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Abstract: The present study evaluated 53 Irish marine cyanobacteria intending to identify potential
producers of mycosporine-like amino acids (MAAs) to meet the increasing demand for replacing
chemical sunscreen with bio-sunscreen. The biodiscovery analysis using absorption spectra of
methanolic extracts identified eight cyanobacteria as potential MAAs producers with a specific
content of 0.114–0.511 A* mg DW−1. Leptolyngbya tenuis SABC010201 was found to possess notably
higher MAAs content. LC-MS analysis identified a total of eight different types of known MAAs
(mycosporine-glutamicol, mycosporine-glutaminol-glucoside, mycosporine-serinol, mycosporine-
taurine, palythine, palythine-threonine-sulphate, porphyra-334, and usujirene) in eight cyanobacteria,
while four compounds were considered unknown UV-absorbing compounds with specific mass and
absorption maximum. For example, two unknown compounds with, respectively, [M-H]- values
of 219.0557 and 289.0730 and lambda max of 314 and 326 nm, were detected in three cyanobac-
teria Leptolyngbya tenuis SABC010201, Phormidium angustissimum SABC020801, and Schizothrix sp.
SABC022401. These two unknown compounds were named M-314 and M-326, respectively. Antiox-
idant activities of total MAAs of all cyanobacteria showed considerable amounts of DPPH, FRAP,
and ORAC activities. Considering the specific MAAs content and antioxidant activities, Leptolyngbya
africana SABC021601 was considered the best producer of MAAs.

Keywords: antioxidant activities; marine cyanobacteria; LC-MS analysis; mycosporine-like amino
acids (MAAs); UV-screening compounds

1. Introduction

Cyanobacteria are Gram-negative, oxygen-evolving, photosynthetic organisms, which
have received much attention in recent years as a source of potentially bioactive molecules [1].
These organisms evolved during the Precambrian era, about 3.5 billion years ago [2], when
the absence of the stratospheric ozone layer aided in the penetration of harmful UV radia-
tions and made the aquatic environment stressful.

UV-radiation would have various cytotoxic effects on living organisms including UV-
induced DNA damage [3,4], fragmentation of cyanobacterial filaments, decline in cellular
growth [5,6], decreased alkaline phosphatase activity [7], and damage to photosynthetic
machinery, including degradation of the D1 proteins in photosystem II and nitrogenase
enzyme activity required for nitrogen fixation [8–11]. Cyanobacteria have developed
appropriate defence mechanisms to prevent themselves from the above harmful effects
of UV-radiations. One such mechanism is the biosynthesis of UV-screening compounds,
mycosporine-like amino acids (MAAs), which absorb UV radiation and dissipate its energy
harmlessly into the environment [12–14].

MAAs are secondary metabolites synthesised inherently by cyanobacteria, microalgae,
and other organisms, and their levels are enhanced upon exposure to harmful UV radia-
tion [15,16]. They are colourless, water-soluble, usually low molecular weight compounds
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(<400 Da) with absorption maxima between 310 nm and 360 nm. Recently, other types of
MAAs have been reported with molecular weights of 478 Da, 508 Da, or 612 Da, depending
on the types and numbers of sugars associated [17,18]. Another identified MAA has a
molecular mass of 1050 Da with two absorption peaks at 312 and 340 nm [17]. The structure
of MAAs constitutes a cyclohexenone or cyclohexenimine chromophore conjugated with
a nitrogen substituent of an amino acid or its imino alcohol. The differences between
MAAs absorption peaks are due to variations in the attached side groups and their nitrogen
substituents [19]. Certain MAAs may also contain sulphate esters or glycosidic linkages
through the imine substituents. MAAs possess both antiproliferative and antioxidant
activities when tested in vitro from several sources [20–22].

MAAs are considered multifunctional secondary metabolites involved in the overall
protection of many marine organisms including cyanobacteria. The inherent ability of
cyanobacteria to synthesise MAAs makes them the victors in the “survival of the fittest”
under various environmental stresses, particularly under high levels of UV-radiation.
Therefore, UV-screening MAAs have been investigated from a biotechnological perspective
and used in cosmetic applications [23]. However, only wild marine macroalgae [24],
and not cyanobacteria, have been explored for biotechnological benefits. In the present
investigation, therefore, we evaluated Irish marine cyanobacteria as potential producers
of MAAs and tested their antioxidant activities (DPPH, FRAP, and ORAC) from the point
of view of future commercial applications. We have also characterised the extracts for the
identification of known MAAs and potentially new UV-absorbing compounds.

2. Materials and Methods
2.1. Cyanobacteria Strains and Cultivation Conditions

A total of 53 cyanobacterial isolates were available at the beginning of this study
and were sourced from the Shannon ABC biobank. These isolates belong to the genera of
Anabaena (1 species), Calothrix (2 species), Chlorogloea (2 species), Leptolyngbya (3 species),
Phormidium (28 species), Pseudoanabaena (1 species), Plectonema (2 species) Hyella (9 species),
Oscillatoria (3 species), and Schizothrix (1 species). Cultures were maintained in environ-
mental growth chambers (EGC M48, USA) under the photosynthetically active radiation
(PAR, 400–700 nm) of 42 µmol photons m−2 s−1 for 16/8 h light/dark cycle at 20 ± 0.1 ◦C.
In preparation for the preliminary biodiscovery screening of UV-screening compounds
analysis, cyanobacteria were actively grown in test tubes (in triplicate) containing 10 mL of
Artificial Sea Nutrients medium (ASN-III) for 7–10 days under PAR illumination of 85 µmol
photons m−2 s−1 for 16/8 h light/dark cycle at 20± 0.1 ◦C. Each tube was mildly shaken by
hand, every day, for homogenous mixing of cells for uniform reception of available lights.

From the preliminary biodiscovery screen, eight candidates were identified as promis-
ing MAAs producers and were selected for large-scale cultivation. These candidates were
actively grown in 3 L flasks containing 1 L of the sterile medium, in triplicate, for 15 days
at 85 µmol photons m−2 s−1 for 16/8 h light/dark cycle at 20 ± 0.1 ◦C with shaking at
120 rpm before harvesting. The biomass from the flask was transferred to a pre-weighed,
sterile 50 mL falcon tube and centrifuged at 5000 rpm for 4 min. The supernatant was
discarded and the remaining biomass was harvested until all cells were collected. The
weight of the tube plus the biomass was recorded and stored at −80 ◦C. The biomass was
freeze-dried (Thermo Electron Heto PowerDry LL3000), weighed, and stored at −20 ◦C
until further use.

2.2. Biodiscovery Screening of Cyanobacteria for MAAs Content

After 10 days of active growth in tubes, cyanobacteria were screened for MAAs content
following the method described earlier [25]. Briefly, 50 mg of fresh weight biomass was
taken after harvesting by centrifugation at 10,000 rpm for 2 min and re-suspended in
500 µL of 20% (vol/vol) aqueous methanol and left at 4 ◦C overnight to ensure improved
extractability. Thereafter, biomass samples were incubated in a 45 ◦C water bath for 2.5 h
and centrifuged at 5000 rpm for 2 min. We transferred 100 µL of the supernatant to a 96-well
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plate and the absorbance spectrum was recorded from 300–700 nm with 2 nm intervals in
a plate reader (BioTek Synergy 4). In parallel, the above process of absorption spectrum
recording was repeated but started with 90% (vol/vol) aqueous methanol extraction,
for confirmation of MAAs content [26]. Cyanobacterial isolates with promising MAAs
absorption peaks (between 310–360 nm) found in supernatants of both 20% and 90%
methanolic extracts were chosen for further experimentation.

2.3. Optimisation of MAAs Extraction

To determine the optimum conditions for maximum yield of MAAs, the extraction
protocol was trialled on various biomass types; freeze-dried biomass, fresh weight biomass,
and overnight dried biomass (55 ◦C oven). Briefly, 100 mg biomass (Phormidium sp.) of each
of the above conditions were extracted with 10 mL of 20% (vol/vol) aqueous methanol
overnight at 4 ◦C. Later, the samples were incubated in a 45 ◦C water bath for 2.5 h and
the content was at 5000 rpm for 2 min. We transferred100 µL of the supernatant to a
96-well plate and the absorbance spectrum was recorded from 300–700 nm with 2 nm
intervals using a plate reader (BioTek Synergy 4). Extracts from freeze-dried biomass with
the highest absorbance at 326 nm were chosen as the optimum extraction conditions for
MAAs content analysis.

2.4. Large-Scale Extraction of MAAs from Cyanobacteria Candidates

Large-scale extraction of MAAs was carried out using 100 mg of freeze-dried biomass,
in triplicates, with 10 mL of 20% (vol/vol) aqueous methanol overnight at 4 ◦C. The samples
were incubated in a 45 ◦C water bath for 2.5 h and centrifuged at 5000 rpm for 2 min. We
transferred 100 µL of the supernatant to a 96-well plate and the absorbance spectrum was
recorded from 300–700 nm with 2 nm intervals using a plate reader (BioTek Synergy 4).
The same extract was then transferred to a quartz cuvette and the absorbance was read
at 260 nm using a spectrophotometer (Thermo Genesys 10 UV-Spectrometer) with 20%
methanol as a blank. The remaining supernatant was transferred to a fresh, pre-labelled
tube, frozen at −80 ◦C at a slanted angle, and freeze-dried. The content was reconstituted
with 500 µL of ultrapure water and gently mixed to concentrate MAAs content. Then, 5 µL
of this homogenous suspension was added to 95 µL of ultrapure water and the absorbance
spectrum was recorded as above to evaluate the MAAs yield. The remaining concentrated
MAAs were stored at −20 ◦C for LC-MS identification of MAAs and their antioxidant
activity analysis.

2.5. Quantification of Specific MAAs Content

The determination of specific MAAs content was calculated based on corrected ab-
sorbance. The absorbance value at 326 nm (minus blank) was used in the expression
below [27].

Specific MAAs content (A* mg DW−1) = A326 nm − 0.2*(A260 nm)

Corrections for A260 nm were made for the equation due to the presence of water-
soluble material, not attributed to MAAs, which has previously been calculated by pooled
extracts of three species that do not contain MAAs [25].

2.6. LC-MS Identification of Specific MAAs

Freeze-dried extracts after reconstitution with ultrapure water were filtered through a
0.45 µm filter (Millipore Ultrafree-MC centrifugal filter unit) and transferred to amber vials
for LC-MS identification of specific MAAs by adopting previous method [28]. We injected
10 µL of the filtrate onto an Agilent C-18 Poroshell 120 column (2.7 µm × 3.0 × 100 mm) to
resolve the MAAs profile. The oven temperature of the resolving column was maintained
at 30 ◦C. For negative mode MS analysis, mobile phase A (MP-A) consisted of 2 mM
ammonium acetate in water, and 2 mM ammonium acetate in methanol was used as mobile
phase B (MP-B). The elution gradients of mobile phases were: (i) 0–20 min, 100% MP-A
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and 0% MP-B; (ii) 20–25 min, 0% MP-A and 100% MP-B and (iii) 25–28 min, 100% MP-A
and 0% MP-B. The flow rate was adjusted to 0.4 mL min−1. DAD data was recorded at 300,
310, 320, 330, 340, 350, and 360 nm, and absorption spectra (190–700 nm) were recorded
every 1.5 s. Then, 100% of the HPLC (Agilent 1260 series) eluent was directed into the
electrospray ionisation source of the Q-TOF mass spectrometer (Agilent 6520) that was
operated in negative ionisation mode and scanned from 80 to 1200 m/z values. Nitrogen,
at a flow rate of 5 L min−1 was used as the drying gas at a temperature of 335 ◦C, and the
nebulizer pressure was set to 40 psi. Reference mass ions were constantly flowing to the
electrospray source at a rate of approx. 40 µL min−1 with accurate masses of 121.050873
and 922.009798.

A database of 22 MAAs compounds was constructed, comprising their relative lambda
max, accurate molecular mass, and the [M-H]- values. LC-MS data were analysed using
Agilent Mass Hunter Workstation Qualitative Analysis B.05.00 software. First, the DAD
(diode array detector) profile of each sample at 300, 310, 320, 330, 340, 350, and 360 nm was
observed to acquire an idea about the MAAs elution pattern. Subsequently, extracted ion
chromatogram (EIC) of each known MAAs was obtained from the total ion chromatogram
(TIC) by entering the accurate [M-H]- values. If any EIC peaks were detected, they were
then compared with the best DAD profile to match the retention time (RT). Then, the MS
spectra profile of interested EIC peaks was obtained to confirm the presence of specific
MAAs with accurate mass values.

When no known accurate mass was detected in any MS spectra but showed other
predominant mass spectra with characteristic UV peaks (as seen from the DAD profile
at specific RT), they were considered unknown UV compounds. We then predicted the
chemical formula of the unknown mass spectrum using the same software. Briefly, the
MS spectra were copied to “User Spectra”. Then, we selected the “interested spectrum
peak” and, by right click, selected again “Generate Formulas from Spectrum Peaks”, which
resulted in a new window with the possible formula for the unknown compound.

2.7. 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Assay

The radical scavenging activity of cyanobacterial MAAs extracts against DPPH free
radical were assayed based on Blois et al. [29] with minor modifications. A stock solution
of 1 mM DPPH reagent was prepared in methanol, stored in the fridge protected from
light and air, and used within a week. On the day of analysis, the stock solution was
diluted with methanol to obtain 138.88 µM DPPH working solution and used as follows.
The reaction mixture contained 30 µL of filtered MAAs extracts or appropriate blank plus
270 µL of 138.88 µM DPPH (final DPPH concentration is 125 µM) that were mixed well and
incubated in dark at 30 ◦C for 30 min. Absorbance was read at 517 nm in a plate reader
(BioTek Synergy 4). Trolox at concentrations ranging from 0–125 µM was used to prepare
the standard curve (Supplementary Figure S1), and the final values were expressed as µmol
TE g−1 of dry-weight biomass.

2.8. Ferric Reducing Antioxidant Power (FRAP) Assay

The FRAP assay for the determination of the reduction of ferric tripyridyltriazine
complex to its ferrous form due to MAAs extracts was carried out according to Benzie
and Strain [30]. The FRAP reagent was prepared fresh on the day of the assay by mixing
100 mL of 300 mM sodium acetate buffer (pH 3.6) with 10 mL of 10 mM TPTZ (2,4,6-
Tripyridyl-s-triazine) and 10 mL of 20 mM FeCl3.6H2O, which was incubated at 37 ◦C until
required. Thereafter, 280 µL of the FRAP reagent was mixed with 20 µL of the sample,
blank (water) or trolox standard in a 96-well microplate, and incubated at 37 ◦C for 4 min
before reading the absorbance at 593 nm. Trolox at concentrations ranging from 0–250 µM
was used to prepare the standard curve (Supplementary Figure S2), and the FRAP values
were expressed as µmol TE g−1 of dry-weight biomass.
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2.9. Oxygen Radical Absorbance Capacity (ORAC) Assay

The ORAC assay to determine the protection of fluorescein from free radical oxidation
due to MAAs extracts was performed according to Dávalos et al. [31] with minor modifi-
cations. The assay was performed on a temperature-controlled, 96-well plate reader. The
data collection and analysis were carried out using BioTek Gen5 software. The reaction
mixture contained 20 µL of MAAs extracts, standard, or blank (water), and 120 µL of
0.117 µM fluorescein solution (prepared in 75 mM phosphate buffer, pH 7.4) in a black
96-well plate, was pre-incubated at 37 ◦C for 15 min. Then, the reaction was initiated by
adding 60 µL of 40 mM AAPH (2,2’-Azobis(2-amidinopropane) dihydrochloride Sigma)
solution, freshly prepared using the above phosphate buffer kept at 37 ◦C. Then the plate
was placed immediately into the reader that was set at 37 ◦C and the assay was performed
at an excitation wavelength of 485 nm and an emission wavelength of 525 nm. Fluorescence
was measured every minute for 2 h and the plate was shaken before each measurement.
Trolox, a water-soluble analogue of vitamin E, at concentrations ranging from 5–80 µM,
was used to prepare the standard curve (Supplementary Figure S3). The antioxidant curve
was normalized to standards, and the ORAC-FL values were expressed as µmol TE g−1 of
dry-weight biomass.

2.10. Statistical Analysis

Data presented for specific MAAs content as well as for antioxidant assays were the
averages of triplicates ± standard deviations.

3. Results
3.1. Biodiscovery Screen and Cellular Morphology

A total of 53 different isolates of cyanobacteria from the biobank of Shannon ABC
were screened for their MAAs content by analysing the absorption spectra of 20% and 90%
methanolic extracts. Out of the 53 samples screened, a distinct peak between 300 to 400 nm
indicative of UV-absorbing compounds (MAAs) was detected in 26 isolates. Of these 26
isolates, only eight species, Anabaena variabilis SABC011501, Calothrix contarenii SABC022701,
Leptolyngbya africana SABC021601, Phormidium angustissimum SABC020801, Phormidium
angustissimum SABC022612, Phormidium sp. SABC022903, Leptolyngbya tenuis SABC010201,
and Schizothrix sp. SABC022401, were found to possess prominent peaks for MAAs with
relatively higher absorbance values (Figure 1). These eight isolates (details of geographical
location and sampling sites were published earlier [32]) are morphologically distinct from
each other in terms of their cell colour, cell size, cell shape, filament morphology, presence
or absence of heterocyst, nature of extracellular sheaths, etc. (Supplementary Figure S4),
which may be indicative of the biochemical diversity of MAAs.
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Figure 1. Absorption spectra of 20% (blue) and 90% (black) methanolic extracts of three representative
cyanobacterial isolates. (A,B) Anabaena variabilis SABC011501; (C,D) Calothrix contarenii SABC022701;
(E,F) Leptolyngbya tenuis SABC010201. Presence of peaks at 310–360 nm indicate the presence of
mycosporine-like amino acids (MAAs).

3.2. Determination of Specific MAAs Content

The optimised extraction protocol was used to determine the MAAs content of candi-
date cyanobacteria and represented as corrected absorbance at 326 nm (Table 1). The aque-
ous methanol extracts identified various UV absorption peaks, ranging from 318–352 nm.
Specific MAAs content varied among the isolates and, based on the A* mg DW−1 val-
ues, the eight candidate isolates can be categorised into high MAAs content (0.412–0.511,
Calothrix contarenii SABC022701, Leptolyngbya africana SABC021601, and Leptolyngbya tenuis
SABC010201) and low MAAs content (0.114-0.199, Anabaena variabilis SABC011501, Phormid-
ium angustissimum SABC020801, Phormidium angustissimum SABC022612, Phormidium sp.
SABC022903, and Schizothrix sp. SABC022401) cyanobacteria.

Table 1. Calculated specific MAAs content (A* mg DW−1) at 326 nm of selected cyanobacteria. Data
represent the average of triplicates ± SD. GenBank accession numbers of cyanobacteria identified in
this study as MAAs producers.

Cyanobacterial Isolates MAAs Content
(A* mg DW−1 ± SD)

GenBank
Accession Number

Anabaena variabilis SABC011501 0.155 ± 0.009 KX765290

Calothrix contarenii SABC022701 0.445 ± 0.007 KT740998

Leptolyngbya africana SABC021601 0.412 ± 0.006 KT740999
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Table 1. Cont.

Cyanobacterial Isolates MAAs Content
(A* mg DW−1 ± SD)

GenBank
Accession Number

Leptolyngbya tenuis SABC010201 0.511 ± 0.014 KX765288

Phormidium angustissimum SABC020801 0.114 ± 0.024 KT740997

Phormidium angustissimum SABC022612 0.156 ± 0.011 KX765287

Phormidium sp. SABC022903 0.123 ± 0.025 KT741000

Schizothrix sp. SABC022401 0.199 ± 0.004 KX765289

3.3. Identification of Specific MAAs by LC-MS

LC-MS analysis identified a total of 12 different types of UV-screening compounds
within the tested eight cyanobacteria (Table 2). Of these UV-screening compounds, eight
were known MAAs compounds based on their DAD profile, retention times, and accu-
rate [M-H]− ion values (Figure 2). Mycosporine-taurine was the most common type of
MAAs found in eight cyanobacteria followed by Usujirene found in seven cyanobacte-
ria. Mycosporine-glutamicol was found in three Leptolyngbya spp. Each mycosporine-
glutaminol-glucoside and palythine-threonine-sulphate were found only in two filamen-
tous cyanobacteria. Porphyra-334 was found only in two heterocystous filamentous
cyanobacteria (Figure 3). While both mycosporine-serinol and palythine were found only
in Phormidium angustissimum SABC020801. The remaining four UV-screening compounds
were unknown but have a lambda max range of 314–346 nm. An unknown compound
with [M-H]- 289.0730 and a λ max of 326 nm was detected in three cyanobacteria and has
been given the trivial name, M-326 (Table 2, Figure 4). Moreover, an unknown compound
of [M-H]− 219.0557 and a λ max of 314 nm was detected in three cyanobacteria (Table 2,
Figure 5). Likewise, other unknown compounds have been given the trivial names of M-330
and M-346, depending on their λ max values.

Table 2. Identified MAAs of candidate cyanobacteria with retention time (RT), m/z values and λ max.
Unknown compounds with RT, detected m/z value, λ max, and predicted molecular formulas.
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Table 2. Cont.
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Note: Order of information in each box (top to bottom values): retention time in minutes, m/z value in dalton, λ
max in nanometres, predicted chemical formula. UC, unknown compound.
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Figure 3. LC-MS analysis showing identification of Porphyra-334 in Anabaena variabilis SABC011501.
(A) DAD profile at 330 nm; (B) UV spectra of the DAD profile peak at 1.2 min; (C) extracted ions
chromatogram of accurate mass for Porphyra-334 in negative mode (345.1376) showing specific peak;
and (D) ESI scan showing the mass spectra including m/z 345.1368 for porphyra-334.
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Figure 4. LC-MS analysis showing detection of unknown compound (M-326) in Leptolyngbya tenuis
SABC010201. (A) DAD profile at 330 nm; (B) UV spectra of the DAD profile peak at 1.4 min; (C) extracted
ions chromatogram of mass for unknown compound M-326 in negative mode (289.0730) showing specific
peak; and (D) ESI scan showing the mass spectra including m/z 289.0730 for M-326.
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Figure 5. LC-MS analysis showing detection of unknown compound (M-314) in Phormidium angustis-
simum SABC020801. (A) DAD profile at 310 nm; (B) UV spectra of the DAD profile peak at 2.7 min;
(C) extracted ions chromatogram of mass for unknown compound M-314 in negative mode (219.0557)
showing specific peak; and (D) ESI scan showing the mass spectra including m/z 219.0557 for M-314.
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3.4. Antioxidant Capacity of Total MAAs Content

The antioxidant activities of total MAAs content were assessed for three different
mechanisms: (1) DPPH assay for free radical scavenging ability of MAAs by donating a
hydrogen atom; (2) FRAP assay for MAAs ability for reduction of an oxidant by donating
an electron; and (3) ORAC assay for MAAs ability for protection of fluorescein molecules
from free radical oxidation. In each assay, Trolox was used as a reference and the results are
shown as µmol Trolox equivalent (TE) g−1 dry weight (DW) biomass in Table 3.

Table 3. Calculated antioxidant values of total MAAs content as per DPPH, FRAP, and ORAC assays.
Data expressed as averages of triplicates ± SD.

Cyanobacterial Isolates DPPH
(µM TE g DW−1)

FRAP
(µM TE g DW−1)

ORAC
(µM TE g DW−1)

Anabaena variabilis SABC011501 343.1579 ± 0.0269 325.8333 ± 0.0098 180,405.99 ± 12,615.73

Calothrix contarenii SABC022701 504.5614 ± 0.0190 510.5556 ± 0.0172 111,593.23 ± 381.742

Leptolyngbya africana SABC021601 641.4035 ± 0.0038 603.6111 ± 0.0065 216,537.81 ± 8019.166

Leptolyngbya tenuis SABC010201 388.7719 ± 0.0045 323.0556 ± 0.0136 230,336.89 ± 8985.885

Phormidium angustissimum SABC020801 351.9298 ± 0.0108 410.5556 ± 0.0127 233,694.25 ± 5125.243

Phormidium angustissimum SABC022612 469.4737 ± 0.0026 445.2778 ± 0.0050 107,705.11 ± 554.054

Phormidium sp. SABC022903 764.2105 ± 0.0075 727.2222 ± 0.0015 246,140.97 ± 9370.107

Schizothrix sp. SABC022401 167.7193 ± 0.0030 223.05556 ± 0.0084 241,224.56 ± 8580.119

All MAAs extracts have varied levels of all three tested types of antioxidant ac-
tivities. DPPH scavenging activity was found in all MAAs samples, with the highest
activity recorded in Phormidium sp. SABC022903 (764.21 µM TE g−1 DW), followed by
Leptolyngbya africana SABC021601. The lowest DPPH activity was found in Schizothrix
sp. SABC022401 (167.7 µM TE g−1 DW). FRAP assay for the ability to the reduction of
ferric-tripyridyltriazine (Ferric III) to ferrous (II) was recorded for all MAAs samples. Like
DPPH activity, the highest FRAP activity was recorded in Phormidium sp. SABC022903
(727.22 µM TE g−1 DW) followed by Leptolyngbya africana SABC021601. Moreover, the
least FRAP activity was found in Schizothrix sp. SABC022401 (223 µM TE g−1 DW). ORAC
assay for MAA’s ability to protect fluorescein from free radical oxidation was found high-
est in Phormidium sp. SABC022903 (246,140.97 µM TE g−1 DW) followed by Schizothrix
sp. SABC022401 (241224.56 µM TE g−1 DW), while the least FRAP activity was found in
Phormidium angustissimum SABC022612 (107705.11 µM TE g−1 DW).

4. Discussion

The present study comprises an evaluation of 53 cyanobacterial isolates of Shan-
non ABC biobank established from collecting samples from the west coast of Ireland.
The biodiscovery screen based on absorption spectra with a distinct peak within UV-
A/UV-B region (300–400 nm) identified only eight cyanobacteria as potential producers
of MAAs with relatively higher absorbance values. These eight candidate cyanobacteria
were found morphologically distinct, and were further characterised by molecular marker
gene 16S rRNA sequence analysis [32]. In recent years, 16S rRNA gene sequence have been
the most highly used genetic marker in determining the identification of cyanobacterial
species [33–35]. Both morphological identification and the BLAST analysis of 16S rRNA
sequences were comparable, suggesting that the MAAs candidate identified in this study
could serve as a base for selecting cyanobacteria based on morphological identification for
other MAAs studies.

Of the eight candidates, only Leptolyngbya tenuis SABC010201 has the greatest UV-
screening potential with the highest specific MAAs content followed by Calothrix contarenii
SABC022701 (Table 1). Earlier, the specific MAAs content of a Calothrix sp. [25] was re-
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ported to contain 0.320 A* mg DW−1 MAAs, which is much lesser than Calothrix contarenii
SABC022701 (0.445 A* mg DW−1) of the present study. We used advanced and highly
sensitive technologies, such as LC-MS, which utilises known accurate molar masses and
retention times for more accurate identification of MAAs in selected cyanobacteria. The
analysis revealed Leptolyngbya tenuis SABC010201 has one unidentified and four identified
MAAs. While Calothrix contarenii SABC022701 has only one unidentified and two identified
MAAs (Table 2). Known MAAs such as mycosporine-taurine, usujirene, mycosporine-
glutaminol-glucoside, and porphyra-334, identified in the above three cyanobacteria, were
also found in other cyanobacteria [36–42]. Mycosporine-glutamicol found in all three
Leptolyngbya spp., mycosporine-serinol found in Phormidium angustissimum SABC020801,
palythine-threonine-sulphate found in Phormidium angustissimum SABC022612 and Lep-
tolyngbya africana SABC021601 are new reports for cyanobacterial origin. In a recent study,
no MAAs were detected by LC-MS in Leptolyngbya foveolarum and Calothrix sp., even
though the chromatograms had signals with absorption maxima typical for MAAs [43].
They concluded that these could be glycosylated MAAs, as reported earlier in the Nostoc
commune [17]. Hence, the detection of unknown UV-screening compounds in Irish marine
cyanobacteria is of notable interest and illustrates the broad range of MAAs produced by
this group of organisms and warrants future investigation.

It is interesting from the biotechnological applications (potential sunscreen with free
radical scavenging ability) point of view that all eight cyanobacterial MAAs extracts showed
appreciable antioxidant activities as evaluated by three assays (Table 3). This suggested
their wide mechanisms of dealing with the oxidation of biomolecules either as free radical
scavengers, reductants of an oxidant, or as protectors from free radical oxidation. Surpris-
ingly, although Leptolyngbya tenuis SABC010201 possessed notably higher MAAs content,
it demonstrated medium radical scavenging activity and reducing antioxidant power in
DPPH and FRAP assays. This possibly indicates the types of specific MAAs and other
unknown compounds present in the tested extracts. Radical scavenging activity of the
MAAs such as shinorine and M-307 (from Gloeocapsa sp.), glycosylated MAA (1050-Da
from Nostoc commune), and total MAAs (palythine, asterina, porphyra, and palythene) from
Nostoc sp. R76DM has been reported earlier [15,17,44]. FRAP assays for the reducing power
of total MAAs (palythine, asterina, porphyra, and palythene) of Nostoc sp. R76DM was
reported higher compared to the positive control ascorbic acid [44]. While another study
with water extracts of four cyanobacteria Oscillatoria sp., Lyngbya sp., Microcystis sp., and
Spirulina sp. found the highest FRAP and DPPH radical scavenging activities in Oscillatoria
sp. [45]. ORAC assays have rarely been carried out for cyanobacterial MAAs. However, an
investigation with 90% methanolic extracts and defatted water extracts of Spirulina powder
found higher ORAC values for defatted Spirulina extracts [46]. Recently, another study with
six MAAs (palythine, asterina-330, shinorine, and palythinol, porphyra-334, and usujirene)
present in methanolic extracts of wild-harvested red macroalgae (Palmaria palmata, and
Mastocarpus stellatus) found substantially high ORAC activities [20]. Usujirene was the
predominant MAA in both the above macroalgal extracts and was considered responsible
for high ORAC activities [20]. Seven out of the eight cyanobacteria tested for antioxidant
activities possess usujirene, which might have contributed to their relative ORAC activities.

5. Conclusions

This is the first comprehensive evaluation of UV-screening compounds in Irish marine
cyanobacteria, which identified eight cyanobacteria as potential MAAs producers with a
specific content of 0.114–0.511 A* mg DW−1. However, Leptolyngbya africana SABC021601
can be considered as the best both in terms of specific content and antioxidant activities.
To the best of our knowledge, this study also reports for the first time known MAAs,
such as mycosporine-glutamicol, mycosporine-serinol, and palythine-threonine-sulphate,
from marine cyanobacteria. This study identified a total of eight different types of known
MAAs (mycosporine-glutamicol, mycosporine-glutaminol-glucoside, mycosporine-serinol,
mycosporine-taurine, palythine, palythine-threonine-sulphate, porphyra-334, and usu-
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jirene) and four unknown UV-absorbing compounds, named as M-314, M-326, M-330, and
M-346. These unknown MAAs are novel findings and need future studies related to their
structural and bio-functional properties.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su15043792/s1. Figure S1. Standard curve of trolox (µM) plotted
against absorbance at 517 nm used for calculating the radical scavenging ability of MAAs extracts;
Figure S2. Standard curve of trolox (µM) plotted against absorbance at 593 nm used for calculating
the ferric reducing ability of MAAs extracts; Figure S3. Standard curve of trolox (µM) plotted against
net area under the curve (Net AUC) for 2 hr used for calculating the ORAC activity of MAAs extracts;
Figure S4. Photomicrographs showing morphological variations of candidate eight cyanobacterial
isolates for MAAs production.
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