
A Policy Language for Context-Aware

Access Control in Zero-trust Network

By

Shiyu Xiao

Thesis

Submitted to the School of Engineering

Technological University of the Shannon Midlands Midwest

Athlone, Co. Westmeath, Republic of Ireland

In the partial fulfilment of the requirements for the degree of

Master of Science (Research)

Technological University of Shannon

(June 2023)

Supervised by:

Dr. Brian Lee

Dr. Nadia Kanwal

1

A Policy Language for Context-aware

Access Control in Zero-trust Network

Approved by

Supervising Committee:

(Dr. Brian Lee)

(Dr. Nadia Kanwal)

I

Acknowledgements

I would like to express my deepest gratitude to Dr. Brian Lee and Dr. Nadia Kanwal

for their guidance and support throughout my research. Their expertise,

encouragement, and feedback have been invaluable to the completion of this thesis.

I would like to thank colleagues in Software Research Institute of Technological

University of Shannon for their support and camaraderie throughout this journey.

Special thanks to my parents for their unwavering support and understanding during

the ups and downs of this project.

Finally, I would like to thank the HEA Government of Ireland Scholarship and

President’s Seed Funding for providing the necessary resources and facilities for this

research.

Thank you all for your contributions and support in making this thesis possible.

II

Declaration of Authorship

I, Shiyu Xiao, declare that this thesis titles, ‘A Policy Language for Context-aware

Access Control in Zero-trust Network’ and the work presented in it are my own. I

confirm that:

• This work was done wholly or mainly while in candidature for a research

degree at this Institute.

• Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other Institution, this has been clearly

stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from work of others, the source is always given. With the

exception of such quotation, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

Signed: ____________________________

 (Shiyu Xiao)

Date:______________________________

III

Abstract

Evolving computing technologies such as cloud, edge computing, and the Internet of

Things (IoT) are creating a more complex, dispersed, and dynamic enterprise

operational environment. New security enterprise architectures such as those based on

the concept of Zero Trust (ZT) are emerging to meet the challenges posed by these

changes. Context awareness is a notion from the field of ubiquitous computing that is

used to capture and react to the situation of an entity, based on the dynamics of a

particular application or system context. However, there is limited research and

discussion about the overlap between context awareness and Zero Trust, with existing

literature often treating them as separate entities, leading to potential inefficiencies.

One of the main challenges in merging the two concepts is the inflexibility of the

programming languages and systems used in crafting access control policies, which

sometimes result in excessively rigid policies. Addressing this challenge could be

achieved through a new programming language specifically designed for greater

flexibility and a wider consideration of contextual factors, leading to more robust

security measures that align more effectively with the principles of Zero Trust.

This work conducts a systematic review of the previous research in context-aware

access control to identify the various ways to capture and express context across

different access control types and different application domains. Based on this review,

it identifies how context can help provide dynamic policy-based solutions for zero-

trust applications.

It extends a previous work which designed a policy language for risk-based access

control in zero-trust networks. Specifically, this project extends the necessary

language constructs to include and handle dynamic contextual attributes.

Finally, it provides a proof of concept to demonstrate that the extended language can

give the correct access decisions based on the evaluation of contextual information in

zero-trust network.

IV

Table of Contents

Abstract ... III

List of Figures ... VII

List of Tables ... IX

Chapter 1 .. 1

1.1 Research Motivation ... 1

1.2 Motivation .. 2

1.3 Aims and Objectives .. 3

1.4 Contributions .. 3

1.5 Publication from This Research ... 4

1.6 Structure of Thesis .. 4

Chapter 2 .. 6

2.1 Research Methodology Fundamental ... 6

2.2 Research Methodology for the Project ... 6

2.2.1 Building Foundation .. 7

2.3 Literature Review ... 8

2.4 Design and Implement .. 9

Chapter 3 .. 11

3.1 Introduction .. 11

3.2 Zero Trust Security ... 11

3.2.1 Challenges of Perimeter-security .. 11

3.2.2 Zero Trust Concepts .. 13

3.2.3 Zero Trust Architecture ... 15

3.3 Context-awareness and Access Control Models .. 21

3.3.1 Context-awareness ... 21

3.3.2 Access Control Models .. 24

3.3.3 Context-aware Access Control Models ... 32

Chapter 4 .. 37

4.1 Introduction .. 37

4.2 Understanding Context-Awareness in Zero Trust .. 38

4.2.1 User-centric Context ... 38

V

4.2.2 Environment-centric Context .. 39

4.2.3 Object-centric Context .. 41

4.2.4 Summary ... 42

4.3 Context-aware Access Control and Trust ... 43

4.3.1 Trust Indicators ... 43

4.3.2 Reputation Model ... 44

4.3.3 Trust-based CAAC .. 45

4.3.4 Summary ... 46

4.4 Context-aware Access Control and Risk .. 46

4.4.1 Summary ... 48

4.5 Expressing Context in ZT Access Control Policies ... 49

4.6 Expressing Context and Risk/Trust Aware Zero Trust Architecture 50

4.6.1 Context .. 50

4.6.2 Risk and Trust .. 51

4.6.3 Application to ZTA ... 52

4.7 Conclusion .. 53

Chapter 5 .. 55

5.1 Requirements of a Policy Language ... 55

5.2 Main Language Constructs ... 57

5.2.1 Namespace .. 57

5.2.2 Attribute .. 57

5.2.3 AuthRule.. 58

5.2.4 Session .. 58

5.2.5 Request Processing Workflow .. 60

5.3 Example: Lab Assets Access .. 61

Chapter 6 .. 64

6.1 Representing Context in PAROLE ... 64

6.2 Representing Risk Awareness in PAROLE ... 65

6.3 Language Implementation .. 66

6.3.1 Domain-Specific Language .. 67

6.3.2 Tools: ANTLR4 ... 69

6.3.3 Implementation .. 70

6.3.4 Symbol Table ... 74

6.3.5 Interpretation.. 75

VI

Chapter 7 .. 79

7.1 Setup Experimental Environment .. 79

7.2 Experimental Process ... 81

7.3 Experimental Result ... 83

Chapter 8 .. 86

8.1 Conclusion .. 86

8.2 Future Work ... 86

Glossary .. 87

Reference ... 88

Appendix A ... 100

Appendix B ... 103

Appendix C ... 105

Appendix D ... 107

VII

List of Figures

Figure 1 Example of a Science Research Methodology (Peffers et al., 2007) 7

Figure 2 an Example of Literature Management ... 8

Figure 3 Perimeter-based Security ... 12

Figure 4 ZTA Logical Components (Rose et al., 2020) ... 15

Figure 5 Comparison of Enhanced RBAC and Enhanced Identity Governance 16

Figure 6 Conceptual Segmentation Gateway (Kindervag et al., 2010) 17

Figure 7 Logical SDP Architecture .. 18

Figure 8 Bell LaPadula Model ... 25

Figure 9 RBAC Models (Sandhu et al., 1996) ... 27

Figure 10 Basic ABAC Workflow ... 29

Figure 11 𝑈𝐶𝑂𝑁𝐴𝐵𝐶 Model (Park and Sandhu, 2004) ... 31

Figure 12 UCON-based RadAC (Kandala et al., 2011) ... 47

Figure 13 QRAAC (Cheng et al., 2007) .. 48

Figure 14 Request Processing Workflow ... 61

Figure 15 Assets Distribution for Lab Assets Access Example 61

Figure 16 Process to Build Interpreter ... 68

Figure 17 Source Code Handling Process .. 69

Figure 18 Parole Expression .. 72

Figure 19 Parole Symbol Table ... 74

Figure 20 Listener Call Sequence .. 75

Figure 21 Experimental Environment .. 79

Figure 22 Context Data in Request .. 82

Figure 23 User Fail to Access Resource using role sri_member 84

VIII

Figure 24 User Succeed to Access Resource using role sri_member 84

Figure 25 User Fail to Access Resource using role gpu_admin 85

Figure 26 User Succeed to Access Resource using role gpu_admin 85

IX

List of Tables

Table 1 Perimeter-based Security vs. Zero-trust Security ... 14

Table 2 ZTA Maturity Model .. 20

Table 3 Comparison on AC Models .. 32

Table 4 ANTLR4 Core Notation (Parr, 2013) ... 70

Table 5 Parole Language Constructs.. 71

Table 6 Symbol Types ... 74

Table 7 Contextual Attributes For Experiment .. 80

1

Chapter 1

Introduction

1.1 Research Motivation

In recent years, there has been a trend to move away from traditional "perimeter

security defence" systems. These are based on so-called Demilitarised Zones (DMZ)

i.e., a sub-network(s) containing an enterprise’s external facing services, typically

bookended by internal and external facing firewalls, (Gilman and Barth, 2017). The

fundamental premise behind this defence system is that anything outside the perimeter

is untrusted whilst everything inside the perimeter is trusted. A major weakness of this

however is that once an adversary gains access to the internal network it becomes easy

for them to move laterally throughout the network and so compromise other hosts and

servers.

There have been several drivers for this weakening of the perimeter security model.

The nature of enterprise networking has become more complex through the evolution

of computing technology, (Cunningham et al., 2019). Initial developments in this

regard included cloud computing and Bring Your Own Device (BYOD) whilst more

recent approaches such as the Internet of Things (IoT) and edge computing have

increased the complexity level further (Kim and Lee, 2017). The increase of remote

working brought about by Covid has added even more to the mix. The net effect of

these trends has been to create a highly dispersed and fragmented enterprise

architecture, often with many of the enterprise applications running on third-party

hardware. Moreover, the operating environment may often be highly dynamic due to

end-users being situated in different locations or changes in operating conditions for

devices in environments where the resources are constrained, or their availability may

vary from moment to moment.

2

A new enterprise security model has consequently emerged to meet the challenges

posed by these changes. This is designated as Zero Trust Networking (ZTN) which

essentially regards the internal enterprise network as untrusted. It thus treats internal

and external networks with the same degree of suspicion and subject to the same

security checking and control and in this way seeks to prevent data breaches and limit

internal lateral movement (Rose et al., 2020). Key principles of ZT include the

requirement to validate every access on a per-session basis as well as the use of

dynamic policy enforcement taking into account device and user attributes as well as,

perhaps, other behavioural and environmental attributes. The zero-trust concept was

introduced by Forrester Research Group (Kindervag, 2010) as a new, radical approach

to enterprise security. The ZT approach truly took wings when Google implemented

a ZT-based enterprise security architecture called "BeyondCorp", (Osborn et al.,

2016a), (Ward and Beyer, 2014). ZT has since therefore, unsurprisingly, been

embraced with gusto by the commercial world and many vendors today have ZTN

product offerings leading to somewhat different definitions of the concepts.

1.2 Motivation

As it is described before, the ZT model has emerged as a promising access control

paradigm, which shifts the focus from traditional perimeter-based security to a

context-aware approach.

Context awareness provides the system with the ability to gather information about

the environment at any given time and adapt system behaviours accordingly. To

achieve context awareness in ZT system, it needs to understand the user, device,

network, and other relevant factors before granting access. This step is crucial because

it allows for a more dynamic and adaptive security measures that can respond to the

ever-changing threat landscape. However, the criticality of context awareness and

the related issues of risk and trust in Zero Trust are not fully articulated, leading

to a gap in the current body of knowledge and practice, particularly concerning

how to capture and express these motions in access control policies.

The current literature and practice primarily focus on the individual components of

Zero Trust and context awareness, often treating them as separate entities. This

separation creates a disjointed understanding and application of the two concepts,

leading to potential vulnerabilities and inefficiencies.

3

One of the key challenges in integrating context awareness into Zero Trust is the

rigidity of existing programming languages and systems used to design access control

policies. These languages and systems often lack the flexibility needed to incorporate

dynamic context effectively. This limitation can lead to policies that are either too

rigid, failing to adapt to changing contexts, or too loose, potentially allowing

unauthorised access.

A new programming language specifically designed to address these challenges could

significantly improve the flexibility of designing access control policies. Such a

language could allow for more nuanced and dynamic policies that take into account a

wider range of contextual factors. This could lead to more robust and effective security

measures, better aligning with the principles of Zero Trust.

1.3 Aims and Objectives

The primary aim of this research is to enhance the integration of context

awareness in Zero Trust security models through the development of an

improved access control policy domain-specific language (DSL).

This aim will be achieved through the following objectives:

1. Identify how to capture and express context and risk aware access control

for ZT, based on existing approaches.

2. Map the requirements identified in the previous step to a set of access control

policy language constructs to enable the expression and enforcement of ZT

context aware access control policies.

3. Develop and implement a ZT context aware policy language.

4. Demonstrate the validity of the proposed approach through application to an

Internet of Things scenario.

Through these objectives, this research aims to contribute to the advancement of

cybersecurity by enhancing the integration of context awareness in Zero Trust and

providing a more flexible and effective tool for designing access control policies.

1.4 Contributions

1. Definition of mechanisms to capture and express context and risk

awareness for ZT access control. This was achieved by conducting a

4

comprehensive , systematic review of the existing literature and practice to

determine the nature of methods and mechanisms to capture context

awareness as well as to understand the relationship and interplay between

risk and trust in context awareness. Subsequently the knowledge gained was

mapped against ZT architectural principles and a set of requirements

specifying what is needed to express context and risk aware access control

for ZT. This contribution is addressed in Chapter 4 and led to the publication

of a Systematisation of Knowledge (SoK) paper.

2. Design and implementation of a policy language for context-aware

access control (CAAC) in Zero Trust: This involved identifying

extensions to the existing PAROLE policy language based on the

requirements from the precious step. The PAROLE language

implementation is extended to incorporate proposed changes as well as to

implement missing language processing components including the symbol

handling and language interpreter. This is described in Chapter 6.

3. Evaluation of ZT context aware access control in the Parole policy

system: This was achieved through definition of an Internet of Things

scenario including specification of the PAROLE policies, construction of a

scenario testbed and subsequent execution a series of experiments to

demonstrate the satisfactory performance of the PAROLE system to express

and enforce ZT context aware access control. This is described in Chapter 7.

1.5 Publication from This Research

• Xiao, S., Ye, Y., Kanwal, N., Newe, T., Lee, B., 2022. SoK: context and risk

aware access control for zero trust systems. Secur. Commun. Netw. 2022.

1.6 Structure of Thesis

The rest of the thesis is structured as follows. Chapter 2 describes the methodology

that is used to accomplish the project. In Chapter 3, it specifically outlines the

background and review of literature. Then in Chapter 4, it explores the integration of

zero trust and context-aware access control through summarizing previous researches

on how context can be used in zero-trust based system. Based on the investigation in

Chapter 4, Chapter 5 presents the design of Parole policy language in detail. Then in

5

Chapter 6, it presents in detail how the interpreter of Parole is implemented. Chapter7

describes the experimental result to show Parole can handle the context correctly. The

conclusion and future work are outlined in Chapter 8.

6

Chapter 2

Methodology

2.1 Research Methodology Fundamental

Research methodology was defined by Brent and Leedy (2016) as "the general

approach the researcher takes in carrying out the research project". There are various

ways to classify the research methods, while most common taxonomy is quantitative

and qualitative research methods. According to Williams (2007),

• Quantitative Research was originally developed in physical science

(Creswell and Guetterman, 2018). The processes of quantitative research

involve the collection of data, using mathematical model to train data, and

statistical analysis. Examples of quantitative methods now well used in the

social sciences including laboratory-based experiments, simulations, and

surveys.

• Qualitative Research was developed in social sciences to enable the

researcher to develop a level of detail from high involvement in the actual

experiences (Creswell, 2009). Examples of qualitative methods are Case Study,

Ethnography Study Grounded Theory Study, and etc. Qualitative data sources

include observation and participant observation, interviews and questionnaires,

documents and texts, and the researcher’s impressions and reactions.

2.2 Research Methodology for the Project

To systematise the existing knowledge at the aforementioned topics, it is necessary to

carry out a literature analysis following the Information Systems Research

methodology (Okoli, 2015). As Figure 1 (Peffers et al., 2007) guides, the initial step

is to identify relevant literature by combining keyword, backward, and forward search

in different ICT databases including ACM DL, IEEE Xplore, Springer Link, Web of

7

Science, and Scopus. These databases can be accessed through their official websites

or using Google Scholar search engine and redirect to the related web pages.

2.2.1 Building Foundation

The project initiated with an exhaustive survey of individual keywords in Google

Scholar to identify comprehensive or Systematisation of Knowledge (SoK) papers.

Notably, the most recent and highly cited papers were selected and reviewed multiple

times to gain a broad understanding of each topic. For instance, the paper by Perera et

al. (2014) is selected for context-aware computing, while the one by Rose et al. (2020)

is chosen for zero-trust networking.

Figure 1 Example of a Science Research Methodology (Peffers et al., 2007)

The subsequent step involved identifying papers whose topics could be combined.

Given that the project encapsulates four main themes: context-aware access control

models, trust, policy language, and zero-trust architecture, there is room for combining

related topics. Context-aware access control models were thus combined with trust,

considering both are pivotal subjects within the cybersecurity domain. By employing

the same combination methodology, three other pairs were identified: trust with policy

language, context-aware access control models with zero-trust architecture, and policy

language with context-aware access control models.

8

The process then moved to application of these combined strings (e.g., "trust" AND "

policy language") to locate related research from the previously mentioned databases,

restricting the search to papers published after 2010 (or a closer date). These databases

were preferred due to their established reputation and vast collection of papers within

the fields of information systems, computer science, and cybersecurity. A set of

stringent quality criteria was also devised and applied to ensure the selection of high-

quality publications relevant to the study's theme.

• Selection of publications beyond a certain timeframe is critical to ensure the

content reflects contemporary advancements and state-of-the-art research.

• The number of citations a paper has garnered can serve as a proxy for its

influence and relevance. It's prudent to note that older papers should typically

have more citations due to their extended presence in the academic sphere.

• The venue of publication carries significant weight and can sometimes

supersede the citation count. Research published in top-tier conferences or

high-impact journals is often indicative of high-quality work. Thus, an

assessment of the publishing venue is essential, employing standard academic

metrics such as the Impact Factor or h5-Index, to ensure the credibility and

significance of the selected papers.

2.3 Literature Review

Reviewing related survey papers provides a comprehensive overview of the field.

However, to delve deeper into a specific area, it becomes essential to refer to

individual research studies. Having identified the most relevant papers, the abstract

and introduction sections serve as the primary points of focus. The abstract offers a

succinct summary of the research, while the introduction elucidates the research

rationale and methodologies.

Figure 2 an Example of Literature Management

In scenarios where a topic encompasses a variety of categories or models, comparisons

within and across these types become necessary. An effective method for comparing

9

the selected papers involves extracting key information such as the problem addressed

by the paper and the employed solution. Recording these specifics in a structured

format, like an Excel spreadsheet (as depicted in Figure 2), aids in the process.

Allocating a column for classification tags can facilitate filtering of different models

at a later stage.

Following this, based on the tags, a summary of shared and distinct attributes for each

model can be crafted, which can then be compared with those of other models. This

summary can subsequently be integrated into a literature review. Conversely, when a

topic pertains to a single subject, a straightforward comparison of differences across

papers and summarizing these variances is sufficient.

2.4 Design and Implement

Upon completion of the literature review, the researcher should possess a

comprehensive understanding of several aspects. These include: 1) research aim, 2) a

summary of related works; 3) identified research gaps; 4) a method to address the

identified research problems. In relation to the current project:

Project Aim: This project aims to design and implement an interpreter for the

lightweight policy language. The policy language firstly needs to have the ability to

control ABAC system under ZTN, secondly it needs to be lightweight but expressive

define attributes needs to be evaluate and access policies which reason about the afore-

defined attributes.

Related Work: Current research is predominantly focused on developing apt security

models that can adapt to the demands of cloud computing and the Internet of Things

(IoT), both crucial elements of the pervasive computing era. While these security

models have evolved rapidly, very few studies have discussed their practical

implementation. Moreover, policy languages, such as those proposed by Kagal (2002)

and Damianou et al. (2001), were not specifically designed for Attribute-Based Access

Control (ABAC). "eXtensible Access Control Markup Language (XACML) Version

3.0 Plus Errata 01" (2017) is the language most often used. It was created using XML.

Nevertheless, this also means it has the same problems, like its overly complicated

language rules.

10

Research Gap: The evolution of pervasive computing has intensified cybersecurity

challenges. Privacy breaches have become more common, digital assets are at higher

risk from hackers, and unseen computer profiling has become remarkably precise,

among other issues. To safeguard data's confidentiality, integrity, and availability

(CIA), researchers have introduced access control models. These models grant a

subject access to an object only if the subject is authenticated and authorised. The most

prevalent model is the role-based access control model (RBAC), which grants

permissions based on the subject's role within an organisation. However, the

traditional RBAC model no longer suffices given the dynamic nature and increased

interconnectivity of IoT devices. This paradigm shift from on-site to teleworking

(Harris, 2003) has changed the trust dynamics, as even internal sources cannot be

trusted unconditionally. Consequently, the concept of Zero Trust Network (ZTN),

which operates on a "Never trust, always verify" principle, has emerged. ZTN

authenticates requests both from within and outside an organisation. The predicament

arises from the fact that RBAC supports only one-way authentication (subject to

object), which does not meet the stringent requirements of ZTN. The recently

proposed Attribute-Based Access Control (ABAC) (Computer Security Division,

2016) aims to evaluate all pertinent attributes of session participants and meets the

needs of ZTN. However, the policy language used to control ABAC systems is

complex and prone to errors. This project, therefore, aspires to design a policy

language for ABAC systems that simplifies control and reduces the likelihood of

mistakes.

Methods: Initially, the project requires gaining a robust understanding of parsing

theory and becoming familiar with a parser generator tool named ANother Tool for

Language Recognition (ANTLR4) (Parr, 2013). This is followed by the crafting of the

policy language syntax using ANTLR4. The subsequent step involves leveraging the

ANTLR4 parse tree visitor pattern to navigate the auto-generated parser, which serves

to implement the semantic function of each grammar rule. Another phase involves the

development of an interpreter to execute the access control policies. The interpreter's

efficacy is assessed through a series of test cases and an evaluation of its processing

speed. This entire procedure may undergo several iterations until it aligns with the set

expectations.

11

Chapter 3

Background and Literature

Review

3.1 Introduction

This chapter will review the literature about zero-trust security and context-aware

access control models, and explain the relationships among the topics in order to

provide a general background about the project.

3.2 Zero Trust Security

This section will first introduce the reason why zero trust (ZT) security comes out, in

other words, the challenges and shortcomings of legacy perimeter-based security in

modern network environment. Then, it will talk about the basic concepts of ZT and its

application – Zero Trust Architecture, including techniques to achieve ZTA and real-

world examples of ZTA.

3.2.1 Challenges of Perimeter-security

The emergence of ZT security is to make up the deficiency of traditional perimeter-

based security paradigm. Perimeter-based security gives those whose network address

is inside the network perimeter default trust and freedom to move unhindered

throughout the network. Conversely, the outsiders without internal network address

are considered untrusted or even hostile. A typical presentation of perimeter security

is shown in Figure 3 (Gilman and Barth, 2017).

12

Figure 3 Perimeter-based Security

This security scheme implies that:

• The outsiders have difficulty to access inside resources as they are untrusted.

The outermost network perimeter is deployed a series of security products,

such as firewalls, intrusion detection system, and intrusion prevention

system, to enhance the guard. Commonly, every access from outside needs

to be verified and monitored to ensure malicious behaviours cannot be

applied.

• The insiders can access the resources with little efforts because it is believed

that the threats have been kept outside of the perimeter. Therefore, the

barrier of each network segment need not to be strong, and the monitor of

network traffic is not strict.

However, as the network paradigm changes significantly, the attack surface of

enterprise has been enlarged accordingly. The perimeter-based security has shown its

inadequacy to handle:

• IoT and Edge Computing. Network resources used to be expensive, and

the enterprise network application is relatively simple. Therefore, enterprise

chose to deploy network infrastructure on premise. However, with the

development of key enabling technologies of IoT and Edge Computing, such

as wireless network, cloud computing, and smart devices, enterprises are

embracing distributed computing through deploying resources in the cloud.

13

Obviously, the distributed environment in turn is blurring the clear dividing

line between intranet and other networks.

• Bring your own device (BYOD)/Working from home. The trend of

BYOD further enlarges the difficulty of maintaining the security perimeter.

Especially under Covid-19 epidemic, working from home has become

normality, which has turned the perimeter from static to dynamic one.

Therefore, it is costly and slow for the security products on the perimeter

needs to reconfigure every time when there is a new device has joined in.

• Cross-enterprise business mission. As the scale of the enterprise keeps

growing, there emerges cross-enterprise business missions which require the

resource interaction among the stakeholders. However, this requirement to

some degree grants trust to the outsiders. This action violates the intention

of perimeter security which believes the perimeter can prevent the

suspicious requests from the outside and entangles the perimeter with other

companies (Cunningham et al., 2019).

• More sophisticated malware. Malwares were primitive, so that the security

products were effective to detect threats and prevent risks. However,

malwares have made such significant evolution in its sophistication and

infectious ability that goes beyond the smartness of anti-virus software. This

means that the security products deployed at the perimeter and in the

enterprise may not be adequate to detect sophisticated attacks such as

Advanced Persistent Threats (APT) (Joint Task Force Transformation

Initiative, 2011), ("Equation Group: Questions And Answers," 2015) and

data breach can thus happen more easily.

3.2.2 Zero Trust Concepts

To mitigate the limitations of perimeter-based security, Kindervag (2010) in Forrester

Research Group envisioned a concept called "Zero Trust". ZT is a direct name

indicating that no trust should be granted by default without verification. As the slogan

says: " Never trust. Always Verify " Rose et al. (2020) provided an operative definition

for ZT:

14

" Zero trust (ZT) provides a collection of concepts and ideas designed to minimize

uncertainty in enforcing accurate, least privilege per-request access decisions in

information systems and services in the face of a network viewed as compromised. "

 More specifically, ZT contains three basic concepts:

• Explicit verification on every request. From the perspective of ZT security,

every request is untrusted regardless of its network address, until it is fully

verified based on all available data points. In other words, verification

should always happen before granting access permissions.

• Adopt principle of least privilege: To reduce the risk, one of the methods

is to reduce the impact of the threat. Through principle of least privilege

(PoLP) (Mayfield et al., 1991), the system can control the access to just-in-

time and just-with-access. In the meantime, it can minimise the infectious

radius, or say consequence severity once there is compromised computer in

the system.

• Inspect and log every traffic: Another method to reduce the risk is to

reduce the possibility of threat emergence. This needs the system to

continuously inspect and log every egress and ingress for the sake of finding

and reacting to the potential suspicious activity.

Table 1 Perimeter-based Security vs. Zero-trust Security

Factors
Perimeter-based Security Zero-trust Security

Perimeter
Size Big, enclosing whole network Small, down to every segment

Dynamicity Relatively static Dynamic / Flexible

Trust Granting
Default trust to intranet

address
Trust after verification

Risk Mitigation

Security products like

firewalls

at perimeter

Micro-segmentation,

Software-defined Network (SDN),

Access Control,

Other security products

Access Method VPN, intranet Policy Enforcement Point

A comparison of four common factors of both perimeter-based security and ZT

security is presented in Table 1. It shows, the former focuses on preventing the

network enclosed by the perimeter from threat penetration, while ZT security provides

fine-grained protection down to every workload. It also implies that there are ono

direct connections between resources and the requester in ZT security. In conclusion,

under current network environment, ZT security provides a more comprehensive

protection to data resources than perimeter-based security does.

15

3.2.3 Zero Trust Architecture

This section will introduce how the ZT concepts are used to build the Zero Trust

Architecture (ZTA). More specifically, it first covers the approaches and techniques

that will be used to achieve ZTA. Then, it will show the roadmap for an enterprise to

transfer from legacy security model to ZTA. Finally, a real-world ZTA example will

show the priority and criticality of ZT security.

Zero Trust Architecture Basics

Rose et al. (2020) also offered an operative definition for ZTA. It describes ZTA as

the enterprise’s overall cybersecurity plans that are specially designed based on ZT

concepts. Typical ZTA logical components are shown in Figure 4. The picture shows

basic relationships and interactions among logical components of a ZTA. The core

components are two separate planes – control plane and data plane. Their

functionalities are different from those of Software Defined Network (SDN). In ZTA,

the control plane is used to control the accessibility of a request, while the related

application data is communicated on the data plane. In control plane, the Policy Engine

(PE) makes the ultimate access decision for an access request, and Policy

Administrator (PA) controls the Policy Enforcement Point (PEP) in the data plane to

establish or shut down the protected communication path between a subject and the

target resources. They jointly form the Policy Decision Point (PDP). As for, the

workflow in data plane, it reflects that the subject is untrusted, until it passes the PDP

verification, then it can access the target resources through the security tunnel that are

established by PEP. Besides the core components of a ZTA, other data sources, such

as activity log and Continuous Diagnostics and Mitigation (CDM) system, can provide

inputs to security policies used by the policy engine when making access decisions.

Figure 4 ZTA Logical Components (Rose et al., 2020)

16

Approaches to Achieve ZTA

There are three mainstreaming approaches to achieve ZTA:

Enhanced Identity Governance. ZT requires identity-centric verification. The most

direct way to achieve ZTA is to enhance the identity governance. The idea is much

like the enhanced role-based access control (RBAC) (Kulkarni and Tripathi, 2008).

As Figure 5 shows, they both have a focus during authentication phase. Enhanced

RBAC ensures the role of the subject in the organisation and contextual information

will never surpass the permissions inherent to the role’s authorised action. ZTA

focuses the use of contextual information to verify the identity of the subject. The

identity is generally ensured by the available attributes of the subject, such as

credentials (username and password), location, device, department, and the position

in the company. Access policies are developed according to the permissions about

resources, and the permissions will be granted to the identity only if it has been verified.

This approach works well with BOYD and visitor access.

Figure 5 Comparison of Enhanced RBAC and Enhanced Identity Governance

Micro-Segmentation (Vincentis, 2017), (Sheikh et al., 2021). Segmentation occurs

between more than two different kinds of network with each deployed security guard

at the perimeter. Perimeter-based security is a realisation of segmentation that focuses

on controlling the north-south traffic. East-west traffic that happen within the

outermost perimeter are also protected through segmentation but beyond inspection.

Therefore, the problem is the segments in the security perimeter are too big to

17

effectively protect the resources within, in other words, the network visibility is not

complete in practice. Micro-segmentation therefore aims to provide complete network

visibility and fine-grained security by shrinking the size of segments, which means to

reduce the number of resources in each segment. It worth mentioning that micro-

segmentation can both operate at link and application layer.

The link layer micro-segmentation is achieved through intelligent gateway. According

to Kindervag et al. (2010), enterprise can use smart gateway, such as next-generation

Firewall (NGF) or intelligent switch, to serve as the network segmentation gateway

(SG). Figure 6 shows what a conceptual SG looks like. A single SG integrates the

features of several security products, so besides the features of a regular gateway, it

can also i) properly segment the network according to the functionality of the

workloads and allow re-configure; ii) enforce efficient security policies with high-

speed interfaces; iii) uniformly manage the network that complete network visibility.

Figure 6 Conceptual Segmentation Gateway (Kindervag et al., 2010)

As for the micro-segmentation achieved in application layer, it is generally achieved

using network virtualisation (NV), (Chowdhury and Boutaba, 2010). Morden data

centres have dramatically benefited from computer and storage virtualisation. This

innovates the network professionals to seek the solutions for NV in order to achieve

higher workload mobility and response speed to business requirements. More

specifically, NV decouples network hardware from software, which means it can

reshape and combine several networks into a software-defined virtual network (VN)

to provide Layer2 to Layer7 network, without reconfiguring the network infrastructure.

This feature is highly compatible with the goal of micro-segmentation, as NV is easy

to reconfigure to suit the security requirements of the organisation.

18

Software Define Perimeter (SDP) (Moubayed et al., 2019), ("Software-Defined

Perimeter (SDP) and Zero Trust," 2020), ("Software-Defined Perimeter (SDP)

Specification v2.0 | CSA," 2022). SDP is also known as "Black cloud". The black here

means the network components are undetectable under common circumstances.

Therefore, the system is free from basic network attacks as the hackers have nowhere

to move around after exploiting the system. On the other hand, the connectivity of

SDP is established following the need-to-know model, which means the resources are

unavailable to the users until the user has been proved that he/she is eligible to access

and need to access. This can be achieved by leveraging software-defined network

(SDN) to provide the underlying network programmability and flexibility that are

required to implement an SDP.

Figure 7 Logical SDP Architecture

The logical architecture of SDP is showed in Figure 7. The SDP controller servers as

the brain to control fine-grained connectivity between SDP Initiating Host (IH) (in

SDP client) and SDP Accepting Host (AH) (in SDP gateway). The workflow is as

following:

1. On receiving request, the controllers go online and establish connection with

available certification server.

2. According to the request, the controller establishes Mutual Transport Layer

Security (MTLS) tunnels with available SDP AHs. These AHs will only

respond to the requests allocated through controller.

3. SDP IH establishes MTLS tunnel after SDP IH passing the verification.

4. SDP controllers determine a list of available AHs and inform them to accept

the communication from IH.

5. SDP controllers send the list of determined AHs’ IP addresses to IH, and

then IH establishes MTLS tunnels with AHs accordingly.

19

The above three approaches can mix and match according to the security requirements,

network, and budget. It worth mentioning that ZT security is not conflict with

perimeter-based security, one company can still choose to establish ZTA while

reserves the outermost security perimeter that will not violate the ZTA tenets.

While all three approaches can be used to zero trust architecture, they each have their

focus and strengths. Enhanced Identity Governance focuses on verifying the identities

of users trying to access resources. Micro-segmentation focuses on controlling access

to individual or groups of resources placed in different network segments protected by

a security component. Software-Defined Perimeter focuses on the dynamic creation

and management of network connections based on user authentication and context.

For a comprehensive Zero Trust architecture, an organisation might consider

implementing all three strategies in a way that works best for its specific needs.

ZTA Maturity Model

ZTA does not happen overnight. Especially for the organisations that have adopted

the legacy security strategy, it is unrealistic for them to replace the whole network

infrastructure and services. Instead, the organisation needs to consider firstly to deploy

ZT principles to protect most valuable and confidential assets, then gradually move to

less important ones. This means that for a long time an organisation will run in a hybrid

ZT and perimeter-based model. Generally, the journey for a company’s security

strategy and network architecture to migrate to ZTA is described as ZTA Maturity

Model. Listed a group of leading ZTA platform providers such as Microsoft and Cisco.

According to Cunningham (2018), there are five pillars of ZTA plus the extra

automation and orchestration, and visibility and analytics. Table 2 summarises each

pillar’s changes in each stage to full ZTA, according to their published their proposed

ZTA Maturity Models, ("Evolving Zero Trust," 2021; "Getting Started with Zero Trust

Access Management Trust Begins with Secure Identity | Okta," 2021; "Zero Trust

Maturity Model | CISA," 2023).

20

Table 2 ZTA Maturity Model

 Stage

Factor

1 (Traditional) 2 (Initial) 3 (Advanced) 4 (Optimal)

Identity

On-premise identity;

Numerous passwords;

Single factor authentication.

Hybrid on-premise and cloud

identity;

Using SSO;

Using on-premise MFA.

Federated identity with cloud and

on-premise;

Fine-tunning policies across all

user groups.

Automated and

continuous detection on

identity.

Workload

Access based on network address;

Limited integration with

transaction flows.

Integrated with transaction flows;

Access based on identity.

Strong integration with transaction

flow;

Access based on context.

Automated integration

with transaction flow;

Access based on risk.

Network

Large segments;

Lack secured communication

tunnels;

Limited visibility and integration

with different network

environments.

Hybrid large segments and micro-

segments;

Secured communication tunnels to

high value assets;

Detection on suspicious ingress

and egress.

Micro-segmentation;

Secured communication tunnels to

every asset;

Detection and log on every ingress

and egress.

Automated threat

analysis on every

encrypted ingress and

egress.

Device

Limited visibility to device

compliance;

Simple inventory of devices.

Registered devices to employ

compliance;

More specific inventory of devices;

Complete inventory of devices;

Verification of device security

posture.

Automated and

continuous detection on

security posture.

Data
Not encrypted;

Simple inventory of data.

More specific inventory of data;

Valuable data encrypted.

Data encrypted at rest;

Complete inventory of data.

Transported data

support on-the-fly

encryption.

21

3.3 Context-awareness and Access Control Models

This section will cover 1) context-awareness, 2) access control models, and 3) the

combination of them. It will start with the basic concepts required by each, through

reviewing and comparing related research works.

3.3.1 Context-awareness

Weiser (1999) came up with a concept called ubiquitous computing indicating that

connected devices will be so ubiquitous that people will hardly notice their presence.

To achieve ubiquitous environment, the first factor needs to be considered is the

number of connected devices, and the adoption of IoT has largely boosted the

deployment of connected devices and the speed is continuing climbing. On the other

hand, ubiquitous environment also needs to be in line with human beings’ instinctive

reactions, which implies that the connected devices need to be smart enough to

properly respond to the upcoming accidents and plans according to the changing

environment and conditions. This kind of ability is described as context-awareness.

Context Related Fundamentals

Before further introduction about context-awareness, it needs to be clarified what is

the context in context-awareness. There have been many researchers providing the

definition of context, for example:

• Schilit and Theimer (1994) highlighted the importance of location

information to enable the adaptivity of software, context is therefore

described as the location of use and nearby people and objects.

• Abowd et al. (1999) provided an operational definition to describe as

"Context is any information that can be used to characterize the situation of

an entity. An entity is a person, place, or object that is considered relevant

to the interaction between a user and an application, including the user and

applications themselves."

• Abowd and Mynatt (2000) concluded "five Ws" of minimal set to represent

context: "Who" includes the subject and other related people in the

environment; "What" indicates the interpretations of people’s activities;

"Where" generally indicates the locations or continuous perceiving of

22

location changing; "When" means the start time or duration of a particular

human activity; "Why" describes the reason of doing a thing, which can be

conclude through the sensing of other contextual information.

• Kayes et al. (2017) defined context as "any relevant information about the

state of an entity or the state of a relationship between persons (as entities)

relevant to access control".

The definitions of context vary in different situations, so there is not a right one. The

above three definitions are commonly discussed ones, and from their descriptions one

may infer the fast and continuous development in hardware abilities and more diverse

and fine-grained requirements on software applications. For this project, as ZT

security provides data-centric protection, it is better to handle context from a data point

of view. Therefore, this project will use the definition from Abowd et al. (1999) for

the base of later topics.

Categories of Context

Application designers need to consider which kind of context to use in their application.

A clear classification helps the designer to make decisions quickly and precisely.

Researches focusing on context-aware system have offered some categorisation

methods:

• Schilit et al. (1994) discussed context from three aspects: "where you are"

includes related location information, "who you are with" not only describes

the identity of the people around the subject but the social situations, and

"what resources are nearby" includes all available resources located in a

specific distance from the location of the subject.

• Abowd et al. (1999) directly indicated four primary types of context: time,

location, identity, activity. These primary contexts not only characterise the

situation of a specific entity but also serves as lead to more complex context.

• Henricksen (2003) noticed the previous static/dynamic abstraction of

context is less effective for context-aware applications. Therefore,

Henricksen provided a more specific classification according to the

reliability and frequency of change. The context is classified into following

four types:

23

o Static: static context is invariant information that will not change its

value overtime. Thus, it is considered high reliable.

o Profiled: profiled context is less reliable compared to static one,

because it changes with low frequency.

o Sensed: sensed context can change every time it is detected, so it is

generally unreliable, and its value is stale-prone.

o Derived: derived context is calculated through logical operations on

above three directly detected or stored context. Its value is updated

as each primary context changes, therefore is reliability is on the less

reliable primary context.

They are developed for resolving inconsistency and supporting various context

management tasks.

• Bunningen et al. (2005) proposed two classification directions, one is

classifying context by how the context is operationally acquired, modelled, and

manipulated. The other conceptually distinguishes context from each other

based on the its meaning and relationship with the subject and other contexts.

Perera et al. (2014) also came up with a categorisation of context based on the

work of Bunningen et al. (2005) and Abowd et al. (1999). A single context in

Perera et al.’s categorisation can be classified to primary or secondary context

from operational perspective, or can be counted in one of time, location,

identity, and activity from conceptual perspective.

Context-aware describes the ability for a system to discover and respond to the

changing context surrounding the subject. Abowd et al. (1999) also provided a widely

accepted definition for context-aware:"A system is context-aware if it uses context to

provide relevant information and/or services to the user, where relevancy depends on

the user’s task." Context-aware as an important feature of pervasive system is not only

widely researched on providing higher Quality of Service (QoS) but fine-grained

access control. More specifically, context-aware is embedded with access control

models to provide higher adaptivity and improve access decision accuracy under

pervasive environment.

24

3.3.2 Access Control Models

Access control (AC) aims to protect the confidentiality-integrity-availability (CIA) of

data. One can see it as the customs of the information system. AC models are used to

systematically formalise the presentation of access policies. However, the complexity

and evolutionary speed of cybersecurity paradigm are always climbing, which leads

the AC models to adapt according to the new security requirements brought by the

highly dynamic pervasive environment. The following contents of this section will

first introduce some important original AC models, including their definitions,

application scenarios, advantages, and limitations. Then, it will discuss how the above

factors will change when the AC models are added with the context-aware feature.

Mandatory Access Control and Discretionary Access Control

The first access control model that is to be introduced is Mandatory Access Control

(MAC) (US Department of Defense, 1985). MAC is defined to restrict access from

subjects to objects based on the sensitivity of the objects and the formal clearance to

the subjects to access resources at some level of security. Every subject and object in

the system is assigned with a sensitivity label that records the hierarchical security

level of the object and non-hierarchical classification.

MAC policies hold the following requirements on every access request based on the

properties of Bell-LaPadula (BLP) model (Hansche, 2003):

• Simple Security Property: a subject is only allowed to read the objects whose

security level is dominated by the subject’s.

• Star (*) Property: a subject is only allowed to write the objects whose security

level dominate the subject’s.

As Figure 8 represents, if a user whose security level is credential, then he/she can

read the resources with security level lower than his/her, in the picture are classified

and public ones. However, he/she cannot read resources whose security level is higher

than his/her. This requirement is intuitive that one cannot read resources have higher

security level than he/she has, and is summarised as "no read up". And writing

permission can be seemed as "no write down. If one malicious credential agent wants

to divulge credential secret, the only method is to reduce the security level of the object

through writing the content in credential level object to lower ones recursively.

25

Figure 8 Bell LaPadula Model

Deploying MAC can effectively protect data confidentiality. However, its complexity

is subject to the number of sensitivity labels and categories. More sensitivity labels

and categories mean more expensive and complex to maintain. MAC therefore is not

suitable for the organisations who do not have a clear ranking both on staff and

resources, and whose businesses involve too many kinds of services and job functions.

Moreover, MAC lacks the dynamicity to respond to frequent personnel turnover.

Because every personnel turnover, even the lowest level of position, implies a

reconfiguration on sensitivity labels and/or categories.

Discretionary Access Control (DAC) (Hu et al., 2017) is more flexible than MAC.

DAC restricts the access from a subject to objects based on the identity and/or group

of the subject. Every object in DAC has an owner, and the owner have the discretion

to:

• grant and retrieve the one or more privileges to other subjects;

• change the access control policies;

• change the security attributes of existing or newly-created objects.

DAC can serve as an extension to MAC to improve system flexibility. However, for a

system that has applied both DAC and MAC, MAC naturally dominates DAC. This is

because MAC has much stricter security management. Once access granting conflict

26

happens, the system will take the strategy provided by MAC. For example, from

DAC’s perspective, the situation is a specific user is provided with the read and write

permissions to a document from its owner; however, from the MAC’s perspective, the

same thing is expressed as a classified level user is granted read and write permissions

by the owner of a confidential level file. This situation violates the principles of MAC,

so this kind of actions though is allowed by DAC will finally be rejected.

DAC faces the similar limitations as MAC. The cost of management will follow the

growing number of subjects joining in the organisation and creating more resources.

The longer resource’s access permission list further enlarges the complexity of

maintenance.

Role-Based Access Control

Role-Based Access Control (RBAC) (Ferraiolo and Kuhn, 2009) is another classic

AC model. Considering the fact that the ownership of resources in many organisations

do not belong to the end users, the actual "owner" is the organisation itself. Thus, the

AC based on data ownership is not applicable to these organisations, instead, AC

decisions are subject to the role for an individual end user undertake in the organisation.

There are several benefits to make AC decisions based on the role:

• Roles are easier to maintain. Roles are relatively static both on numbers

and permissions. The number of employees of an organisation grows with

the larger business scale and more complex services. The more frequent

changes on personnel implies the harder management on access permissions.

However, roles are group-oriented, which means there can have a many-to-

one relationship between subjects and a role. There can also have a one-to-

many relationship between a role and permissions that supports centralised

permission control. Therefore, managing roles takes less effort compared

with managing subjects and related permissions.

• Roles are adaptive to different industries. A role is designed based on

corresponding qualifications and specific responsibilities. Roles in different

industries therefore can take on their unique responsibilities, for example,

roles associated with hospital includes surgeon, nurse, and pharmacist; roles

in a university includes professor, student, and librarian.

27

• RBAC protect CIA of data. RBAC supports both PoLP and Separation of

Duty (SoD) (Mayfield et al., 1991) through role. In the chain of RBAC user-

role-permission, role-permission assignment happens before user-role

assignment, therefore, for every role, its permissions have been limited to

perform possible tasks to the role. SoD is achieved through mutually

exclusive roles constraints when a sensitive task cannot be completed by

only one user. Mutually exclusive roles do not have overlap on their

permissions and each user can only be in either group in mutually exclusive

roles.

Figure 9 RBAC Models (Sandhu et al., 1996)

Figure 9 contains basic RBAC model and three advanced ones. Basic 𝑅𝐵𝐴𝐶0 model

contains the four must components and processes respectively to achieve RBAC:

• Users (U) is the subject involved in a human-computer interaction.

• Roles (R) is the named job function within the organisation that contains the

related authority and responsibility.

• Permissions (P) is the approval of access request to resources in the system.

• Sessions (S) describes the duration that a user is assigned with one or more

roles to access resources.

• Permission-role Assignment (PA) describes a many-to-many assignment

relationship between role and permission.

• User-role Assignment (UA) describes a many-to-many assignment

relationship between user and role.

• user maps one session to one user.

28

• roles maps one session to a set of roles.

𝑅𝐵𝐴𝐶1 further introduces role hierarchy to 𝑅𝐵𝐴𝐶0 to structure roles according to the

hierarchical authority and responsibility in the organisation. For the senior roles in role

hierarchy, they naturally inherit the permissions of junior roles, which means that

senior roles can do whatever junior roles can do. But junior roles are limited to their

assigned permissions because they have relatively more specific working content than

the senior ones.

𝑅𝐵𝐴𝐶2 instead add extra constraints to UA, PA, and session control to meet other

security requirements. More specifically, in a session, user needs to provide other

credentials besides the original username and password in order to be granted a

specific role. Permission granting also turns to be stricter. As it is mentioned before,

the support of SoD needs RBAC to implement mutually exclusive roles, which

requires a single user can only be assigned to either side of mutually exclusive role set.

Another example of PA constraint is the cardinality of the role, for example, the

number of students in a class cannot exceed 20. 𝑅𝐵𝐴𝐶3 combines 𝑅𝐵𝐴𝐶1 and 𝑅𝐵𝐴𝐶2,

which means constrains can also be added on role hierarchy.

Attribute Based Access Control

Attribute Based Access Control (ABAC) is different from above AC models which

decides accessibility to objects directly based on the requester’s identity or predefined

attributes of the requester like roles, (Computer Security Division, 2016). The basic

workflow of ABAC model is shown in Figure 10. Firstly, the user sends an access

request to ABAC request receiving module, then the request is forwarded to ABAC

decision making module. The ABAC decision making module will retrieve the related

policy templates according to the request and based on the template ABAC decision

making module will collect related environmental conditions and attributes of subject

and object. Then these attributes will be evaluated with the rules defined in the policy

template. If it passes all of the evaluations, ABAC decision making module will

establish a secured communication tunnel between the requester and the requested

resources.

29

Figure 10 Basic ABAC Workflow

ABAC has some superiorities over non-ABAC models:

• ABAC is more flexible to cope with cross-organisational interactions, as

ABAC policies are not identity-centric, and resources are not directly

connected to specific roles. For example, if organisation A needs to work

with organisation B in a project and an A member wants to access some

resources in B, for non-ABAC models, they will need to register an account

for A member in organisation B to access the related resources. This action

implicitly enlarges the attack surface of organisation B, because B has

extended its services but haven’t reconfigured the related roles accordingly,

which is equal to introduce the potential threat into the system. However, in

ABAC, the role of a subject is seemed as a subject’s attribute, and an

attribute impacts the authentication results but not authorisation.

• Attributes can be recognised across organisations because they are

detectable and objective things that can be proven true or false. This helps

eliminate the role abuse because of the misuse and improper definition of

roles by the administrator. In addition, the growing number of applications

and service used throughout the organisation, the higher employee turnover,

and the more frequent and deeper contact and cooperation with other

organisations can leading to more complex and fine-grained security

requirements on AC. This situation forces the administrator to create more

roles accordingly, and the roles gradually become too many to maintain,

which is described as role explosion (Elliott and Knight, 2010).

Implementing ABAC is very hard, regardless of the high scalability it brings. Firstly,

it is complex and time-consuming to define and maintain so many attributes and later

according to the relationships among attributes and security requirements to specify

30

related access rules and policies. Furthermore, the source and timeliness of every

attribute also need consideration. Attributes that are to be used in access policies need

to come from trusted sources within a limited time to promise the correctness of

ultimate access decision.

Usage Control

Considering the fact that traditional AC models have limitations dealing with modern

dynamic and distributed system, trust management lacks client-side digital

information control, and overlaps between Digital Rights Management (DRM) and

AC models and policies, Park and Sandhu (2004) came up with a conceptual

framework called Usage Control (UCON). UCON systematically merged and

enriched the functionalities of above areas to build foundation for achieving well-

defined models and policies that provide fine-grained transaction-level controls with

respect to mutability and continuity aspects, and privacy issues.

𝑈𝐶𝑂𝑁𝐴𝐵𝐶 is a core model of UCON. As Figure 11 shows, 𝑈𝐶𝑂𝑁𝐴𝐵𝐶 has eight main

components to impact the usage decisions. Except for the subjects and objects and

their attributes to represent the existence of themselves, others include:

1) Right describes the privileges of a subject that can exercise on an object. It needs

to notice that rights do not exist independent of the access request, instead, rights exist

when there is an access request from subjects to objects.

2) Authorisation describes the security rules that evaluate whether the subject can

exercise some rights on objects or not based on the subject and object attributes. The

evaluation can happen before the rights are granted and/or when the rights are

exercised. Authorisation rules can also require some attributes to update pre-/on-/post-

authorisation.

3) Obligation describes the extra mandatory requirements that a subject need to meet

before or on exercising a right. Obligation has no overlap with authorisation because

attributes do not directly impact the result of obligation, instead attributes are used to

decide which kind of obligation to use before or during usage process.

4) Condition is the detectable objective environmental and system-oriented attributes

that controls which conditional requirements needs to be used in an access request.

31

Figure 11 𝑈𝐶𝑂𝑁𝐴𝐵𝐶 Model (Park and Sandhu, 2004)

UCON provides a more comprehensive perspective to deal with access control in

pervasive environment. The benefits of UCON are obvious:

• 𝑈𝐶𝑂𝑁𝐴𝐵𝐶 models and policies further include obligation constraints in

usage decision making. Therefore, compared with previous models and

policies that only based on one or some of the attributes from subject and/or

object, 𝑈𝐶𝑂𝑁𝐴𝐵𝐶 can naturally provide fine-grained access control.

Obligations in 𝑈𝐶𝑂𝑁𝐴𝐵𝐶 also implicitly narrow the attack surface of the

organisation through defining the prerequisites or ongoing requirements to

promise that every transaction is happening under a relatively more secure

situation than that without obligation control.

• 𝑈𝐶𝑂𝑁𝐴𝐵𝐶 model supports transaction-based control. This means 𝑈𝐶𝑂𝑁𝐴𝐵𝐶

policies not only evaluate every request based on associated attributes and

constraints, but also continually influence if and how the subjects can

exercise rights on the target objects based on the update of related attributes.

In conclusion, 𝑈𝐶𝑂𝑁𝐴𝐵𝐶 is highly compatible with real-world business

workflow because it abstracts the factors that an organisation needs to

consider when formulate security policies.

• Privacy issues have rarely been studies in terms of other AC models.

However, UCON prevents the privacy from abuse through multi-way

control. Previous AC models focus on controlling the communication

between the subject and the target object owned by the provider. This

situation can be seemed as privacy-agnostic because the requester doesn’t

have any rights on the object. Reversely, if the subject also holds some rights

on an object because his/her private information is contained or related, there

32

will be three stakeholders in an access request: 1) consumer denoting the

requester who want to access an object that doesn’t have privacy issues with

him/her; 2) provider denoting who holds the requested object; 3) identifyee

whose privacy is contained in the requested object and therefore wants to

have some control on how the object will be used. To deal with this situation,

UCON can provide multi-way control, which requires evaluating the

eligibility on the consumer to access and the provider to provide the object

under the control of identifyee.

Table 3 compared the mentioned model from four factors. As it shows, the evolution

of AC model is accompanied with the growing complexity. In the meantime, the

network environment also evolute from static connected computer network scenario

to pervasive computing scenario. Pervasive computing is characterised by its huge

number of connected devices, highly dynamic and complex network topology, and

fast processing speed (Weiser, 1999). The researchers therefore add new features to

the original AC models aiming to equip them with the abilities to respond to extra

security requirements of pervasive environment. Context-aware feature is one of the

most researched features to combine with different kinds of AC models, which is

collectively called context-aware access control (CAAC) models. This thesis roughly

defines a CAAC model as the access control model whose ultimate access decision on

whether a specific access request is subject to the change of single/multiple contexts.

Table 3 Comparison on AC Models

AC Model Basis Flexibility Granularity Impact

MAC
Sensitivity Label of Sub.

and Obj.
Low Coarse Request-based

DAC Identity/Group of Sub. Medium Coarse Request-based

RBAC
Sub.’s role in the

organisation
Medium Coarse Request-based

ABAC
Attribute of Sub. and

Obj.
High Fine Request-based

UCON

Attribute of Sub. and

Obj.; Authorisation;

Obligation; Condition;

High Fine Transaction-based

3.3.3 Context-aware Access Control Models

The compatibility of context-aware and AC models and applicability of CAAC are

apparent from its widespread research. This section will review the state-of-the-art

literature about how different AC model uses what context(s) to achieve context

awareness.

33

MAC -Based CAAC

Jafarian and Amini (2009) proposed a Context-Aware MAC (CAMAC), which not

only preserves the characteristics of MAC to protect data confidentiality and integrity,

but transfer AC policies and security label of entities from static to context-sensitive.

To deal with pervasive scenarios, CAMAC can define fine-grained access policies

which not only include security labels and discretion, but contextual constraints like

time and location or systematic information. Security labels in CAMAC including

confidentiality and integrity level also update according to the change of contextual

values.

RBAC-Based CAAC

Initially, researchers thought about how time (Bertino et al., 2001) or location (Bertino

et al., 2005, p.), or combined spatial-temporal information (Aich et al., 2007; Ray and

Toahchoodee, 2007) can make UA and PA in RBAC be more adaptive to

location/time-sensitive services. Kulkarni and Tripathi (2008) specified a general-

purpose CA-RBAC for pervasive computing system. The model is composed of two

layers: Context Management Layer ensures the accessibility, integrity, and

authenticity of context data that will be used in access decision making; Access

Control Layer is responsible for adaptively control the availability of specific role

membership and permission binding among roles, permissions, and objects.

Then with the development of network infrastructure and smart devices, more kinds

of context are included to expand RBAC functionality on handling different domain-

specific scenarios. For example, in order to respond to dynamic Virtual Organisation

(VO) environments, Hilbert et al. (2010) applied the ideas from ABAC where dynamic

properties of subjects and objects as well as environmental information are interpreted

as attributes to impact RBAC UA and PA. Attribute-dependent authorisations not only

limit UA because a user’s attribute(s) need to satisfy pre-defined requirements to be

assigned a role, but support PoLP because a role is not automatically granted all

privileges on an object. Schefer-Wenzl and Strembeck (2012) proposed a CA-RBAC

model for IT-supported business process. The goal for every business process stays

unchanged while the tasks within can vary under different situation. Every task is

impacted by the corresponding causes in the cause-and-effect chain. These causes are

34

interpreted to process-related context constraints, and the model then can assign the

specific role to subject for achieving required tasks.

ABAC-Based CAAC

Different from CA-RBAC models where context information is generally used as

supporting constraints to achieve fine-grained user-role and role-permission granting,

CA-ABAC no long uses role to represent the user’s identity, instead, role is seemed

as an attribute of the user and it can contain different meaning depending on the

scenario, such as in the enterprise role is used as the position of employee, while in

social media, role can be the relationship between an account. CA-ABAC uses

dynamic and static context information to profile the "security posture" of the user to

decide the accessibility to resources.

Covington and Sastry (2006) pointed out that policies designed based solely on users

and object are too rigid to introduce necessary administrative complexities, and

dynamic context can bring computer systems with the capabilities inherent to human’s

perception and reasoning about the current situation. Therefore, Covington et al.

propose a contextual ABAC model for mobile environment whose authorisation

policies are defined using dynamic contextual information existing in the user’s

operating environment, including attributes associated with subjects, object,

transactions, and environment. And these attributes are used to authenticate whether

the user is permitted to do the action or not. Picard et al. (2018b) considered that IoT-

based systems have the ability to supply lots of diverse attributes collected from real

world in a fast manner and describes an enhanced ABAC model using this property of

IoT-based systems. The model follows the XACML architecture and is added with a

proactive engine which can collect raw data flow derived from the sensors and feed

the processed secondary data to PDP. Also, proactive engine could keep PDP stay

tuned for new events and react to context changes as quickly as possible. Gupta et al.

(2019) noticed that smart vehicles are vulnerable to cyber-attacks as they expose

original isolated car system to external environments. Gupta et al. define a two-level

ABAC model to protect external interfaces from unauthorised access and prevent in-

vehicle communications from overwriting or controlling by adversaries. Also, the

model can dynamically cluster smart vehicles into groups based on their location and

time and provide group-specific services, such as warning signals to a blind spot or

gas discount notifications.

35

Picard et al. (2018a) examined how secondary context can be derived from sensors for

IoT-based ABAC-based CAAC. He proposes the "Proactive Engine," a rule-based

engine for access context acquisition, modelling, and reasoning and embeds the engine

in an ABAC framework to implement access control expression and enforcement.

Chukkapalli et al. (2020) created a smart farming ontology to represent various

physical entities like sensors, workers on the farm, and their interactions with each

other, as well as context. They develop an ontology-based context-aware ABAC

system. Dutta et al. (2020) also proposed a cloud-based semantic web-based ABAC

system captures physical context collected from sensed data (attributes) and performs

dynamic reasoning over these attributes and context driven policies to execute access

control decisions for IoT-based cyber-physical systems.

UCON-Based CAAC

UCON can be seemed as extended ABAC to some degree. Because UCON extends

the policy categories of ABAC to not only authorisation, but obligation and condition;

the ability to allow attributes to update its value during the session; and impact of

decisions from simply returning allow/deny to a request, to continuous monitoring and

responding to attribute values change. Actually, these extensions make UCON

compatible with context-awareness. Similar to context-aware systems which change

the services and notifications to the user when the context is changing, UCON changes

its access decisions to resources once detecting attributes change.

Bai et al. (2010) proposed a CA-UCON model called Con-UCON, for Android to

provide additional privacy protection and resource usage control. Based on the basic

UCON model components, Con-UCON introduced extra Permission Label (PL) and

Context. PL is defined similar to the security labels in the MAC that comprise the

confidentiality level and integrity level of the data objects, while context is defined as

the property of computing system and environment, especially spatial and temporal,

that will be used to specify the context constraints in the access policies. Almutairi and

Siewe (2011) introduced a CA-UCON model which used subject context, object

context, physical environments context, and ICT context to equip the UCON model

with the ability to adapt to the environment changes during the execution of an access

request. Dimitrakos et al, (2020) described a hybrid architecture which integrated the

core components of ABAC to support capture characteristics of things existing in

36

heterogeneous environments, and UCON to enable fine-tuning the granularity of

access policies to respond to the continuous context changing during the session. The

architecture is further extended with a Trust Level Evaluation Engine (TLEE) to

(re-)evaluate the related trust parameters in the policies.

37

Chapter 4

Context-aware Access Control in

Zero-trust Architecture

4.1 Introduction

The core of ZT model is no default trust, which indicates both resources and requesters

need verify trustworthiness of the requester before building connections. Generally,

the trustworthiness of resources is manifested as the quality of the resources of the

organisations owning the resources, while the trustworthiness of the requester is

evaluated based on the risk within the request. Therefore, trust within the ZT model is

not inherent attribute but requires ongoing risk assessment during each request session.

For each access request to ZT system, the subject identity, request action and context

are subject to continuous evaluation against a comprehensive set of security policies.

Traditional access control models often fall short in capturing the dynamic complexity

of modern digital environments. The interactions between users, devices, and

applications vary significantly across different contexts, which requires more refined

approach to security (Kim and Lee, 2017). Therefore, context-awareness are starting

to be added as an important feature to access control models in ZTA to deal with

uncertainty or probabilistic scenarios.

This chapter explores the integration of context-aware access control and ZT model

by first introducing about different context schemes that can be used in ZT system,

then it discusses how dynamic context can influence the pivot factors of ZT model -

trust and risk, and how these two complementary factors in turn impact the access

control decision making. The aim of this investigation is to determine what

modifications, if any, need to be added to the PAROLE language to accommodate

ZT context awareness. Finally, this chapter specifies some main patterns from the

CAAC and risk/trust analysis and consider how these may apply to ZT.

38

4.2 Understanding Context-Awareness in Zero Trust

This section discusses the application of context-awareness access control in the ZT

paradigm. Firstly, it talks about different categories of context that can be leveraged

within the ZT framework. Then, the discussion extends to the integration of trust and

risk within access control, further enriching the understanding of their functional roles

within ZT.

4.2.1 User-centric Context

User-centric context focuses on the attributes, behaviours, and credentials of the user

that will be used in decision-making process of access control. This context is

particularly relevant for Enhanced Identity Governance (Buck et al., 2021), where the

system needs to evaluate the role and authentication of users. Some typical user-centric

context attributes are listed below:

• Identity: This context includes the user’s unique identifier (e.g., username

or user ID), authentication factors (e.g., password, token, or biometric data),

and affiliation (e.g., department or team within the organisation) (Ferraiolo

et al., 1999). Identity attributes are essential for determining the user’s role

and authorisation level in the system.

• Behavioural: This context includes the attributes that provide information

about the user’s past actions, interactions, and access patterns within the

system. By analysing the behavioural attributes, such as login frequency,

resource access history, and access duration, the system can evaluate the

trustworthiness of users and identify potential anomalies or security risks

(Su, 2010).

• Trust and Reputation: This context includes the attributes that quantify the

level of confidence the system has in the user, based on factors such as user’s

historical compliance with security policies, peer reviews, and external trust

assertions (e.g., PKI certificates). Trust and reputation attributes can help

make more informed access control decisions, particularly in cases where

the user’s identity or behaviours may be ambiguous or insufficient (Yan et

al., 2015).

39

• Spatial: This context includes the attributes that provide information about

the user’s physical or virtual location during the access request (Yan et al.,

2015). Spatial attributes can help identify potential security risks (e.g.,

access from unfamiliar or high-risk locations) and enforce location-based

access policies.

• Temporal: This context includes the attributes that capture the timing of the

access request, including the date, time, and duration of the session.

Temporal attributes can help enforce time-based access policies (e.g.,

restricting access to certain resources during non-working hours) and detect

potential anomalies in the user’s access patterns (Yang et al., 2012).

• Device: This context includes the attributes that provide information about

the user’s device, such as the device type, operating system, security

configurations, and the presence of security software (Banks et al., 2021).

Device attributes can help evaluate the security posture of the user’s device

and enforce device-specific access policies.

The utilisation of user-centric context attributes fortifies ZT framework, underlining

the paradigm shift from a static, perimeter-based security to a dynamic, context-aware

one. User-centric contexts ensure that the access control decisions are not solely

dependent on static attributes, but also consider the dynamic attributes. These dynamic

attributes together encapsulate the situational context of a user’s access request, thus

offering a fine-granular assessment of potential security risks. By continuously

monitoring and evaluating these user-centric context attributes, anomalous behaviours

can be detected promptly, thereby enabling swift response to potential security threats.

Embedding user-centric context into security policies not only enhances the

adaptability of the ZT model to dynamic risk environments, but also augments its

capacity to offer specialised security measures for different application scenarios.

4.2.2 Environment-centric Context

Environment-centric context contains the characteristics of the environment where the

access request occurs. This kind of context is crucial for Micro-Segmentation based

approaches (Sheikh et al., 2021), which aims to divide the network into smaller

segments and avoid direct connection between two segments. Environment-centric

context include:

40

• Network Conditions: This context includes the attributes that describe the

current state of the network, including the network traffic load, latency, and

available bandwidth (Ahmed et al., 2016). By considering network

conditions, ZT access control can make more informed decisions about

granting access to resources, such as limiting access during periods of high

network load or prioritizing access for critical applications and services.

• Network Topology: This context includes the attributes that describe the

structure and organisation of the network, including the distribution of

network nodes, connectivity between nodes, and network segments. By

including network topology, ZT access control can enforce fine-granular

policies that take into account the relationships between different network

elements, such as restricting access to specific subnets or isolated segments

(Yao et al., 2017).

• Service Dependency: This context includes the attributes that describe the

relationships and dependencies between various services and applications

within the network environment (Shameli-Sendi et al., 2018).

Understanding service dependencies can help ZT access control make better

risk-aware decisions when granting access, as it can consider the potential

cascading effects of allowing access to one service that may depend on

others. This information can also be used to prioritise access to critical

services during periods of high demand.

• Business Continuity: This context includes the attributes that provide

information about the dependencies between business process and

software/hardware assets (services), as well as their criticality to the

organisation’s business continuity. By considering these dependencies, ZT

access control can enforce access policies that prioritise the continuity of

critical business services and minimise the potential impact of security

incidents on the organisation’s operations (Sarkar et al., 2022).

• Security Posture: This context includes the attributes that provide

information about the current security level and states of the environment,

including the presence of security controls (e.g., firewalls, intrusion

detection systems), security policies, and known vulnerabilities. Security

attributes can help ZT access control make more informed decisions about

41

granting or denying access based on the current risk level and the security

consequence (posture changes) on the overall environment (Rose et al.,

2020).

• Resource: This context includes the attributes that offer a global perspective

on the characteristics of resources being accessed. Resource encompasses

the resource type (e.g., file, database, application), sensitivity level, and

ownership, viewed collectively rather than individually. These resource

attributes can support the enforcement of resource-specific access policies

at a macro level (Abbasi et al., 2020), ensuring that users gain access only

to those resources necessary for their roles, in accordance with overarching

security constraints.

Incorporating environmental-centric context attributes with ZT can greatly enhance

the effectiveness of the ZT framework by providing a system-level perspective on

security. These contexts can provide a holistic graph of the overall system’s state and

its potential vulnerabilities. For instance, understanding network conditions and

topology can help identify weak points or unusual traffic patterns, while knowledge

about service dependencies can help prevent cascading failures in case of a breach. By

continuously monitoring and integrating these environmental-centric context into

access control policies, ZT model can adapt and respond to varying system conditions

and evolving threats, subsequently enhancing its robustness and reliability.

4.2.3 Object-centric Context

Object-centric context relates to attributes of accessed resources or objects, which

helps ascertain resource sensitivity and potential access-related risks (Hu et al., 2013).

This section introduces various object-centric context that can be used in ZT model:

• Sensitivity level: This context includes the attributes that describes the

confidentiality-integrity-availability (CIA) requirements of the resource

being accessed. Understanding the sensitivity level of objects helps ZT

framework to enforce access policies based on the potential risks associated

with granting access to specific resources, such as limiting access to

sensitive data or critical systems (Ferraiolo and Kuhn, 1992).

• Label: Resources may be labelled based on their importance, criticality, or

sensitivity level within the organisation. These labels can be used by ZT

42

access control to enforce access policies tailored to the specific requirements

of each resource category, ensuring that only authorised users can access the

appropriate resources (Hu et al., 2013).

• Ownership: The owner of a resource can be an individual, a group, or an

organisational role that is responsible for managing and maintaining the

resource. Ownership can help ZT access control enforce policies that restrict

access to resources based on the user’s relationship with the resource owner

or their role within the organisation (Sandhu et al., 1996).

• Access history: This context includes historical access patterns of a resource,

such as the frequency, duration, and user access history. By analysing access

history, the system can detect anomalies in access patterns, prioritise access

to frequently used resources, or enforce access policies based on historical

usage trends (Hu et al., 2013).

Integrating object-centric context attributes into a ZT framework can augment the

security and adaptive decision-making of the system. Object-centric attributes refer to

properties and characteristics associated with the resources or data that are being

accessed. For instance, data sensitivity and criticality attributes can influence the level

of trust required for access, potentially necessitating additional authentication steps

for highly sensitive or critical data. These attributes provide crucial information for

making fine-grained access control decisions, thereby minimizing the risk of

unauthorised data access, and ensuring compliance with relevant regulations.

4.2.4 Summary

Understanding the concept of context and its application is paramount for ZT.

Although interpretations of context may differ among different access control models

and application scenarios, the majority of works depict a significant similarity in its

representation. Conventionally, context is viewed as characteristics or amalgamations

of features defining the state of one or more entities, and possibly, their interrelations.

This definition extends to the domain of access control, where context is information

used to delineate the state of access control-specific entities like a user, a resource, and

an environment, along with the relationships amongst them.

A variety of entities such as user, object, subject, role, and environment are part of

context-aware access control models, varying based on the model. The context in these

43

models is articulated via contextual conditions or expressions, defined as relational

operations on entity attributes, or logical combinations of these conditions. This is a

recurring theme in the surveyed works. Furthermore, the term ’situation’ can be seen

as equivalent to context and can be represented similarly. Situations are often linked

with a mission or purpose and can be represented by data tuples or aggregates. Both

context and situation can be primary, deriving directly from the entities, or secondary,

inferred or retrieved using primary context data.

4.3 Context-aware Access Control and Trust

While ZT model operates on the principle of "never trust, always verify," the concept

of trust remains integral to this model. In ZT model, trust is not assumed or given

freely; rather, it’s earned and continually validated. Trust is still required, but it is built

based on verified actions, behaviours, and the context in which users, devices, and

systems operate. Context awareness is a key element in facilitating this trust

formulation. By understanding the situational circumstances of a user or device, such

as location, time, device type, behaviour patterns, and data sensitivity, context-aware

systems can make more informed decisions about trust (Ceccarelli et al., 2012). This

real-time assessment allows for dynamic trust levels, continually adjusting access

rights and privileges based on changing circumstances. Thus, context awareness

enhances the security posture of ZT by adding an additional layer of intelligence to

trust formulation. Generally, there are two methods of using contextual information to

calculate trust (Armando et al., 2015). They are listed below.

4.3.1 Trust Indicators

Trust indicators (TIs) represent a wide range of measurable and observable features

that contribute to calculate the trustworthiness of an entity, whether it is a user, a

resource, or a system. These indicators include a variety of contextual attributes such

as reputation scores, roles, security postures, historical behaviours which are highly

overlapping with the entity attributes. The diversity of these indicators demonstrates

that trust itself encompasses not only reliability and competence but also a range of

access control decision making context factors.

Winkler et al. (2007) proposed a model of trust indicators that are based on existing

operational risk categories. Risks surging in the operational processes of a firm is

44

categorised to operational TIs, risks caused by human behaviours are denoted as

organisational TIs, risks stem from external source of the organisation is referred as

external TIs, risks impact the reliability of the organisations are financial TIs, and

trust-related information from third-party is integrated to third-part TIs. Karthik and

Dhulipala (2011) identified a series of parameters and metrics as indicators to calculate

trust in wireless sensor network including latency, packet loss and hop count. While

in social semantic web, there are several social factors that affect trust judgements

(Sacco et al., 2013), they are: identity of the requester; similarity between the use and

the requester; relationship between the user and the requester; reputation of the user;

and historical interactions.

The specific indicators and their relative importance may vary depending on the

context, the nature of the relationship, and individual preferences. Trust calculations

often involve a combination of multiple indicators, and their cumulative effect

contributes to the overall assessment of trustworthiness. Nevertheless, the

implementation of trust indicators requires careful deliberation about privacy, data

protection, user experience, and system performance.

4.3.2 Reputation Model

Reputation models play a significant role in calculating trust by providing a means to

assess the trustworthiness of entities. Reputation models aggregate, process, and

analyse information about past behaviours, experiences, and interactions to generate

reputation scores or ratings (Resnick et al., 2000). The reputation of an entity serves

as a valuable signal for others to determine the level of trust they can place in that

entity.

Reputation models contribute to building trust by providing a basis for initial trust

judgments. When encountering a new entity, individuals often rely on reputation

information to guess its reliability and credibility. Positive reputation signals can

increase the willingness to trust, while negative or absent reputation can raise

scepticism. Additionally, reputation models facilitate ongoing trust assessment. As

trust is dynamic and can evolve over time, reputation systems continuously update and

refine reputation scores based on new interactions and feedback. This enables

individuals to adapt their level of trust based on the entity's demonstrated behaviours.

45

Xiong and Liu (2004) proposed a reputation-based trust supporting framework called

PeerTrust to use community-based reputations to estimate the trustworthiness of peers

in electronic communities. There are five important parameters of reputations that are

identified when evaluating the trustworthiness of a peer: the amount of satisfaction

within the feedback ; the number of transactions; credibility of feedback; transaction

context factor; and community context factor.

Overall, reputation models significantly influence trust by providing valuable

information, social validation, ongoing assessment, and fostering accountability. They

enable individuals and systems to make informed trust decisions, reducing uncertainty,

and facilitating trustworthy interactions.

4.3.3 Trust-based CAAC

In the realm of context-aware access control, trust is considered as an extra level of

assurance an entity administering resources pertaining to the appropriate use of

requested resources by a user trust (Armando et al., 2015). This notion has been used

in an amount of trust-based context-aware access control (CAAC) strategies.

Bernal Bernabe et al. (2016) posited a multi-dimensional trust-based CAAC model

tailored for the Internet of Things (IoT), encompassing parameters like reputation,

service quality, security, and interpersonal relationships among IoT devices, such as

those under the ownership of a single individual. Utilizing fuzzy logic, the model

calculates trust and distinguishes four tiers of trust: Distrust: the device will act

against the best interests of another; Untrust: corresponds to the space between

distrust and trust, in which a device is positively trusted, but perhaps not sufficiently

to cooperate with it; Trust: represents the range where the device ensures a minimum

of reliability and acts as expected; HighTrust: corresponds to the space where the

evaluated entity can be confidently trusted.

Ouechtati and Azzouna (2017) laid the foundation of his Trust-Attribute-Based Access

Control (Trust-ABAC) on reputation, incorporating a trust metric from a reputation

manager for each subject requesting access. This trust metric is integrated into an

ABAC-based CAAC system via a Trust Management Broker framework, which

collates and disseminates transaction feedback from each CAAC system. Post every

access control request, the access control enforcement (namely a Policy Enforcement

46

Point, or PEP) assigns a trust rating for each subject, which is relayed to the local

broker for trust estimation.

Yaici et al. (2019) advocated for a model for pervasive computing environments. The

user’s location, time, and device used for access are considered, while trust is

ascertained by past behaviours after completing the operations and updating the

reports. The model employs a set of pre-defined rules to evaluate different requests

and accordingly make access control decisions.

4.3.4 Summary

Trust functions as a crucial determinant in CAAC fundamentally denotes the extent to

which one party is willing to rely on another within a specific situation, thereby

illustrating the inherent link between trust and context. Trust can be quantified through

various measures, encompassing reputational trust, along with the analysis of trust

indicators such as security metrics or the employment of trust assertions like PKI

certificates. Within the framework of CAAC, trust signifies the resource controller’s

degree of confidence in the user’s responsible usage of the resources in question. It’s

often integrated with Attribute-Based Access Control (ABAC) through the

incorporation of a unique ‘Trust’ attribute. These insights suggest the increasing

importance of trust-based mechanisms in the evolving landscape of access control

methodologies.

4.4 Context-aware Access Control and Risk

Risk is defined as "A measure of the extent to which an entity is threatened by a

potential ... event and is a function of ..the impact that would arise … and the

likelihood of occurrence" (Ross, 2018). Risk is material when the value of a

transaction is high, or when the transaction has a critical role in the security or the

safety of a system (Jøsang and Presti, 2004).

Risk is introduced to CAAC to address challenges of allowing access to resources and

information in dynamic environments. The access control system estimates the costs

and benefits of giving access for each particular transaction and grants access if the

risk is below a certain level. Risk-based access control is more permissive than

traditional policy-based systems which do not consider contextual risk in making a

decision. Risk-based access control system may include a risk mitigation mechanism

47

(Armando et al., 2015; Cheng et al., 2007a; Ni et al., 2010) to reduce the risk associated

with a transaction to an acceptable level—generally an obligatory action to be taken

before or after access is granted (Kandala et al., 2011). Many factors can be included

in the risk calculation including contextual, situational/mission, and environmental

factors as well as trustworthiness of the subject making the request.

Figure 12 UCON-based RadAC (Kandala et al., 2011)

Kandala et al. (2011) proposed an ABAC framework for risk-adaptive access control

based on the UCON access control approach — shown in Figure 12. UCON is an

extended access control approach that seeks to unify both traditional access control,

i.e., access at the start of the transaction with the need for ongoing control of access to

the object during the transaction — what UCON terms decision continuity. This latter

property is a significant addition to RAdAC (Risk-Adaptive Access Control) as it

allows adaptation to changing environment conditions. In Figure 12, the subject

concept has been decomposed into a number of components, i.e., users, devices,

connections, and purposes. The usage/access control decision process is shown to

include Risk Evaluation component as well predicate/rule-based components for

Authorisation (based on the attributes), Obligations, and Conditions. Obligations are

functional predicates that verify mandatory requirements that a subject has to perform

before or during a usage session—in RAdAC obligations can be used for risk

mitigation as proposed in other risk-aware research works reviewed earlier.

Conditions are environmental or system-oriented decision factors. Kandala

incorporates situation related to a particular user or a group of users such as location,

as Local Situational Factors which are defined as functional predicates that can be

evaluated to be true or false. Usage access decision-making is based on all three

48

rule/predicate components, i.e., authorisation, obligation, and conditions and all can

be evaluated pre, during, or post the session.

Figure 13 QRAAC (Cheng et al., 2007)

Cheng et al. (2007a) developed QRACC—see Figure 13, a fuzzy logic-based

quantified risk adaptive access control model for a multilevel security system.

QRACC defines multiple bands of risk between the normal binary "allow" and "deny."

The quantified risk estimates for any access falls into one of these risk bands. Each

band is associated with a decision and a risk mitigation action, e.g., such as increased

auditing, application sandboxing, charging the risk to the user; the decision, the action,

and band boundaries are all determined according to risk tolerance and can be changed

when risk tolerance changes. Risk is estimated on the sensitivity of the information

and the trustworthiness of the subject. Ni et al. (2010) investigated the applicability of

fuzzy inference for risk-based access control for multilevel security with a banded risk

gradation similar to Cheng. However, their focus is more on the design choices of the

fuzzy inference systems than defining a model for risk.

4.4.1 Summary

Risk-based access control consists of the systematic process of identifying, analysing,

and evaluating risks associated with access requests. This involves considering various

factors such as the nature of the request, the user/object role, historical behaviours,

and other context. Then the outcomes of the risk assessment are used to determine

whether to grant or deny the access request. The combination of both processes

49

enables risk-based AC to provide an informed understanding of the potential threats

and their impact. The adaptive approach enhances threat response by continuously re-

calibrating assessment and access decisions to mirror the current risk landscape,

particularly when anomalies like new location or device access requests emerge.

4.5 Expressing Context in ZT Access Control Policies

Based on the previous investigation on the integration of CAAC and ZT system, this

section describes summarises the main lessons learned with respect to the current.

Practise of context and risk awareness for access control. It subsequently describes

how these lessons can be applied to accommodate context and risk awareness in ZT

systems.

Generally contextual information can be classified as Kayes et al. (2017):

(i) Simple context—a context fact, i.e., an attribute of an entity that specifies the state

of the entity based on a single information source, e.g., user identity.

(ii) Complex context—a combination of the values of attributes that characterise the

state of one or more entities, based on one or more context information sources, e.g.,

an interpersonal relationship between two users.

In order to enable Parole with the ability to express context, it needs to support

definition of simple and complex contextual expressions. For example,

entity.simple-context rel_op value

where rel_op is a relational operator and the value is some value from the type domain

of the context attribute, e.g.,

iphone_2.version = 8.

A complex contextual expression is a logical composition (AND, OR, etc.) of a number

of simple or complex expressions, e.g.,

(iphone_2.version >7) AND (iphone_2.patch_level == up-to-date).

The UbiCOSM context model (Corrad et al., 2004) suggested a context can be logical,

which identify the logical states of "entities composing a ubiquitous service

deployment. Logical states of context depend on logical properties of relevant

attributes. Therefore, the context in the policy language needs:

50

(i) context name that uniquely identifies the context, e.g., Tourist defines

a role.

(ii) context type that identifies the context type, i.e., string or int.

(iii) context location reference that specifies the source of context, i.e.,

provided by the requester, or stored in database.

(iv) a context invocation or activation method, i.e., find("role").

4.6 Expressing Context and Risk/Trust Aware Zero Trust

Architecture

Based on the comprehensive studies described in this chapter, this section identifies

some of the main patterns from the previous CAAC and Risk/Trust analysis and

consider how these may apply to ZTA:

4.6.1 Context

1. Context aware access control models contain several different entities which

vary depending on the model. User, object, subject, role, environment are typical

entities.

2. Context is generally defined as an attribute or combination of attributes that

characterise the state of one or more entities. Context may also include the state of the

relationship between entities.

3. Context is expressed in access control policies by contextual

conditions/expressions/predicates which are defined as relational operations (=, !=, >

etc.) over entity attributes (simple conditions) and/or a logical combination of either

simple conditions (complex conditions) or other complex conditions. This mode of

expressing context occurs repeatedly throughout the surveyed works.

4. Situation can be considered as equivalent to or a form of context and as such

may be expressed by context expressions also.

5. Situation is often associated with mission or purpose. In such cases situation

may be represented by a data tuple or data aggregate.

6. Context and situation may be primary i.e., emanating directly from the entities

or secondary i.e., inferred or retrieved using the primary context information.

7. RBAC based context models adapt to dynamically changing context by

51

varying role assignment and/or permissions to match the context.

8. ABAC based context models adapt to dynamically changing context by

invoking appropriate rules/policies based on the values of entity attributes.

9. Context and situation have some well know examples e.g., spatial, temporal

etc. More generally contexts/situations are domain specific and require definition of

domain attributes. The most common example found in the literature is the

medical/health domain.

4.6.2 Risk and Trust

1. Trust is linked to context by its definition as the degree of willingness of one

party to depend on someone or something in a given situation.

2. Trust can be calculated in several ways including reputational trust and

behavioural trust as well as from assessing trust indicators such as security metrics and

from trust assertions such as PKI certificates.

3. In context-aware access control trust expresses the level of confidence the

resource controller has in the user not to misuse the resources being accessed.

4. Trust many is often combined with ABAC through the use of a specific Trust

attribute.

5. Blockchain based trust systems are being extensively researched to manage

trust for decentralised access control for IoT systems. Typically, these also use ABAC.

6. Risk-aware access control balances the trade-off between benefits and

potential costs (downsides) of giving a user access to a resource.

7. The benefit (or need) from giving access is often related to the purpose or

mission of an entity/situations. Cost is related to misuse of the resource e.g., breach of

confidentiality, integrity or availability. Cost may therefore be related to the sensitivity

or priority of the resource to the organisation.

8. Risk may be calculated based on many factors (entity attributes) including

context. The trustworthiness of the user is often a particularly important factor.

9. Risk-aware access decisions may be binary (allow/deny) but more often are

scaled in some way i.e., may give different degrees of access or enforce some form of

risk mitigation/trust enhancement actions before giving access. Such approaches

attempt to deal with the intrinsic uncertainty and probabilistic nature of dynamic

contexts.

10. This ‘scaled’ decision making model is a form of context-reasoning and many

52

of those proposed technologies (e.g., ontologies, fuzzy logic) have been proposed for

risk-based access control.

11. Risk mitigation or trust enhancement actions may be ongoing during the access

session. These are often referred to as obligations and are included in most risk-aware

access control schemes.

4.6.3 Application to ZTA

1. The CAAC formalisms and models explored above provide a rich canvas to

capture and express the dynamic policies anticipated by ZTA. Different entity contexts

may be appropriate for the different ZTA approaches described in the work of Rose et

al. (2020). For example, the Enhanced Identity Governance approach may benefit

from an emphasis on User-centric context, while the Micro-Segmentation based

approach may benefit from an Environment-centric context focus.

2. In principle either ABAC or RBAC based schemes could be used to provide

ZTA access control. In practise ABAC gives more fine-grained control and is the

dominant access control approach explored in the literature and in commercial systems.

However, it is very likely that RBAC systems will be used to provide primary or

secondary context information sources for user centric-contexts.

3. ZTA places very strong focus on user credentials and device state when

making access control decision. As a result, the main ZTA trust mechanisms proposed

in the literature are trust indicators and trust assertions (Rose et al., 2020), (Osborn et

al., 2016a), (Ward and Beyer, 2014). Behavioural trust based on users historical access

is also strongly suggested for use – (as alluded to earlier Rose et al. (2020) refers to

behavioural trust as "contextual trust assessment). Although not explicitly described

reputation-based trust systems could in principle also apply.

4. The line between ZTA trust assessment and risk-aware access control risk

assessment is very imprecise. Calculation of access benefit through mission or purpose

is not explicitly referenced in the ZTA literature – rather the potential damage or cost

arising from subject, object or environment entity sensitivities is the main factor

considered in making the access decision. However, as the range of dynamic context

increase as ZTA is more widely deployed, it is reasonable to predict the increasing

convergence between the two.

5. Real-world ZTA systems access decisions may be binary or scaled. NIST

(Rose et al., 2020) defined this as "criteria" vs "score" based where the former permits

53

or denies access based on the values of a set of attributes while the latter assigns a

confidence level based on the values of different attributes and grants access if the

confidence value is higher than a given threshold. Access maybe either denied or

restricted if the confidence level is too low. Google employed a tiered-trust scheme

(Osborn et al., 2016a). In order to access a given resource, a device’s trust tier

assignment must be equal to or greater than the resource’s minimum trust tier

requirement.

6. The calculation of ZTA trust confidence levels can be based on any of the

context reasoning techniques outlined in the work of Perera et al. (2014) such as fuzzy

logic, probabilistic logic, ontology-based or machine learning. The numerous fuzzy

logic risk-aware access control approaches could be adapted for ZTA trust calculation

e.g., Manchala’s (Manchala, 2000) fuzzy trust matrix approach could provide a

comprehensive access control approach that would map well to both NIST and

Google’s BeyondCorp ZTA architectures. Moreover Armando’s the trust and risk

aware access control framework (Armando et al., 2015) pointed out an approach to

implementing a trust/risk evaluation system.

7. Continual monitoring of the access control decision is a key ZTA tenet and

thus the use of risk-aware access control obligation type mechanisms will be required

as part of ZTA access control.

8. Since ZTA is essentially a set of concepts and ideas rather than a functional

architecture it can be applied to many different enterprise information systems

configurations including IoT, cloud, remote working etc. Moreover, diverse

technologies such as blockchain could be used in the implementation. The focus is

traditional enterprise – which may include cloud and remote working component but

does not explicitly consider IoT and edge computing. These latter two may require

consideration of extra details such as those outlined by Kayes et al. (2020).

4.7 Conclusion

In conclusion, this chapter focuses on the merge of context-aware access control and

the Zero Trust (ZT) model. Initially, it provides an overview of various context

schemes that can be implemented in a ZT system. Following this, it elaborates on how

the dynamic nature of context influences the two pivotal factors of the ZT model -

trust and risk. Further, it clarifies on how these mutually supportive elements in turn

54

affect the decision-making process of access control. It then identifies key patterns

derived from the context-aware access control and risk/trust analysis and describes

how these patterns are applicable to the ZT model and outlines requirements that must

be satisfied by a context and risk aware ZT access control policy language, upon in

the remainder of the thesis.

55

Chapter 5

Specification of PAROLE Policy

Language

The CAAC of ZTA needs identity-centric access control policy language that is

specially designed for the fine-grained access control. However, currently there only

exist policy languages for access control models without the ability to continuous

monitor dynamic context changing. Considering the features of CAAC and the "no

default trust" principle of ZT network environment, this chapter specifically

introduces the specification of policy language – PAROLE policy language – used to

realise CAAC model in ZTA. This chapter describes an update of the previous work

of Vanickis et al. (2018) in the group. Firstly, it discusses about the requirements that

a policy language needs to satisfy for it to process access request in ZT system in a

fine-grained manner. Then, it comes to the detailed introduction of the main language

constructs of Parole, including their syntactical representation, semantical meaning,

and the sequential processes to handle each access request. Finally, it represents a

whole Parole script that will be used to handle the access to some resources in the

organisation.

5.1 Requirements of a Policy Language

The general requirements for the policy language are proposed based on the analysis

of the work of Damianou et al. (2001), Claudio Agostino Ardagna et al. (2008),

Seamons et al. (2002), and characteristics of ZTN. The requirements are roughly

summarised into following three aspects:

1) For rules and policies:

• Rules and policies are applicable to every requester trying to access the

specific resources and making decisions through the ontology and context

56

of the requester, at the same time, offer service-oriented security with

decentralised policy components.

• Rules and policies should have well-defined structure that clearly indicate

the propositions to individual or collection of attributes and, in the meantime,

obey the principles of least privilege and separation of duty.

• Rules and policies are extensible to add new policy templates for other

actions on resources or combined through flexible procedures to apply to a

specific decision request. In addition, they are expressive to describe

permissions and restrictions, and descriptive to analyse conflicts or

inconsistencies existing in the rules and policies.

2) For contextual attributes:

• Considering the nature of access control policies that require a precise,

robust, and easily understandable structure (Hu et al., 2017), PAROLE is

designed to be a statically and strongly typed policy language instead of a

dynamically and weakly typed one. Compared to a dynamic and weak typing

language, a statically and strongly typed language provides compile-time

checks and enforces type constraint rules at runtime. This means that

changes to policies are explicit and require conscious effort to implement,

which reduces the potential runtime errors (Gao et al., 2017). Moreover,

strong typing also has implications for efficiency and speed, as the system

does not need to spend resources at runtime deciding what type a variable is,

which is crucial for real-time access control decisions in ZT systems. On the

other hand, using a dynamic and weak typing in ZT system must be

accompanied by additional safeguards to prevent security vulnerabilities,

and it would likely necessitate more rigorous testing to catch any runtime

errors (Seixas et al., 2009). In PAROLE, an attribute can only have one

specific data type that cannot be modified during runtime, a unique

formatted name and single- or multi-value, based upon which the decision

of one specific policy is made.

• • PAROLE provides logical and arithmetical operations that can be acted on

the attributes for providing necessary evidences in authentication phase.

• PAROLE provides interfaces to fetch attribute’s value from distributed data

sources that stores the authentic contextual information ready for used in

57

access control; to invoke the risk calculation within the request; and to

enable continuous monitoring of the requesters’ context.

3) For Constraints:

• The constraints should be clearly expressed in rules and policies which

describe the extra permissive or preventive requirements that must be

satisfied before, during, or after the authorisation is granted.

• The execution of constraints is independent from the policy enforcement.

5.2 Main Language Constructs

Parole language is expressive and extendable enough to handle dynamic context when

doing access control decisions and, in the meantime, ensures continuous security

during the entire session. There are mainly four functioning components in PAROLE:

5.2.1 Namespace

 Namespaces are used to organise the collection of policies, attributes, events, and

other syntactic artefacts that make up the policy system for an organisation.

Namespaces may e.g., be defined along organisational lines such as business units etc..

Namespaces can be nested, so the programmatic entities that are defined within other

namespaces need to be imported before they are used in another namespace. It needs

to be noticed that inner namespace does not represent higher priority, it only represents

the inclusion relationship between the two namespaces. Syntactically, a namespace is

defined as:

namespace <<namespace_id>> { … }

A namespace is identified by keyword "namespace" followed by a unique identifier in

the current namespace scope (same name is allowed in different hierarchical

namespace). The curly brace contains other programmatic language constructs.

5.2.2 Attribute

 "attribute" block is used to declare the attributes of the policy entities i.e., subject,

object/resource, context etc. These attributes can then be directly used in access

policies to evaluate the overall context of the requester. It needs to be noticed that the

attributes and their values that are used to do authentication come from two sources:

one is from the request, which holds basic authentication credentials of the requester

58

and contextual information that can be provided by the requester side such as date and

device information; the other source is the Policy Information Point (PIP) which holds

the attributes of the resources and authentication information about the identity that is

claimed by the requester. Generally, the declaration of attribute is the same as how a

variable is declared in general-purpose language:

<<attribute_type>> attribute_name1, attribute_name2, …
attribute_namen;

Currently, Parole supports four primitive data type: integer (int), float number (real),

string (string), bool (true/false).

5.2.3 AuthRule

 AuthRule are language constructs defined in the namespace that contains the

specification of the access control policies. Generally, the goal of an authRule is to

ensure the identity of the requester which means it complies with the pre-authorisation

stage in Usage Control model. There can be several authRules defined in one

namespace. Within the authRule, there are programmatic predicates that can determine

if the credentials provided by the requester satisfy the requirements. The default value

of the authRule is deny, which complies with the principles of ZTA. While if the risk

is affordable and requirements are reached, authRule will return allow. This implies

that the requester is authenticated and authorised to access the resources. An authRule

block is identified by keywork ‘authRule’ and followed by the like:

authRule role_name { … }

5.2.4 Session

As it is described in the UCONABC model, authRule block has ensured the

authorisation of the request before the access request is allowed. The ‘session’ block,

function is to ensure the decision continuity of the request during the whole session

i.e., during the period the requester has access to the resource. This means extra

obligations, or say requirements of context, need to be achieved before granting access

and constraints are monitored throughout the session. Contextual requirements mean

the specific situation the authenticated requester should be in before access the

resources, such as the time to access the resources should be in weekdays and the

device used by the requester should be managed by the organisation. Then after the

action of accessing the resources has been launched, session block also ensures the

59

requester keeps in a safe situation when the connection between the user and the

resource is still alive. To achieve this goal, the system will check the situation of the

requester based on a time interval defined in the session. Once the system detects the

situational requirements are not reached, the connection will be cut off.

Basically, a session is an intermediate construct between control plane and data plane.

Above contents of a session all happen in the control plane of the ZTA. While session

also controls the PEP to build communication channel between the resources and the

requester in data plane, after making an allow access decision. A session block is

defined as:

session <<action_name>> { … }

A session is identified by keyword session and followed by an action name. A series

of sessions defined in the same namespace indicates that the allowed actions that can

be done on the current resource.

Action indicates the allowed action that can be performed on a resource. Parole

supports four kinds of actions:

• Execute: allow the user to execute actions on the resource.

• Read: allow the user to read the resource.

• Write: allow the user to create and edit the resource.

• Delete: allow the user to delete the resource.

It is mentioned above that the risk within the request is also calculated in session.

PAROLE uses fuzzy logic to define risks, specifically it uses a Java implementation

of the IEC 1331 Fuzzy Control Language, FCL- i.e. jFuzzyLogic (Cingolani and

Alcalá-Fdez, 2013). Risks are defined as FCL function block and are invoked by the

PAROLE runtime to evaluate policy risks.

This function is invoked by referencing riskFB (a risk functioning block). This

interface uses fuzzy logic ("Fuzzy Control Programming," 1997) to evaluate the risk

against dedicated parameters as inputs. Rather than dealing strictly with the usual

"true" and "false" values of classical logic, fuzzy logic uses varying degrees of truth.

These degrees are often represented as values between 0 and 1, where 0 represents

absolute falseness and 1 represents absolute truth. This is useful when problems that

do not have precise, well-defined solutions nor where the data is not strictly binary.

The risk assessment in ZT excludes the judgement on crisp sets like: if the user is using

60

the managed device or not, or if the user is access during worktime or not. These kinds

of context can be directly evaluated using logical operators. Instead, the parameters

that are used have continuous value or can be discretised into multiple levels based on

human perception. Typically, it includes vulnerability severity (low, medium, high),

or impact level (low, medium, high) (Jeff Williams, n.d.).

5.2.5 Request Processing Workflow

This section represents how a request is processed in Policy Decision Point (PDP)

controlled by Parole. Figure 14 shows the whole processing workflow of a successful

request. As it is shown in the figure, the whole process starts with a user sending an

access request to some resource in ZT system. The request is interfered with Policy

Enforcement Point (PEP) to avoid direct connection between the user and resources.

Once PEP has received the request it then dispatches this request to context handler.

The request that context handler received contains other information besides the

contextual information. Then context handler starts to extract useful context

information and output them into a Json file. Now the context is ready to be sent to

PDP for further use.

Basically, the required attributes within a request include user credentials, user’s

intended action, and user’s target resource. PDP will first find the related namespace

of target resource according to the request. Then based on the user credentials, PDP

will invoke the related authRule within the target namespace. During processing

authRule, PDP will ask PIP for authentic data value according to the rules within the

authRule. After the identity of the user is ensured, then PDP will invoke the related

session based on the user’s intended action. Generally, at this stage, PDP will also ask

for data from PIP, while it may also ask for extra contextual information from the user

for risk calculations and continuous monitoring. Finally, if the context evaluations also

pass, then PDP will let PEP know its access decision, PEP then will allow data transfer

between the user and resource, and the data are further transferred through PEP.

61

Figure 14 Request Processing Workflow

5.3 Example: Lab Assets Access

This section gives a specific example about how to write Parole script to control access

to lab assets. The whole code is attached in Appendix B. Firstly, the programmer needs

to identify the distribution of the assets within the lab. Figure 15 shows a sample assets

distribution within the lab. From top to bottom, the first layer is the logical groups

within the lab, which hold a bunch of physical entities. enclave_01 includes the

computing properties of the lab such as GPUs, robots, and databases. The SRI part

includes the member information within the software research institute (SRI).

Figure 15 Assets Distribution for Lab Assets Access Example

Enclave_01

GPUs

SRI

Member

62

Using Parole to describe such distribution is straight-forward - using the namespace.

The structure showed in above figure are described as below. As you can see in the

code snippets, the namespaces are nested which intuitively mirrors the relationships

among different assets just like that in the figure.

namespace enclave_01{

 namespace gpu{…}

}

namespace db {

 namespace dataset{…}

}

namespace sri {

 namespace member{…}

}

The code snippet below shows the inside of the namespace. Basically, it starts with

some import statements, so that current namespace can use the attributes defined in

other namespace in later authRule and session. Import statements are the same as java

does. In this example, gpu in enclave_01 imports attributes declared in namespace sri

and sri.member for using later.

There are also attributes declarations. These declarations define some attributes that

are only available within the current namespace. Another namespace which wants to

use these namespace needs import the namespace holding these attributes before using

them.

Then it comes to authRule, which evaluates if the user has the related identity. In the

example, there are two authRule to evaluate if the user is a member in sri or a gpu

administrator respectively. Specifically, authRule uses the extracted value from the

request, which is explicitly indicated with REQ, to compare with the authentic values

stored in the PIP. For higher-prioritised roles, the programmer can add more

verifications. The default return value of an authRule is deny if the user’s identity fails

to be authenticated. Once deny is returned, the system terminates this request.

The final parts within the namespace are a set of sessions. There is a session in the

example to control user to execute on resources. In the session, there are identity-

centric rules to ensure the requester’s context satisfies the requirements and the risk of

the request does not go over the threshold. It needs to be noticed that besides risk

calculations, the session also allows evaluating the context repeatedly during the

63

session. In this example, the session for gpu_admin also checks if the user’s location is

in lab per minute (6000 milliseconds).

namespace enclave_01{

 namespace gpu{

 import sri.*;

 import sri.member.*;

 string name, addr, manufacturer, status, value;

 authRule sri_member {

 REQ.name in sri.member;

 }

 authRule gpu_admin {

 REQ.name in find(sri.member, (role="gpu-admin"))

 && REQ.device.name in sri.member.device;

 }

 session execute{ //calculate risks

 sri_member:

 RiskFB(sri_member.fcl, value, history) <= "medium";

 gpu_admin:

 RiskFB(gpu_admin.fcl, history) <= "low";

 REQ.location == "lab", freq = 6000;

 }

 }

}

namespace sri {

 namespace member{

 string name, role, password, expireDate;

 namespace device{

 string name, ip, manufacturer;

 }

 }

}

64

Chapter 6

PAROLE Language

Implementation

This chapter describes: 1) how the context and risk aware requirements outlined in the

last section of Chapter 4 will be realised in the PAROLE language -section 6.1 and

6.2.; 2) the design and implementation of the PAROLE interpreter – section 6.3.

6.1 Representing Context in PAROLE

Context can be represented in PAROLE by several language elements. In the first

place, PAROLE supports an explicit Attribute element which allows the definition

of attributes for use in context specification. Secondly, PAROLE has simple but

expressive statement and expression syntactical grammar. This enables the easy

formulation of contextual expressions/conditions/predicates as described in the

discussion on context in Chapter 5. This includes the formulation of both simplex and

complex conditions. Moreover, PAROLE provides a data aggregation capability to

support context and situation definition should this be required. A situation is

sometimes defined as the combination of purpose or mission and a set of related

situation attributes. While this combination of attributes does not require direct

aggregation (e.g., via a class or struct type construct) it is often convenient for policy

authoring, management, and readability to have an explicit structure. In PAROLE,

data aggregation is provided by the namespace construct which has been adapted from

the ALFA language ("Tutorial," n.d.). It is valid to ask if this construct is sufficient to

support the complexity or richness of the various models or if the construct is

overloaded? E.g., is it valid to define an entity or context constructor, and leave

namespace to define the higher-level domain? Because arguments can be made for

both approaches, a better option is to go with just a single aggregator construct and

retain namespace. Finally, PAROLE provides support for both primary and secondary

65

context definition – though in the latter case via information retrieval from secondary

sources rather than via inference.

In summary:

1. Context is defined in PAROLE as logical assertions over one or more attributes

of one or more namespace objects. Context is implicit i.e., there is no formal

language support for it. This usage is sufficient to define both general (e.g.

spatial/temporal approaches) as well as domain specific (e.g. medical (Ye Tian

et al., 2017) or physical context as described by UbiCOSM (Corrad et al.,

2004)) notions of context.

2. Situation is defined as a namespace construct to capture the operational need

semantics. The situation object must contain an attribute defining the purpose.

Again, this is implicit – no direct language support is given. PAROLE does not

directly support the specification of SituationalAssertions such as "User B

is in Building A". However, this is easily supported by defining a User

namespace with Location attribute.

3. The evidence above shows that PAROLE provides sufficient support for the

definition of context awareness in access control according to the various

definitions from the reviewed literature without requiring any specific

extensions to the language.

6.2 Representing Risk Awareness in PAROLE

Trust based access in ZTA can be granted in either a binary or scaled manner. In the

case of binary (or criteria) based access control, decisions are typically based on the

use of trust indicators including security metrics (e.g., authentication) or trust

assertions (e.g., PKI certificates). A number of "qualified attributes" may be used to

evaluate whether or not to grant access. PAROLE can easily implement a binary trust

algorithm based on the use of languages constructs such as AuthRule, Attributes and

actors as as well as formulation of contextual expressions/conditions/predicates as

described in the discussion above.

Scaled or score based trust algorithms may also be calculated deterministically over a

number of attributes, such as operating system patch level and enterprise asset’s

current state, from different sources with the possibility to specify different weightings

66

for each data source as detailed by Rose et al. (2019). Moreover, a scale of such scoring

points may exist corresponding to different levels of trustworthiness and allowing

different levels of access, (Cheng et al., 2007b), (Osborn et al., 2016b), (Rose et al.,

2019) with the possible accompaniment of a trust enhancement or risk mitigation

action for each level. In the same way as outlined for CAAC and criteria-based

decision making, PAROLE provides a broad range of constructs to enable the

specification of discrete scale-based risk awareness approaches for ZTA.

Scaled based trust approaches are the base of many of the risk aware approaches

described in the literature reviewed in previous chapters. However, scale based

approaches do not deal easily with the uncertainty inherent in the dynamic contexts of

the complex current computing landscape. Many researchers have therefore adopted

probabilistic context reasoning approaches (Perera et al., 2013) based on machine

learning, fuzzy logic, ontology based etc. PAROLE adopts fuzzy logic as the

mechanism to express uncertainty associated with risk. More specifically, it adopts the

Fuzzy Control Language (FCL) ("Fuzzy Control Programming," 1997)-a language for

implementing fuzzy logic, especially fuzzy control standardised by IEC 61131-7.

PAROLE embeds a Java library implementation of FCL, jFuzzyLogic, (Cingolani and

Alcalá-Fdez, 2013), as its fuzzy logic engine.

6.3 Language Implementation

Generally, this project designs and implement a domain-specific language (DSL) that

is used to control the access to resources in ZTA. The tool that is used to build

interpreter is ANTLR (ANother Tool for Language Recognition) (Parr, 2013), which

is a powerful parser generator. A more specific introduction to ANTLR4 and how it is

used to build the interpreter will be presented.

After the implementation of the Parole interpreter, it needs to set up a network

environment to simulate the function of ZTA, where related contextual information of

the request is evaluated in the policy engine. The function of the policy engine is

achieved by the interpreter. Specific experimental network environment setup will

then be described. Pre-mentioned use cases are used to evaluate the correctness of the

access decision given by the interpreter. The evaluation result shows that the

interpreter can give the right access decision correctly based on the evaluation of the

context.

67

6.3.1 Domain-Specific Language

General-purpose language (GPL) that the programmers use to code are broadly

applicable across different application domains, such as java and python. However,

such languages lack the ability to handle specialised features of a particular domain,

because of the complex lengthy code to achieve a particular function, or lack of

expressiveness making people hard to read. So here comes to the domain-specific

language (DSL). A DSL has a very clear intent that only focuses on solving the

problems of one specific domain. For example, Structured Query Language (SQL) is

an example of DSL that is used only to manage and operate on relational database.

SQL’s statements are easy to understand which looks like the short sentences that

people would understand. SQL largely lowers the barriers to manage the database

because the functions have been well encapsulated within the language constructions.

Users only need one SQL statement to read data from database, compared with java

which may require dozens line of code.

DSL syntax is concise, specially designed for one domain. There are generally two

kinds of DSL based on how it is implemented. One is internal DSL, which can be seen

as the subset of the hosting language. When the user is using the internal DSL, it makes

them feel like using the hosting language because the syntax and programming model

is similar. The other kind of DSL is external DSL, which has its own customised

syntax. Customised syntax means the hosting language’s compiler or interpreter

cannot directly handle the scripts written in DSL. So, building an external DSL is like

creating a compiler or interpreter. The main function of compiler and interpreter is to

convert the code from one format to another. More specifically, compiler converts

human-readable/high-level language code to machine-readable/low-level language

code and then stores the converted code in memory. While an interpreter also

translates the code like compiler but then it then directly executes on the code.

Parole policy language is an external DSL, and it requires giving on-the-fly access

decisions. So, what it needs is an interpreter that reads and interprets Parole-format

script. And then the server is equipped with the ability to resolve the request and give

the corresponding access decision based on the values in the request.

68

Figure 16 Process to Build Interpreter

As it is indicated in Figure 16, there are generally four phases to build an interpreter.

First is to design the language, which is specifically introduced in the previous chapter.

With basic language constructions determined, then it is time to do lexical analysis. A

lexer is used to convert a sentence into a sequence of lexical tokens, this process is

called tokenization. Lexer sequentially scans every word in the code, and then pairs

each word to its specific token type. The result of tokenization (Guo, 1997) is a

sequence of strings which record the token type and token value pair, and the order

keeps the same as the original code.

The next step is to do syntax analysis or parsing. A parser is used at this stage to check

if the expressions and statements composed of tokens are syntactically correct. A

parser takes in the token sequence generated by the lexer and then refactors the

structure of the words from a sequence of string to tree structure, based on the

production rules defined by the user. There are generally two types of techniques to

build the parse tree: top-down parsing and bottom-up parsing. Top-down parsing is a

parsing starts with the grammar's start symbol, and recursively predicts the structure

by applying grammar rules, working its way towards matching the input tokens.

Bottom-up parsing constructs the parse tree from the input tokens, gradually

combining them into higher-level structures until the start symbol is reached,

assembling the tree through a data-driven approach.

The generated parse tree can identify the syntactical errors in the code; however, it

does not know about the semantics about language constructs. Semantics of

programming language indicate how code’s syntax structure can ultimately derive the

language’s operational or functional characteristics. So, the next step of building

interpreter is to do semantic analysis, which is to determine the meaning of the text by

evaluating its syntax against context using type checking, symbol resolution, and

scope management to ensure logical coherence and adherence to formal language rules.

After the syntax and semantics of the source code are both evaluated and no error

Source Code
Lexical Analysis

(Building Lexer)

Syntax Analysis

(Building Parser)

Semantic
Analysis

Code
Execution

69

occurs, the source code is then to be executed. This phase is done by using the host

language to implement the semantics of the code.

Figure 17 represents the whole process how an interpreter handles the language using

a snippet of code. Firstly, the code is transformed into a sequence of tokens. As it is

represented, every word (in blue) keeps the same order and is assigned token type (in

red). The generated tokens are then processed by the parser to check syntax correctness

and build the parse tree12 accordingly. Finally, the parse tree is walked through, and

the symbol table is generated to relate the lexeme with its location in the source code

for further scope resolution and type checking.

Figure 17 Source Code Handling Process

6.3.2 Tools: ANTLR4

The tool that is used to implement the interpreter is ANTLR3 (Another Tool for

Language Recognition). ANTLR is a powerful parser generator for building DSLs that

allows you to define the grammar for a language in a formal and human-readable way,

1 The parse tree is generated by ANTLR4 IntelliJ IDEA plugin: https://github.com/antlr/intellij-plugin-v4

2 The grammar is http://media.pragprog.com/titles/tpantlr2/code/tour/Java.g4

3 https://www.antlr.org/

https://github.com/antlr/intellij-plugin-v4
http://media.pragprog.com/titles/tpantlr2/code/tour/Java.g4
https://www.antlr.org/

70

using an Extended Backus-Naur Form (EBNF) notation. The grammar compiled by

ANTLR needs to specify the syntax and structure of the language, including the rules

for valid tokens (lexer rules) and the way they can be combined to form valid sentences

or expressions (parser rules). Parser rules start with lowercase letters, and lexer rules

with uppercase. Once the grammar is defined and successfully compiled, ANTLR4

automatically generates the lexer and the parser in the hosting language (e.g., Java,

python, or JavaScript).

ANTLR supports four language patterns:

1) Sequence consists of a sequence of elements or subphrases.

2) Choice includes a set of phrase alternatives.

3) Token dependency indicates the presence of one token requires the presence of

other tokens.

4) Nested phrase defines a language structure that can contain self-similar

language constructs.

Here’s a table summarizing ANTLR’s core grammar notations:

Table 4 ANTLR4 Core Notation (Parr, 2013)

Syntax Description

x Match token, rule reference, or subrule x.

x y ... z Match a sequence of rule elements.

(... | ... | ...) Subrule with multiple alternatives.

x ? Match x or skip it.

x * Match x zero or more times.

x + Match x one or more times.

r : ... ; Define rule r.

r : ... | ... | ... ; Define rule r with multiple alternatives.

6.3.3 Implementation

This section specifically introduces how the language is implemented using ANTLR4

and Java. The whole grammar is in Appendix A

. There are mainly three phases to implementing the language. It starts with writing

the syntax of Parole using ANTLR grammar. The grammar of Parole includes parser

rules and lexer rules. Then it talks about the symbol table that used to associate the

semantic with the token in the grammar. Finally, it uses the ANTLR to build parse tree

71

listener to walk through the parse tree twice. The first pass defines the symbols and

scopes and defined the symbol in the related scope. The second pass resolves the

symbol which means it figures out which definition is of the current symbol by finding

the symbol in the current scope, and then the definition is used in the hosting language

for further manipulation.

Parser Rule

The grammar of Parole follows ANTLR4 grammar writing pattern, which starts with

the header that names the grammar followed by a set of rules that can invoke other

rules:

grammar <<grammar-name>>;

<<rule-name1>>: <<rule-content1>>;

<<rule-name2>>: <<rule-content2>>;

…

Designing the grammar of a programming language is a process of top-down

functional decomposition. So, the starting rule can describe the overall input pattern

of the language. For Parole, it can be described in English pseudocode that it is "a

program that consists of a sequence of namespaces", because a Parole script is

composed of a series of nested namespaces holding other language constructs. In

ANTLR4 grammar, it is represented as:

paroleProgram: namespace*;

As it is described in Chapter 5, there are four kinds of language constructs: namespace,

attribute, authRule, and session. These constructs are all included in the rule

paroleStruct.

paroleStruct: attrDecl | authRule | session | namespace;

Table 5 Parole Language Constructs

Language

Construct
Specification

namespace
namespace: PE_NAMESPACE ID '{' (importStmt)*
(paroleStruct)* '}';

attrDecl attrDecl: attrType ID (',' ID)* ';' ;

authRule authRule: PE_AUTHRULE ID '{' statement* '}';

session session: PE_SESSION action '{'role_session* '}';

Table 5 gives out the specification of each language construct:

• Rule namespace: namespace is identified by the keyword namespace

(represented as PE_NAMESPACE). The identifier of namespace is stored in lexer

72

rule ID. Then the namespace body is enclosed by curly brace. Inside the

namespace body, it first declares the imported namespace if it has any. Then

there can be several definitions of Parole language construct.

• Rule attrDecl: attribute declaration works like conventional programming

languages. It starts with attribute type and followed by one or several

attribute names.

• Rule authRule: it is identified by the keyword authRule and its name. In its

body, it contains neither or several statements.

• Rule Session: session is identified by the keyword session and followed

by the action name. In the session body, it contains neither or several

role_session rules.

Parole also supports a series of expressions, including invoking risk function block,

find function, logical operations, assignments and so on. As it is showed in Figure

18, every alternative in the expression rule end with a label identified by # operator.

Figure 18 Parole Expression

ANTLR will create a separate listener method for each alternative with label. Here is

the description of each alternative:

• Find: This expression refers to findExpr rule which specifies the pattern to

invoke find function, which aims to find documents that match a set of

selection criteria. If so, the document will be returned and stored, otherwise,

error message will be printed. The first parameter of find function is pip’s

name. If there is no expression follows, then it means find everything in the

pip. If there are following expressions, the contain the selection criteria. The

following expressions are generally instance of rule equal and rule

comparison.

73

• Risk: This expression refers to riskFB rule, which specifies the pattern to

invoke riskFB function. riskFB function has several parameters including

the required fcl file, and the inputs specified in the fcl file.

• Reference: This expression handles four kinds of situations 1) REQ.<field> :

this is the situation means it the value of indicated field; 2) reference in

FindExpr: this situation means the specific attribute in corresponding

namespace and makes sure it exists; 3) in import statement: this mean the

name of the imported namespace; 4) .fcl file: this situation specifies the

name of the fcl file.

• Exist: this expression means it checks the value of left expression can be

find in the right expression.

• Comparison, Equality, Logic: These rules use mathematical operators to

figure out the relationship between the left expression and the right

expression.

• Equal: This rule is used in the rule findExpr as the selection criteria, not the

assignment of some attribute.

• List: rule list represents a list of expressions. This expression often occurs

in the rule findExpr and rule riskFB.

• Literal, String, Boolean, Null: These alternatives all represent the values

they store.

• ID: This rule is the identifier of the parole language constructs.

Lexer Rule

The lexer rules are used in following ways:

• Lexer rules reserve the keywords. For example: PE_NAMESPACE represents

namespace, T_STRING represents string.

• Lexer rules specify the patterns of identifiers in Parole. The allowed

identifier in Parole starts with a letter and follows by arbitrary length of letter

or digit or underscore (_). ID : LETTER (LETTER | Digit | '_')*;

• Lexer rules help skip the compilation of whitespace and comments including

single-line and multi-line comments.

74

6.3.4 Symbol Table

After the grammar is successfully compiled by ANTLR, and the lexer and the parser

are generated, then it is time to build a symbol table to record and track the semantics

of tokens. Figure 19 shows the overall structure of the Parole symbol table. Basically,

the symbol table is built based on the meta-attributes of a symbol – type, symbol, and

scope.

Figure 19 Parole Symbol Table

Interface Symbol declares the methods to get symbol’s name and scope. Interface type

declares the method to get the type of a symbol. There are four types of symbols in

Parole, and Table 6 lists the supported type for each kind of symbol. As for interface

Scope, it declares a series of methods that are used to enable linking and switching

among nested scopes, define and resolve symbols within the scopes, and add reference

scopes if there is import statement within.

Table 6 Symbol Types

Symbol Type

attribute tINT, tREAL, tSTRING, tBOOLEAN

namespace peNAMESPACE

authRule peAUTHRULE

session peSESSION

75

On starting the interpretation, it first appends a global scope to scope stack. In the

global scope, other constructs are defined. As for the language constructs that include

a functioning body enclosed by a pair of curly braces, it actually creates a scope that

is identified by its name. While at the same time, they are also a symbol defined within

the current scope. These kinds of symbols are grouped into scoped symbols which not

only implement both the methods of type and symbol, but also extend the methods of

base scope. As for attribute symbols, they are the instantiated base symbols that can

be defined and resolved in the scoped symbols and associate themselves with the

values that comply with their symbol type.

6.3.5 Interpretation

After building the symbol table, it is time to start walking through the parse tree. Parole

uses the ANTLR built-in parse tree walker mechanism called listener, which generates

enter and exit methods for each rule. As the walker encounters some rule, say rule

namespace, it triggers enterNamespace() method with the NamespaceContext parse tree

node. After the walker has finished visiting every child of the namespace node, it then

triggers exitNamespace() method with the NamespaceContext parse tree node.

Figure 20 Listener Call Sequence

After all the listeners are created, then it needs to write specific actions in the required

listeners. Generally, if there is no import statement, then after a walk through the parse

tree marks the end of the program, because the symbols are all defined before they are

resolved. To support using a symbol before it is defined in the source file, or say

forward reference, it needs to make two walks through the parse tree. In the first walk,

it defines the scopes and ensures the relationships between the scopes, in the meantime,

it defines the symbols within the scopes and assigns value to the symbol if the symbol

is initialised. At the time of the second walk, it has known the scope relationships and

symbol definitions, so it can start resolve symbols.

76

Definition Phase

Definition phase starts with the currentScope point to the globalScope with no symbol

defined. While as the walker enter and exit each node, scopes and symbols will be

defined. Specifically, the processing logic during the definition phase is described in

Algorithm 1. When entering a node, it first checks if the current scope has had other

symbols using the name of current scope, if so, it prints error message and exit the

program. If there are no duplicate names, then current node is defined in the current

scope using defineSymbol(BaseSymbol) method. At the same time, if the current node

is an instance of scoped symbol, then the scope identified by the current node is

defined in the current scope using defineScope(BaseScope) method and the current

scope is pointed to the scope identified by the current node. When exiting the node, if

the current node is an instance of the scoped symbol, current scope then be pointed to

its enclosing scope.

Handling the nodes that are literals, strings, bool (true and false) and null (null) are

different from the symbols, because after exiting these nodes, the value of the node is

known. At this time, their values are stored into the instance a data structure provided

by ANTLR to associate a property with a parse tree node, called ParseTreeProperty.

The values stored will then be directly used in the resolution phase.

ALGORITHM 1: DEFINITION PHASE PROCESSING LOGIC

Input: ctx: ParoleParser.RuleContext, BaseScope currentScope,
PareTreePropery<Basescope> scopes, ParseTreeProperty<Object> values

1
If ctx instance of AttrDeclContext; then name ctx’s identifier

2
 If currentScope resolve symbol name is null;

then get symbol type
currentScope define symbol with name and type

3
If ctx instance of NamespaceContext or AuthRuleContext or
SessionContext;
 then name <- ctx’s identifier

4
 If currentScope resolve scope name is null;

then get symbol type;
currentScope define scoped symbol with name and type;
save symbol into scopes
currentScope changed to scope of Scoped Symbol

5
If ctx instance of LiteralContext or StringContext or BooleanContext
or NullContext; then save ctx’s value into values

Resolution Phase

Resolution phase is the core of Parole, during which how each language construct

handles context is implemented. When entering the ParoleProgram node, it first gets

77

the target resource name in the request, and check if the resource is in the related PIP,

if so, the program continues, otherwise an error is printed, and program stops.

Basically, it does not need to do extra things only change current the scope pointer

when entering and exiting the scoped symbols like namespace. However, as the

listener always walks through every node of the parse tree, and the processing logic is

defined per rule, so that every functioning block - authRule and session is always

functioning. While the only namespace that should take effect is the one that hosts the

target resource, and the only authRule that should be evaluated is the one in the target

namespace whose identifier is the same as the value of the field role in the request,

and the only session that should be activated is based on the values of the filed action

and the value of the filed role in the request. This requirement needs extra control in

three places: paroleStruct node, authRule node, and session node.

ALGORITHM 2: REMOVE REDUNDANT LANGUAGE CONSTRUCTS

Input: ctx: ParoleParser.RuleContext, BaseScope currentScope,
JSONObject request

If ctx instance of ParoleStructContext; then targetScope <- full
path to target in request

 If full path to currentScope != targetScope AND (ctx’s child is
instance of AuthRuleContext or SessionContext);

then remove child

If ctx instance of AuthRuleContext; then role <- value of field role
in request

 If identifier of ctx != role; then remove the children of ctx

If ctx instance of SessionContext; then action <- value of field
action in request

 If identifier of ctx != action; then remove the children of ctx

When entering paroleStruct node, it checks if the current namespace is the one

holding the targe resource, if not, it removes the authRule node or the session node it

holds. This action is done at the paroleStruct node instead of at the namespace node

is because attrDecl nodes defined within the current namespace need to be reserved

in case the current namespace is imported by the target namespace, while authRule

node and session node will be removed to avoid them from taking effect and

impacting the evaluation result. While in the target namespace, there can exist

authRule nodes that are not for the role claimed in the request and session nodes that

are not for the action claimed in the request. Therefore, on entering the authRule node

and session node, it needs to check first if the current authRule node or session node

78

is the one for the request. If not, the children of current node need to be removed

completely. The whole handling procedure is showed in Algorithm 2.

As it is mentioned above, Parole support import statement, which mean the attributes

declared in other namespaces will be available in the current namespace. This function

is achieved through adding the scope specified in the import statement to current

scope’s reference scope list. To use the attribute defined in the reference scope, the

attribute needs to explicitly specify the namespace it belongs to using the member

access (dot) operator (.). For example, if the current namespace is enclave_01, and

enclave_01 has imported another namespace call sri. In namespace sri, there is an

attribute role, then using this attribute in enclave_01 is like sri.role.

A critical feature of Parole is to calculate risk per request using fuzzy logic. This

function is achieved through rule riskFB. The use of riskFB function requires pre-

defined file written in fuzzy control language (fcl), and the input parameters defined

in the .fcl file. These parameters are then evaluated using the API provided by

jFuzzyLogic package (Cingolani and Alcalá-Fdez, 2013).

79

Chapter 7

Experimental Evaluation

7.1 Setup Experimental Environment

The experiment environment is demonstrated in Figure 21.This environment is used

to test the use case described in 5.3 Example: Lab Assets Access. There are three

separate networks identified using different colors. As it is indicated in the figure, the

access request is directly sent to PEP using 10.0.0.1 network. Resources are isolated

in 20.0.0.1 network and can be accessed through PEP once it has got the "allow" signal

from PDP.

Figure 21 Experimental Environment

In PIP, it uses MongoDB4 to store the related contextual attributes. These attributes

will then be retrieved by PDP and used in policy execution. Table 7 lists the contextual

attributes used in the experiment. Attributes generally come from two sources: from

the request, and from PIP.

4 https://www.mongodb.com/docs/

https://www.mongodb.com/docs/

80

Table 7 Contextual Attributes For Experiment

 Context Source Context Value

Request/User Provided

Role
sri_member

gpu_admin

Name Shiyu Xiao

Device.Name DESKTOP - IJEQPSD

Target enclave_01.gpu.t4

Action execute

PIP.enclave_01

name

V100

A100

T4

address

192.168.200.4

192.168.200.5

192.168.200.6

manufacturer

NVIDIA

NVIDIA

NVIDIA

status

active

active

active

value
100000

160000

In PAROLE, the attributes from the request will be identified by prefix REQ.. As for

the context stored in the PIP, they are will first be stored in the database which is PIP

in this experiment. Then, it needs two MongoDB collections: enclave_01 and sri.

Collection enclave_01 is used to store the attributes of GPU resources, and collection

sri is used to store the information about the users in organisation sri. Then these

context are declared in the corresponding namespaces, see following code snippet. The

absolute path to the namespace holding the attribute is the same with the path to

finding it in the database. It needs to be noticed these attributes should not be initialised

with default value, as the values of these attributes are retrieved from PIP and cannot

changed using PAROLE script.

namespace enclave_01{

 namespace gpu{

 string name, addr, manufacturer, status;

 real value;

 …

 }

}

namespace sri {

 namespace member{

 string name, role, password, expireDate;

 namespace device{

 string name, ip, manufacturer;

 }

}

81

 60000

PIP.sri.member

name

Shiyu Xiao

Yuhang Ye

Xiangyu Liu

role

Research Assistant, gpu_admin

Lecturer

Student

device.name

DESKTOP - IJEQPSD

yuhang - aw - x14

xyliu - xps - sri

device.ip

192.168.201.3

192.168.201.4

192.168.201.5

device.manufacturer

Dell Inc.

Intel Corporate

Rivet Networks

expireDate

Never

Never

Never

As for PAROLE itself, it is deployed in PDP+PA server. This server has OpenJDK

11.0.18 installed. The parsing of PAROLE language is using "antlr4-4.9.2.jar 5 "

package. The connection between PDP and PIP (MongoDB) is supported by "mongo-

java-driver-3.12.13.jar6" package. And the risk calculation in PAROLE is through the

api provided by "jFuzzyLogic-1.0.jar7" package to evaluated pre-defined fcl files.

7.2 Experimental Process

Firstly, User Desktop the host sends http request to the PEP. The https request sent by

the user contains some contextual information. As it is showed in Figure 22, there are

two kinds of requests with different value of the field role, one being sri_member, the

other being gpu_admin. These two requests aim to test the functionality of the main

language constructs of PAROLE to see if they work fine with different context. There

is an http server running in PEP to receive the request and extract context data within

the request. Then the context data is forwarded the request to PDP in the JSON format.

5 https://repo1.maven.org/maven2/org/antlr/antlr4/4.9.2/

6 https://mvnrepository.com/artifact/org.mongodb/mongo-java-driver/3.12.13

7 https://sourceforge.net/projects/jfuzzylogic/files/jfuzzylogic/jFuzzyLogic.jar/download

https://repo1.maven.org/maven2/org/antlr/antlr4/4.9.2/
https://mvnrepository.com/artifact/org.mongodb/mongo-java-driver/3.12.13

82

Figure 22 Context Data in Request

Then PAROLE retrieves the request and starts evaluation. It first ensures the target

in the request does exist in the corresponding namespace. In the experiment, the use

aims to access the resource t4 in enclave_01.gpu. Then it starts to use authRule to

check the role of the user. As it is indicated in the following code snippet, the first

authRule checks if the user’s role is sri_member by checking the value of field name in

the request is in the collection sri_member, and the second one checks if the user’s role

is gpu_admin by checking the value of field name in the request is in the collection

sri_member and has the role of gpu-admin. As the role gpu_admin has more priority

than the sri_member, its authRule is more complex and thus defines more constraints.

Successful evaluation of authRule will return the message Authentication passed!,

otherwise the program will terminate and output error message.

 authRule sri_member {

 REQ.name in sri.member;

 }

 authRule gpu_admin {

 REQ.name in find(sri.member, (role="gpu-admin"))

 && REQ.device.name in sri.member.device;

 }

After a successful authRule authentication, it then starts session authentication. It first

checks the value of action field in the request, and then uses the related rules based

on the role. As it is indicated in the code snippet below, the user of role sri_member

only needs to ensure the risk of his/her request not higher than medium level, while a

gpu_admin needs lower risk score to gain access permission. Risk calculation of a

request is invoked by using RiskFB which takes in pre-defined fcl file and followed

with the parameters required in the fcl file. In the experiment, to calculate the risk of

the request launched by a sri_member requires the value of the resource and this user’s

historical score, see Appendix C

83

while the risk of request launched by gpu_admin only needs to evaluate the historical

score, see Appendix D. Then based on the risk level, it can decide if the request is

allowed or not.

session execute{

 //calculate risks

 sri_member:

 RiskFB(sri_member.fcl, value, history) <= "medium";

 gpu_admin:

 RiskFB(gpu_admin.fcl, history) <= "low";

 //REQ.location == "sri", freq = 6000;

 }

The success of passing the session evaluation will return an allow, which remarks the

user is allowed to access the required resource.

7.3 Experimental Result

Here are the experimental results to the request with the value of field role is

sri_member and gpu_admin. Figure 23 and Figure 25 display the failed situation and

output where the error occurs. Both situations fail because of a low history score

making the risk score over the threshold defined in the script. The calculation of a

requester's historical score, while an important factor in some systems, is considered

a separate task typically associated with risk assessment. The rationale behind

excluding the calculation of the history score within the scope of this project is based

on the assumption that such information, i.e., the historical score, would be readily

available from another component within the system. Therefore, in the program it is

substituted with a random integer between [1,10]. It needs to be noticed they both have

a Authentication passed! output, which means the evaluation on authRule is passed.

Figure 24 and Figure 26 are the successful situations. Both situations have passed the

authRule evaluation and session evaluation, so there is an allow returned in the end.

84

Figure 23 User Fail to Access Resource using role sri_member

Figure 24 User Succeed to Access Resource using role sri_member

85

Figure 25 User Fail to Access Resource using role gpu_admin

Figure 26 User Succeed to Access Resource using role gpu_admin

86

Chapter 8

Conclusion and Future Work

8.1 Conclusion

This thesis has reviewed previous research in CAAC and risk and trust in access

control with a goal to identify common concepts and themes in these fields and to

examine their potential use in ZT security models. It is found that there are indeed

many underlying commonalities across the various research works and that many of

these ideas can be, and in some cases, and are being applied to ZT models and

deployments.

Based on the findings, this thesis presents the specification of a policy language called

PAROLE that is specially designed to handle the context in the zero-trust based system.

PAROLE’s interpreter is implemented using ANTLR parser generator and Java

programming language. It is also verified in the thesis that PAROLE can give correct

access decision based on the context of the requester.

8.2 Future Work

The future work of this project includes:

• Using the framework like Xtext8 to create an IDE for PAROLE. The IDE

will include the features e.g., code completion and code insight, so that the

developers program faster and easier.

• The experiment in the project tests the functions of PAROLE to handle

context in simple network environment. In the future, it needs to be further

tested and validated in a more complex network setting, involving various

IoT devices, fuzzy logic, and a more comprehensive zero-trust environment.

8 https://www.eclipse.org/Xtext/

https://www.eclipse.org/Xtext/

87

Glossary

ABAC Attribute Based Access Control

AC Access Control

AH Accepting Host

ANTLR ANother Tool for Language

Recognition

APT Advanced Persistent Threats

BLP Bell-LaPadula

BYOD Bring Your Own Device

CAAC Context-Aware Access Control

CDM Continuous Diagnostics and

Mitigation

CIA Confidentiality-Integrity-Availability

DAC Discretionary Access Control

DMZ Demilitarised Zones

DRM Digital Rights Management

DSL Domain-Specific Language

EBNF Extended Backus-Naur Form

GLP General-purpose Language

IH Initiating Host

IoT Internet of Things

MAC Mandatory Access Control

MTLS Mutual Transport Layer Security

NGF Next-Generation Firewall

NGF Next-Generation Firewall

NV Network Virtualisation

OT Operational Technology

PA Policy Administrator

PDP Policy Decision Point

PE Policy Engine

PEP Policy Enforcement Point

PL Permission Label

PoLP Principle of Least Privilege

QoS Quality of Service

RAdAC Risk-Adaptive Access Control

RBAC Role-Based Access Control

SDN Software Defined Network

SDP Software Defined Perimeter

SG Segmentation Gateway

SoD Separation of Duty

SoK Systematisation of Knowledge

SQL Structured Query Language

TI Trust Indicator

TLEE Trust Level Evaluation Engine

UCON Usage Control

VN Virtual Network

VO Virtual Organisation

ZT Zero Trust

ZTN Zero Trust Networking

ZTA Zero Trust Architecture

88

Reference

Abbasi, A.A., Shamshirband, S., Al-qaness, M.A., Abbasi, A., AL-Jallad, N.T.,

Mosavi, A., 2020. Resource-aware network topology management framework.

ArXiv Prepr. ArXiv200300860.

Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P., 1999.

Towards a Better Understanding of Context and Context-Awareness, in:

Gellersen, H.-W. (Ed.), Handheld and Ubiquitous Computing, Lecture Notes

in Computer Science. Springer, Berlin, Heidelberg, pp. 304–307.

https://doi.org/10.1007/3-540-48157-5_29

Abowd, G.D., Mynatt, E.D., 2000. Charting past, present, and future research in

ubiquitous computing. ACM Trans. Comput.-Hum. Interact. 7, 29–58.

https://doi.org/10.1145/344949.344988

Ahmed, M., Mahmood, A.N., Hu, J., 2016. A survey of network anomaly detection

techniques. J. Netw. Comput. Appl. 60, 19–31.

Aich, S., Sural, S., Majumdar, A.K., 2007. STARBAC: Spatiotemporal Role Based

Access Control, in: Meersman, R., Tari, Z. (Eds.), On the Move to Meaningful

Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS, Lecture

Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 1567–1582.

https://doi.org/10.1007/978-3-540-76843-2_32

Almutairi, A., Siewe, F., 2011. CA-UCON: a context-aware usage control model, in:

Proceedings of the 5th ACM International Workshop on Context-Awareness

for Self-Managing Systems. pp. 38–43.

Armando, A., Bezzi, M., Di Cerbo, F., Metoui, N., 2015. Balancing trust and risk in

access control, in: On the Move to Meaningful Internet Systems: OTM 2015

Conferences: Confederated International Conferences: CoopIS, ODBASE,

and C&TC 2015, Rhodes, Greece, October 26-30, 2015. Proceedings. Springer,

pp. 660–676.

Bai, G., Gu, L., Feng, T., Guo, Y., Chen, X., 2010. Context-Aware Usage Control for

Android, in: SecureComm. https://doi.org/10.1007/978-3-642-16161-2_19

89

Banks, A.S., Kisiel, M., Korsholm, P., 2021. Remote attestation: a literature review.

ArXiv Prepr. ArXiv210502466.

Bernal Bernabe, J., Hernandez Ramos, J.L., Skarmeta Gomez, A.F., 2016. TACIoT:

multidimensional trust-aware access control system for the Internet of Things.

Soft Comput. 20, 1763–1779.

Bertino, E., Bonatti, P.A., Ferrari, E., 2001. TRBAC: A temporal role-based access

control model. ACM Trans. Inf. Syst. Secur. 4, 191–233.

https://doi.org/10.1145/501978.501979

Bertino, E., Catania, B., Damiani, M.L., Perlasca, P., 2005. GEO-RBAC: a spatially

aware RBAC, in: Proceedings of the Tenth ACM Symposium on Access

Control Models and Technologies - SACMAT ’05. Presented at the the tenth

ACM symposium, ACM Press, Stockholm, Sweden, p. 29.

https://doi.org/10.1145/1063979.1063985

Brent, E., Leedy, P.D., 2016. Practical Research: Planning and Design. Teach. Sociol.

18, 248. https://doi.org/10.2307/1318509

Buck, C., Olenberger, C., Schweizer, A., Völter, F., Eymann, T., 2021. Never trust,

always verify: A multivocal literature review on current knowledge and

research gaps of zero-trust. Comput. Secur. 110, 102436.

Bunningen, A., Feng, L., Apers, P., 2005. Context for Ubiquitous Data Management.

pp. 17–24. https://doi.org/10.1109/UDM.2005.7

Ceccarelli, A., Bondavalli, A., Brancati, F., La Mattina, E., 2012. Improving security

of internet services through continuous and transparent user identity

verification, in: 2012 IEEE 31st Symposium on Reliable Distributed Systems.

IEEE, pp. 201–206.

Cheng, P.-C., Rohatgi, P., Keser, C., Karger, P.A., Wagner, G.M., Reninger, A.S.,

2007a. Fuzzy multi-level security: An experiment on quantified risk-adaptive

access control, in: 2007 IEEE Symposium on Security and Privacy (SP’07).

IEEE, pp. 222–230.

Cheng, P.-C., Rohatgi, P., Keser, C., Karger, P.A., Wagner, G.M., Reninger, A.S.,

2007b. Fuzzy Multi-Level Security: An Experiment on Quantified Risk-

90

Adaptive Access Control, in: 2007 IEEE Symposium on Security and Privacy

(SP ’07). pp. 222–230. https://doi.org/10.1109/SP.2007.21

Chowdhury, N.M.M.K., Boutaba, R., 2010. A survey of network virtualization.

Comput. Netw. 54, 862–876. https://doi.org/10.1016/j.comnet.2009.10.017

Chukkapalli, S.S.L., Piplai, A., Mittal, S., Gupta, M., Joshi, A., 2020. A Smart-

Farming Ontology for Attribute Based Access Control, in: 2020 IEEE 6th Intl

Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl

Conference on High Performance and Smart Computing, (HPSC) and IEEE

Intl Conference on Intelligent Data and Security (IDS). Presented at the 2020

IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity),

IEEE Intl Conference on High Performance and Smart Computing, (HPSC)

and IEEE Intl Conference on Intelligent Data and Security (IDS), pp. 29–34.

https://doi.org/10.1109/BigDataSecurity-HPSC-IDS49724.2020.00017

Cingolani, P., Alcalá-Fdez, J., 2013. jFuzzyLogic: a Java Library to Design Fuzzy

Logic Controllers According to the Standard for Fuzzy Control Programming:

Int. J. Comput. Intell. Syst. 6, 61.

https://doi.org/10.1080/18756891.2013.818190

Claudio Agostino Ardagna, Marco Cremonini, Sabrina De Capitani di Vimercati,

Pierangela Samarati, 2008. A privacy-aware access control system [WWW

Document]. ResearchGate. https://doi.org/10.3233/JCS-2008-0328

Computer Security Division, I.T.L., 2016. SP 800-162, Guide to ABAC Definition

and Considerations | CSRC [WWW Document]. CSRC NIST. URL

https://content.csrc.e1a.nist.gov/News/2014/SP-800-162,-Guide-to-ABAC-

Definition-and-Considera (accessed 2.8.21).

Corrad, A., Montanari, R., Tibaldi, D., 2004. Context-based access control

management in ubiquitous environments, in: Third IEEE International

Symposium on Network Computing and Applications, 2004.(NCA 2004).

Proceedings. IEEE, pp. 253–260.

Covington, M.J., Sastry, M.R., 2006. A Contextual Attribute-Based Access Control

Model, in: Meersman, R., Tari, Z., Herrero, P. (Eds.), On the Move to

Meaningful Internet Systems 2006: OTM 2006 Workshops, Lecture Notes in

91

Computer Science. Springer, Berlin, Heidelberg, pp. 1996–2006.

https://doi.org/10.1007/11915072_108

Creswell, J., Guetterman, T., 2018. Educational Research: Planning, Conducting, and

Evaluating Quantitative and Qualitative Research, 6th Edition.

Creswell, J.W., 2009. Research design: qualitative, quantitative, and mixed methods

approaches, 3rd ed. ed. Sage Publications, Thousand Oaks, Calif.

Cunningham, C., 2018. The Zero Trust eXtended (ZTX) Ecosystem 15.

Cunningham, C., Holmes, D., Pollard, J., 2019. The Eight Business And Security

Benefits Of Zero Trust.

Damianou, N., Dulay, N., Lupu, E., Sloman, M., 2001. The Ponder Policy

Specification Language, in: Sloman, M., Lupu, E.C., Lobo, J. (Eds.), Policies

for Distributed Systems and Networks, Lecture Notes in Computer Science.

Springer, Berlin, Heidelberg, pp. 18–38. https://doi.org/10.1007/3-540-44569-

2_2

Dimitrakos, T., Dilshener, T., Kravtsov, A., La Marra, A., Martinelli, F., Rizos, A.,

Rosetti, A., Saracino, A., 2020. Trust Aware Continuous Authorization for

Zero Trust in Consumer Internet of Things, in: 2020 IEEE 19th International

Conference on Trust, Security and Privacy in Computing and Communications

(TrustCom). Presented at the 2020 IEEE 19th International Conference on

Trust, Security and Privacy in Computing and Communications (TrustCom),

pp. 1801–1812. https://doi.org/10.1109/TrustCom50675.2020.00247

Dutta, S., Chukkapalli, S.S.L., Sulgekar, M., Krithivasan, S., Das, P.K., Joshi, A.,

2020. Context Sensitive Access Control in Smart Home Environments, in:

2020 IEEE 6th Intl Conference on Big Data Security on Cloud

(BigDataSecurity), IEEE Intl Conference on High Performance and Smart

Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and

Security (IDS). Presented at the 2020 IEEE 6th Intl Conference on Big Data

Security on Cloud (BigDataSecurity), IEEE Intl Conference on High

Performance and Smart Computing, (HPSC) and IEEE Intl Conference on

Intelligent Data and Security (IDS), IEEE, Baltimore, MD, USA, pp. 35–41.

https://doi.org/10.1109/BigDataSecurity-HPSC-IDS49724.2020.00018

92

Elliott, A., Knight, S., 2010. Role Explosion: Acknowledging the Problem. Presented

at the Software Engineering Research and Practice.

Equation Group: Questions And Answers, 2015. . Kaspersky Lab HQ 44.

Evolving Zero Trust, 2021. . Microsoft Corporation, p. 9.

eXtensible Access Control Markup Language (XACML) Version 3.0 Plus Errata 01,

2017.

Ferraiolo, D., Kuhn, D., 1992. Role Based Access Control. 15th National Computer

Security Conference: 554-563.

Ferraiolo, D.F., Barkley, J.F., Kuhn, D.R., 1999. A role-based access control model

and reference implementation within a corporate intranet. ACM Trans. Inf.

Syst. Secur. TISSEC 2, 34–64.

Ferraiolo, D.F., Kuhn, D.R., 2009. Role-Based Access Controls. ArXiv09032171 Cs.

Fuzzy Control Programming, 1997.

Gao, Z., Bird, C., Barr, E.T., 2017. To Type or Not to Type: Quantifying Detectable

Bugs in JavaScript, in: 2017 IEEE/ACM 39th International Conference on

Software Engineering (ICSE). Presented at the 2017 IEEE/ACM 39th

International Conference on Software Engineering (ICSE), pp. 758–769.

https://doi.org/10.1109/ICSE.2017.75

Getting Started with Zero Trust Access Management Trust Begins with Secure

Identity | Okta [WWW Document], 2021. URL

https://www.okta.com/resources/whitepaper/zero-trust-with-okta-modern-

approach-to-secure-access/ (accessed 1.13.22).

Gilman, E., Barth, D., 2017. Zero Trust Networks [Book], 1st ed. O’Reilly Media.

Guo, J., 1997. Critical Tokenization and its Properties. Comput. Linguist. 23, 569–

596.

Gupta, M., Benson, J., Patwa, F., Sandhu, R., 2019. Dynamic Groups and Attribute-

Based Access Control for Next-Generation Smart Cars.

https://doi.org/10.1145/3292006.3300048

Hansche, S., 2003. Official (ISC)℗ø guide to the CISSP exam. Boca Raton, Fl :

Auerbach Publications.

93

Harris, L., 2003. Home‐based teleworking and the employment relationship:

Managerial challenges and dilemmas. Pers. Rev. 32, 422–437.

https://doi.org/10.1108/00483480310477515

Henricksen, K., 2003. A Framework for Context-Aware Pervasive Computing

Applications. The University of Queensland.

Hilbert, F., Katranuschkov, P., Scherer, R.J., 2010. Dynamic context-aware

information access in virtual organizations 6.

Hu, V., Kuhn, R., Yaga, D., 2017. Verification and Test Methods for Access Control

Policies/Models (No. NIST Special Publication (SP) 800-192). National

Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-

192

Hu, V.C., Ferraiolo, D., Kuhn, R., Friedman, A.R., Lang, A.J., Cogdell, M.M.,

Schnitzer, A., Sandlin, K., Miller, R., Scarfone, K., others, 2013. Guide to

attribute based access control (abac) definition and considerations (draft).

NIST Spec. Publ. 800, 1–54.

Jafarian, J.H., Amini, M., 2009. CAMAC: a context-aware mandatory access control

model. ISC Int. J. Inf. Secur. 1, 35–54.

https://doi.org/10.22042/isecure.2015.1.1.5

Jeff Williams, n.d. OWASP Risk Rating Methodology | OWASP Foundation [WWW

Document]. URL https://owasp.org/www-

community/OWASP_Risk_Rating_Methodology (accessed 5.22.23).

Joint Task Force Transformation Initiative, 2011. Managing information security risk ::

organization, mission, and information system view (No. NIST SP 800-39).

National Institute of Standards and Technology, Gaithersburg, MD.

https://doi.org/10.6028/NIST.SP.800-39

Jøsang, A., Presti, S.L., 2004. Analysing the relationship between risk and trust, in:

Trust Management: Second International Conference, ITrust 2004, Oxford,

UK, March 29-April 1, 2004. Proceedings 2. Springer, pp. 135–145.

Kagal, L., 2002. Rei : A Policy Language for the Me-Centric Project.

Kandala, S., Sandhu, R., Bhamidipati, V., 2011. An Attribute Based Framework for

Risk-Adaptive Access Control Models, in: 2011 Sixth International

94

Conference on Availability, Reliability and Security. Presented at the 2011

Sixth International Conference on Availability, Reliability and Security, pp.

236–241. https://doi.org/10.1109/ARES.2011.41

Karthik, N., Dhulipala, V.R.S., 2011. Trust calculation in wireless sensor networks,

in: 2011 3rd International Conference on Electronics Computer Technology.

Presented at the 2011 3rd International Conference on Electronics Computer

Technology, pp. 376–380. https://doi.org/10.1109/ICECTECH.2011.5941924

Kayes, A.S.M., Han, J., Rahayu, W., Islam, M.S., Colman, A., 2017. A Policy Model

and Framework for Context-Aware Access Control to Information Resources.

ArXiv170302162 Cs.

Kayes, A.S.M., Kalaria, R., Sarker, I.H., Islam, M., Watters, P.A., Ng, A.,

Hammoudeh, M., Badsha, S., Kumara, I., 2020. A survey of context-aware

access control mechanisms for cloud and fog networks: Taxonomy and open

research issues. Sensors 20, 2464.

Kim, H., Lee, E.A., 2017. Authentication and Authorization for the Internet of Things.

IT Prof. 19, 27–33.

Kindervag, J., 2010. No More Chewy Centers: Introducing The Zero Trust Model Of

Information Security 15.

Kindervag, J., Balaouras, S., Coit, L., 2010. Build Security Into Your Network’s DNA:

The Zero Trust Network Architecture 27.

Kulkarni, D., Tripathi, A., 2008. Context-aware role-based access control in pervasive

computing systems, in: Proceedings of the 13th ACM Symposium on Access

Control Models and Technologies, SACMAT ’08. Association for Computing

Machinery, New York, NY, USA, pp. 113–122.

https://doi.org/10.1145/1377836.1377854

Manchala, D.W., 2000. E-commerce trust metrics and models. IEEE Internet Comput.

4, 36–44. https://doi.org/10.1109/4236.832944

Mayfield, T., Roskos, J.E., Welke, S., Boone, J., McDonald, C., 1991. Integrity in

Automated Information Systems. https://doi.org/10.21236/ada245555

95

Moubayed, A., Refaey, A., Shami, A., 2019. Software-Defined Perimeter (SDP): State

of the Art Secure Solution for Modern Networks. IEEE Netw. 33, 226–233.

https://doi.org/10.1109/MNET.2019.1800324

Ni, Q., Bertino, E., Lobo, J., 2010. Risk-based access control systems built on fuzzy

inferences, in: Proceedings of the 5th ACM Symposium on Information,

Computer and Communications Security, ASIACCS ’10. Association for

Computing Machinery, Beijing, China, pp. 250–260.

https://doi.org/10.1145/1755688.1755719

Okoli, C., 2015. A Guide to Conducting a Standalone Systematic Literature Review.

Commun. Assoc. Inf. Syst. 37. https://doi.org/10.17705/1CAIS.03743

Osborn, B., McWilliams, J., Beyer, B., Saltonstall, M., 2016a. BeyondCorp: Design

to deployment at Google.

Osborn, B., McWilliams, J., Beyer, B., Saltonstall, M., 2016b. BeyondCorp: Design

to deployment at Google.

Ouechtati, H., Azzouna, N.B., 2017. Trust-abac towards an access control system for

the internet of things, in: Green, Pervasive, and Cloud Computing: 12th

International Conference, GPC 2017, Cetara, Italy, May 11-14, 2017,

Proceedings 12. Springer, pp. 75–89.

Park, J., Sandhu, R., 2004. The UCON ABC usage control model. ACM Trans. Inf. Syst.

Secur. TISSEC 7, 128–174. https://doi.org/10.1145/984334.984339

Parr, T., 2013. The Definitive ANTLR 4 Reference, 2nd ed. Pragmatic Bookshelf.

Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S., 2007. A Design Science

Research Methodology for Information Systems Research. J. Manag. Inf. Syst.

24, 45–77. https://doi.org/10.2753/MIS0742-1222240302

Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D., 2014. Context Aware

Computing for The Internet of Things: A Survey. IEEE Commun. Surv. Tutor.

16, 414–454. https://doi.org/10.1109/SURV.2013.042313.00197

Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D., 2013. Context aware

computing for the internet of things: A survey. IEEE Commun. Surv. Tutor.

16, 414–454.

96

Picard, N., Colin, J., Zampuniéris, D., 2018a. Context-aware and Attribute-based

Access Control Applying Proactive Computing to IoT System, in: IoTBDS.

https://doi.org/10.5220/0006815803330339

Picard, N., Colin, J.-N., Zampunieris, D., 2018b. Context-aware and Attribute-based

Access Control Applying Proactive Computing to IoT System:, in:

Proceedings of the 3rd International Conference on Internet of Things, Big

Data and Security. Presented at the Special Session on Recent Advances on

Security, Privacy, Big Data and Internet of Things, SCITEPRESS - Science

and Technology Publications, Funchal, Madeira, Portugal, pp. 333–339.

https://doi.org/10.5220/0006815803330339

Ray, I., Toahchoodee, M., 2007. A Spatio-temporal Role-Based Access Control

Model. pp. 211–226. https://doi.org/10.1007/978-3-540-73538-0_16

Resnick, P., Kuwabara, K., Zeckhauser, R., Friedman, E., 2000. Reputation systems.

Commun. ACM 43, 45–48. https://doi.org/10.1145/355112.355122

Rose, S., Borchert, O., Mitchell, S., Connelly, S., 2020. Zero Trust Architecture (No.

NIST Special Publication (SP) 800-207). National Institute of Standards and

Technology. https://doi.org/10.6028/NIST.SP.800-207

Rose, S., Borchert, O., Mitchell, S., Connelly, S., 2019. Zero trust architecture.

National Institute of Standards and Technology.

Ross, R.S., 2018. Risk Management Framework for Information Systems and

Organizations: A System Life Cycle Approach for Security and Privacy. NIST.

Sacco, O., Breslin, J.G., Decker, S., 2013. Fine-Grained Trust Assertions for Privacy

Management in the Social Semantic Web, in: 2013 12th IEEE International

Conference on Trust, Security and Privacy in Computing and Communications.

Presented at the 2013 12th IEEE International Conference on Trust, Security

and Privacy in Computing and Communications, pp. 218–225.

https://doi.org/10.1109/TrustCom.2013.30

Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E., 1996. Role-based access

control models. Computer 29, 38–47. https://doi.org/10.1109/2.485845

97

Sarkar, S., Choudhary, G., Shandilya, S.K., Hussain, A., Kim, H., 2022. Security of

zero trust networks in cloud computing: A comparative review. Sustainability

14, 11213.

Schefer-Wenzl, S., Strembeck, M., 2012. Modeling Context-Aware RBAC Models for

Business Processes in Ubiquitous Computing Environments. Presented at the

Proceedings - 2012 3rd FTRA International Conference on Mobile, Ubiquitous,

and Intelligent Computing, MUSIC 2012.

https://doi.org/10.1109/MUSIC.2012.29

Schilit, B., Adams, N., Want, R., 1994. Context-Aware Computing Applications, in:

1994 First Workshop on Mobile Computing Systems and Applications.

Presented at the 1994 First Workshop on Mobile Computing Systems and

Applications, pp. 85–90. https://doi.org/10.1109/WMCSA.1994.16

Schilit, B.N., Theimer, M.M., 1994. Disseminating active map information to mobile

hosts. IEEE Netw. 8, 22–32. https://doi.org/10.1109/65.313011

Seamons, K.E., Winslett, M., Ting Yu, Smith, B., Child, E., Jacobson, J., Mills, H.,

Lina Yu, 2002. Requirements for policy languages for trust negotiation, in:

Proceedings Third International Workshop on Policies for Distributed Systems

and Networks. Presented at the Proceedings Third International Workshop on

Policies for Distributed Systems and Networks, pp. 68–79.

https://doi.org/10.1109/POLICY.2002.1011295

Seixas, N., Fonseca, J., Vieira, M., Madeira, H., 2009. Looking at Web Security

Vulnerabilities from the Programming Language Perspective: A Field Study,

in: 2009 20th International Symposium on Software Reliability Engineering.

Presented at the 2009 20th International Symposium on Software Reliability

Engineering, pp. 129–135. https://doi.org/10.1109/ISSRE.2009.30

Shameli-Sendi, A., Dagenais, M., Wang, L., 2018. Realtime intrusion risk assessment

model based on attack and service dependency graphs. Comput. Commun. 116,

253–272.

Sheikh, N., Pawar, M., Lawrence, V., 2021. Zero trust using network micro

segmentation, in: IEEE INFOCOM 2021-IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS). IEEE, pp. 1–6.

98

Software-Defined Perimeter (SDP) and Zero Trust [WWW Document], 2020. . CSA.

URL https://cloudsecurityalliance.org/artifacts/software-defined-perimeter-

and-zero-trust/ (accessed 5.31.23).

Software-Defined Perimeter (SDP) Specification v2.0 | CSA [WWW Document],

2022. URL https://cloudsecurityalliance.org/artifacts/software-defined-

perimeter-zero-trust-specification-v2/ (accessed 5.31.23).

Su, L., 2010. User behaviour based access control decision, in: 2010 International

Conference on E-Business and E-Government. IEEE, pp. 1372–1376.

Tutorial: A Beginner’s Guide to XACML (Part 2) Getting Started with ALFA [WWW

Document], n.d. . Axiomatics. URL

https://www.axiomatics.com/resources/tutorial-a-beginers-guide-to-xacml-

part-2-getting-started-with-alfa/ (accessed 11.19.21).

US Department of Defense, 1985. Department of Defense Trusted Computer System

Evaluation Criteria, in: US Department of Defense (Ed.), The ‘Orange Book’

Series. Palgrave Macmillan UK, London, pp. 1–129.

https://doi.org/10.1007/978-1-349-12020-8_1

Vanickis, R., Jacob, P., Dehghanzadeh, S., Lee, B., 2018. Access Control Policy

Enforcement for Zero-Trust-Networking, in: 2018 29th Irish Signals and

Systems Conference (ISSC). Presented at the 2018 29th Irish Signals and

Systems Conference (ISSC), pp. 1–6.

https://doi.org/10.1109/ISSC.2018.8585365

Vincentis, M.D., 2017. Micro‐segmentation For Dummies®, 2nd VMware Special

Edition, 2nd ed. John Wiley & Sons, Inc., 111 River St. Hoboken, NJ 07030‐

5774.

Ward, R., Beyer, B., 2014. Beyondcorp: A new approach to enterprise security.

Weiser, M., 1999. The computer for the 21st century. ACM SIGMOBILE Mob.

Comput. Commun. Rev. 3, 3–11. https://doi.org/10.1145/329124.329126

Williams, C., 2007. Research Methods. J. Bus. Econ. Res. JBER 5.

https://doi.org/10.19030/jber.v5i3.2532

Winkler, T., Haller, J., Gimpel, H., Weinhardt, C., 2007. Trust indicator modeling for

a reputation service in virtual organizations.

99

Xiong, L., Liu, L., 2004. PeerTrust: supporting reputation-based trust for peer-to-peer

electronic communities. IEEE Trans. Knowl. Data Eng. 16, 843–857.

https://doi.org/10.1109/TKDE.2004.1318566

Yaici, M., Ainennas, F., Zidi, N., 2019. Context-Aware Trust-Based Access Control

for Ubiquitous Systems, in: CS & IT Conference Proceedings. CS & IT

Conference Proceedings.

Yan, Z., Li, X., Wang, M., Vasilakos, A.V., 2015. Flexible data access control based

on trust and reputation in cloud computing. IEEE Trans. Cloud Comput. 5,

485–498.

Yang, K., Liu, Z., Cao, Z., Jia, X., Wong, D.S., Ren, K., 2012. Taac: Temporal

attribute-based access control for multi-authority cloud storage systems.

Cryptol. EPrint Arch.

Yao, J., Venkitasubramaniam, P., Kishore, S., Snyder, L.V., Blum, R.S., 2017.

Network topology risk assessment of stealthy cyber attacks on advanced

metering infrastructure networks, in: 2017 51st Annual Conference on

Information Sciences and Systems (CISS). IEEE, pp. 1–6.

Ye Tian, Yanbin Peng, Gaimei Gao, Xinguang Peng, 2017. Role-based Access

Control for Body Area Networks Using Attribute-based Encryption in Cloud

Storage. Int. J. Netw. Secur. 19. https://doi.org/10.6633/IJNS.201709.19(5).09

Zero Trust Maturity Model | CISA [WWW Document], 2023. URL

https://www.cisa.gov/publication/zero-trust-maturity-model (accessed

1.13.22).

100

Appendix A

PRAOLE Policy Language Syntax

grammar Parole;

paroleProgram: namespace*;

namespace: PE_NAMESPACE ID '{' (importStmt | paroleStruct)* '}';

importStmt: IMPORT composed_id ('.*')? ';' ;

composed_id: ID (.ID)*;

paroleStruct: attrDecl | authRule | session | namespace;

attrDecl: attrType ID (',' ID)* ';' ;

attrType: T_REAL | T_INT | T_STRING | T_BOOLEAN;

authRule: PE_AUTHRULE ID '{' statement* '}';

session: PE_SESSION action '{'role_session* '}';

action: EXECUTE | READ | WRITE | DELETE;

role_session: ID ':' statement*;

statement: expression';';

expression: findExpr |

 riskFB |

 expression '.' expression |

 expression 'in' expression |

 expression op = ('<=' | '>=' | '>' | '<') expression |

 expression op=('!=' | '==') expression |

 expression op=('&&' | '||') expression |

 expression '=' expression |

 expression ',' expression |

 LITERAL | STRING| BOOLEAN | NULL | ID

 ;

findExpr: FIND '(' pip_name (',' '(' expression (','
expression)*')')* ')';

pip_name: composed_id;

riskFB: RISKFB '('composed_id (',' composed_id)* ')' ;

/********** Lexer **********/

/* Type */

T_REAL : 'real';

T_INT : 'int';

T_STRING: 'string';

101

T_BOOLEAN: 'boolean';

/* Keyword*/

PE_NAMESPACE: 'namespace';

PE_AUTHRULE: 'authRule';

PE_SESSION: 'session';

IMPORT: 'import';

EXECUTE: 'execute';

READ: 'read';

WRITE: 'write';

DELETE: 'delete';

FIND: 'find';

RISKFB: 'RiskFB';

LITERAL: INTLITERAL | REALITERAL ;

STRING: '"' (ESC|.)*? '"';

BOOLEAN: 'true' | 'false';

NULL: 'null';

ID : LETTER (LETTER | Digit | '_')*;

INTLITERAL: '-'? Digit+;

REALITERAL: '-'? Digit+'.'Digit+;

Digit : JavaIDDigit;

fragment ESC : '\\"' | '\\\\' ;

fragment LETTER

 : '\u0024' |

 '\u0041'..'\u005a' |

 '\u005f' |

 '\u0061'..'\u007a' |

 '\u00c0'..'\u00d6' |

 '\u00d8'..'\u00f6' |

 '\u00f8'..'\u00ff' |

 '\u0100'..'\u1fff' |

 '\u3040'..'\u318f' |

 '\u3300'..'\u337f' |

 '\u3400'..'\u3d2d' |

 '\u4e00'..'\u9fff' |

 '\uf900'..'\ufaff'

 ;

fragment JavaIDDigit

 : '\u0030'..'\u0039' |

 '\u0660'..'\u0669' |

 '\u06f0'..'\u06f9' |

 '\u0966'..'\u096f' |

 '\u09e6'..'\u09ef' |

 '\u0a66'..'\u0a6f' |

 '\u0ae6'..'\u0aef' |

 '\u0b66'..'\u0b6f' |

 '\u0be7'..'\u0bef' |

 '\u0c66'..'\u0c6f' |

 '\u0ce6'..'\u0cef' |

 '\u0d66'..'\u0d6f' |

 '\u0e50'..'\u0e59' |

102

 '\u0ed0'..'\u0ed9' |

 '\u1040'..'\u1049'

 ;

COMMENT : '/*' .*? '*/' -> skip // match anything between /* and */

 ;

WS : [\r\t\u000C\n]+ -> skip

 ;

LINE_COMMENT : '//' ~[\r\n]* '\r'? '\n' -> skip

 ;

103

Appendix B

Parole Script Example

namespace enclave_01{

 namespace gpu{

 string name, addr, manufacturer, status;

 real value;

 import sri.*;

 import sri.member.*;

 authRule sri_member {

 REQ.name in sri.member;

 }

 authRule gpu_admin {

 REQ.name in find(sri.member, (role="gpu_admin")) &&
REQ.device.name in sri.member;

 }

 session execute{

 //calculate risks

 sri_member:

 RiskFB(sri_member.fcl, value, history) <= "medium";

 gpu_admin:

 RiskFB(gpu_admin.fcl, history) <= "low";

 //REQ.location == "sri", freq = 6000;

 }

 }

}

/*

namespace db {

 namespace dataset{

 string name, category, sec_level;

 authRule db_admin{

 REQ.name in find(sri.member, (role="db_admin")) &&
REQ.device in sri.member.device;

 find(sri.member, (name=REQ.name, role="db_admin",
status="active")) != null;

 }

 session execute{

 db_admin:

104

 RiskFB(db_admin.fcl) <= "medium";

 }

 session write{

 db_admin:

 RiskFB(db_admin.fcl, history, sec_level) <= "low";

 REQ.location == "sri", freq = 60000;

 }

 session read{

 db_admin:

 RiskFB(db_admin.fcl, history) <= "low";

 REQ.location == "sri", freq = 60000;

 }

 session delete{

 db_admin:

 RiskFB(db_admin.fcl, history) <= "low";

 REQ.location == "sri", freq = 60000;

 }

 }

}

*/

namespace sri {

 namespace member{

 string name, role, password, expireDate;

 namespace device{

 string name, ip, manufacturer;

 }

 }

}

105

Appendix C

sri_member.fcl

FUNCTION_BLOCK sri_member

VAR_INPUT

 value : REAL;

 historical_access_records : REAL;

END_VAR

VAR_OUTPUT

 risk : REAL;

END_VAR

FUZZIFY value

 TERM low := (0, 1) (1000, 0);

 TERM medium := (900, 0) (1000, 1) (2500, 1) (10000, 0);

 TERM high := (2000, 0) (3000, 1) (30000, 1);

END_FUZZIFY

FUZZIFY historical_access_records

 TERM bad := (0, 1) (3, 0);

 TERM average := (2, 0) (5, 1) (8, 0);

 TERM good := (7, 0) (10, 1);

END_FUZZIFY

DEFUZZIFY risk

 TERM low := (0, 1) (3, 0);

 TERM medium := (2, 0) (5, 1) (8, 0);

 TERM high := (7, 0) (10, 1);

 METHOD : COG; // Center of Gravity defuzzification method

END_DEFUZZIFY

RULEBLOCK No1

 AND : MIN; // Use 'min' for 'and' (also implicit use 'max' for
'or' to fulfill DeMorgan's Law)

 ACT : MIN; // Use 'min' activation method

 ACCU: MAX;

 RULE 1 : IF historical_access_records IS bad THEN risk IS high;

 RULE 2 : IF value IS high AND historical_access_records IS good
THEN risk IS medium;

 RULE 3 : IF value IS high OR historical_access_records IS
average THEN risk IS high;

106

 RULE 4 : IF value IS medium AND historical_access_records IS
good THEN risk IS low;

 RULE 5 : IF value IS medium OR historical_access_records IS bad
THEN risk IS high;

 RULE 6 : IF value IS low AND historical_access_records IS
average THEN risk IS low;

 RULE 7 : IF value IS low AND historical_access_records IS bad
THEN risk IS medium;

 RULE 8 : IF value IS low OR historical_access_records IS good
THEN risk IS low;

END_RULEBLOCK

END_FUNCTION_BLOCK

107

Appendix D

gpu_admin.fcl

FUNCTION_BLOCK gpu_admin

VAR_INPUT

 historical_access_records : REAL;

END_VAR

VAR_OUTPUT

 risk: REAL;

END_VAR

FUZZIFY historical_access_records

 TERM bad := (0, 1) (3, 0);

 TERM average := (2, 0) (5, 1) (8, 0);

 TERM good := (7, 0) (10, 1);

END_FUZZIFY

DEFUZZIFY risk

 TERM low := (0, 1) (3, 0);

 TERM medium := (2, 0) (5, 1) (8, 0);

 TERM high := (7, 0) (10, 1);

 METHOD : COG; // Center of Gravity defuzzification method

END_DEFUZZIFY

RULEBLOCK No1

 AND : MIN; // Use 'min' for 'and' (also implicit use 'max' for
'or' to fulfill DeMorgan's Law)

 ACT : MIN; // Use 'min' activation method

 ACCU: MAX;

 RULE 1 : IF historical_access_records IS bad THEN risk IS high;

 RULE 2 : IF historical_access_records IS average THEN risk IS
medium;

 RULE 4 : IF historical_access_records IS good THEN risk IS low;

END_RULEBLOCK

END_FUNCTION_BLOCK

