in ICN-style.  ICN treats each data element 

individually by utilizing unique names, facilitating name-based in-network data 

forwarding and caching. This characteristic fits well with the information-oriented 

nature of IoT applications. However, IoT applications usually require data 

aggregation or filtering at intermediate nodes to derive meaningful information. The 

original ICN design lacks the functionality to support the in-network data processing 

for IoT edge environments. Therefore, an ICN-based data processing scheme should 

be developed to accommodate IoT edge computing framework. 

(2) Collaborative execution of IoT tasks by heterogenous edge devices. Edge 

devices, positioned between IoT end devices and applications, can contribute their 

resources to execute computational task on the data flowing through them. In real 

world scenarios, edge devices involve closed-circuit television (CCTV) cameras, 

servers at base stations, road-side units (RSUs) and edge routers, with substantial 

variations in performance capabilities. Some devices possess data processing 

capabilities, while others do not [9] [10] [11]. Differentiating the capability of edge 

nodes and assigning computation tasks to appropriate ones are the essential pillars of 

IoT task deployment. Additionally, task execution plan and maintenance are vital for 

coordinating multiple edge devices working together in a distributed manner. This 

encompasses task division among edge nodes, functions/data management for 

different tasks and synchronization of task execution processes, which can be 

managed by a centralized node or achieved through consensus algorithms [12] for 

distributed systems. 

(3) IoT applications with exactly once data computation requirement. Three 

types of semantics on data processing/delivery have been defined, i.e., at-least-once, 

at-most-once and exactly-once [13]. An IoT application may fall into one of the three 



5 

 

types depending on its scenario. This thesis centres on IoT applications with exactly 

once data computation requirement because of its significance in various domains. 

For instance, ensuring the accuracy and integrity of financial transactions, such as 

smart payment systems and Automated Teller Machine (ATM) monitoring tasks, 

necessitates the implementation of exactly once processing. In critical domains like 

risk assessment in automated vehicle driving and patient health monitoring, exactly 

once data processing is imperative to promptly detect and respond to potential 

dangers. Certain query jobs demand exactly once computation on sensory data to 

validate the precision of processed results [14]. An example is the accurate counting 

of abnormal sensory readings in IIoT to track equipment status and trigger alarms 

when the count of abnormalities surpasses a predefined threshold. The popularity of 

Federated Learning (FL) based framework [15] [16] [17] for training IoT data in 

parallel also emphasizes the importance of exactly once processing on each data point 

at edge devices, which guarantees the accuracy of trained model. Similarly, the 

correctness of window-based average computation requires each data sample within 

this window computed exactly once. 

Exactly once data delivery/processing has the most stringent standard compared 

with the other two types. Traditional big data processing frameworks, e.g. Apache 

Flink [18] and Kafka [19], have developed mature solutions for exactly once data 

delivery/processing leveraging checkpoint schemes. However, IoT networks differ 

from data centre environments in terms of unstable network connections, less-

powerful edge devices and limited storage space. It faces difficulties to directly apply 

existing checkpoint-based solutions in IoT scenarios. Initial attempts in IoT areas 

have borrowed the checkpoint scheme to enable task migration [20] and processing 

information transfer between different tasks [21]. The limitation is that these works 
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concentrate on task execution on a single edge device. Consequently, an IoT-tailored 

approach should be developed to guarantee exactly once data computation in 

collaborative edge environment. 

1.3 Scope of Work 

The target IoT applications are those requiring processing the data from multiple 

static IoT end devices, e.g. temperature sensors, speed sensors on the road and CCTV 

cameras. While the IoT data is transmitted from data sources to users, the 

intermediate nodes (e.g. IoT, edge, and cloud devices) along the path undertake data 

computation or aggregation or forwarding according to their capabilities. The 

generated job execution plan aims to deploy the data computation to the edge node 

that is closest to the required data sources. 

Although every computing job has specific requirements related to both data and 

the capabilities of computing devices, it is not the main concern of this thesis to 

describe computing resources of edge devices and match the proper one for specific 

jobs. Moreover, security and privacy issues in data retrieval and processing are 

beyond the scope of this thesis. 

1.4 Contributions and Publications 

The contributions arising from this research include: 

Contribution I: 

Proposed a functional architecture for IoT Collaborative Edge Computing and its 

ICN-based implementation for executing MapReduce jobs  [22] [23]. 

Publications: 
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• Qian Wang, Brian Lee, Niall Murray, Yuansong Qiao, "IProIoT: an In-

network Processing Framework for IoT using Information Centric 

Networking", The 9th International Conference on Ubiquitous and Future 

Networks (ICUFN), Milan, Italy, 4-7 July 2017. 

• Qian Wang, Brian Lee, Niall Murray, Yuansong Qiao, "MR-IoT: an 

information centric MapReduce framework for IoT", the 15th IEEE 

Consumer Communications & Networking Conference (CCNC), Las Vegas, 

USA, 12-15 January 2018. 

To harness the potential of the edge computing framework for efficient IoT data 

processing, this thesis proposes a functional architecture with three software 

components to resolve, deploy and execute IoT tasks on edge nodes. The architecture 

consists of the following components and their functional units:  

o Function Repository: It stores the processing functions to be applied on IoT 

data and can be deployed within IoT edge in a centralized or distributed 

manner. 

o Computation Executor: The Computation Executor represents an available 

edge device capable of providing computational services, leveraging its idle 

computing power. Computation Executors are responsible for Task 

Resolution, Function and Data Acquisition, Task Processing and returning 

processed results. 

o Computation Manager: The Computation Manager has comprehensive 

knowledge of the entire IoT system and is responsible for administrating task 

execution and managing other edge devices. It maintains the Computation 

Resource Database, e.g. regularly updating available Computation Executor 

and functions stored in the Function Repository, to facilitate task distribution 

among Computation Executors. The Computation Manager bridges the gap 
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between users’ requests and appropriate Computation Executor(s). After 

receiving a task, the Computation Manager performs Task Resolution and 

Execution Optimization based on the currently available computing resources. 

For instance, it strategically assigns the task to the Computation Executor that 

is closest to the required data source(s) to reduce network traffic. Finally, the 

Computation Manager initiates Task Dissemination according to the 

execution plan. 

The MapReduce programming model [24] has gained significant popularity for 

distributed processing of big data. It accepts user-defined functions as an input for 

data processing. IoT applications could gain from this feature to flexibly express data 

processing logic. In addition, the outputs of MapReduce tasks are standardized as 

key-value pairs, which simplifies various IoT applications to share different data 

types. Executing MapReduce jobs on the proposed architecture is achieved through 

the following implementation based on ICN. 

(1) An ICN naming scheme is defined to express desired data content and (map 

and reduce) functions for each user’s request, referred to as an Interest in ICN. More 

importantly, the naming scheme supports Task Dissemination and Data/Function 

Acquisition by using ICN name-based forwarding. 

(2) The Function Repository is deployed and maintained by each Computation 

Executor. As user-defined map and reduce functions are incorporated in the ICN 

Interest, Computation Executors can acquire the processing function through Task 

Resolution and then save the function locally for Task Processing. 

(3) A job tree construction protocol, based on the shortest path algorithm, is 

developed to create the job execution plan. A unique job tree is built with each user 

as the root node and all desired data source nodes as leaf nodes. It selects appropriate 
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Computation Executors between the root and leaf nodes to participate in the data 

processing. Tasks are assigned along the paths on the job tree. The protocol 

implements the functional units of the Computation Manager. 

(4) Computation Executors are grouped into mappers and reducers. Mappers are 

defined as the stub nodes of IoT edge network, which connect with multiple sensors 

to collect raw sensing data according to users’ Interests. Reducers are the intermediate 

edge nodes between the root node and mappers, which receive data from child 

reducers or directly connected mappers. Mappers/Reducers run user-defined 

map/reduce function to process data. 

Contribution II: 

Designed the protocol to execute multiple MapReduce jobs on the proposed 

framework with the consideration of resource constraints on edge devices  [25]. 

Publication: 

• Qian Wang, Brian Lee, Niall Murray, Yuansong Qiao, "MR-Edge: a 

MapReduce-based Protocol for IoT Edge Computing with Resource 

Constraints," the 16th IEEE Consumer Communications & Networking 

Conference (CCNC), Las Vegas, USA, 11-14 January 2019. 

Due to the heterogeneity of edge devices, some of them have the computational 

resources to process data while others do not. To address this, the proposed 

framework further introduces a new type of Computation Executor, i.e. called 

forwarders, to represent those edge devices with no processing capability. The 

functionalities of mappers and reducers remain the same as defined in Contribution 

I. Forwarders neither resolve nor run functions embedded in users’ Interests. They 

forward packets from/to their neighbours and integrate all received data into one and 

then return. Data aggregation helps to reduce the number of transmitted packets [26]. 
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A Computation Executor may change its role depending on the requirements of 

different jobs. 

The proposed protocol enhances the application layer functionalities to support 

multiple MapReduce jobs execution on the proposed framework. The key enabler is 

to distinguish each computational job tree and maintain job specific processing 

information. The proposed design assigns a unique identifier to each computational 

tree and each job. All Computation Executors locally save the tree/job identifier with 

corresponding information (e.g. upstream/downstream neighbours on the specific 

tree, parsed map/reduce functions for a specific job) as a pair to ensure the job 

execution correctness, i.e. matching raw/computed data samples to their 

corresponding jobs. 

Contribution III: 

Developed the protocol to provide exactly once data computation on the proposed 

framework [27]. 

Publication: 

• Qian Wang, Brian Lee, Niall Murray, Yuansong Qiao, " ECE: Exactly Once 

Computation for Collaborative Edge in IoT using Information Centric 

Networking", IEEE Internet of Things Journal, 2023. 

IoT network connections between edge devices may be interrupted during job 

execution. It may result in data loss or duplicated data transmission and/or processing, 

which are not acceptable for IoT applications with exactly once data computation 

requirement. Existing checkpoint-based solutions for datacentres [18] [28] are not 

suitable for IoT collaborative edge computing scenarios because the underlying 

network topology is normally not considered in datacentre based solutions. However, 
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in IoT networks, the logical job graph is tightly coupled with the physical network 

topology. The gain of data processing versus data transmission should be considered 

when mapping the logical job graph into the physical devices. 

The proposed protocol identifies and solves the following three challenges to 

achieve exactly once computation in collaborative edge computing for IoT data 

processing: (1) backup essential data processing information in distributed edge 

nodes, (2) handle network failures during edge collaboration while guarantee exactly 

once computation on the same data and (3) limited storage space at edge devices to 

permanently save data processing related information (as required in challenge (1)). 

As a solution, a job tree based data identification (ID) assignment approach is 

devised as the fundamental support to save and delete job processing related 

information. The proposed protocol consists of a job execution procedure (to solve 

challenge (1) and (3)) and a job recovery procedure (to solve challenge (2)). The two 

procedures can coexist with each other. The job execution procedure enables edge 

nodes on the job tree to achieve a consensus on the data processing plan and remove 

out-of-date processing related information with exactly once data computation 

guarantee. The job recovery procedure handles link failures happened during the job 

execution. It dynamically updates the job tree to eliminate failed links and checks the 

data delivery (received or un-received) and computation (processed or un-processed) 

state to avoid data loss and/or duplicated data computation. 

1.5 Thesis Layout 

The rest of this thesis is organized as below.  
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Figure 1 Thesis Outline 

Part I: 

Chapter 2 briefly introduces the background knowledge of the Named Data 

Networking (NDN) architecture in Section 2.1, which is one of the most popular and 

active implementations of ICN and the one chosen for this thesis. In Section 2.2, an 

overview of the MapReduce programming model is presented, accompanied by an 

analysis of the challenges associated with applying the original MapReduce 

framework to IoT scenarios. Section 2.3 delves into a comprehensive review of 

collaborative edge computing frameworks currently prevalent in the IoT domain. 

Section 2.4 outlines the advantages of ICN in the context of emerging Internet 

applications, with a specific focus on IoT edge computing solutions developed on the 

foundation of ICN. Furthermore, Section 2.5 revisits existing schemes to guarantee 

exactly once data delivery or processing. The introduction of distributed consensus 

protocol is described in section 2.6. 

Part II: 
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Chapter 3 (Contribution I) proposes the functional architecture of IoT 

collaborative edge computing to empower in-network data processing. An ICN-based 

implementation of the architecture is developed to execute MapReduce type jobs. 

Chapter 4 (Contribution II) improves the proposed framework by considering 

different computing capability of edge devices. A job execution scheme is designed 

to coordinate multiple edge nodes working together to complete data processing jobs, 

where some of them are processing-capable while others are not. Moreover, a job 

maintenance scheme is defined to support multiple MapReduce jobs running on the 

proposed framework simultaneously. 

Chapter 5 (Contribution III) illustrates the protocol design to achieve exactly once 

data computation on the proposed framework. It contains a job execution procedure 

to deliver IoT jobs with exactly once data computation guarantee and a recovery 

procedure to dynamically update the IoT job execution graph while experiencing 

network failures. A data identification approach based on the job graph is devised to 

support the proposed functionality. 

Part III: 

Chapter 6 concludes the whole thesis and discusses potential future works. 
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2 Literature Review 

This chapter provides relevant background of this research project and presents a 

comprehensive of related literature in the field. Figure 2 illustrates the relationship 

between each section and this thesis. The technology background of NDN is 

elucidated in Section 2.1. Section 2.2 provides an overview of the fundamental 

concepts underpinning the MapReduce architecture and specific challenges of 

applying MapReduce model into IoT. Research inquiries into collaborative edge 

computing in IoT scenarios are explored in Section 2.3. In Section 2.4, the focus shifts 

to existing initiatives aimed at integrating ICN principles into IoT edge computing. 

The review of methodologies to achieve exactly once data delivery or processing is 

presented in section 2.5. The convergence of Section 2.3, 2.4 and 2.5 delineates the 

scope of work undertaken in this thesis. Furthermore, Section 2.6 describes the 

commonly used consensus protocol in distributed systems, i.e. Two-Phase Commit 

protocol, which inspires the proposed solution in this thesis to address the defined 

research objectives. 

 

Figure 2 Literature Review Outline 
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2.1 NDN Technology Background 

Similar with the current hourglass architecture in IP, NDN revolutionizes the thin 

waist of the network by using data names, as shown in Figure 3. Thus, it regards data 

content as the first-class citizen rather than its container, like the endpoints in IP. The 

motivation behind NDN stems from the observation that the dominant usage of the 

Internet has shifted to data distribution and retrieval, driven by the sustained growth 

of emerging applications, e.g. IoT. 

 

Figure 3 IP and NDN Architecture [29] 

In NDN, everything is assigned a unique name, e.g. a video segment, a light 

switch, or a piece of deployable code. Each name is hierarchically structured. For 

instance, the name /tus/sri/room1/humidity/reading1 represents the first reading value 

of the humidity sensor located in room1 of SRI office in the TUS campus, where the 

slash symbol ‘/’ separates two components in a name and is not considered part of 

the actual name itself. The naming scheme holds paramount importance in NDN as 

it is used for data retrieval and forwarding. 

NDN defines two types of packets: Interest and Data. Both types of packets carry 

a name to identify a specific piece of data or content. The communication in NDN is 
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initiated by data consumers, who encapsulate the name of desired data/content into 

an Interest packet and send it to the network. NDN routers analyse the name in the 

Interest packet to forward it towards data producers. Eventually, the Interest reaches 

a node that has the matched data/content. The node embeds the requested data/content 

in a Data packet and returns it along the reverse path of the Interest. The specific 

naming of Interest is defined to support the functionalities of the proposed protocols 

in each contribution of this thesis. 

NDN routers maintain three tables for the processing of Interest and the return of 

Data: Forwarding Information Base (FIB, to forward Interest to next hop), Pending 

Interest Table (PIT, to add waiting Interest and to return Data in the reverse route of 

Interest) and Content Store (CS, to save received data/content for a certain time). 

Figure 4 illustrates the procedure of packet processing in NDN and the following 

explanation presents the steps involved. 

 

Figure 4 NDN Packet Processing [30] 

Step 1: When a NDN router/node receives an Interest packet from downstream, it 

firstly checks its local CS to determine whether the required content is already 
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cached. If the Data is found in the CS, the node immediately returns the 

corresponding Data packet. Otherwise, the node searches this Interest in its local PIT. 

Step 2: If the current Interest is not found in the local PIT, the node inserts a new 

record in its PIT, including the Interest name, incoming interface and other relevant 

information. In the case the Interest already exists in the PIT, the node maintains a 

list of interfaces that issued the same Interest and adds the new incoming interface to 

the list associated with the corresponding Interest. 

Step 3: After creating a new PIT record, the node checks its FIB for further 

processing. If the search result for this Interest is positive, the node uses the routing 

information to forward the Interest accordingly. However, if no entry if found in the 

FIB, the Interest is dropped as the node has no knowledge of the possible next hops 

to retrieve the requested Data. 

Step 4: Upon receiving the corresponding Data packet from upstream, the node 

finds the PIT records that match the name of the Data. If no record matches, the node 

discards the received Data. Otherwise, the node forwards the Data packet to 

downstream according to the matched PIT information, removes the corresponding 

PIT records and finally saves the Data in its CS to fulfil future requests. 

2.2 MapReduce/HDFS 

MapReduce is a programming model to process large data sets in a distributed 

fashion pioneered by Google [24]. Apache Hadoop [31] is an open-source 

implementation of the Google’s MapReduce approach, which consists of a data 

storage module named Hadoop Distributed File System (HDFS) and a data 

processing module called Hadoop MapReduce. 
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Figure 5 MapReduce/HDFS Framework 

As illustrated in Figure 5, the HDFS architecture has a central NameNode serving 

as the controller and multiple DataNodes for executing MapReduce tasks. The 

controller role is a common concept in big data processing frameworks, for instance 

the JobManager in Flink and scheduler in Spark. The NameNode is responsible for: 

• Splitting input file into several blocks and replicating each block on a subset 

of DataNodes for fault tolerance 

• Assigning Map and Reduce tasks to idle DataNodes, continuously monitoring 

the status of each DataNode and scheduling replacements for failed nodes 

• Handling all file system operations and maintaining essential system metadata 

A single MapReduce job typically involves three phases: Map, Shuffle and 

Reduce. Each DataNode in the Map Phase runs user-defined mapper function on the 

assigned data block to generate key/value pairs, i.e. labelled as Mapper in Figure 5. 

A Combiner or combine-function is optional applied for partial combinations of the 

generated values by the same mapper with the same key, which lowers the transferred 

data size across the system. The Shuffle Phase sorts the output of mappers by keys, 
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and then sends the key/value pairs to reducers. This process ensures that the 

intermediate results with the same key are sent to the same reducer. Subsequently, 

DataNodes in the Reduce Phase execute user-defined reduce functions on the sorted 

data to produce the final output. 

The canonical MapReduce use case is the word count job [32]. For instance, the 

input data is a text file with multiple lines of words. The map function is defined to 

generate a (“wordX”, 1) pair for each word in each line. The shuffle stage in this 

example sorts the map output pairs by the same key (“wordX”). To count the number 

of appearances for each word in this text file, the reduce function is defined to sum 

up the value (“1”) with the same key (“wordX”). The reduce function can be run by 

one or more nodes, depending on the job configuration. 

Many types of tasks can benefit from the MapReduce processing model, such as 

data mining, distributed sort and so on. MR-CCN [33] aims to improve the 

performance of big data analytics in datacentre environments by implementing an 

ICN-based MapReduce framework. This approach enables the integration between 

computing and networking through routing with aggregation in ICN nodes. It also 

integrates caching and computing by utilizing ICN caching for intermediate and 

popular datasets to reduce network loads. MR-CCN proposes a novel naming scheme 

containing a routing section and a content section. The former section propagates 

Interest packets within the network, while the latter one describes the input data, 

processing functions and final result format. However, it is worth to mention that this 

work is specifically designed for the CamCube [34] data centre structure, which may 

limits its applicability to other network topologies, e.g. IoT. 

Recent researches [35] argue that the MapReduce-style processing method (e.g. 

distributed machine learning [36]) is more suitable for modern applications. Many 
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large-scale industry systems collect and store data separately, it is more desirable to 

process the data in a distributed fashion to avoid the bottleneck of data transmission 

to a single server. Moreover, the consumed data size has increased sharply over the 

past decades, making it hard to deploy a single powerful server to process the massive 

and continuously growing data. 

IoT is one of the systems with wide-spanning areas and vast amounts of data, 

making it an ideal application scenario for MapReduce. Beyond merely reducing 

network traffic, MapReduce can aid in the sharing of IoT infrastructure by accepting 

user-defined functions as input. This enables the same dataset executed by different 

processing functions serving specific information needs for various IoT applications. 

This thesis aims to apply the MapReduce processing concept to IoT scenarios to reap 

the benefits and while tailoring the MapReduce framework to accommodate the 

distinct constraints and prerequisites of IoT data processing.  

Firstly, a significant consideration in IoT networks is the evaluation of data and 

node locality, which is often overlooked in traditional MapReduce deployments. 

Unlike conventional setups where the NameNode does not consider data locality 

when deploying Map/Reduce tasks on DataNodes and reallocating tasks to handle 

failures, it’s critical in IoT networks to assess the proximity between a data source 

and a processing device to effectively reduce network traffic. Secondly, given IoT 

applications shifting from Cloud computing to edge computing, this thesis 

endeavours to implement the NameNode functionality in a distributed manner, 

effectively aligning with this paradigm shift. Thirdly, the original MapReduce design 

confines the combiner to operate solely on local datasets. However, given edge 

devices positioning between IoT data sources and sink nodes, their potential can be 
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harnessed to aggregate intermediate results from various processing nodes along the 

data transmission path to further minimize network traffic. 

2.3 Collaborative Edge Computing in IoT 

Edge Computing is proposed to complement Cloud Computing to deal with the 

high volume/velocity/variety of data produced by enormous number of IoT devices. 

It aims to reduce the response time for delay-sensitive IoT applications by placing 

computation and storage closer to data sources. Extensive research studies have 

explored the edge computing paradigm to boost IoT data processing, which can be 

categorized into two types: single-layer edge computing and hierarchical edge 

collaboration. 

2.3.1 Single-layer Edge Computing 

The single-layer edge computing refers that the data computation undertaken by a 

single edge server or by the cooperation of multiple edge nodes in a single layer. The 

focus is on optimising computation offloading in IoT scenarios, particularly in the 

context of the IoT-Edge-Cloud model. Some works consider a single edge device as 

the computation execution node, e.g., a scheme to execute CPU-intensive tasks on 

either the edge or the cloud to reduce network traffic and improve service quality 

[37], an algorithm to enable efficient handover between two fog servers for high 

mobility users to avoid service disruptions [38], a deep reinforcement learning-based 

approach to maximize the benefits of IoT devices when allocating edge or cloud 

resources for data processing and Blockchain mining tasks [39], and a 

recommendation mechanism for IoT devices in smart city to select a trustworthy edge 

service provider to decrease service latency [40]. 
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Other research works explore the horizontal cooperation of multiple edge nodes 

to provide the computation service for IoT applications. To name a few, a case study 

in IIoT demonstrates reduced production order delivery time by utilizing self-

organized task mechanism among multi-robots [41]. In the event of a node failure, 

robots negotiate and transfer the task of the failed node to an adjacent one, without 

central server scheduling. CoopEdge [42] designs a blockchain-based decentralized 

platform for edge servers to leverage each other’s computing capabilities via peer 

offloading, ensuring timely task computation without overloading individual edge 

node. A multi-edge assisted query processing system is developed in [14] to minimize 

response latency and alleviate the workload of the cloud. A user’s query is submitted 

to the cloud which generates a query execution plan and distributes to corresponding 

edge devices to process sensory data in a distributed manner. 

The work in [15] integrates the FL technique with collaborative edge computing 

to allow multiple edge servers to perform partial model aggregation, which achieves 

faster training time with less energy consumption compared to with cloud-based FL 

approaches. Collaborative cross-edge analytics [43] focuses on data pre-processing 

phase before entering the model training and model inference phases of the artificial 

intelligence (AI). The raw data generated and stored at each edge site is labelled and 

transferred into trainable data samples before extracting by the AI model. 

The contributions arising from this thesis fill different research gaps compared 

with works mentioned above. Firstly, this thesis designs a multiple-layer edge 

computing framework that considers the heterogeneous computation capabilities of 

edge devices. More powerful edge nodes handle complex processing tasks while less 

powerful ones simply assist in packet aggregation and forwarding. Secondly, this 

thesis develops a scheme to guarantee exactly once data processing in IoT edge 
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environments, which has not been extensively addressed in the related works 

discussed in this section. 

2.3.2 Hierarchical Edge Collaboration 

The hierarchical edge collaboration utilizes a multi-layer computation execution 

graph to coordinate several edge nodes working together to complete IoT tasks. Given 

the performance differences among heterogenous edge devices, e.g. base stations, 

electrical cars, laptops and mobile phones. A hierarchical structure is formed to 

organise edge nodes based on their capabilities in performing (sub) tasks. 

A four-layer fog computing architecture is proposed for big data processing in 

smart cities in [11]. Due to its large-scale and geo-distribution characteristics, the 

layer-4 nodes in each region capture sensory data of various public infrastructure and 

forward to the layer-3 nodes, which aggregate data from multiple layer-4 nodes. Each 

layer-2 node connects with a cluster of layer-3 nodes and analyses spatial and 

temporal data for further decision-making. The top layer consists of a data centre that 

receives results from layer-2 and provides complex computing and long-term storage 

capabilities. 

A three-grade edge computing paradigm for intelligent warehouse system that 

offers rapid detection and response of emergency cases is proposed in [9]. The grade-

1 edge nodes are responsible for data collection and monitoring. The grade-2 nodes 

perform preliminary data processing and execute control commands received from 

higher grade edge nodes or the cloud. The edge nodes in grade-3 contributes to more 

complex data analysis for prediction and control. 

LayerChain [10] designs a hierarchical storage architecture for large-scale IIoT 

data, employing a blockchain-based approach that involves cloud and multiple edge 
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nodes. To accommodate the varying computing power and storage space of edge 

devices, it defines three types (light, basic and full) of edge nodes according to the 

requirements of blockchain technology. Specifically, basic edge nodes have minimal 

storage space so that they only assist in forwarding messages, while light edge nodes 

have larger storage space and can verify generated blocks. Full edge nodes are the 

most powerful ones compared with the other two types. They can perform all the 

function of light edge nodes and act as miner nodes. 

The mF2C project [44] introduces an IoT-Fog-Cloud continuum architecture that 

integrates a centralized cloud with various levels of fog computing. The system 

incorporates a mF2C agent on each node, providing management and control 

functionalities such as task orchestration, resource discovery in the edge, and service 

performance monitoring. The fog layer closest to the cloud can be deputed as the fog 

leader to aggregate processed results from lower-level fog nodes. 

Although there are similarities between this thesis and the related works presented 

above, where sensing data is processed by intermediate edge nodes in multiple layers 

on the way transmitted to the cloud or users, the differences are as follows. In existing 

works, edge devices are pre-grouped into a specific level that remain constant for all 

computational services. In the proposed architecture of this thesis, the role of an edge 

node, i.e. processing-capable or not, changes with specific user requests. Moreover, 

this thesis delivers exactly once data processing guarantee in hierarchical edge 

computing, which is not the main research concern of the above works. 

2.4 ICN based Edge Computing for IoT 

Instead of patching the limitations of the IP architecture, research communities 

propose ICN [45] as a new clean-state architecture for emerging Internet applications. 
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Two research groups within the IETF cover topics related to this thesis. i.e. the 

Information Centric Networking Research group (icnrg) and the Decentralization of 

the Internet Research Group (dinrg). While the dinrg is currently focusing on 

discussing potential issues and threats of current Internet centralization, its 

documents are not discussed as related works in this thesis. On the other hand, 

documents published by the icnrg have explored the potential of ICN in various areas, 

including ICN-enable 5G next-generation core architecture [46], adaptive video 

streaming over ICN [47], ICN-based distributed architecture for microservices 

communication [48], ICN for efficient IoT [49] and more. 

With its ability to name data and services, ICN offers many advantages for IoT 

compared to the current host-centric Internet. For example, improved data delivery 

performance in poor-quality links in vehicular networks thanks to ICN in-network 

caching feature [50], reliable data retrieval from multiple source nodes by a single 

request [51] and publish-subscribe scheme for IoT networks with intermittent 

connectivity [52] [53] utilizing ICN communication pattern, reduced IoT network 

load and task completion time through the implementation of ICN Quality of Service 

(QoS) management protocol [54] and an ICN framework designed for the delay-

tolerant communication between long range wireless networks and the Internet [55]. 

However, challenges emerge when adopting ICN to support IoT applications given 

the heterogeneity of devices, data processing and content distribution models [49]. 

The original design of ICN supports in-network data forwarding and caching but 

lacks in-network processing functionality. This thesis aims to extend ICN to enable 

data/content processing, with a special focus on IoT scenarios. 

Named Function Networking (NFN) [56] is the pioneer project to enhance the 

network’s functionality to process data and cache previous computed results in the 
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CS of network devices. It proposes to name the data processing logic so that the 

network can work as a computational machine when both data and function pieces 

are available. The Interest name is expressed as Lambda Calculus to drive the whole 

network using find-or-execute rules: 

• Find: the network returns the required result if it exists within the network. 

• Execute: if the required content is stored within the network, the network 

searches both data and functions for the task and then executes the task to obtain 

processed result. 

The NFN team states that the locality-of-execution is discovered and decided by 

the network according to the processing policy or resource availability, but no 

detailed solutions are given. Moreover, NFN scheme is not specifically designed for 

the usage in IoT scenarios. 

RICE [57] augments the capabilities of NFN to enable long-running computations 

within the network, which decouples the invocation of a computation/function from 

the retrieval of computed results. The “Thunk” name is proposed to identify the 

specific node for content fetching assuming that the computation is handled by a 

single sever. Compute First Networking [58] leverages RICE and the conflict-free 

replicated data structure to implement a distributed computing framework. It defines 

the “program” as a set of computations requested by a user. Each computation in the 

program can be deployed on a worker node located nearest to the input data with the 

biggest size. This approach maintains the same assumption as RICE that all inputting 

data needs to be transferred to a single node for computation. 

NDN-Q [59] is a distributed query mechanism for data collection in V2X 

(Vehicle-to-Vehicle and Vehicle-to-Infrastructure) scenarios based on NDN. The 

proposed naming scheme embeds data selection, filtering and aggregation rules for 
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query processing. It allows the nodes on the routing path to process data in a database 

mode, with some of them returning the result only if it meets the user’s requirements. 

The name of aggregation/reduce logic is encapsulated in the Interest name and the 

processing nodes need to request the logic if it’s not available locally. At the end, the 

processed result is sent back to the query source. As mentioned in their paper, each 

node in NDN-Q needs to maintain a key-value Database (DB) to facilitate future 

processing. This thesis argues that DB style processing cannot offer the flexibility to 

take and run user-defined functions directly. Moreover, current NDN-Q only 

implements the data processing at one level of intermediate nodes. The cooperation 

among processing nodes is not considered in their paper. 

Keyword-based ICN-IoT [60] combines the scalability of NDN hierarchical 

naming scheme with the flexibility of keywords as a hybrid routing scheme to ease 

data sharing in same IoT domain. It includes function tag as part of the naming 

scheme, which describes the function that should process the desired IoT dataset. The 

assumption in this paper is that all edge nodes are capable of data processing and then 

the final execution placement depends on the trade-off between the data transmission 

and computing resource cost. 

NFaaS [61] assumes functions saved as Virtual Machines (VMs) in the form of 

unikernels. It dynamically migrates the function execution among edge nodes and the 

cloud depending on nodes’ storage capacity, computation capability and specific 

requirements of services, i.e. the delay-sensitive or bandwidth-hungry type defined 

in the paper. 

In IoT-NCN [62], the edge node that acts as a data processing executor is decided 

and manipulated by the implemented “ExecAvailability” boolean field to the NDN 

PIT entry. The default executor is the branch node of multiple requested data sources, 
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which sets the “ExecAvailability” to true to avoid duplicated processing at other 

nodes. If the branch node fails to execute, it generates a Data packet with error code 

“no-computation” and returns. On the reverse path of the Interest, the first neighbour 

node that receives the Data packet becomes the executor. 

To optimize IoT service deployment and execution by utilising ICN features, a 

content-centric networking (CCN) based protocol [63] is designed to help service 

discovery among mobile edge computing (MEC) nodes. It chooses the best MEC to 

guarantee the QoS and avoids deploying the same service duplicated on neighbouring 

MECs. ICedge [64] proposes a self-learning scheme to dynamically discover multiple 

network paths to all computing nodes that offer the same service. It reuses previous-

computed results among users to minimize execution/completion time by parsing the 

NDN name of each request and dispatching requests with similar names to the same 

computing node. Docker-based services are dynamically deployed on edge servers 

based on service popularity using ICN-featured forwarding strategy [65]. 

Furthermore, the VM-based service optimal deployment is evaluated through the 

service gain defined as the processed data amount per CPU cycle [66]. 

The main differences between this thesis and the above works are: (1) employing 

the multi-layer collaborative edge computing paradigm to execute IoT data 

processing as computation-intensive tasks, e.g. image processing and speech 

recognition, are proven to benefit from the synergy of multiple edge devices than 

offloading to a single edge server [67], and (2) guaranteeing the correctness of the 

computed results in a distributed manner for IoT applications with the exactly once 

data computation requirement. 
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2.5 Exactly Once Data Processing 

In the realm of data processing or delivery, three distinct semantics have been 

defined: at-least-once, at-most-once, and exactly once. Amongst these semantics, 

achieving exactly once semantics has the strictest requirement compared with the 

other two. Notably, Google’s research [68] emphasizes that exactly-once processing 

is a requirement for many of their revenue-processing customers. Moreover, 

duplicated record deliveries could cause spurious spikes for Google’s hot trends 

service. Other applications include service agreements for stock traders to ensure the 

visibility of every trade event without duplication [69], fault-tolerant Write-Ahead-

Log entries for providing transaction atomicity and durability [70] and non-

duplicated aggregation of sub-models deployed on edge servers within a hierarchical 

FL system to maintain the correctness of trained model [15].  

2.5.1 Datacentre-oriented Solutions 

Traditional big data processing systems, e.g. Apache Flink [18] and Apache Spark 

[28], have developed mature solutions to support exactly once operations. Both 

frameworks employ a checkpoint scheme as the foundation to achieve the exactly 

once semantics. A checkpoint consists of a snapshot of the state of each operator, which 

is typically saved to a durable storage system, e.g. HDFS [71]. The system can recover 

from failures by reverting each operator to the previous state saved in a snapshot and 

reprocessing the input data from the respective checkpoint barrier. This approach 

assumes that the logical job graph remains the same when restarting from a 

successfully saved checkpoint. With the powerful servers close to each other in 

traditional data centre scenarios, the logical job graph is independent of the physical 

job graph, allowing the restoration of the logical graph onto different devices if 
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needed. For example, the job manager in Flink may allocate the task on a different 

work node if the previous one fails. 

However, this thesis argues that the checkpoint-based solution is challenging to be 

applied in IoT scenarios. Firstly, the logical job graph is tightly coupled to the 

physical topology in IoT edge environment. Data processing task(s) should not be 

arbitrarily placed on an edge device to replace the previous failed one as it needs to 

evaluate the benefits of transmitting data versus processing/aggregating the data. 

Secondly, high-performance durable storage systems for saving periodic snapshots 

are not widely available in edge computing environments, such as the HDFS. 

2.5.2 IoT-related Solutions 

Despite fruitful research studies on IoT edge computing, few findings have 

specialised in guaranteeing exactly once data delivery and processing. 

The solution proposed in [72] improves the message queue systems, e.g. Kafka 

[19] and RabbitMQ [73], to ensure exactly once processing through a consumer side 

protocol. All messages are stored in a shared DB and a state transition graph is 

introduced on each message to control access and operations. IoTEF [16] is a 

federated edge-cloud architecture based on Docker containers, which deploys one 

Kafka cluster in the edge and one in the cloud. It uses Kafka to buffer data streams in 

case of network failures and ensure exactly once data semantics within a cluster. 

Initial attempts have explored the checkpoint-based approach to save the state of 

an IoT task into Docker images. Researchers in [20] focus on deploying the Function-

as-a-Service (FaaS) model on IoT devices. They checkpoint the states of long-

running functions and save them as containers, which enables function execution 

migration from one device to another, considering the resource constraints of a single 



32 

 

IoT device to finish a computation-intensive task. Similarly, the state of data 

processing is checkpointed as an image in [21] to facilitate information transfer 

between different tasks running on IoT devices with limited Random Access Memory 

(RAM). However, these works only concern the task execution on a single edge 

device. 

2.6 Distributed Consensus Protocol 

To achieve exactly once computation in IoT collaborative edge environment, it is 

essential to obtain a consensus on the data computation plan amongst the edge 

devices. In distributed computing systems, ensuring consistency and reliability in 

data transactions across multiple nodes is of utmost importance. The two-phase 

commit protocol [75] [76] is a well-known algorithm in distributed systems to 

coordinate all parties to agree or abort an action.  

The two phases include the commit-request phase and the commit phase. It 

designates a coordinator node, and the rest of nodes are participants. The main 

procedure of the protocol is summarised as follows. In the commit-request phase, the 

coordinator sends a message to all the participants to notify them preparing for the 

commit operation. Each participant votes yes or no according to its state. The commit 

phase starts when the coordinator receives all participants’ replies. If all participants 

vote yes, the coordinator sends a commit message to all participants. If any participant 

replies no, the coordinator sends a rollback message to all participants to abort the 

operation. 

In Apache Flink [77], two-phase commit protocol is utilized to coordinate 

distributed checkpoints so as to provide exactly-once semantics. The starting of a 

checkpoint represents the commit-request phase. Every operator in the data 
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processing pipeline, spanning from the data source to the sink, takes a snapshot of its 

state and sends a response message of either “commit” or “abort” to the Flink 

JobManager. Once receiving messages from all operators, the Flink JobManager 

checks the responses. If at least one operator fails in the commit-request phases, all 

other operators are aborted and the system reverts to the previous completed 

checkpoint. Conversely, if all operators reply to commit, the checkpoint is considered 

successfully completed. The Flink JobManager issues a checkpoint-completed 

callback for each operator, representing the commit phase. 

To achieve exactly once data computation, this thesis is inspired by the two-phase 

commit protocol, which defines a Job Execute Phase (chapter 5.2.2) for disseminating 

and executing jobs (i.e. the commit-request phase) and a Job State Commit Phase 

(chapter 5.2.3) to commit the job completion state only if all nodes returning 

computed job results correctly (i.e. the commit phase). 
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3 Functional Architecture and its ICN-

based Implementation for 

MapReduce Jobs 

This chapter describes the first contribution arising from this thesis. It proposes 

the functional architecture of IoT edge computing, which emphasises the paramount 

functional units to deploy and execute IoT data processing in the edge environment. 

Followed by that, the ICN-based implementation of the proposed architecture to run 

MapReduce jobs is presented with two purposes: (1) to meet the information-oriented 

nature of IoT applications by utilizing the novel ICN rather than the traditional IP 

which requires to establish end-to-end connections before data retrieval, and (2) to 

allow users to flexibly express their processing logic, by leveraging the MapReduce 

model with user-defined functions as input. Experimental studies have proven the 

feasibility of the ICN-based IoT edge computing framework and its effectiveness in 

decreasing network traffic.  

3.1 Functional Architecture Overview 

The heterogeneous nature of IoT network devices results in significant variations 

in performance capabilities among different devices. Therefore, it is necessary to 

assign data processing tasks to appropriate devices. This thesis proposes a functional 

architecture to outlines the indispensable components of an IoT edge computing 

framework. The architecture consists of three software components and their duties 

are illustrated in Figure 6. 
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Figure 6 Functional Architecture 

(1) Function Repository: It stores all data processing functions provided by edge 

devices, which can be managed by the Computation Manager or other edge nodes for 

easy access and availability of functions for processing data. 

(2)  Computation Executor: Computation Executors are responsible for executing 

tasks in the proposed architecture. The workflow of Computation Executors includes 

Task Resolution to parse the required data and function of the received task. 

Subsequently, Computation Executors initiate Data Acquisition by sending requests 

to corresponding data sources and Function Acquisition by retrieving the required 

function from the Function Repository. Finally, Task Processing is carried out once 

the data and function are obtained. 

(3) Computation Manager: The Computation Manager bridges users’ requests and 

proper Computation Executor(s), considering that users outside of the IoT network 

may not possess detailed information about the capabilities of numerous devices. The 

Computation Manager encompasses several functional units that optimize the task 
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execution and assignment, which can be centrally controlled by the Computation 

Manager or distributed within the network. These functional units include: 

- Task Resolution: This unit not only determines whether the request can be 

processed but also to select the suitable Computation Executor(s) for this 

request. 

- Computation Resource Database: The database stores and regularly updates 

information about the computing resources within the edge network, e.g. 

available Computation Executors and network topology, which serves as a 

foundation for the Computation Manager to make decision of assigning 

tasks. 

- Execution Optimization: Possible execution plans are made after checking 

available computation resources in the database. In this thesis, the job 

execution plan prioritizes selecting the Computation Executor that is closest 

to the data source(s), considering factors such as proximity and network 

latency. 

- Task Dissemination: This unit allocates the user’s request to the designated 

Computation Executor(s) according to the generated task execution plan, 

ensuring efficient task assignment and execution. 

3.2 Illustration of Workflow in the Functional Architecture 

Figure 7 illustrates the working procedure of the proposed components in the 

functional architecture. The following steps provide the explanation in detail. 
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Figure 7 Workflow Illustration 

Step-1: a user sends a request to the IoT network. 

Step-2: the Computation Manager receives the user’s request and begins 

processing. It checks the availability of edge nodes in the computation resource 

database and selects the optimised Computation Executor to which the task will be 

assigned. 

Step-3: the selected Computation Executor receives the request and resolves it to 

obtain the required data and function. It is important to note that requesting the 

function is optional because the function could be available from local cache if it was 

used in previous task processing. Similarly, if the data does not update in real time 

and the same data is cached locally, the Computation Executor does not need to 

request it. Otherwise, the Computation Executor needs to request the current sensing 

data for each received task. 

Step-4: the Function Repository returns the corresponding executable code for the 

received request, while the matched data sources provide the desired data. 
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Step-5: the Computation Executor performs the computation when both function 

and data are obtained. It returns computed result to the Computation Manager once 

the processing is done. 

Step-6: Finally, the Computation Manager returns the processed result to the user. 

3.3 ICN-based Implementation for MapReduce Jobs 

It is a fact that many IoT systems are deployed widely and densely in geographical 

areas. These distributed datasets can be processed partially without impacting others, 

utilizing large-scale data processing models like the MapReduce programming 

framework. To align with the information-oriented nature of IoT applications, this 

thesis implements the proposed functional architecture upon NDN to execute 

MapReduce-type jobs. 

3.3.1 Functional Units Instantiation 

• Computation Executor: Mapper and Reducer 

This thesis assumes that the selection of processing-capable edge nodes has 

already been done. There are two types of Computation Executors defined: mapper 

nodes directly connect with sensors, which processes sensing data and returns 

processed result to upstream nodes. Reducers, on the other hand, receive and process 

data from downstream neighbours, including directly connected mappers and/or child 

reducers. 

• Task Dissemination 

As explained before, the task deployment procedure relies on the computation 

resources that are centrally stored and manipulated by the Computation Manager (i.e. 

utilising the Computation Resource Database and Execution Optimization modules 



40 

 

of the Computation Manager in the proposed functional architecture). This procedure 

is improved by the development of a protocol for building a computation job tree to 

autonomously resolve and disseminate jobs among edge nodes. The job tree is unique 

for each user and optimized to select the Computation Executors on the shortest path 

between the user and required data source. 

• Task Processing 

A NDN naming scheme is designed to express users’ requests, incorporating user-

defined map and reduce functions, as well as required datasets in a single Interest. 

The Function Acquisition step, one of the responsibilities of the Computation 

Executors, can be achieved by parsing the received Interest. Computation Executors 

proceed with Task Resolution to obtain the NDN name(s) of required dataset and 

sends Data Acquisition Interest(s) to the corresponding data sources. A 

computational job execution protocol is devised to guide Computation Executors in 

Task Processing and returning computed results. 

3.3.2 Computational Job Tree Construction 

Since tree-based data aggregation is a widely used approach in Wireless Sensor 

Networks (WSN) [78] [79], this thesis borrows the idea to implementing the 

execution of MapReduce jobs in IoT edge networks. Thus, it is essential to avoid 

network connection with loops. Real world IoT networks exhibit various types of 

topologies, such as ring, star and tree structures. In the proposed architecture for 

executing the MapReduce job, a tree topology is adopted with the current user as the 

root and mappers as the leaves so that the intermediate results can be aggregated 

effectively. 
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The construction of the computational job tree is launched if there is no 

information of computational neighbours existing on the reducer nodes. The tree is 

built using the NDN shortest path routing algorithm. This choice simplifies the need 

to develop a specialised routing protocol to support the proposed edge computing 

framework. This thesis acknowledges that additional parameters should be 

considered to optimise the construction of the computational job tree, which will be 

part of future work.  

To construct the computational job tree, the reducers and mappers are designed to 

query each other about the routing path to the root of the tree (i.e., the current user 

who has issued the task). In details, every node asks its neighbour “Am I your 

upstream node to the current user”. With the support of NDN routing, each node 

knows the routing information from itself to any specific node. However, nodes are 

not aware the routing information saved in the other nodes, and consequently all 

nodes need to communicate with their neighbours to obtain the information. 

For clarity, the user is regarded as the root reducer. This thesis defines the 

BuildJobTree Interest for this procedure, and it is written as command (a): 

/NeighborName/BuildJobTree/JobTreeID                           (a) 

Where: (1) /NeighborName is the name of a neighbor of the current node. (2) 

/BuildJobTree is the identifier to trigger the procedure of computational job tree 

construction. (3) /JobTreeID is unique for each tree and combines the name of the 

root node and a random number. 

Initially, the root reducer sends the BuildJobTree Interest (a) to its neighbours. 

Other reducers need to handle two events in the computational job tree construction 

procedure: receiving the BuildJobTree Interest and sending out the BuildJobTree 

Interest. 
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Upon receiving a BuildJobTree Interest from a neighbour (either the root reducer 

or other reducers), a reducer decomposes it to obtain the name of the root reducer. 

Then, this node checks its own NDN routing table and get the neighbour (called 

SelectedUpstream for clarity) on the shortest path to the root reducer. If the received 

BuildJobTree Interest is not sent by its SelectedUpstream, the node replies “nope” 

immediately, indicating that it will not use that path to return data for the current root 

reducer. Otherwise, the node postpones the reply to its SelectedUpstream and 

continues discovering its neighbours. The subsequent scenarios depend on the 

outcome of this discovery process: 

• All its neighbours reply “nope” to this node, it needs to reply “nope” to its 

SelectedUpstream. Because this node has no child neighbours joining the job 

tree of the current root node. 

• At least one of its children replies “yes”, this node replies “yes” to its 

SelectedUpstream to join the current computational job tree.   

If a reducer needs to continue exploring its computation neighbours, it modifies 

the original BuildJobTree Interest by inserting its own name. The re-organized 

Interest is represented as command (b). This step ensures downstream nodes know 

which node sent this Interest if multiple neighbours send the same BuildJobTree (a). 

/NeighborName/BuildJobTree/JobTreeID/UpstreamNodeName       (b) 

 

Mappers do not forward the Interest. They receive and reply to the BuildJobTree 

Interests during the computational job tree construction. A mapper may receive 

multiple BuildJobTree Interests from reducers. It chooses only one reducer as the 

SelectedUpstream by replying “yes” and meanwhile responses “nope” to others. The 

computational job tree construction completes when all neighbours of the root 

reducer provide feedback. 
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3.3.3  MapReduce-Job Execution 

3.3.3.1 Naming Scheme 

To enable users to specify the desired data and define how it should be processed, 

this thesis proposes a NDN naming scheme to include data and MapReduce functions 

within an Interest. More importantly, the naming scheme supports task dissemination 

and data/function acquisition.  

The defined functional Interest consists of four parts, organized as command (c): 

/NeighborName-/map/f1(x->(k,v))-/reduce/f2((z1,z2)->(z3))-/contentFilter   (c) 

Where, (1) /NeighborName: matches the name published by neighbours to ensure 

that the specific node receives the Interest. (2) /map/f1(x->(k,v)): “f1” is the user-

defined map function that should be applied to each input data. “x” is the input data 

and it can be in any format according to specific use cases. For example, in a 

MapReduce wordCount task, the input data is a text file and every word in this file is 

regarded as the key. In a MapReduce statistics task, e.g. to count the periodical 

updates, the sensor readings are captured in (timestamp, sensory-value) format. The 

input data in this case is already in a (key, value) format. The output (or processed 

data) of a mapper is always a (k, v) pair. (3) /reduce/f2((z1,z2)->(z3)): “f2” is the 

user-defined reduce function to process received data from mappers and/or child 

reducers. The reduce function operates on a list of values with the same key. (4) 

/contentFilter: is the desired content name or a defined filter on content. 

The functional Interest is constructed hierarchically, with each part starting with a 

slash and different parts separated by a short dash. For instance, in smart city 

scenarios, if an officer wants to know the number of noisy sensors with the same 

monitoring level (L), the request can be expressed as below: 
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/NeighborName-/map/(L)->(L,1)-/reduce/(L1, L2)->(L1+L2)- /allNoiseSensor    (d) 

3.3.3.2 Job Execution Procedure 

The proposed architecture can disseminate and execute MapReduce-type jobs 

when the computational job tree is ready. The workflow is shown in Figure 8, which 

mainly consists of three steps, i.e. job decomposition (D1), job deployment (D2) and 

job distribution (D3). 

 

Figure 8 Workflow of NDN-based MapReduce Job Execution 

For reducers, when they receive a functional Interest, they decompose (D1) it to 

extract the user-defined reduce function (UF-R) and deploy (D2) it, waiting for the 

data returned by its downstream neighbours. At the same time, each reducer continues 

to distribute (D3) the functional Interest to its neighbours (downstream reducers 

and/or mappers) on the computational job tree. The process is similar for the mappers, 

except that mappers decompose the user-defined map function (UF-M). In addition, 

as the mappers are directly connected with sensors, they request all sensory data 

instead of distributing functions to sensors. 
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For task execution, the mappers initially run the UF-M on multiple sensory data. 

Each mapper produces a list of (key, value) pairs and then returns the pairs to its 

SelectedUpstream reducer. When a reducer receives the processed data from all its 

downstream neighbours, it executes the UF-R to all the datasets. The final processed 

result is the combination of all sub-results produced by the reducers on the 

computational job tree. Its format is defined as command (e) and encapsulated into 

the Data packet for return.  

k1,v1-/k2,v2-/…-/k*,v*                                             (e) 

The computational jobs defined in this thesis can be used to aggregate data into a 

smaller size or filter noisy data as soon as possible. It is up to the specific functions 

provided by the users. As a result, users only need to describe what they want without 

worrying about how and where the processing is performed. 

3.4 Evaluation 

The proposed design is implemented on ndnSIM [80], which is a simulator 

specially designed for NDN. To verify the design, a network generator BRITE [81] 

is employed to generate network topologies. 

3.4.1 Test Design 

Three types of topologies are depicted in Figure 9. Each topology comprises one 

user node and nine reducers. The distinguishing factor among the topologies is the 

number of mappers: 50, 100, and 150 for the topologies denoted as 60-Nodes, 110-

Nodes, and 160-Nodes, respectively. For each fixed number of nodes, this thesis uses 

BRITE to generate ten topologies, captures network traffic on each topology and 

calculate the average value. 
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There are three types of data transmission speed, each characterised by a 

combination of bandwidth and delay. The first type has a speed of 100 Mbits per 

second with a 25-millisecond delay between the user network and the IoT network 

utilizing Ethernet standards. The second type operates at a speed of 250 kbits per 

second with a 10-millisecond delay between mappers and reducers based on the 

Zigbee protocol [82]. The third type has a speed of 54 Mbits per second with a 1-

millisecond delay between two reducers using IEEE 802.11 parameters [83]. 

To conduct a comparison study, referred to as “Request-Directly-benchmark” 

approach, the user node directly sends NDN Interests to request sensory data for each 

network topology size. Both the proposed design and the Request-Directly-

benchmark solution run for 100 seconds, with the user sending one Interest per 

second. Every mapper generates a data sample for each received Interest. 

To test the protocol of the computational job tree construction, it should ensure 

that every reducer participant in the MapReduce job execution because they are all 

configured to connect with downstream mappers. It is also necessary to verify 

whether each reducer processes the correct number of mapper data (1 reducer for 

5/10/15 mappers in the three topologies respectively). Furthermore, as the network 

topology generated by BRITE contains loops, the proposed protocol should 

decompose the loops into a tree during the construction of the computational job tree. 

To validate the job execution procedure, a MapReduce job is assigned. The 

functional Interest during tests is expressed as command (f). Both map and reduce 

functions are expressed as mathematical expression to examine whether mappers and 

reducers can execute user-defined functions correctly. The normal Interest used in 

the comparison study is expressed as command (g). The user node sends out all 

Interests and waits for the corresponding Data. Since the comparison study involves 
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no computation, the task is considered complete when the user receives all returned 

Data. 

/NeighbourName-/map/(k,v)->(k+1,v*2)-/reduce(n1,n2)->(n1+n2)-/allMapper     (f) 

/mapperName                                                         (g) 

 

 

 

(a) Topology of 60-Nodes 

(b) Topology of 110-Nodes 
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Figure 9 Network Topology for Tests 

3.4.2 Test Results and Analysis 

This section presents the test results and analysis. It focuses on examining the 

computational job tree topology, calculating network traffic and recording the 

number of Interests sent by the user. 

Figure 9 illustrates the original network connections with loops. Although 

reducers and mappers connect with each other on the job tree, only the responsible 

reducer nodes forward user’s Interest to the corresponding mappers. As a result, 

nodes that are not on the computational job tree do not experience any traffic related 

to the current job on their edges. 

Figure 10 presents a comparison of the generated network traffic between using 

the proposed design and the Request-Directly-benchmark approach to complete the 

same job. The comparison reveals both solutions experience an increase in network 

traffic along with the raising number of mappers. The proposed design could keep 

(c) Topology of 160-Nodes 
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decreasing approximately 40%~46% network load compared with the benchmark 

approach in all three test cases. For instance, in the topology with 160 nodes, the 

proposed design generates roughly 3385 kilobytes of traffic, while the Request-

Directly-benchmark approach produces 6261 kilobytes of traffic. Based on the test 

results, it can be inferred that the comparison study generates heavier IoT network 

traffic than the proposed design to complete the same job. 

 

Figure 10 Network Traffic Comparison 
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Figure 11 illustrates the number of Interests sent by the user in three test 

topologies. The user node has to send a separate Interest to each data source in order 

to obtain all sensory data, reaching a maximum of 150 requests sent in the largest test 

topology. Moreover, one Interest packet is matched by one Data in NDN. Therefore, 

the user receives the same amount of Data packets as the number of Interest sent. The 

difference in traffic between the proposed design and the comparison study becomes 

more pronounced as the number of mappers involved increases. In the proposed 

design, the user always sends Interests to its job neighbours on the computational job 

tree regardless of the number of mappers involved in different jobs. To be noted, the 

average number of job neighbours for the user node is set to 8, varying between 6 and 

9 across the ten generated topologies. It ensures efficient data retrieval without 

overwhelming the user node with excessive traffic. On the other hand, in the 

comparison study, the number of Interests sent by the user is equal to the number of 

mappers or data sources in the network. This implies that to obtain data from a wide 

area involving numerous sensors, the user would need to send a large volume of 

messages. This approach is not practical as it results in the user node being overloaded 

with traffic while running a single task. 

3.5 Summary 

The combination of edge computing and IoT is promising to deal with the massive 

amount of raw data produced and exchanged by IoT devices. However, building an 

effective IoT edge computing framework presents its own set of challenges. On the 

first research stage, this thesis explores the potential of heterogenous edge nodes that 

are divided into different roles to undertake appropriate processing tasks, i.e. 

Computation Manager, Computation Executor and Function Repository. A functional 
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architecture is proposed to define the responsibilities of each role to empower in-

network data processing at IoT edge. 

Given the powerful MapReduce programming model for distributed big data 

processing, this thesis implements the proposed functional architecture to execute 

MapReduce-type jobs. Recognizing that IoT applications are typically 

data/information-oriented, the novel data-centric ICN architecture, specifically NDN, 

is chosen as the underlying network architecture, which offers superior network 

support compared to the current end-to-end IP communication model. 

The subsequent research efforts devote to the implementation of the ICN-based 

edge computing framework for the execution of MapReduce-type jobs. Firstly, a 

naming scheme is investigated to express the required data and processing logic using 

ICN communication. Secondly, a scheme is devised to establish the network topology 

for computation, ensuring the efficient dissemination and accuracy of jobs. Thirdly, 

a job execution protocol is developed to facilitate job dissemination, function 

execution, and the return of processed data for job execution. Finally, an experimental 

environment is set up to validate the research design, and the test results demonstrate 

a reduction in network traffic compared to the Request-Directly-benchmark 

approach.  
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4 Protocol for Multiple MapReduce 

Jobs Execution with Resource 

Constraints 

This chapter presents the second contribution arising from this thesis. It targets at 

the job execution graph/tree generated by the computational job tree construction 

protocol in Contribution I, which assumes that all edge nodes have the computing 

resources and power. As IoT connects various kinds of devices, their processing 

capabilities cannot be the same, some are capable of data computation while others 

are not. For this reason, Contribution II proposes an enhancement to the framework 

by considering the resource constraints of edge nodes, which may be caused by the 

heterogeneity of devices and/or the dynamic allocation of resources to jobs. 

Moreover, a job maintenance scheme is devised to enable multiple IoT jobs 

simultaneously serviced by the proposed framework. A testbed is developed on 

ndnSIM to verify the feasibility of the proposed solution. 

4.1 Concept Overview 

This thesis concentrates on the job type that requires cooperation of multiple edge 

nodes to process data. Every computing job has specific requirements not only on 

data and processing logic but also on the capability of computing devices. For 

example, an edge device may have been overloaded by other tasks or the hardware 

capacity is limited to execute the task. Describing computing resources and selecting 

appropriate devices to meet different job requirements is another research topic that 
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is not the main concern of this thesis. For simplicity, the proposed solution divides 

IoT edge nodes into two types: processing-capable (act as a mapper or reducer) and 

forwarding-only (called forwarder). Processing-capable nodes have sufficient 

computing resources to meet a job’s requirement, while forwarding-only nodes lack 

the necessary resources to process data for the current job. Both types of nodes 

participate in the job tree construction process, but only processing-capable nodes 

parse and execute the assigned map or reduce functions on the required data. 

Each user’s request is defined as a job in the proposed design, which contains map 

and reduce tasks and desired datasets. The proposed framework supports the 

coexistence of multiple jobs, with the assumption that a unique computational job 

tree is built for each job in sequence. Currently, the NDN routing protocol is utilized 

to construct a shortest path tree for each job. However, it is aware that more 

algorithms (e.g. minimum spanning tree or Steiner tree [84]) may be necessary to 

build trees to meet specific job requirements or optimize IoT edge resources, which 

will be a part of future work. 

Figure 12 provides an example to illustrate the proposed solution assigns different 

tasks to IoT nodes and organises them working together to accomplish different jobs. 

It is assumed in this thesis that the procedure of matching computational resource 

needs with available computing devices has already been performed. The result is 

that every IoT edge node is categorized as either processing-capable or forwarding-

only for executing the job according to their computational resource status. 

• Processing-capable nodes 

The processing-capable nodes are capable of undertaking partial tasks for the IoT 

job. This includes both mappers and reducers, which retain the same definition and 



55 

 

responsibilities as proposed in Contribution I. Mappers and reducers are 

correspondingly abbreviated as M and R in Figure 12. 

 

Figure 12 Network Topology Example: Original IoT Vs. Proposed_design 

• Forwarding-only Nodes 

Some IoT edge nodes cannot execute tasks because of resource constraints. These 

nodes are named as forwarders, abbreviated as F in Figure 12. In this thesis, 

forwarders are designed to at least forward packets between their neighbouring nodes 

if they are incapable of processing data themselves. In detail, a forwarder receives 

Interests from their upstream neighbours and continues forwarding them to its 

downstream neighbours along the computational job tree. Forwarders do not need to 

parse or execute functions within the Interests. When a forwarder receives multiple 

Data packets for the same job, it integrates all received data samples into a single 

Data packet before forwarding the data. Data aggregation helps to minimize the 

number of packet transmissions [26]. 

• Root User Nodes 

Any node within IoT network can issue jobs, it is defined as a root user node, 

abbreviated as U in Figure 12. A unique job tree is constructed for each root user 
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before executing their jobs. The root user node serves as the root of its respective tree, 

with other reducers/forwarders as branches and mappers as leaves. It is important to 

note that a root user may also function as a branch node in other job trees. 

• Job Tree Edges 

Regarding the edges on the job tree, the dotted lines in Figure 12 represent original 

IoT network connections. Each of these connections is possible to become an edge on 

the computational job trees, depicted as solid lines with arrows and colours. Some of 

them may be shared by different job trees. However, the loops need to be decomposed 

to guarantee the correctness of the job computation. Only the edges on the job tree are 

used to exchange Interest and Data packets. 

4.2 Computation Job Tree Construction and Maintenance 

The proposed solution requires all IoT nodes to communicate with each other to 

establish a tree-based logical connection for computation jobs. The computational job 

tree is built based on the NDN routing table. Every node has its own table so that it 

knows how to reach a specific node from itself. However, a node has no idea of the 

routing information inside other nodes. Therefore, it is necessary for all nodes to 

exchange their routing information to form the computational job tree. 

The construction of the computational job tree is initiated when a root user intends 

to issue jobs. The naming scheme of the BuildJobTree Interest remains the same as 

commands (a) and (b) proposed in Contribution I. To facilitate comprehension, 

these commands are provided below:  

/NeighbourName/BuildJobTree/JobTreeID                             (a) 

/NeighbourName/BuildJobTree/JobTreeID/UpstreamNodeName           (b) 
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The enhancement introduced in this stage involves the introduction of two tables 

in the application layer. These tables are responsible for storing job tree-related 

information, enabling all nodes to participate in multiple job trees simultaneously. 

This allows for greater flexibility and scalability in the execution of different job 

trees. The first table is Job Tree Table (JT-Table) which stores information in “JobID 

- JobNeighbours” pairs. This table is instrumental in executing multiple jobs within 

the framework. It allows nodes to maintain knowledge of their neighbouring nodes 

within a specific job tree. The second table is BuildJobTree Table (BJT-Table) which 

serves as a temporary storage for the replies received from neighbour nodes regarding 

their willingness to join the current job tree. Each row in this table follows the format 

of "NeighbourName - PendingReply". The records in this table are cleared once the 

construction of the current computational job tree is completed. 

During the process of building computational job trees, all nodes actively 

participate. Reducers and forwarders handle two key events: receiving BuildJobTree 

Interests and sending out BuildJobTree Interests. Mappers, on the other hand, solely 

receive these Interests and provide the necessary replies. 

When a reducer or forwarder receives a BuildJobTree Interest (a), it goes through 

the following six steps to build the job tree as listed in Figure 13: 

1. The reducer/forwarder retrieves the JobTreeID within the Interest and checks if 

the JobTreeID exists in the JT-Table. If it exists and the corresponding 

JobNeighbours are not null, the discovery of current job tree has been done and the 

root user can issue tasks, jumping to the job execution procedure. 
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Figure 13 Application Layer Functionality for Multiple Jobs Execution 

2. If the JobTreeID is not found in the JT-Table, the reducer/forwarder parses the 

JobTreeID to extract the root user’s name. It then checks if the received Interest is 

sent by the neighbour on its NDN routing table to reach the root user, named as 

SelectedUpstream for clarity. If the received BuildJobTree Interest is not from the 

SelectedUpstream, the reducer/forwarder replies “nope” immediately, which 

indicates that the reducer/forwarder will not use this path to return data for current 

job tree. Otherwise, it proceeds to the next step. 

3. The reducer/forwarder continues exploring downstream neighbours for this job 

tree before replying to its SelectedUpstream. However, if a node has no child node to 

provide data, it also replies “no” immediately to its SelectedUpstream, ending the job 

tree construction. For instance, node-2 in Figure 12 receives the BuildJobTree Interest 

from U1, it cannot join U1’s job tree because it does not have child nodes. 
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4. The reducer/forwarder creates a BuildJobTree Interest (b) for each of its child 

neighbour and sends out the Interest. The child reducers/forwarders repeat the step to 

explore their downstream neighbours if they also have child nodes. 

5. For each received reply for the BuildJobTree Interest (b), the reducer/forwarder 

extracts the reply content, i.e. yes or no, and saves it in the BJT-Table. 

6. Once all child nodes have returned their replies, the reducer/forwarder checks 

all records in the BJT-Table and saves the child with positive answer into the JT-

Table for further job dissemination. If at least child node has returned “yes” as an 

answer, the reducer/forwarder replies “yes” to its SelectedUpstream node. Otherwise, 

it returns “no” to indicate not participating in the current job tree. 

The R3 in Figure 12 is chosen as an example to explain the actions taken by 

reducers and forwarders. Suppose the job tree with U1 as the root is built firstly and 

followed by the job tree for U4. R3 re-writes the BuildJobTree Interest as below for 

the job tree U1 (e.g. JobTreeID: U1). 

/NeighbourName/BuildJobTree/U1/3 

As R3 has three neighbours in the original IoT network, it sends a BuildJobTree 

Interest to node 4, 5, and 6 respectively by replacing the /NeighbourName with their 

name. Meanwhile, R3 inserts three records in the BJT-Table and waits for replies. In 

detail, U4 replies “no” after it receives the answer from its downstream neighbour R7 

which does not choose U4 as the SelectedUpstream. Both F5 and R6 return “yes”. 

After R3 gets all replies from its neighbours, it checks and summarises the 

information in the BJT-Table. Finally, R3 inserts a row (i.e. U1 - /F5/R6) in the JT-

Table for further job dissemination and empties the BJT-Table. Similarly, after the 

job tree of U4 (e.g. JobTreeID: U4) is built, the JT-Table of F5, R6 and R7 is updated 
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to contain records for two job trees, i.e. U1 and U4. R3 does not join the job tree of 

U4 so that its JT-Table has no change. 

Mappers maintain their JT-table as “JobTreeID– SelectedUpstream” pairs. One 

mapper may receive multiple BuildJobTree Interests from different 

reducers/forwarders. When a mapper receives a new BuildJobTree Interest, it 

retrieves the JobTreeID and checks its JT-Table as the first step, shown in Figure 13. 

If there has been a record for the same tree and this Interest is not from the saved 

SelectedUpstream, the mapper replies “no” to this neighbour. If the received 

JobTreeID is a new one, the mapper selects one reducer or forwarder as the upstream 

for each job tree. The last step of the mappers is to insert the SelectedUpstream to its 

JT-Table. Mappers currently do not discover downstream neighbours during job trees 

construction because this thesis assumes mappers process the data from all connected 

sensors. 

4.3 Multiple Jobs Execution 

The root users can trigger the job execution procedure after their job tree is ready. 

Each user’s job is called a ComputingJob (CJ) Interest and written as (h), which is 

slightly different from the one proposed in Contribution I. In detail, /JobNeighbours 

are the neighbours’ name stored in the JT-Table. /JobTreeID is used to retrieve the 

information from JT-Table. /JobID is created by the root user for each issued job. It 

is worth to mention that the job tree ID remains unchanged once the computational 

job tree is built and users could issue multiple jobs on the job tree. The rest of the CJ 

Interest (i.e. /MapFunction/ReduceFunction/contentFilter) is the actual job content 

and defined by the root user. 

/JobNeighbours/JobTreeID/JobID/MapFunction/ReduceFunction/ContentFilter     (h) 



61 

 

Two tables are designed to guarantee the correctness of running multiple jobs. 

Pending Job Table (PJ-Table) stores “JobID – PendingData” pairs. This table keeps 

track of the pending data associated with each job. Task Function Table (TF-Table) 

maintains the “JobID – Reduce/Map Functions” pairs. It saves the reduce and map 

functions specific to each job. The job execution procedure follows a reverse 

direction compared to the job dissemination process. The CJ Interest is sent by root 

users and traverses through intermediate reducers and forwarders until it reaches the 

mappers. The PJ-Table and TF-Table ensure the proper execution and coordination 

of multiple jobs within the computational job trees. 

The reducers maintains both PJ-Table and TF-Table. When a reducer receives a 

CJ Interest, it performs five steps as listed in Figure 13: 

 1. Decomposing the Interest to obtain the JobTreeID, JobID and the job content 

(defined functions and required data).  

2. Parsing the job content to extract the specific reduce function and stores in its 

TF-Table. 

3. Searching the JobTreeID in its JT-Table in order to obtain its JobNeighbours 

for the current job tree. Then it rewrites the received CJ Interest by adding its own 

JobNeighbours at the beginning (named as subCJ Interest for clarity) and send it out.  

4. A new row is inserted into its PJ-Table for every subCJ Interest in the format of 

“JobID - 0”. The content “0” will be updated when corresponding Data packet is 

received. The PJ-Table is created for every job so that different Data packets can be 

appropriately processed. 

5. When all JobNeighbours reply for the subCJ Interests of the same job, the 

reducer retrieves corresponding reduce function in its TF-Table, runs the function on 
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all received data and then returns the processed result to its SelectedUpstream or the 

root user. 

The steps for forwarders to support multiple jobs execution are similar to the 

described workflow of reducers. There are two differences to be noted. One is that 

forwarders have no TF-Table as they do not need to run user-defined functions on 

received data. The other is that forwarders aggregate multiple subCJ for the same job 

into one and then return to their SelectedUpstream. 

When a job is received by the mappers, they firstly decompose the CJ Interest to 

get the user-defined map function and store it in their TF-Table. Every mapper 

gathers the data from connected sensors and run the map function to process the data. 

The outputs of mappers are key-value pairs and returned to their SelectedUpstream. 

All mapper data is further processed by the reducers at each level of the job tree. The 

root user gets the final result(s) returned from its JobNeighbours. 

4.4 Evaluation 

A series of tests have been executed to verify the feasibility of the proposed design. 

All simulations are performed on ndnSIM [80] and a network generator BRITE [81] 

is utilized to create the topology of the IoT network. A fixed number of twenty 

reducers and forwarders is employed (Node Id 0-19) during the tests. Any of them 

may act as a user node to issues jobs. To measure the changes of network traffic, this 

thesis adjusts the proportion of reducers/forwarders within the network as well as the 

number of mappers connected to each reducer and forwarder. 

Two types of data transmission speed are set, each characterised by a combination 

of bandwidth and delay. One type operates at a speed of 250 kbits per second with a 

10-millisecond delay between a mapper and a reducer/forwarder, based on the Zigbee 
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protocol [82]. The other has a speed of 54 Mbits per second with a 1-millisecond 

delay between reducers and forwarders using the IEEE 802.11 parameter [83]. 

4.4.1 Feasibility Test 

                  

 

Figure 14 Network Topology and Generated Job Trees 

To assess the job execution on the proposed design, this thesis configures three 

root user nodes (Node 3, 6 and 12), five forwarders (Node 15, 16, 17, 18 and 19) and 

the rest twelve nodes as reducers. Each root user starts issuing jobs at different times, 

specifically Node 12 starts at 0th second, Node 6 at 3rd second and Node 3 at 6th 

second. It is easy to observe that the original IoT network (No-job-Tree) generated 

User3-JobTree 

User6-JobTree 

User12-JobTree 

Original IoT Link 

Three-Job-Trees 

No-Job-Tree 
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by BRITE exhibits loops in Figure 14. The objective is to evaluate whether the 

proposed solution can decompose the network into a tree-based graph to avoid loops. 

For the scenarios with multiple jobs running, the tests will validate the protocol’s 

ability to separate different jobs, process corresponding data and return accurate 

results is examined. 

Figure 14 depicts the traffic on the IoT links when executing from zero to three 

jobs. All IoT nodes run the proposed protocol to build a unique job tree for each root 

user. Consequently, only the edges on corresponding job tree are used to forward 

Interest/Data to their job neighbours. The green, purple, and orange lines with arrows 

represent the job tree edges for user-12, user-6, and user-3, respectively. The presence 

of a black line indicates that it is not utilized by any of the current three jobs. After 

building the three job trees, the simulation continues for 100 seconds with a frequency 

of one Interest per second per user. The results demonstrate that the proposed design 

successfully completes all jobs by returning the correct results to each root user. 

4.4.2 Network Traffic Comparison 

To evaluate the performance of the proposed design, a comparison study called 

Central-User-benchmark is designed to make the root user directly request all the 

sensory data and centralised process the data by itself. Node 3, 6 and 12 are still the 

root user nodes in the Central-User-benchmark test cases and they send Interest (i) to 

request data. The effects of different proportions of reducers/forwarders on the 

network traffic are also investigated. Four combinations are considered: 5Reducer-

15Forwarder (abbreviated as 5R-15F for clarity), 10Reducer-10Forwarder (10R-

10F), 15Reducer-5Forwarder (15R-5F) and 20Reducer-0Forwarder (20R-0F). Each 

reducer and forwarder connect with five mappers. The tests are conducted five times, 

randomly select 5, 10 and 15 reducers for the 5R-15F, 10R-10F and 15R-5F setting 
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respectively. The CJ Interest used for tests is expressed as command (j). As mappers 

are assumed to gather data from IoT sensors, four data sizes produced by the mappers 

are simulated: 25, 100, 500 and 1000 bytes respectively. Moreover, this thesis sets 

different compression levels for the reducer functions in the tests to evaluate the 

impact of compression rates on the network traffic. Assuming the received data size 

on each node is N, the output after applying the reduce function is set to 0.25N, 0.5N, 

0.75N and N. Each test lasts for 100 seconds with the Interest sending frequency of 

1 per second. Every mapper generates a data sample for each received Interest. 

/SensorName                                                      (i) 

/JobNeighbours/JobTreeID/JobID/Map(k,v)->(k+1,v*2)/Reduce(v1,v2)>(v1+v2)/allSensor    

(j) 

The results of network traffic are summarised in Figure 15. It is evident that the 

Central-User-benchmark test cases generate significantly higher network traffic 

compared with any test of the proposed design. In the Central-User-benchmark 

approach, each sensory data requires a separate Interest to be sent by the user node, 

and the same number of Data packets is transmitted back through the entire network 

to the user node. This process results in a sharp increase in network traffic. Along 

with the sensory data size grows from 25 to 1000 bytes, the data transmission by the 

Central-User-benchmark approach shifts from almost 8000 to 40000 kilobytes, 

shown as red-colour columns in the figure. 

When the sensory data size is fixed and the data compression rate is the same, 

having more reducers leads to a decrease in IoT data traversing the network. For 

example, given a sensory data size of 25 bytes and a data compression rate of 0.25N, 

leveraging 20R-0F setting significantly diminishes network traffic by approximately 

52%, reducing transmitted data to around 3800 kilobytes compared with roughly 
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8000 kilobytes network traffic generated in the Central-User-benchmark approach. 

This network load saving further increases to 59% when the sensory data size grows 

to 1000 bytes with the same data reduce rate 0.25N. This stands in stark contrast to 

the Central-User-benchmark approach, which transmits roughly 8000 kilobytes of 

data. Furthermore, network traffic can be decreased by employing more efficient data 

processing functions with the same number of reducers and a fixed sensory data 

quantity. For instance, observing the test case with the sensory data size of 500 bytes 

and 15R-5F setting, the generated network traffic decreases from about 167000 to 

11700 kilobytes with the data reduce rate changes from 0.75N to 0.25N. 

Additionally, the test results validate that the proposed design effectively lowers 

network traffic even when reducers exclusively perform data aggregation, indicated 

by a data reduce rate of N. This reduction is attributed to the design’s ability to 

aggregate multiple data packets into one, resulting in a smaller number of packets 

transmitted within the network and less packet overhead. 

Although employing more reducers does lead to a reduction in network traffic, the 

magnitude of this reduction is not consistently significant. The network load saving 

while increasing the number of reducers is decided by the ratio between the payload 

size (sensor readings) and the NDN packet header size (mainly the name of the 

content). During all tests, the Interest naming for job dissemination is roughly 100 

bytes. When the sensory data size is smaller than the NDN packet header, e.g. test 

cases having sensory data size of 25 bytes, the packet overhead constitutes a major 

portion of the network traffic that cannot be compressed or reduced. However, in 

scenarios where the sensory data size significantly surpasses the NDN packet header 

(e.g., sensory data size of 1000 bytes), the benefits of activating more reducers 

become notably pronounced. These tests aim to explore the potential effects of 
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different reducer numbers and data reduction rates on the network traffic for 

completing the same computation job. The results show that the optimisation of the 

job deployment needs to consider the reducer number, location, and the data 

reduction rate of the job. Optimisation is the future work of this thesis. 

The proposed design demonstrates a reduction of 10% ~59% (affected by the 

number of reducers and data reduce rate) in network traffic in all test cases compared 

with the Central-User-benchmark solution. This highlights the effectiveness of the 

proposed design in enabling IoT data processing through the collaboration of edge 

nodes while significantly reducing the volume of transmitted data within the IoT 

network.  
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Figure 15 Network Traffic Comparison 
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4.5 Summary 

The proposed design takes into consideration the varying computational resources 

of edge nodes and aims to organize them in a cooperative manner to support multiple 

IoT applications simultaneously. Two types of roles for the nodes are defined based 

on the computational capabilities of edge devices: processing-capable nodes 

including mappers and reducers and forwarding-only nodes acting as forwarders. 

The mappers are responsible for running user-defined map functions on sensory 

data. They gather data from connected sensors and process it according to the 

specified map function. The forwarders, on the other hand, focus on data aggregation 

without performing any processing. Their role is to aggregate data from multiple 

sources and forward it to the appropriate destinations. The reducers are capable of 

running user-defined reduce functions on the data received from the mappers, 

forwarders, or other reducers. A shortest path tree is built for each job to enable 

collaboration among edge nodes and satisfy the compute-once requirement for the 

same data. To execute multiple jobs simultaneously, the proposed design incorporates 

application layer functionality to manage job trees and job processing related 

information. 

The feasibility of the proposed design is verified through tests conducted on the 

ndnSIM simulator. The test results demonstrate that the proposed solution 

significantly reduces IoT network traffic compared to centralized processing. 
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5 Protocol for Exactly Once Data 

Computation 

This chapter presents the third contribution of this thesis, which focuses on 

improving the proposed framework with exactly once computation guarantee. While 

exactly once data processing/delivery has been maturely developed in traditional big 

data processing systems, e.g. Apache Flink [18], the unique requirements and 

resources constraints of IoT collaborative edge computing scenarios pose challenges 

for applying existing datacentre-oriented solutions. In this context, this thesis 

identifies three challenges in ensuring exactly once data computation in IoT 

collaborative edge computing and propose a five-phase protocol to address them. 

Simulation experiments are developed to evaluate and compare the performance of 

the proposed design with a checkpoint-based benchmark solution. 

5.1 Motivation 

The proposed framework (Contribution II) distributes data computation among 

multiple edge nodes and relies on their collaboration to complete users’ jobs. In fact, 

IoT network connections may fail between two edge devices during job execution. It 

could result in data loss or duplicated data transmission and/or processing, which is 

not tolerable by IoT applications with exactly once data computation requirements. 

Existing works in this area are scarce and initial endeavours have explored the use 

of checkpoint schemes as a solution [20] [21]. However, these works are limited to 

task execution on a single edge device. Although checkpoint based solutions have 
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been well-developed in traditional big data processing frameworks like Apache Spark 

[28] and Apache Flink [18], this thesis argues that these solutions are not suitable for 

IoT scenarios. Firstly, it is not necessary to restore the logical graph onto the same 

device(s) in traditional data centre scenarios with powerful servers in proximity. In 

sharp contrast, the logical job graph is tightly coupled to the physical topology in IoT 

edge environments. Data processing task(s) cannot be placed at a random edge device 

to replace the previous failed one as it needs to evaluate the benefits of transmitting 

data versus processing/aggregating the data. Secondly, the traditional checkpoint 

approach requires the system to take a snapshot of each operator’s state periodically 

and save them to a durable storage, e.g. HDFS [71], which is not widely available in 

edge computing environments. 

Thus, this thesis identifies the following challenges to achieve exactly once 

computation in IoT collaborative edge computing scenarios. 

Challenge-1. Backup essential data processing information in distributed 

edge nodes. Edge collaboration can be interrupted by IoT network failures due to 

unstable network connections and IoT device mobility. It is crucial to decide which 

information of data processing is essential and sufficient to recover from the failures. 

Then it brings the challenge of how to save this information efficiently. Unlike 

datacentre environments, central storage for the essential information is not practical 

in IoT edge scenarios. As edge computing is proposed to complement cloud 

computing to deal with the high volume/velocity/variety of data produced by massive 

amounts of IoT devices, it is preferable to distribute the information storage on the 

edge.  

Challenge-2. Handle network failures during edge collaboration while 

guaranteeing exactly once computation on the same data. When the network 
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connection between two edge devices fails, it breaks the original job execution graph 

that includes these devices. The downstream edge device cannot be certain if its data 

has been successfully delivered to its upstream neighbour. This requires designing a 

scheme to utilize the information described in Challenge-1 to repair the job execution 

graph to resume normal data processing. It also needs to check whether any data has 

been lost or duplicate processed due to the network failure. 

Challenge-3. Limited storage space at edge devices. Only capable edge devices 

can participate in collaborative edge computing for IoT applications. The burden of 

edge devices becomes heavier if they need to process data meanwhile store relevant 

information. Thus, the information described in Challenge-1 cannot be saved on edge 

devices permanently. As edge devices cooperate with each other to complete each 

IoT job, one edge device randomly deletes some information at its local storage may 

affect the whole job processing procedure. For example, the job cannot be recovered 

from the failures described in Challenge-2 if the information saved on edge devices 

has been deleted before the failure happens. As a result, it brings the challenge on 

how to assess whether the job state related information is out-of-date/of-no-use and 

then how to clean the information saved on edge devices. 

To address these challenges, this thesis designs a protocol consisting of a job 

execution procedure to solve Challenge-1 and Challenge-3 and a job recovery 

procedure to solve Challenge-2. Additionally, a job tree based ID assignment 

approach is devised to provide fundamental support for the two procedures. 
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5.2 Five-phase Protocol Design 

The proposed protocol consists of five phases and their relationship is shown in 

Figure 16. It is important to note that the normal job operation is not disrupted by 

recovering from failures. The definition of each phase is listed as below: 

 

Figure 16 Five Phases of the Proposed Protocol 

• Job Tree Build Phase forms a job tree with each new user as the root and the 

user can issue multiple jobs on its job tree. 

• Job Execute Phase disseminates jobs requests, returns computed results and 

saves intermediate state while executing the job. 

• Job State Commit Phase periodically clears intermediate state of completed 

jobs on edge devices.  

• Job Tree Rebuild Phase updates the job tree to eliminate failed link(s) when 

network failures happen. 
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• Job State Sync Phase ensures that link failures and the updated job tree cause 

neither data losses nor duplicated data computations. 

As the proposed framework is built upon NDN, the communication between nodes 

in all phases is accomplished by exchanging the NDN Interest and Data packets. To 

facilitate the functionalities at each phase, different Interest naming schemes have been 

designed. The job tree is created using the shortest path algorithm of the NDN routing 

protocol, which determines the optimal path for data transmission and computation. 

Additional metrics, such as link bandwidth [85] and energy efficiency [86], can be 

considered when constructing the job tree to optimize performance, which is beyond 

the scope of this thesis. The proposed protocol currently is limited to execute stateless 

jobs [87] whose output is solely based on its input, not the intermediate computational 

states. Consequently, the same computation on the same data can be undertaken by 

any capable edge devices. The computed result is only determined by the number of 

input values and is independent of their order. Therefore, the data computation can 

be successfully recovered from a changed job tree due to link failures. 

The following sections describe each phase in detail.  

5.2.1 Job Tree Build Phase 

A tree topology is built with a user node (sink node) as the root before it issues 

jobs. The job tree construction protocol remains the same as proposed in 

Contribution I (chapter 3.3.2). Upon completion of this phase, each node on the job 

tree maintains a local record of “JobTreeID – JobNeighbours” information for 

subsequent phases of the protocol. 

5.2.2 Job Execute Phase 

The Job Execute Phase commences once the job tree has been established. It 
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comprises two steps. The first step is node ID allocation that is proposed in this thesis to 

differentiate each data sample. It serves as the foundation for achieving exactly once data 

computation. The second step is job dissemination and execution, which follows the 

procedure outlined in Contribution II (chapter 4.3). However, an improvement has 

been made during the job execution compared with Contribution II. Specifically, the 

intermediate state of job processing is now saved on edge devices. The design 

enhancement aims to handle link failures that may occur during job execution. 

5.2.2.1 ID Allocation 

The data content identification is challenging. While it may seem feasible to use NDN 

names as IDs to uniquely identify each data content, this approach does not reveal which 

node(s) have computed the data sample. As a result, it becomes difficult to verify the data 

computation state after recovering from link failures, thus failing to guarantee exactly 

once computation on the same data. 

For two nodes connected by the same edge on the job tree, we designate the one closer 

to the sink node as the upstream node and the other as the downstream node for clarity 

in the rest of this thesis. When a link failure happens during data transmission, the 

downstream node may not be sure whether the data has been successfully delivered. 

After the downstream node rejoins the job tree by connecting to a different upstream 

node, it needs to check if the locally cached data had been delivered before retransmitting 

to ensure exactly once computation. This become more complicated when the data 

delivered to the previous upstream node is still under transmission/processing in the job 

tree. 

To address these challenges, the proposed protocol incorporates the information of 

data provider and data computing nodes into the ID of each data content during the job 

execution. To identify each data content in the network, this thesis firstly assigns a global 
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ID for each node based on the shortest path of the job tree. ID allocation takes place 

before any job requests are issued. As mapper nodes are the data sources in the proposed 

design, they label each of their returned data samples with their node ID plus the job ID 

created by the user/sink node. Data samples from different nodes can only be computed 

by reducers if they have the same job ID to ensure the computation correctness. The ID 

of a computed data content consists of its reducer’s global ID plus the job ID as a 

reference of the computation path for this data. Whenever a link failure happens, the 

affected node can use the data sample ID(s) to trace back the computation path of its 

provided data content. This enables the node to inquire about the computation state of its 

data content, specifically whether received and computed correctly. 

An AssignID Interest is designed to assign node ID and it is written as (k). Where, 

/JobNeighbour is the name of a neighbour obtained in the Job Tree Build Phase. 

/JobTreeID is created by the sink node when sending the job tree building request. 

/NodeGlobalID represents the actual global ID assigned to the corresponding job 

neighbour and it is construed as below. 

/JobNeighbour/JobTreeID/NodeGlobalID                     (k) 

The upstream node assigns a unique identifier (e.g. a number) to each of its 

downstream nodes as a local ID. The records of local IDs are only maintained at each 

upstream node. Since each node on the job tree has a distinct path between itself to the 

sink node, a tree-path-based global ID of each node is constructed by accumulating the 

local IDs along the path from the sink node to itself. 



78 

 

 

Figure 17 Illustration of ID Allocation 

The sink node assigns the global node ID to its neighbours, which is the same as the 

nodes’ local ID as the sink node has no upstream node. The intermediate reducers and 

forwarders receive their global ID from their upstream node and then allocate global IDs 

to their downstream nodes. This allocation is achieved by concatenating the local ID of 

a downstream node at the end of the current reducer/forwarder’s global ID, separated by 

a hyphen. The reducers and forwarders assign global IDs to their neighbours using the 

AssignID Interest. The mappers, being the leaf nodes of the job tree, only receive the 
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global ID from their upstream node. All upstream nodes maintain an ID table to save the 

global and local ID of its downstream neighbours. Each record in the table corresponds 

to a downstream neighbour, in a tuple of <downstream job neighbour name, its local ID, 

its global ID>. 

The global ID allocation process occurs hop by hop, starting from the sink node and 

reaching all the nodes on the job tree. An Acknowledgement (ACK) message is replied 

from the mappers in the reversed path of ID allocation, and ultimately returned to the 

sink node. Hence, the sink node confirms the completion of ID allocation procedure, 

and it is ready to issue jobs. 

Figure 17 illustrates an example to demonstrate the ID allocation procedure. An 

IoT network topology is shown in Figure 17 (a) with the original connections between 

the nodes. The numbers inside each circle represent their NDN name. For instance, 

“13” is the NDN name of the node 13 and node 1 uses “13” as the “NeighbourName” 

when constructing the BuildJobTree Interest during the Job Tree Build Phase. The 

NDN name of a node keeps the same no matter which role it acts in the proposed 

framework. 

Assuming that node 0 wants to issue a job, it acts as the sink node (user node) in 

the design. It firstly sends the BuildJobTree Interest to the network, resulting in the 

job tree shown in Figure 17 (b). The solid lines in the figure indicate original network 

links currently being utilized on the job tree. The nodes labelled with numbers 8 – 14 

and highlighted in green, serve as the mappers for the current job. Other nodes may 

function as reducers or forwarders according to their computing capabilities and the 

number of downstream neighbours. For instance, node 1 becomes a reducer (in red 

colour) since it receives data samples from multiple neighbours on the job tree, and 

it is currently capable of computing these data. Node 6 acts as a forwarder (shown in 
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yellow) because it connects to only one mapper (node 10). Node 5 does not join the 

job tree as none of the nodes selects it as the neighbour for sending data to node 0. 

Once the job tree is prepared, node 0 as the sink node assigns the local ID to its 

job neighbours, namely node 1 and node 2. Recursively, every upstream node assigns 

a number (for simplicity, starting from 0) to each of its downstream neighbour as the 

local ID. Node 1 receives 0 as its global ID and node 2 receives 1 as its global ID as 

illustrated in Figure 17 (b) with blue text. Node 1 and node 2 continue the global ID 

assignment by creating global IDs for their respective downstream neighbours. 

Specifically, node 1 assigns the local ID 0 to node 3 and local ID 1 to node 13. Then 

node 1 concatenates node 3’s local ID to its own global ID separated by a hyphen 

symbol, resulting in the global ID of node 3 is 0-0. Similarly, node 15 obtains 0-1 as 

its global ID. Node 2 assigns local ID 0, 1, 2 to its neighbour node 6, 4, and 16 

respectively, and consequently the corresponding global IDs for node 6, 4 and 16 are 

1-0, 1-1 and 1-2 respectively. All the intermediate reducers and forwarders follow 

this rule to allocate a global ID to their neighbours until all mappers receive their 

global IDs. The blue texts Figure 17 (b) indicates each node’s global ID sent by its 

upstream node on the job tree. 

All the upstream nodes create and maintain an ID table to save the details of the 

assigned local and global IDs. To provide a more detailed explanation, let’s consider 

the path on the established job tree shown in Figure 17 (b) with the nodes: 10/11 -> 

3 -> 1 -> 0. Figure 18 (a) illustrates the corresponding ID tables of the sink node 0, 

reducer 1 and reducer 3. The ID table consists of three columns. The first column 

saves the NDN name of each downstream node, labelled as “Nei_node”. The second 

and last column are the local ID and global ID of the downstream node. The local ID 

is only known between two directly connected nodes, where one node acts as the 
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upstream node and the other as the downstream node. The upstream node assigns and 

maintains the local ID. 

The mappers in the job tree store their global IDs and use the received job ID (sent 

by the sink node) to label each data they produce, for example, the incremental 

sequence numbers attached to node 10 and node 11 in Figure 18 (a). Only data content 

and its ID are returned in the Job Execute Phase. The global ID of a node is used to 

check whether the data it has produced or computed is affected by link failures. 

 

Figure 18 Illustration of Nodes’ ID Table 
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5.2.2.2 Job Dissemination and Execution Procedure 

Once the ID allocation is complete, the sink node can send computational jobs by 

using the CJ Interest. The job processing procedure remains the same as proposed in 

Contribution II (chapter 4.3). 

The sink node receives the computed result(s) returned from its job neighbours 

and perform the final computation, which indicates the completion of the current job. 

The data processing/computing requirement of an exactly once job is defined follow: 

all the mapper data requested by the sink node is retrieved and each data sample is 

computed exactly once on the way to the sink node. 

To facilitate the logging of data computation states in case of link failures during 

job execution, two tables are designed in the proposed protocol. The first table is 

called the Job State (JS) Table that is managed by the sink node. The table assists in 

checking the completed job ID(s) in the Job State Commit Phase, allowing the 

corresponding information stored at edge nodes to be cleared. For each issued job 

request, the sink node creates a record in the JS Table and checks the received 

computation results. The job state is saved as a pair of “JobID – State 

(Completed/Uncompleted)”. A completed job signifies that each edge node on the job 

tree has completed its processing of the issued job request and the final computed result 

has been correctly delivered to the sink node. This ensures the reliability of the data 

delivery and computation. 

The second table is the Computation Record (CR) Table which saves the job tree 

ID, the data received from downstream neighbours for the job (abbreviated as 

dataContent) and its corresponding ID (abbreviated as dataID). Each record in the 

CR Table is in the form of “JobTreeID – DataID – dataContent”, which allows 

tracking and referencing the data received from downstream neighbours for a specific 
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job. All nodes on the job tree maintain a CR Table locally. After returning or 

forwarding the computed/produced data to its upstream node, each node inserts a 

record into its CR Table. 

5.2.3 Job State Commit Phase 

As IoT edge devices are resource-constraint, the intermediate state (saved in the JS 

Table and CR Table) of job execution cannot be stored permanently. Meanwhile, the 

saved information can only be cleaned if the correspondent task has been completed. The 

Job State Commit Phase is introduced to achieve this goal. 

During this phase, the sink node notifies its neighbours on the job tree about the 

completion of specific job IDs that occurred in the Job Execute Phase so that all nodes 

on the job tree can clear the corresponding saved information. To achieve this, the 

JobCompleted Interest, denoted as (l), is defined. Where, /JobNeighbour represents the 

name of a neighbour obtained in the Job Tree Build Phase. /JobTreeID is created by 

the sink node when sending the job tree building request. /CompletedJobID(s) is the 

successfully computed job ID(s) summarized by the sink node to inform others on 

the job tree. 

/JobNeighbour/JobTreeID/CompletedJobID(s)                   (l) 

The frequency of sending JobCompleted Interests can be determined by the sink node 

based on the job requirements or the resource constraints of the edge nodes. For example, 

it can be sent periodically every 30 seconds or after a certain number of completed jobs. 

This thesis assumes that the sink node is aware of the resource constraints of the edge 

nodes and then decides the frequency of sending the JobCompleted Interests 

accordingly. The sink node generates the JobCompleted Interest, which is then 

forwarded by intermediate reducers and forwarders until it reaches mappers. 
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As a result, all nodes on the job tree reach a consensus regarding the completed jobs 

in which they have participated. Thus, they no longer need to maintain historical records 

of the completed jobs. For example, reducers can clear the cached computed data content 

and mappers can discard the previously captured data samples. This action helps to 

release resources and space for the edge devices engaged in the data processing. In 

contrast, the intermediate processing state of jobs should be saved if nodes receive do not 

receive any notifications from the sink node. An ACK procedure is employed to response 

the JobCompleted Interest, which is initiated by the mappers and follows the reverse path 

of the JobCompleted Interest until it reaches the sink node, indicating the end of the Job 

State Commit Phase. 

5.2.4 Job Tree Rebuild Phase 

Any nodes on the job tree that experience link failures can initiate the Job Tree 

Rebuild Phase to recover. However, in cases where there is only one neighbour in the 

original IoT network, i.e., the current upstream node, the node must continuously 

monitor the link until it is restored. For example, referring to Figure 17 (b), node 13 

has only one neighbour, node 7, in the network. This thesis focuses on scenarios 

where nodes have alternative paths connecting them to the sink node, in addition to 

the failed link. 

A failed link affects two neighbouring nodes. To facilitate the explanation of the 

design, the upstream node is defined as the Previous-Upstreamer and the downstream 

node is called Rebuilder. For example, if the link between node 12 and node 6 in 

Figure 17 (c) is disconnected, node 6 becomes the Previous-Upstreamer and node 12 

becomes the Rebuilder. The Job Tree Rebuild Phase is always initiated by the 

Rebuilder. This thesis assumes that the link condition is detected by periodically 

exchanging HELLO messages between neighbouring nodes, which is a commonly 
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used scheme in routing protocols. The following procedure is adopted when a link 

failure is detected. 

The Rebuilder checks if it has other neighbours on the original IoT network, 

excluding the Previous-Upstreamer and its child nodes. Two cases are designed 

according to the checking result. 

Case 1: The Rebuilder has other neighbour(s) 

A RebuildJobTree Interest is defined as (m) and (n), each serving a specific 

purpose. The Rebuilder sends Interest (m), while the neighbours of the Rebuilder 

forward the rebuilding request using the Interest (n). The meaning of each part of the 

Interest is: (1) /NeighbourName refers to the name of each neighbour of the Rebuilder 

found in the original IoT network, (2) /RebuildTree is the identifier for the Job Tree 

Rebuild Phase, (3) /RebuilderName is the NDN name of the Rebuilder, (4) 

/JobTreeID indicates the job tree of interest, and (5) /UpstreamNodeName denotes 

the name of the upstream neighbour of the Rebuilder. 

  /NeighborName/RebuildTree/RebuilderName/JobTreeID           (m) 

/NeighborName/RebuildTree/UpstreamNodeName/JobTreeID     (n) 

If the Rebuilder finds any neighbour(s), it sends a RebuildJobTree Interest (m) to 

each of its neighbours. Upon receiving the RebuildJobTree Interest, a node extracts 

the JobTreeID in the Interest and checks whether it has already joined on the job tree. 

The following two scenarios may occur: 

Scenario-I: the node has joined the job tree with the requested JobTreeID. The 

node assigns a local and global ID to the downstream neighbour that sends the 

RebuildJobTree Interest. It also inserts the corresponding record into its ID table, 

following the procedure described in the Job Execute Phase (chapter 5.2.2.1). 
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Subsequently, the node replies a “Rebuild-OK” message with the assigned global ID. 

If multiple “Rebuild-ok” messages are received, the Rebuilder node always chooses 

the first one and notifies other neighbours to withdraw its rebuilding requests. 

Scenario-II: the node is not on the job tree with requested JobTreeID. The node 

rewrites the RebuildJobTree Interest as (n) and forwards it to its neighbours, who 

repeats the above procedure to process the Interest. If a node has no available 

neighbours to forward the Interest, it directly replies a “Rebuild-Rejected” message. 

Note that, mappers are defined as not responsible for disseminating or forwarding 

jobs to others due to their limited resources and capabilities. Hence, when a mapper 

receives a RebuildJobTree Interest, it refuses the request by replying a “Rebuild-

Rejected” message even if it is currently working on the job tree. Finally, if the 

Rebuilder receives “Rebuild-Rejected” messages from all its neighbours, it takes the 

same action as defined in Case 2. 

Once the Rebuilder receives its new global ID, it can re-enter the Job Execute 

Phase. Simultaneously, the Rebuilder initiates the Job State Sync Phase to ensure that 

neither data losses nor duplications occur due to the link failure, as described in 

Chapter 5.2.5. If the Rebuilder is connected to downstream nodes on the job tree, it 

notifies them of their global ID change by sending the ChangeID Interest (o). The 

Interest includes three parts: (1) /JobNeighbour is the name of a neighbour on the job 

tree, (2) /JobTreeID is used to specify the affected job tree in case multiple job trees 

coexist, and (3) /ChangeID(NodeGlobalID) informs the downstream neighbours 

about the new ID assigned for the specific job tree.  

/JobNeighbor/JobTreeID/changeID(NodeGlobalID)            (o) 

Case 2: Rebuilder has no other neighbour(s) 

If the Rebuilder is unable to find any neighbours, it needs to inform its downstream 
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neighbour(s) to search for an alternative path to reach the sink node. This design aims 

to minimize the number of nodes affected by link failures. 

A ChangePath Interest is defined for this case and it is written as (p). In the 

Interest, /JobNeighbour is the name of a neighbour used to disseminate jobs in the 

Job Execute Phase, /ChangePath is the identifier to notify the downstream 

neighbours to alter the path for reaching the sink node, /JobTreeID is to specify the 

affected job tree in case multiple job trees coexist. 

/JobNeighour/changePath/JobTreeID                           (p) 

Each downstream neighbour of the Rebuilder becomes a new Rebuilder upon 

receiving the ChangePath Interest, which is named as downstream-Rebuilder for 

clarity. A new round of Job Tree Rebuild Phase is initiated for each downstream-

Rebuilder. If the downstream-Rebuilder successfully finds a new path on the job tree, 

it should notify the Rebuilder by replying a “Leave-tree” message. This notification 

helps the Rebuilder to maintain its downstream neighbours for the specific job once 

it recovers from the link failure and re-enters the Job Execute Phase. Any 

downstream-Rebuilders that have failed to find an alternative path need to regularly 

check with the Rebuilder to get updates of the failed links (whether it is recovered). 

Two examples of link failures are illustrated in Figure 17 (c). The following steps 

outline the rebuilding procedure for the link failure occurred between node 4 and 

node 2. 

Step-1: Node 4 as a Rebuilder finds that no other neighbours exist except the 

current upstream node 2 and the current downstream node 7 on the job tree. It notifies 

node 7 by sending a ChangePath Interest. 

Step-2: Node 7 becomes a downstream-Rebuilder and sends the RebuildJobTree 
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Interest to its neighbouring node 9 and 16. 

Step-3: Node 16 is already on the requested job tree, but it replies “Rebuild-

Rejected” as it is a mapper. Node 9, not being on the requested job tree, rewrites the 

RebuildJobTree Interest and sends it to its neighbours. Node 8 takes the same action 

as node 9 and gets a “Rebuild-ok” message from node 2. Node 9 replies to node 7 

after it receives the “Rebuild-ok” message and its global ID from node 8. Details of 

the nodes’ ID table are presented in Figure 18 (b). 

Step-4: Node 7 receives its new global ID and notifies its downstream neighbours 

on the job tree, namely node 13 and node 14, by sending the ChangePath Interest with 

the corresponding changed global ID. The ID table of node 7 is updated as shown in 

Figure 18 (c). Moreover, node 7 notifies node 4 of the path change result. Node 4 can 

re-join the job tree by connecting node 7 as the upstream node if needed. 

5.2.5 Job State Sync Phase 

The Job State Sync Phase aims to prevent any violations of the exactly once 

computation requirement due to the job tree changes, i.e. to avoid the local cached 

data in the Rebuilder to be recomputed if the data has been computed in the previous 

upstream node of this Rebuilder. The Rebuilder initiates this phase after it finds a 

new path to recover from link failures. The synchronization process begins with the 

sink node and traverses the reducers or forwarders along the previous path (prior to 

the link failures) until it reaches the Previous-Upstreamer of the Rebuilder. It is 

important to note that any newly arrived data from downstream nodes to the 

Rebuilder after the link failure will be processed as normal. Therefore, the Job State 

Sync Phase can coexist with the ongoing Job Execute Phase. 

A JobSync Interest is defined for the Job State Sync Phase, as shown in (q). The 
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different parts of the Interest hold the following meanings. (1) /SinkNodeName is the 

NDN name of the sink node. As the sink node gathers all computed results for each 

job, the Rebuilder firstly asks the sink node as the starting point. (2) /JobSync is the 

identifier for the Job State Sync Phase. (3) /RebuilderGlobalID is the global ID of the 

Rebuilder. (4) /JobTreeID is to indicate the specific job tree in case multiple job trees 

running at the same time.  (5) /JobID/DataID contains the ID(s) of data-samples for 

specific job to be checked. 

/SinkNodeName/JobSync/RebuilderGlobalID/JobTreeID/JobID/DataID   (q) 

The following steps are undertaken in this phase: 

Step-1: The Rebuilder constructs the JobSync Interest and sends it to the sink node. 

Step-2: Upon receiving the JobSync Interest, the sink node parses it to extract the 

/JobID. It first checks if the task associated with the JobID has been completed. If the 

task is marked as completed, it means that all the data content has been correctly 

computed and received, and therefore the data samples to be checked are unaffected 

by the Rebuilder's link failure. In this case, the sink node can reply with a 

"DataSample-Received" message to the Rebuilder, indicating that the Job State Sync 

Phase has finished. However, if the task state of the JobID is marked as incomplete, 

it implies that the corresponding job execution is still ongoing, and the sink node 

requires more information to respond to the JobSync Interest. 

The sink node further extracts the RebuilderGlobalID and DataID from the 

JobSync Interest. It searches the RebuilderGlobalID in its ID table resulting in the 

two cases below. 

If the RebuilderGlobalID is found in the sink node's ID table, it means that the 

sink node is the Previous-Upstreamer of the Rebuilder. The sink node then checks 
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the DataID in its JS Table. If the data associated with the DataID has been received, 

the sink node replies with a "DataSample-Received" message to the Rebuilder, 

indicating that the Job State Sync Phase has finished. However, if the data sample has 

not been received, the sink node replies with a "DataSample-Not-Received" message 

and requests the Rebuilder to resend the missing data. 

If the sink node fails to find the RebuilderGlobalID in its ID table, it needs to 

forward the JobSync Interest to the previous path of the Rebuilder before the link 

failure occurred. To determine the next hop node to reach the Previous-Upstreamer 

of the Rebuilder, the sink node decomposes the RebuilderGlobalID. As described in 

chapter 5.2.2.1, the global ID of a node comprises the global IDs of its upstream 

neighbors separated by hyphens. Since the sink node is the starting point of each 

individual path on the job tree, it extracts the first sub-ID (the number before the first 

hyphen) to identify the next destination node for forwarding the Interest. The sink 

node compares this sub-ID with all the assigned local IDs in its ID table. The node 

with a matching local ID is determined as the next hop node (referred to as NextHop) 

to forward the JobSync Interest. 

To assist downstream nodes in parsing the message, the sink node creates a new 

Interest called ForwardJobSync, as defined in (r). The Interest is based on the 

JobSync Interest with two different components. /NextHopName is the NDN name of 

the NextHop. /HopNum is the hop number of the current node to reach the sink node 

on the job tree. This design assists other nodes to parse the RebuilderGlobalID in the 

ForwardJobSync Interest. 

/NextHopName/DataCheck/RebuilderGlobalID/JobTreeID/JobID/DataID/HopNum  (r) 

Step-3: The NextHop node extracts the RebuilderGlobalID and DataID after 

receiving the ForwardJobSync Interest. It then checks each data sample ID in its CR 
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Table. If the data sample is received, it means this node is either the Previous-

Upstreamer of the Rebuilder or the upstream node of the Previous-Upstreamer which 

has received the processed data content after the link failure. The NextHop node 

replies a “Data-received” message for each received data sample to the node (either 

the sink node or an upstream NextHop) that sent the ForwardJobSync Interest. 

If the DataID is not found in the CR table, the NextHop node searches the 

RebuilderGlobalID in its ID table. If the RebuilderGlobalID is found, it idicates the 

ForwardJobSync Interest has reached the Previous-Upstreamer of the Rebuilder. The 

NextHop node replies “DataSample-Not-Received”. If the NextHop node fails to find 

the RebuilderGlobalID in its ID table, it modifies the NextHopName and HopNum 

parts of the ForwardJobSync Interest and forwards it to the downstream NextHop. 

Suppose that the HopNum is n in the received ForwardJobSync Interest, the current 

NextHop node knows that the hop number of its upstream node is n so that its own 

hop number equals to n+1, which means the current NextHop node extract the 

(n+1)th sub-ID as the local ID of the next destination node. It then finds the neighbour 

with the matched local ID, replacing the NextHopName by the neighbour’s name. 

Step-3 is repeated until a NextHop node finds the RebuilderGlobalID that matches 

one of the neighbours’ global ID in its ID table. 

Step-4: If a NextHop node is neither the Previous-Upstreamer of the Rebuilder nor 

the one found the matched DataID content in its CR Table, it simply forwards 

received reply message. 

Step-5: The sink node receives the replied message. If the message content is 

“DataSample-Received”, the sink node forwards this message to the Rebuilder, 

which means the Job State Sync Phase has finished.  If the message content is 

“DataSample-Not-Received”, the sink node asks the Rebuilder to resend those data. 
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The Job State Sync Phase is complete when the sink node receives all the missed 

data-samples from the Rebuilder. 

 

Figure 19 Procedure of Job State Sync Phase 

Figure 19 presents an example to demonstrate the Job State Sync Phase. Node 12 

finds a new upstream node (node 5) after the link between itself and node 6 fails. The 

green lines with arrows in the figure indicate the normal job flow in the Job Execute 

Phase. Steps of the Job State Sync Phase are the blue lines with arrows, labelled as 

steps (1) – (6). To explain in detail: 

(1) Node 12 as the Rebuilder sends the JobSync Interest to node 0. 

(2) Node 0 as the sink node checks the job ID, node global ID and data ID 

embedded in the Interest and does not find the corresponding records. Therefore, it 

constructs the ForwardJobSync Interest and sends to the next hop neighbour. 

(3) Node 2 as the NextHop parses the received Interest and checks the embedded 

node global ID and the data sequence numbers. As it does not find matched 

information, it modifies the ForwardJobSync Interest and continues the forwarding 

process. 

(4) Node 6 as the NextHop of node 2 receives the ForwardJobSync Interest. It 



93 

 

finds that the RebuilderGlobalID within the Interest matches one of its downstream 

neighbour’s global ID. Therefore, Node 6 is the Previous-Upsteamer of node 12. It 

checks the corresponding data computation records and then replies. 

(5) Node 2 as the intermediate NextHop node forwards the reply from node 6 to 

node 0. 

(6) Node 0 replies to node 12 according to its received message content. 

5.3 Protocol Overhead Analysis 

The overhead incurred by the proposed design includes two parts. One is the 

computation records saved at each node and the other is the network traffic generated 

to handle link failures and ensure exactly once data computation. 

5.3.1 Network Traffic Overhead 

The network traffic transmitted in the Job Tree Build Phase and the Job Execute 

Phase is defined as the actual job traffic, which sends job requests and returns 

computed job results in the formed job tree. Extra cost besides the actual job traffic 

is required to deal with link failures and guarantee the exactly once computation on 

the same data, which includes the Job Tree Rebuild Phase, the Job State Sync Phase 

and the Job State Commit Phase, abbreviated as Proposed-RSC phases. For clarity 

and simplicity, let 𝑋𝑅𝑆𝐶−𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 and 𝑋𝑅𝑆𝐶−𝐷𝑎𝑡𝑎 denotes the corresponding size of the 

Interest and Data packets used in the Proposed-RSC phases, including the 

RebuildJobTree, the ChangePath, the JobCompleted, the JobSync and the 

ForwardJobSync Interests introduced in previous chapters.  

In the Job Tree Rebuild Phase, at most three procedures contribute to the overhead 

traffic. The first involves the Rebuilder searching for alternative path(s) to reconnect 
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with an upper stream neighbour that is already on the job tree. For example, in Figure 

17 (c) node 3 is the upper stream neighbour of node 12. We call this upper stream 

neighbour as Joint-Upstream for clarity and use 𝐷𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟
𝐽𝑜𝑖𝑛𝑡−𝑈𝑝

 to represent the path 

distance between the Rebuilder to the Joint-Upstream. The second procedure is the 

notification of ID change. After the Rebuilder finds a new path to re-join the job tree, 

it receives a new global ID. If the Rebuilder is a mapper node, the second procedure 

can be ignored as mapper nodes have no downstream neighbour in the proposed 

design. Otherwise, the Rebuilder needs to update the global ID of all its downstream 

neighbours and notify them of the change. Suppose 𝑁𝑐ℎ𝑖𝑙𝑑 denotes the total number 

of nodes on the sub-tree with the Rebuilder as the root. The number of edges 

traversing by the ChangePath Interest equals to the number of nodes (i.e. 𝑁𝑐ℎ𝑖𝑙𝑑) on 

the sub-tree. The third procedure is optional and generates additional traffic when the 

Job Tree Rebuild Phase involves downstream-Rebuilder node(s). For example, node 

7 as a downstream-Rebuilder communicates with node 4 that is the Rebuilder in 

Figure 17 (c). Suppose 𝑁𝑑𝑜𝑤𝑛  is the total number of downstream-Rebuilder 

connected to the Rebuilder and 𝐷𝑑𝑜𝑤𝑛(𝑖)
𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟  is the path distance between the 

downstream − Rebuilder 𝑖 and the Rebuilder. To simply the overhead expression, 

the cost of each IoT network link is assumed to be the same and labelled as 𝐶𝑙. The 

total overhead occurred in the Job Tree Rebuild Phase (𝑂𝑅) can be written as (s). 

𝑂𝑅 =  𝐶𝑙*(𝐷𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟
𝐽𝑜𝑖𝑛𝑡−𝑈𝑝  + 𝑁𝑐ℎ𝑖𝑙𝑑 +  ∑ 𝐷𝑑𝑜𝑤𝑛(𝑖)

𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟𝑁𝑑𝑜𝑤𝑛
𝑖=1 )* 

(𝑋𝑅𝑆𝐶−𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 + 𝑋𝑅𝑆𝐶−𝐷𝑎𝑡𝑎)                                                             (s) 

The overhead traffic in the Job State Sync Phase also includes three procedures at 

most. The first is the communication between the Rebuilder and the sink node. Let 

𝐷𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟
𝑆𝑖𝑛𝑘  denotes the path distance from the Rebuilder to the sink. If the sink node 

has already received the data sample(s) matched the ID(s) in the JobSync Interest, 
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this phase is considered finished and the remaining two procedures can be skipped. 

The second procedure is the enquiry between the sink node and Previous-Upstreamer 

of the Rebuilder or the upstream node of the Previous-Upstreamer which has received 

the processed data content after the link failure. Suppose 𝐷𝑆𝑖𝑛𝑘
𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚

 is the path 

distance between the sink node and the upstream node which can respond to the 

ForwardJobSync Interest. The third procedure is optional. It is for data re-

transmission if finding any data samples missing in the previous procedures. The 

Rebuilder re-sends the specific data samples to the sink node. Thus, the overhead 

traffic in the Job State Sync Phase (𝑂𝑆) can be written as (t). 

𝑂𝑆 =  𝐶𝑙( 𝐷𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟
𝑆𝑖𝑛𝑘 +𝐷𝑆𝑖𝑛𝑘

𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚
+𝐷𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟

𝑆𝑖𝑛𝑘 )(𝑋𝑅𝑆𝐶−𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡+𝑋𝑅𝑆𝐶−𝐷𝑎𝑡𝑎)     (t) 

In the Job State Commit Phase, the sink node sends the notification to all other 

nodes on the job tree periodically. Suppose if 𝑁𝑡𝑜𝑡𝑎𝑙 is the number of nodes on the 

job tree, there are  (𝑁𝑡𝑜𝑡𝑎𝑙-1) edges to transmit the Interest and Data packets in this 

phase. Let 𝑇𝑡𝑜𝑡𝑎𝑙 denotes the time length of the current sink node issuing jobs on the 

job tree and 𝑡𝑐𝑜𝑚𝑚𝑖𝑡 as the frequency for the sink node to send the JobCompleted 

Interest. The overhead traffic in the Job State Commit Phase (𝑂𝐶) can be written as 

(u). 

𝑂𝐶 =  𝐶𝑙(𝑁𝑡𝑜𝑡𝑎𝑙-1) (𝑋𝑅𝑆𝐶−𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡+𝑋𝑅𝑆𝐶−𝐷𝑎𝑡𝑎)(𝑇𝑡𝑜𝑡𝑎𝑙/𝑡𝑐𝑜𝑚𝑚𝑖𝑡)          (u) 

The network traffic overhead of the proposed protocol is calculated as 𝑂𝑅+𝑂𝑆+𝑂𝐶. 

Observing expressions (s), (t) and (u), we can conclude three factors that affect the 

overhead. The first is the job tree size. Both the depth and width of the job tree decide 

the number of nodes required by the current job(s). A deeper and wider the job tree 

results in a larger value of 𝑁𝑡𝑜𝑡𝑎𝑙 in equation (u), which increases the overall overhead 

traffic. The second factor is the pre-defined frequency for the sink node to send 
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notifications, i.e. 𝑡𝑐𝑜𝑚𝑚𝑖𝑡 in equation (u). For the same job running the same time on 

the job tree, a smaller the value of 𝑡𝑐𝑜𝑚𝑚𝑖𝑡 leads to more frequent invocations of the 

Job State Commit Phase. It results in a higher value of 𝑂𝐶 which contributes to the 

whole overhead of the proposed protocol. The last factor is the node that experiences 

a link failure, i.e. the Rebuilder in the proposed design. The overhead traffic 𝑂𝑅  in 

equation (s) is closely related to the number of messages that the Rebuilder sent in 

the Job Tree Rebuild phase, i.e. to find a new upstream node (𝐷𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟
𝐽𝑜𝑖𝑛𝑡−𝑈𝑝 ), to notify 

downstream neighbours of ID change (𝑁𝑐ℎ𝑖𝑙𝑑) and the previous upstream neighbour 

of path change (∑ 𝐷𝑑𝑜𝑤𝑛(𝑖)
𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟𝑁𝑑𝑜𝑤𝑛

𝑖=1 ). In addition, the distance between the Rebuilder and the 

sink node directly affects the overhead 𝑂𝑆  in equation (t). A longer the distance 

requires more messages exchanged to complete the Job State Sync Phase. 

5.3.2 Computation Record Storage Overhead 

The intermediate state of job execution is saved at each node, with the sink node 

maintaining the JS Table and others having their corresponding CR Table. Let 𝑊𝑖 

represent the number of records for 𝑛𝑜𝑑𝑒𝑖  inserting into its local JS/CR Table per 

second and 𝑇𝑐𝑙𝑒𝑎𝑟 is the time length for waiting the notification of clearing records 

from the sink node. The number of records saved by all nodes for each clear-record-

cycle (𝑊𝐸𝐶𝐸) can be calculated as (v). It is easy to summarize that the overhead of 

computation record storage is decided by 𝑇𝑐𝑙𝑒𝑎𝑟. A smaller the 𝑇𝑐𝑙𝑒𝑎𝑟 value implies 

that fewer records maintained by each node. However, it is worth to mention that 

reducing 𝑇𝑐𝑙𝑒𝑎𝑟 also results in entering the Job State Commit Phase more frequently, 

which increases the network traffic overhead. It is up to the sink node or IoT 

applications to decide the best 𝑇𝑐𝑙𝑒𝑎𝑟 value. 

𝑊𝐸𝐶𝐸  =  ∑ (𝑊𝑖
𝑁𝑡𝑜𝑡𝑎𝑙
𝑖=1 ∗ 𝑇𝑐𝑙𝑒𝑎𝑟)                                                     (v) 
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5.4 Evaluation 

This section presents tests to verify the feasibility of the proposed design and 

evaluate its performance under different link failure scenarios. As the proposed 

design relies on a job-tree-based ID and a multiple-phase job execution scheme to 

assure the exactly once data computation, overhead analysis is conducted in terms of 

ID allocation (varying according to the tree depth), the job maintenance (occurred in 

Proposed-RSC phases), and intermediate state of job processing save at edge nodes. 

Since there are no existing approaches specifically targeting the same problem 

addressed in this thesis, a benchmark solution is developed based on the checkpoint 

scheme. It is abbreviated as CP-Benchmark for clarity and its main idea is 

summarized as below: 

Step-1. The sink node has the information of processing-capable devices in the 

network. It generates a job execution plan/graph before issuing computation tasks, 

which randomly picks the processing nodes and assigns data sources to subgroups 

accordingly. The sink node then notifies each selected processing node of the 

generated job graph. 

Step-2. During the job execution, the sink node sends a checkpoint message 

periodically to all nodes on the job graph. Each node replies to the checkpoint 

message by sending its current state to the sink node, simulating the central and 

durable storage for checkpoint snapshots. The checkpoint is considered successful if 

all nodes report normal states. In case of any failure or error, the sink node initiates a 

recovery procedure to address the issue. 

Step-3. In the event of a failure, the sink node randomly picks another device to 

replace the failed one and migrates the computation tasks on the newly selected node. 
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Step-4. The sink node instructs all nodes on the current job graph to rollback to 

the last checkpoint and restart. The process then returns to Step-2 and repeats. 

All tests are implemented on ndnSIM [80] which is specially designed for NDN. 

The following settings are applied to all tests: the sink/user node sends one task 

Interest per second. Mappers in the proposed design and CP-Benchmark data sources 

return a Data packet per received task Interest. Edge nodes process data samples 

every five seconds, which facilitates the ndnSIM simulator to capture link failure 

events. It can be flexibly set to meet the requirements of IoT applications. The 

network traffic is calculated by accumulating the number of transmitted Interest and 

Data packets by all nodes involved in the job tree/graph. 

Two types of data transmission speed are set for the simulation, in the combination 

of bandwidth and delay: 250 Kbits per second plus 10 milliseconds based on the 

Zigbee [82] protocol between a mapper and a reducer/forwarder in the proposed 

design, and between a data source and a processing node for the CP-Benchmark 

solution. 54 Mbits per second and 1 millisecond using the IEEE 802.11 [83] 

parameter between reducers and forwarders for the proposed design, and between 

processing nodes of the CP-Benchmark. 

5.4.1 Feasibility Test 

To verify the functionality of the protocol design, a network topology is created in 

ndnSIM based on Figure 17 (a). Node 0 is configured as the user node and node 10-

16 are set as mappers. Node 1-9 may act as a reducer or a forwarder or do not 

participate in data processing depending on their situations. The user node has a job 

request which consecutively issues 100 computational tasks. It also sends a 

JobCompleted Interest every 20 committed tasks to notify other nodes on the job tree 

to clear the corresponding history job records. 
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The links in the network topology have equal cost. The job tree is built using the 

NDN routing protocol with the shortest path algorithm. Link failures are defined to 

happen at different moments during the job execution: the first failed link is between 

node 6 (a forwarder) and node 12 (a mapper) and the second is between node 2 (a 

reducer) and node 4 (a forwarder). 

Figure 20 Job Tree Built and Updated by the Proposed_design 

Figure 20 shows different job trees observed during the simulation: (a) is the initial 

job tree built with node 0 as the root, (b) is the updated job tree after the link between 

node 6 and 12 fails and (c) is the job tree after the second link failure happens between 

node 2 and 4. In the figures, each node is represented as a red dot, and the green lines 

indicate the edges on the job tree while the black ones are not currently used by the 

tree. The updated job trees demonstrate that the proposed protocol can handle link 

failures without suspending normal job execution procedure. Moreover, the final job 

result is received correctly without any data lost or duplicated processing. 

Figure 21 reflects the transmitted traffic at each node during the test. Node 10, 11, 

15 and 16 exhibit the same curve pattern, which are stable and repeat regularly. Since 

the four nodes are not affected by any network failures, they act as mappers to receive 

task requests and return data content. The peaks in their figures correspond to the 

periodic JobCompleted Interest sent in the Job State Commit Phase, occurring every 20 
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committed tasks. 

After the first link failure happens, it causes more traffic for the following nodes. 

Firstly, the highest peak in the figure of node 12 in Figure 21 is the extra messages 

incurred in the Proposed-RSC phases to handle the link failure. Secondly, as node 6 only 

has one job neighbour (node 12) and after this link fails, it neither receives nor returns 

job data. Consequently, its curve remains at 0 after the first link failure. Thirdly, node 5 

becomes the updated upstream job neighbour of node 12, it starts to transmit Interest and 

Data packets because of the rebuilt job tree. Lastly, the number of transmitted packets of 

node 3 increases after the first link failure because it now has an additional job neighbour 

(node 5), requiring it to send more CJ Interests and reply with more computed job results. 

The second link failure forces node 4 to leave the job tree as it has no backup 

routes reaching the sink node, resulting its curve turning to 0 in Figure 21. 

Meanwhile, node 4 notifies the link failure to its child neighbour node 7 so that node 

7 can try to find an alternative route without being affected. The rebuilt job tree 

enables node 7 to continue working on the job tree by adding node 8 and 9 as 

forwarders on the new path. Thus, the curve in the figure of node 8 and 9 respectively 

shows transmitted packets after the second link failure. Furthermore, the number of 

transmitted packets by node 7 grows as labelled by the red oval in its figure, which is 

the procedure initiated by node 7 to search alternative paths. 
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Figure 21 Traffic Generated by Nodes on Job Tree
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The global ID of node 7 changes because its upstream neighbours on the job tree 

has been updated. It also changes the global ID of the child nodes of node 7. The 

highest peak in the figure of node 13 and 14 indicates the increased number of 

messages for the notification of updated global ID. 

The second link failure forces node 4 to leave the job tree as it has no backup 

routes reaching the sink node, resulting its curve turning to 0 in Figure 21. 

Meanwhile, node 4 notifies the link failure to its child neighbour node 7 so that node 

7 can try to find an alternative route without being affected. The rebuilt job tree 

enables node 7 to continue working on the job tree by adding node 8 and 9 as 

forwarders on the new path. Thus, the curve in the figure of node 8 and 9 respectively 

shows transmitted packets after the second link failure. Furthermore, the number of 

transmitted packets by node 7 grows as labelled by the red oval in its figure, which is 

the procedure initiated by node 7 to search alternative paths. The global ID of node 7 

changes because its upstream neighbours on the job tree has been updated. It also 

changes the global ID of the child nodes of node 7. The highest peak in the figure of 

node 13 and 14 indicates the increased number of messages for the notification of 

updated global ID. 

5.4.2 Network Traffic Overhead Analysis 

To evaluate the network traffic overhead of the proposed protocol, a comparison 

is made with the CP-Benchmark approach. Two network topologies are created to 

assess the performance. In the tests, a job is defined as consecutively executing and 

completing 100 computational jobs. The sink node sends a JobCompleted Interest 

every 20 committed jobs in the test cases of the proposed design. As more network 

traffic is incurred by a higher checkpoint frequency, two checkpoint intervals are 

deployed for the CP-Benchmark tests, i.e. every 5 seconds and every 20 seconds. 
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• Toy-Topology in Figure 17 (a) 

The network topology in Figure 17 (a) is created in ndnSIM for tests. Two failures 

are set during the job execution for the proposed design and CP-Benchmark solution 

respectively. Node 0 is the user node and node 10-16 are data sources. The remaining 

nodes act as edge devices and whether an edge node joins data processing depends 

on the job tree/graph generated by the protocol. CP-Benchmark randomly picks three 

edge nodes to undertake data processing and therefore the data sources are randomly 

separated into three groups. 

 

Figure 22 Network Traffic Comparison: Proposed_design Vs. CP_Benchmark 

Figure 22 shows the test results, where the black curve represents the performance 

of the proposed design while the blue and red curve corresponds the CP-Benchmark 

with checkpoint interval of 5 seconds (CP_5) and 20 seconds interval (CP_20) 

respectively. At the beginning of the simulation, the highest peak of the proposed 

design is the number of messages exchanged by all nodes in the Job Tree Build Phase. 
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This phase incurs the most overhead in a round of job execution, as the job tree needs 

to be constructed for each new user node. In contrast, the CP-Benchmark approach 

assumes that the sink node possesses prior knowledge of network resources, resulting 

in a lower initial cost for generating the job graph compared to the proposed design. 

During the job execution, it is evident that the network traffic generated by CP-

Benchmark is consistently higher than that of the proposed design, regardless of the 

chosen checkpoint interval. This disparity can be attributed to the fact that CP-

Benchmark does not consider the physical topology when generating the logical job 

plan. In the test scenario, the job graph created by CP-Benchmark assigns node 1 to 

process data samples from nodes 10, 13, 14, and 16, node 5 to handle nodes 11 and 

12, and node 7 to manage node 15. However, transmitting raw data to edge nodes 

incurs a higher cost compared to directly sending data samples from the data source 

to the sink node. Consequently, in most cases, the distance between a data source and 

a processing node is longer than the direct path to the sink node, leading to increased 

network traffic. 

The peaks with a dot on the top of CP-Benchmark curves are the moments to 

handle link failures. During these instances, the network traffic spikes due to the sink 

node selecting another edge node for recovery and notifying all nodes on the job 

graph to roll back to the previous checkpoint state. The network traffic of CP-

Benchmark with a 5-second checkpoint interval (blue curve) is higher than that of the 

20-second interval (red curve) since checkpoint messages are transmitted more 

frequently throughout the job execution. Although this results in lower job execution 

latency and faster failure detection and recovery, the CP-Benchmark with a 20-

second interval incurs a time cost approximately 30 seconds longer than both the 5-

second interval and the proposed design, as indicated by the x-axis of Figure 22. 
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Figure 22 also includes an enlarged view of the curve of the proposed design, 

providing more details. The peaks with a dot at the top represent two link failures, 

where additional messages are exchanged to rebuild the job tree, synchronize job 

states and retransmit any lost data, according to the equation (s) and (t) described in 

previous section. The peaks with a square at the top are the moments of the 

JobCompleted Interest traversing all nodes on the job tree to clear historical job data, 

as described in equation (m). The job completion time of the proposed design is the 

same as CP-Benchmark with 5-second checkpoint interval. 

• BRITE-Topology 

To evaluate the scalability of the proposed protocol, a network topology consisting 

of 100 nodes is generated by using BRITE [81] topology generator with 

RouterWaxman model. It is called BRITE-Topology for clarity. Node-0 is configured 

as the sink/user node. For the rest 99 nodes, 69 nodes (node number 31-99) act as 

mappers/data sources and 30 nodes serve as edge nodes. Five link failures are set 

during the simulation for the proposed design and the CP-Benchmark respectively. 

Figure 23 (a) and (b) display the corresponding job graph generated by the 

proposed design and the CP-Benchmark approach. In these figures, red dots represent 

nodes, green lines with arrows are links used on the job graph and black lines depict 

original network links that are not used by the current job. The proposed design builds 

the job tree with node-0 as the root. CP-Benchmark randomly selects five edge nodes 

to undertake data computation tasks. All data sources are split into five groups and 

the number of nodes in each group ranges randomly from 5 to 15. 
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(a) Proposed_design Job Tree 

 

 

(b) CP-Benchmark Job Graph 

Figure 23 Job Graph on BRITE-Topology 

Figure 24 (a) presents the test results of the proposed design for completing the 

same job with/without failures. The Proposed-Exec curve (in red) represents the test 

case that no failures happen during the job execution. On the other hand, the 

Proposed-RSC curve (in black) shows the network traffic variation when the 

proposed design handles five failures during the job execution. Both curves have the 
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highest peak at the initial time of the test because of nodes exchanging the routing 

information to build the job tree. 

In the Proposed-Exec curve, there is a regular pattern of peaks and valleys every 

five seconds throughout the entire test, corresponding to the frequency at which 

reducers process data. The network traffic increases when the reducers return Data 

packets after processing. The black curve (Proposed-RSC) largely overlaps with the 

red curve for most of the simulation, indicating that the proposed design incurs 

limited additional cost to achieve exactly once data computation. The peaks with a 

blue diamond on top of the black curve represent the sink node sending JobCompleted 

Interests in the Job State Commit Phase. These peaks also contain the network traffic 

for the proposed design handling link failures, which explains the first two peaks are 

higher than the others in the zoomed view of Figure 24 (a). Observing the network 

traffic, the black curve is lower than the red one from approximately 50th second of 

the test. As link failures result in updated job trees, the number of Interest and Data 

packets decreases because of nodes changing their role during the job execution to 

aggregate multiple packets into one. For example, the number of Data packets may 

reduce if a node that was not on the job tree becomes a reducer and aggregates 

multiple job data content into a single Data packet. 

The network traffic comparison between the proposed design and CP-Benchmark 

is shown in Figure 24 (b). CP-Benchmark with 5-second and 20-second checkpoint 

interval are respectively presented as the blue (CP_5) and red (CP_20) curve. The 

curve of the proposed design is in black, which is the same as the Proposed-RSC 

curve in Figure 24 (a) for more detailed information. As the number of nodes in the 

BRITE-Topology grows, the network traffic generated by the proposed design to 

build the job tree increases consequently. This increase in network traffic is even 
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more pronounced in CP-Benchmark, which always transmits more packets than the 

proposed design to complete the same job. 

 

(a) Overhead Analysis of Proposed_design 

 

 

(b) Proposed_design Vs. CP-Benchmark 

Figure 24 Network Traffic Comparison on BRITE-Topology 
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As IoT networks grow, data transmission from data sources to processing nodes 

becomes a significant contributor to overall network traffic, especially if the physical 

topology is ignored during job assignment, as is the case in CP-Benchmark's random 

grouping of data sources with edge nodes. Additionally, using a checkpoint-based 

scheme to ensure exactly once data computation can introduce noticeable delays in 

job completion, as seen in the red curve in Figure 24 (b), potentially doubling the job 

execution time.  

5.4.3 Overhead of Computation Record Storage 

For evaluation purposes, the Clear-Record-Frequency (CRF) is defined as the 

number of completed tasks to clear all history records once. The job tree built in 

Figure 20 (a) is applied. In this simulation, a job is defined as consecutively executing 

and completing 200 tasks. The sink node sends a JobCompleted Interest with CRF 

values of 50, 20 and 10 respectively for the same job. 

Figure 25 shows the number of records saved at each node with different CRF 

settings. The red curves represent CRF = 50, the green curves are for CRF = 20 and 

the blue ones for CRF = 10. The black lines in the figure track the network traffic 

associated with the job tree building and job execution processes, which are the same 

as the Proposed-Exec results discussed in previous section. As node 5, 8 and 9 are 

not on the job tree, they neither transmit job data nor save computation records. 

The number of saved records can be categorized into two types: the test results of 

mappers (node 10-16) and the rest nodes. For the mappers, the curves exhibit a 

repeating pattern based on the CRF settings. With CRF = 50, the red curve increases 

from 0 to 50 and then drops back to 0. Similarly, the green curve rises from 0 to 20 

and then returns to 0 with CRF = 20, and the blue curve follows a cycle of 0 to 10 to 

0 with CRF = 10. The curves of mappers show a smooth growth pattern for all CRF 
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settings because mappers promptly reply to received CJ Interests and add a job 

computation record after returning each Data packet. The number of transmitted 

packets for actual job execution remains constant at 2, which includes one Data 

packet and one received Interest packet per second in the Job Execute Phase. 

 

Figure 25 Overhead of Job Computation Records Storage 

For the other nodes (node 0, 1-4, 6 and 7), the curves experience growth every five 

seconds due to the predetermined data processing frequency of reducers and 

forwarders. The number of saved job computation records is cleared every 10/20/50 

completed jobs depending on the CRF setting. The curves representing job execution 

packets remain consistent and are unaffected by changes in CRF. These test results 

align with the conclusion stated in equation (n) from the previous section: a larger 

CRF value leads to a higher number of records maintained by all nodes on the job 

tree. The choice of the optimal CRF setting depends on the specific requirements of 

the IoT applications. 
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5.4.4 Overhead of ID Allocation and Update 

Two network topologies are created in Figure 26 to compare the cost of ID 

allocation and update in the proposed design, which is influenced by the depth of the 

job tree. The two initial job trees, i.e. Job-Tree-A and Job-Tree-B, differ only in the 

number of intermediate nodes between the sink node and the mappers. 

During the simulation, each job tree runs for 100 seconds and three link failures 

are configured at the 32nd, 62nd and 82nd second respectively. For Job-Tree-A, the 

failed links occur in the following temporal order: the link between node 2 and m3, 

the link between node 3 and m4, and the link between node 1 and m2. For Job-Tree-

B, the link failures occur in the following order: the links between node 8 and m3, 

node 9 and m4, and node 7 and m2. The updated job trees after the three link failures 

are also depicted in Figure 26, with red dashed lines indicating the failed links. 

 

Figure 26 Node ID affected by Job Tree Depth 
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Figure 27 Overhead of ID Update
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The number of transmitted packets by each node over the simulation time is 

presented in Figure 27 (a), while the total network traffic shows in Figure 27 (b). The 

black curves represent the test data generated on the Job-Tree-A and the red curves 

are for Job-Tree-B. Nodes 4-9 only have transmitted packets for Job-Tree-B. For 

mapper nodes m1 and m5, the curves are the same for both job tree topologies, as the 

link failures have no effect on their job execution procedure. However, there is a 

slight difference in the number of packets for mapper nodes m2-m4. This difference 

arises because the transition from Job-Tree-A to Job-Tree-B introduces more traffic 

in the Job State Sync Phase with more intermediate nodes involved in forwarding 

Interest and Data packets. It worths to mention that the transmitted packets by mapper 

nodes m2-m4 in other phases of the proposed protocol remain the same. 

For node 1-3, they disseminate less job requests on Job-Tree-B compared to Job-

Tree-A because they are only responsible for one downstream neighbour on Job-

Tree-B. The CJ Interest in the Job Execute Phase is sent per job node so that having 

more downstream neighbours introduces more traffic, which is doubled with returned 

job Data packets. 

The total cost of the entire job tree is illustrated in Figure 27 (b). The number of 

transmitted packets increases by approximately two times when changing from Job-

Tree-A to Job-Tree-B. This increase in cost aligns with the equation (s) discussed in 

the previous section (chapter 5.3.1). Additionally, the cost incurred by Job-Tree-B 

involves nodes leaving or re-joining the job tree due to the absence of downstream 

neighbours or the connection of new downstream neighbour(s), indicated by the 

variable 𝐷𝑑𝑜𝑤𝑛(𝑖)
𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟 in equation (s). For instance, when the link between node 8 and 

m3 fails, m3 finds a new path through node 7 on the job tree. Simultaneously, node 

8, finding no job neighbours available after losing m3, leaves the job tree by notifying 
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node 5 about the situation. The same actions are taken by both node 5 and 2. When 

the second link failure happens between node 9 and m4, m4 sends a re-join request 

to node 8. To this end, nodes 8, 5 and 2 initiate the re-join tree procedure one by one 

until receiving the reply from the sink node, indicated by the variable 𝐷𝑅𝑒𝑏𝑢𝑖𝑙𝑑𝑒𝑟
𝐽𝑜𝑖𝑛𝑡−𝑈𝑝

 in 

equation (s). Thus, the number of packets transmitted to allocate and update node ID 

is closely tied to the tree topology as well as the specific node experiencing the link 

failure. 

5.5 Summary 

Collaborative edge computing is a data processing paradigm that employs multiple 

edge devices cooperating with each other to execute jobs for IoT applications. 

However, ensuring exactly once data computation in such scenarios is a challenge 

due to potential IoT network connection failures. These failures can lead to data 

losses or duplicated data transmissions and computations, which violate the exactly 

once computation requirement. 

This thesis proposes a five-phase protocol as a solution, which is built upon the 

novel ICN architecture. The Job Tree Build Phase constructs a job graph in the form 

of a tree, with the sink/user node as the root. This phase is executed before running 

any jobs. The Job Execute Phase disseminates job requests and returns the computed 

job results in the form of NDN Interest and Data packets. Whenever a network failure 

happens during the job execution, the Job Tree Rebuild Phase and the Job State Sync 

Phase are invoked to update the job graph and ensure no data affected by the failures. 

Finally, the Job State Commit Phase is designed to notify all nodes on the job tree 

about the completed jobs and to perform any necessary cleanup. A set of tests have 

been performed to show the feasibility and scalability of the proposed protocol. This 

thesis also analyses the overhead associated with ID assignment and computation 
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information storage. 

This thesis assumes that the completion time of the proposed protocol is shorter 

than the failure frequency of nodes. Consequently, the proposed protocol updates the 

job tree to eliminate failed links even in cases where links frequently transition 

between active and inactive states. This, however, leads to additional overhead to 

maintain the job tree. Future work will focus on refining the proposed solution to 

effectively handle lossy network types. 

  



116 

 

 

  



117 

 

6 Conclusion and Future Work 

6.1 Conclusion 

This thesis presents an ICN based collaborative edge computing framework for 

IoT data processing. The motivation behind this research is twofold. Firstly, with the 

rapid growth of IoT network, there is a large amount of and will be more data 

produced and exchanged by IoT devices. Processing data at the edge can help 

aggregate or filter data, reducing traffic volume before transmitting it to the cloud. 

Secondly, IoT applications usually require data to be processed at intermediate nodes 

situated between the user node and the data sources. The end-to-end communication 

model of current Internet does not adequately align with this requirement. Therefore, 

this thesis employs ICN as the underlying network support to enable IoT data 

communications and computation. Additionally, ICN fits well with the information-

centric nature of IoT applications, whose users prefer more on content and service 

acquisition than establishing connections between multiple devices. 

There are three contributions arising from the research work of this thesis. 

Contribution I: Proposed a functional architecture for IoT collaborative edge 

computing and its ICN-based implementation for executing MapReduce jobs [22] 

[23]. 

The first research question of the thesis aims to explore the essential functional 

units required to support in-network data processing for IoT edge environments. With 

the increasing availability of computational resources in edge and IoT devices such 

as mobile phones, CCTV cameras and edge servers at base stations, there is an 

opportunity to offload data processing tasks from cloud servers to the edge. This can 
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help alleviate the burden on centralized servers and enable more efficient and timely 

data processing in IoT applications. These functional units may include data 

aggregation, filtering, analytics, and other computational capabilities. The goal is to 

identify the specific tasks and operations that can be performed within the network 

itself, closer to the data source, rather than relying solely on centralized cloud servers. 

 To address this research question, this thesis designs a functional architecture for 

IoT edge data computing to identify the responsibilities of edge devices by 

considering their heterogeneity nature. There are three components in the proposed 

architecture. The first component is the Computation Manager, responsible for 

administrating data processing and managing network devices. The second 

component is the Computation Executors, which refers to specific edge devices 

capable of contributing to the computational service. The third component is the 

Function Repository designed to save the processing functions, which can be 

maintained by a single device or deployed in the network in a distributed way. The 

functionality of each role is designed to undertake appropriate part of data processing 

and to cooperate with each other to complete the whole computation task. 

To achieve efficiency, distributed data processing is more promising for big 

datasets than the centralized processing by a single server. For example, MapReduce 

framework is a powerful and popular tool in traditional big data processing. Thus, 

this thesis applies the MapReduce idea into the proposed design. The following 

research efforts contribute to the development of the proposed functional architecture 

for MapReduce job execution based on an ICN architecture (i.e., NDN). 

Firstly, a NDN naming scheme is devised to express required data and processing 

logic in each user’s request. More critically, the naming scheme assists job 

dissemination and function acquisition. Secondly, a computational job tree 
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construction protocol is proposed organize edge nodes for collaborative job 

execution. This protocol involves selecting appropriate edge nodes and distributing 

computational jobs among them. Thirdly, a job execution protocol is designed to 

parse users’ requests and return the processed results. Experimental studies have been 

conducted to validate the proposed design. The results of these experiments 

demonstrate reduced network traffic compared with central-processing benchmark 

tests.  

Contribution II: Developed the protocol to execute multiple MapReduce jobs on 

the proposed framework with the consideration of resource constraints on edge 

devices [25]. 

The second research question is to investigate the protocol that supports the 

simultaneous deployment and execution of multiple MapReduce jobs on the proposed 

framework, considering the resource constraints of heterogeneous edge devices, as 

some edge nodes have the computing resources to process data while others do not. 

Broadly, this thesis divides edge devices into two types: processing-capable 

(acting as a mapper or reducer) and forwarding-only (acting as a forwarder) with the 

assumption that the procedure of matching the computational resource need of a job 

with the available computing resources at the devices has been completed. Each 

defined job contains the user-defined Map and Reduce tasks and desired datasets. 

Processing-capable nodes possess sufficient computing resources to perform a 

portion of current job. Specifically, the mappers directly connect with sensors/data 

sources, and they run user-defined map function on sensory data. The reducers 

execute the user-defined reduce function on the received data from neighbour nodes. 

Forwarding-only nodes, i.e. forwarders, do not need to parse or execute functions 

within the Interests. Their role is to receive multiple Data packets for the same job 
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tree, aggregate all received data samples into a single Data packet and then returns. 

To enable collaboration between the processing-capable and forwarding-only 

edge nodes to complete each job, a job maintenance scheme is devised. The 

application layer functionalities are developed to support multiple job tree 

construction, e.g. managing job neighbours for different job trees, and to maintain 

multiple jobs running at the same time, e.g. ensuring processed results returned to the 

corresponding root/user node. 

Contribution III: Developed the protocol to guarantee exactly once data 

computation on the proposed framework [27]. 

Fruitful research studies flourish in IoT collaborative edge computing area, with 

the focus on optimizing resource usage and task deployment. However, guaranteeing 

exactly once data computation in this context has not been thoroughly considered in 

edge computing scenarios. This is a critical aspect as network failures during edge 

collaboration can result in data loss or duplicated data transmission/processing, 

jeopardizing the exactly once computation requirements. Therefore, the third 

research question aims to address this challenge by achieving exactly once data 

computation in the proposed framework. This thesis identifies three specific 

challenges and proposes a five-phase protocol as a solution: 

• Challenge-1. Backing up essential data processing information in distributed 

edge nodes.  

• Challenge-2. Handling network failures during collaborative edge 

computing while guarantee exactly once computation on the same data. 

• Challenge-3. Limited storage space at edge devices. 

The proposed solution consists of five phases organised into two separate 
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procedures. The job execution procedure solves Challenge-1 and Challenge-3. It 

contains the Job Tree Build Phase, which constructs a tree-based job graph with the 

sink/user node as the root. The Job Execute Phase distributes job requests, returns 

computed data results, and saves essential data processing information in the form of 

“data sample ID - corresponding raw/computed content”. The Job State Commit 

Phase is periodically launched by the root node to notify other nodes on the job tree 

about the state of the job(s), whether completed or uncompleted. This allows each 

device to delete their local records of specific completed jobs. 

The job recovery procedure includes two phases and can coexist with the job 

execution procedure. It addresses Challenge 2 and is invoked when a network failure 

occurs during job execution. The Job Tree Rebuild Phase enables nodes experiencing 

link failures to explore alternative routes to reach the root node and replace the failed 

connections. Subsequently, the Job State Sync Phase synchronizes the data 

computation state, starting from the sink node and tracing back the previous data 

computation path to identify any lost data samples due to link failures. 

Simulation experiments are developed to evaluate and compare the performance 

of the proposed design with a checkpoint-based benchmark solution, in terms of 

network traffic and job execution time. It also analyses the overhead associated with 

computation records storage and unique ID assignment. 

6.2 Future Work 

Currently there are some assumptions and limitations in the proposed design of 

this thesis, which points out the potential research directions in the future. 

1. Improve the performance of the proposed design 

The proposed ID format in ensuring exactly once computation embeds the 
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knowledge of all nodes that collect or compute the data, whose disadvantage is that 

the length of ID increases along with the job tree depth. It is worth to investigate an 

encoding/decoding algorithm to efficiently represent the ID information. 

Computation information storage on edge devices causes more burden considering 

their resource constraints. The proposed design can be improved to equip with a 

scheme quantifying and collecting available storage space of edge nodes, which 

enables the sink node to decide the frequency of clearing historical records 

accordingly. 

2. Optimize job deployment 

The proposed computational job tree protocol is built on NDN routing protocol 

using the shortest path algorithm, which is one approach of the job deployment, i.e. 

selecting Computation Executor(s) closest to the required data sources. The criteria 

to establish a job tree should be tailored to meet the specific demands of each job. 

For instance, in the case of an IoT job with stringent latency requirements, the 

filtering of links based on available bandwidth can be employed. Metrics related to 

device capabilities and network resources can be integrated into the optimization 

objective for building the computational tree. Moreover, the partitioner function in 

traditional MapReduce framework can be integrated into current design, improving 

job processing efficiency. 

3. Handle mobility of IoT devices 

The proposed design assumes that IoT sensing devices are static. However, IoT 

applications, such as intelligent transport and vehicular networks, involve mobile 

devices. It results in frequent updates of the job tree in the proposed solution as IoT 

devices move, which incurs additional overhead to maintain the job tree. Future work 

will explore and develop a management scheme for IoT mobile scenarios, aiming at 

minimizing the cost of job tree maintenance.  
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