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A B S T R A C T   

Plasmodium species, which are spread by female Anopheles mosquitoes, are responsible for malaria. Out of the 
five major Plasmodium species, Plasmodium falciparum and Plasmodium vivax are the most deadly and invasive 
species responsible for 99.7% and 75% of malaria cases in Africa and America respectively. Despite the invasive 
nature of malaria, the Plasmodium parasite continues to develop resistance to current drugs. It is therefore 
imperative to come up with new therapeutics to combat malaria. Previous studies have reported that Limonoids 
from the Meliaceae family possess antimalarial properties. This study therefore aims at employing computational 
approaches to identify potential antimalarial Limonoids by targeting PvFKBP35. PvFKBP35 has been reported to 
be a suitable target for antimalarial therapeutics as it is involved in various physiological activities including 
transcription, protein stability and folding. Molecular docking, Molecular Dynamics simulation and Molecular 
Mechanics-Poisson Boltzmann Surface Area calculation were employed to identify the potential leads. Sixteen 
[16] Limonoids extracted from the bark of the stem of Entadrophragma angolense were virtually screened against 
PvFKPB35. The top hit compounds were subjected to 500 ns Molecular Dynamics simulation and Molecular 
Mechanics – Poisson Boltzmann Surface Area calculations to examine their stability and free binding energy. Two 
potential leads, compounds 1 and 11 with binding energies − 6.3 and − 5.4 kcal/mol respectively were identified. 
The potential leads in complexed with PvFKBP35 had an average root mean square deviation of 1.18 ± 0.19 Å 
and 3.12 ± 0.60 Å, indicating their stability. Solvent Accessible Surface Area was utilized to predict the pene-
trative ability of the compounds into the binding pocket. Average Solvent Accessible Surface Area values of 
327.88 ± 47.54 A2, 402.18 ± 39.81 A2 were obtained for compounds 1 and 11 respectively. ADMET estimations 
of compounds 1 and 11 predicted them to be druglike and do not violate Lipinski’s rule of five. Compounds 1 and 
11 need be tested in vitro to validate their antimalarial activity although they were predicted to be antiprotozoal 
with Pa values 0.207 and 0.162. These compounds can then serve as the scaffold for the design of novel anti-
malarial therapeutics.   

1. Introduction 

Malaria is a life-threatening tropical disease, caused by Plasmodium 
species, transmitted by the female Anopheles mosquitoes affecting mil-
lions of people worldwide [1]. According to the latest World Malaria 

Report, there were 247 million cases and 619,000 deaths recorded in 
2021(1). Africa alone accounts for 95% of malaria cases and 96% of 
death, with 80% of fatalities occurring in children under 5 years old [2]. 
Other risk groups include pregnant women, immunocompromised pa-
tients, and travelers [2]. 
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Malaria is caused by five major species: Plasmodium falciparum, 
Plasmodium malariae, Plasmodium knowlesi, Plasmodium ovale, and Plas-
modium vivax [3,4]. Amongst, these both P. falciparum and P. vivax are 
the most dangerous and prevalent species [1,5]. P. falciparum is 
responsible for the majority of malaria cases and deaths, P. vivax causes 
significant morbidity, particularly in South America and the Asia-Pacific 
region [2,6]. 

According to the world malaria report 2021, P. falciparum accounted 
for more than 90% of estimated malaria cases in the World Health Or-
ganization (WHO) African Region, 50% of cases in the WHO South-East 
Asia Region, 71% of cases in the Eastern Mediterranean, and 65% in the 
Western Pacific. On the other hand, P. vivax was the predominant 
parasite in the WHO Region of the Americas, representing 75% of ma-
laria cases [1,2,7]. 

While less prevalent, P. malariae and P. ovale are found in endemic 
regions particularly in sub-Saharan Africa [8,9] Additionally, cases of 
P. knowlesii infection have also been reported from the forested regions 
of South-East Asia [10–12]. 

The clinical manifestation of Malaria is divided into two forms: un-
complicated and severe malaria. Early signs and symptoms of uncom-
plicated malaria include fever, chills, headache, muscle pains, cough, 
vomiting, and diarrhea [13]. On the other hand, severe malaria presents 
more serious symptoms, such as severe anemia, cerebral malaria, acute 
lung injury, respiratory distress, and multiple organ failures [14–16]. 

The current chemotherapies approved for the treatment of Malaria 
and recommend by the WHO include chloroquine and artemisinin-based 
combination therapies (ACTs) and their derivatives [17]. These treat-
ments work by targeting crucial biological molecules involved in various 
biological process of malaria parasites. Chloroquine targets the action of 
heme polymerase in Plasmodium species, causing a toxic buildup of 
heme and eventually killing the parasite [18]. On the otherhand, arte-
misinin targets the enzyme proteasome, causing protein damage, and 
effectively, killing the malaria parasite [19,20]. 

However,. there are reports on the development of resistance to 
current drugs by the malaria parasites [21–26] and have spread to many 
malaria endemic regions [17,25,27,28]. The emergence and widespread 
distribution of multi-drug resistant strains of Plasmodium pose a major 
challenge to malaria control, thus resulting in high morbidity and 
mortality [23], This situation underscores the urgent need for the 
development of new alternative effective antimalarial agents to combat 
menace. 

Natural products such as medicinal plants remain one of the poten-
tial source for the development of new effective antimalarial drugs [29, 
30]. Two modern antimalarial drugs, quinine and artemisinin were 
extracted and isolated from medicinal plants [31]. Medicinal plants 
contain bioactive compounds effective against several diseases and ail-
ments including, life-threatening ones such as malaria [32–35]. Notably, 
the WHO, reports that approximately about 80% of developing countries 
depend on medicinal plants for their primary health care needs [36,37]. 
These plants are cost-effective, readily available, and easily accessible 
with few side effects compared to orthodox drugs [38] and making them 
viable alternatives for the development of new therapeutic agents. 

Entadrophragma angolense (Meliaceae), known as “the mahogany 
tree”, widely distributed in tropical Africa and used in traditional 
medicine to treat several diseases. The stem bark is reported to treat 
gastrointestinal disorders such as peptic ulcer in humans, fever, wounds, 
cancer, rheumatism, eye infections, and malaria [39] Phytochemical 
investigation of E. angolense have revealed the presence of limonoids, 
triterpenoids steroids, and fatty acids and phenolic compounds [40]. 
Pharmacological studies of this plant have demonstrated antimicrobial 
[41], antifeedant [42], antiulcer [43], antioxidant [44], 
anti-inflammatory [45,46] and antimalarial properties [47]. In west 
Africa, E. angolense is ethnomedicinally used to treat malaria [48,49]. 
Studies have also reported the isolation of novel limonoids (7α-obacunyl 
acetate and cycloartane) from the stem bark of E. angolense with potent 
anti-plasmodial activities [47]. 

Limonoids are essential and abundant bioactive compounds found in 
the family Meliaceace exhibiting several biological properties [50,51]. In 
a study by Zhang et al. 2016, 16 new limonoids entangolensins A-P 
(Table 1) were isolated from the stem barks of E. angolense [52]. 
Bioactivity screening in their report further revealed that compounds 6, 
12, 15 and 17 showed moderate cytotoxicity against HepG2 and MCF-7 
cell lines, with IC50 values from 13.19 to 36.93 μM; Additionally, com-
pound 6, 11 and 17 exhibited significant inhibitory activity against Ni-
tric Oxide (NO) in LPS-activated RAW 264.7 macrophages, with IC50 
values of 1.75, 7.94 and 4.63 μM respectively [52]. 

Having been reported to possess possible antimalarial properties 
particularly in the study by Amoa Onguéné et al. we sought to further 
explore their finding using molecular modelling techniques against 
PvFKBP35, an experimentally reported therapeutic targets in the treat-
ment of malaria. As a member of the immunophilin family, PvFKBP35 is 
known to exhibit a canonical peptidyl-prolyl cis-trans isomerase (PPIase) 
or rotamase activity and regulate various physiological functions 
including protein stability and folding [53–55], neuroprotective and 
neurotrophic activities [56], protein trafficking [57,58], receptor 
signaling [59–61], calcium homeostasis [59,62], transcription [63], 
spermatogenesis [64] and histone chaperone activity [65,66]. 
PvFKBP35 is thus an crucial enzyme in the parasite’s growth [67–71] 
thereby making it a potential drug target [72,73]. The therapeutic 
modulation of PvFKBP35 is furthers established in the report by Har-
ikishore et al. where the therapeutic modulation of PvFKBP35 was 
shown by a co-crystallization with a potential binder, D5I (N’-(1-ada-
mantylcarbonyl) pyridine-4-carbohydrazide [74]. 

In this report, we employ computational techniques to explore the 
therapeutic potential of limonoids as lead molecules that could thera-
peutically modulate FK506 binding domains (FKBDs) of PvFKBP35, to-
wards the development of novel antimalarial agents. Computational 
methods in drug discovery accelerate drug discovery process and pro-
vide preliminary insights that can inform a drug discovery process 
[75–77]. The application of these methods for the drug discovery against 
neglected tropical diseases has also gained prominence in recent years 
with several reports incorporating these techniques [78–80]. Selected 
limonoids will be screened against PvFKBP35 to identify the potential 
therapeutic modulators. By comparing, the binding dynamics of known 
therapeutic modulators of PvFKBP35 as a control, findings from this 
report would also provide structural perspectives that could guide the 
experimental exploration of limonoids as antimalarial agents. 

2. Computational methodology 

2.1. PfFKBP35 structure preparation 

The X-ray crystal structure of PvFKBP35 co-crystallized with the 

Table 1 
Limonoids compounds isolated from stem bark of Entandrophragma angolense.  

No. Compound name Source/reference 

1 Entangolensin A E.angolense [78] 
2 Entangolensin B E.angolense [78] 
3 Entangolensin C E.angolense [78] 
4 Entangolensin D E.angolense [78] 
5 Entangolensin E E.angolense [78] 
6 Entangolensin F E.angolense [78] 
7 Entangolensin G E.angolense [78] 
8 Entangolensin H E.angolense [78] 
9 Entangolensin I E.angolense [78] 
10 Entangolensin J E.angolense [78] 
11 Entangolensin K E.angolense [78] 
12 Entangolensin L E.angolense [78] 
13 Entangolensin M E.angolense [78] 
14 Entangolensin N E.angolense [78] 
15 Entangolensin O E.angolense [78] 
16 Entangolensin P E.angolense [78]  
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known binder D5I (N’-(1-adamantylcarbonyl) pyridine-4- 
carbohydrazide) was retrieved from the Protein Data Bank (PDB) [81] 
with PDB ID 4MGV. With D5I bound to the inhibitor binding domain of 
PvFKBP35, its position was used as the binding site of the compounds to 
be explored. To reduce computational cost, only chain A was used in this 
study while all other non-standard co-crystallized residues on the PDB 
structure were also removed. Also, chain A contains the catalytic pocket 
of PvFKBP35. In preparation for molecular docking and Molecular Dy-
namics (MD) simulations hydrogen atoms were removed and added 
respectively using UCSF Chimera 1.16 [82,83]. 

2.2. Preparation of investigated Limonoids 

The limonoids investigated in this report were retrieved from a 
previous study [84]. The 2D structures of the 16 limonoids were then 
generated by sketching them with Marvin sketch 6.2.2 [85]. The 
sketched structured were then saved in spatial data file (SDF) format. 
Sketched 2D structures of the ligands were then converted to their 
respective 3D conformers using Avogadro 1.2.0 [86]. The energy of the 
3D structures generated were subsequently minimized using the Uni-
versal Force Field (UFF) incorporated in the Avogadro which also op-
timizes the molecular geometries of the compounds with the steepest 
descent algorithm for structural minimization. The optimized and en-
ergy minimized structures were then saved in “mol2” format. In prep-
aration for molecular docking, hydrogen atoms were removed from each 
ligand, appropriate Gasteiger charges were added and the “pdbqt” for-
mats of all the ligands were then generated using AutoDock Vina [87]. 
Ligands selected for MD simulation were also prepared by adding 
hydrogen atoms, adding appropriate semi-empirical (AM1) with bond 
charge correction (BCC) charges, and subsequently saving structures in 
“mol2” formats [88,89]. 

2.3. Identification of binding site(s) and molecular docking 

Molecular docking to predict the binding potential of the investi-
gated limonoids towards with PvFKBP35 was performed using AutoDock 
Vina v.1.2.0 as reported in our previous reports [78,90,91] A grid box 
around the binding site was generated with coordinates of x = 31.93, y 
= 35.61 and z = 29.25 (center dimensions) and x = 7.95, y = 9.89 and z 
= 12.21 Å (size dimensions) was generated. Molecular docking was 
performed using an exhaustiveness of 8 and the spacing was set at 1 Å. 
The output of molecular docking was viewed with UCSF Chimera using 
the integrated ViewDock module after which docked complexes were 
saved for further analysis. 

2.4. Molecular Dynamic simulations 

Molecular Dynamic (MD) simulations reveal imperative information 
pertaining to the biological systems dynamic evolution by exploration of 
the physical motion that occurs between molecules and atoms [92–95]. 
MD simulations for PvFKBP35 complexed with the selected limonoids 
were subject to 500 ns MD simulations using the GPU version of AMBER 
20 package [96]. The General Amber Force Field (GAFF) incorporated in 
the ANTECHAMBER module was employed to apply atomic partial 
charge to the selected limonoids [97,98]. The AMBER 20 LEAP module 
was employed for protein optimization and solvation for each system the 
systems. In all, three systems were constructed for the simulations; un-
bound PvFKBP35, PvFKBP35 complexed with the top two scoring 
docked limonoids and PvFKBP35 complexed with the known binder, 
D5I. Each system was partially minimized for 2500 steps with a restraint 
potential of 500 kcal/mol. Thereafter, full minimization of 1000 steps 
were conducted in the absence of all restraints by conjugate gradient 
algorithm. The systems then underwent gradual heating from 0 to 300 K 
for 50ps to ensure each simulated system maintained a fixed number of 
atoms and volume. Each system was also subjected to a potential har-
monic restraint of 10 kcal/mol with a collision frequency of 1 ps prior to 

being equilibrated for 500 ps at 300 K. The atmospheric pressure was 
maintained at 1 bar by employing Berendsen barostat [99], thus 
enabling the pressure and number of atoms within each system to be 
constant, emulating an isobaric-isothermal ensemble (NPT). This pro-
cedure was followed by an MD simulation of 500 ns for each system, 
integrating the SHAKE algorithm to constrict the hydrogen atom bonds 
[100]. Each simulation had a step size of 2 fs, thus incorporating the 
single precision fixed point (SPFP) precision model. All simulations 
concurred with a constant pressure and temperature of 1 bar and 300 K 
respectively: a Langevin thermostat with a collision frequency of 1 ps 
randomized seedling, an isobaric-isothermal ensemble (NPT), and a 
pressure-coupling constant of 2 ps [94]. 

2.5. Post-dynamic analyses 

After every 1 ps, the bound complexes and free enzyme coordinates 
were saved and their subsequent trajectories analyzed by the integrated 
CPPTRAJ module of the AMBER 20 package [101]. The thermodynamic 
energy of each system, together with the root mean square fluctuations 
(RMSF) of individual resides and root mean square deviation (RMSD) of 
the C-α atoms were examined. Graphical analysis and plots were 
generated using Microcal Origin 6.0 [102,103]. 

2.6. Binding free energy calculations 

The Molecular Mechanics/Poisson Boltzmann Surface Area (MM/ 
PBSA) approach [104,105] was used in this study to estimate the 
binding energies of the simulated complexes [92,94,106–110]. ([94, 
110–113]. Although 300,000 frames were generated for each complexed 
system over the 300ns simulation period, in calculating the binding 
energies, only frames from the last 200 ns s were selected, ensuring only 
well equilibrated framed were considered MM/PBSA enables the pre-
diction of binding free energies that are involved in complex formation 
providing insights into the binding affinity of each ligand to PvFKBP35 
Mathematically, the binding free energy (ΔG) for each complex is 
computed as follows:  

ΔGbind = Gcomplex - (Greceptor + Gligand)                                               (1)  

ΔGbind = ΔGgas + ΔGsol - TΔS = ΔH - TΔS                                      (2)  

ΔGgas = ΔEint + ΔEele + ΔEvdW                                                        (3)  

ΔGsol = ΔGele,sol(PB) - ΔGnp,sol                                                          (4)  

ΔGnp,sol = γSASA + β                                                                     (5) 

The energy of the gas phase is depicted by ΔGgas, defined as the 
summation of the internal (ΔEint), electrostatic (ΔEele) and van der 
Waals (ΔEvdW) energies. ΔGsol depicts the solvation free energy, and 
comprises of polar and nonpolar contribution states, ΔGele, sol and 
ΔGnp,sol; respectively. By estimation of the Poisson-Boltzmann (PB) 
(ΔGele,sol(PB)) model using the MM/PBSA method, the (ΔGele,sol) was 
able to be derived, whilst (ΔGnp,sol) was determined by employing 
equation (5), where the surface tension proportionality constant “γ” is 
set to 0.0072 kcal/(mol-1. Å− 2) with β being a constant. The solvent 
accessible surface area (SASA) (Å2) is calculated by employing a linear 
incorporation of pairwise overlaps (LCPO) model. SASA, which depicts 
the solvent accessible surface area (Å2) is calculated using a linear 
incorporation of pairwise overlaps (LCPO) model. The energy contri-
bution of the essential residues of the active site gives us an indication of 
the role it plays in stabilizing the ligand within the binding pocket and 
the differential binding estimates by employing the integral per-residue 
decomposition analysis of MM/PBSA. Energy calculations were per-
formed using the last xtc file which consisted of all the frames from the 
MD simulation and the reported energy values are the average of all the 
frames [94,95,114,115]. 
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2.7. In silico prediction of the pharmacokinetics and physicochemical 
properties 

Prediction of the pharmacokinetics of the investigated compounds 
were performed using the online-based prediction tool, Swiss ADME 
[116]. Parameters such as bioavailability score, blood-brain barrier 
permeability, gastro-intestinal absorption, hydrogen bond donors and 
acceptors, lipophilicity, molecular weight, synthetic accessibility, and 
water-solubility were subsequently computed [94]. The ProTox website 
server [117] was also used to determine the LD50 and oral toxicity of the 
investigated compounds. 

2.8. PASS prediction 

Prediction of Activity Spectra of Substances (PASS) was used to 
explore the biological properties of the potential leads. PASS is an online 
tool that is used to predict biological activities of compounds based on 
its chemical structure (http://www.way2drug.com/passonline/) [78, 
118]. 

3. Results and discussion 

Targeting FK506-binding proteins (FKBP) has becomes an attractive 
escape route for malaria resistance [71,119]. This is a conserved region 
across the plasmodium genus [120–122], thus its inhibition has the 
potential to treat pan-parasitic infection. Since proteins are sensitive to 
stimuli, the binding of a small molecule to a target protein has the 
propensity to elicit responses which is initiated at the molecular level 
[123,124]. Therefore, we explored the structural dynamics of the 
binding of identified compounds to PvFKBP35 juxtaposing with the 
co-crystallized compound. 

This was achieved by determining the stability of the compounds, 
their level of penetration into the hydrophobic core, and their motions 
along the principal component’s axis. This investigations on the com-
pounds’ behavior were then accompanied by investigations of the 
structural dynamics of FKBP which is conditioned by these compounds’ 
ligation. As such for the protein, the stability of the global protein, 
flexibility and compactness was determined by computing the changes 
in the C-α atoms. The solvent accessibility surface area of the protein 
which is informative on the folding and unfolding of the protein was also 
determined. This approach has been successfully employed by other 
investigations [125–127]. 

3.1. Molecular docking 

To determine the binding potential of the investigated limonoids 
towards FK506-binding proteins, each compound was individually 
docked into the resolved binding pocket occupied by D51 using Auto-
Dock Vina. The co-crystallized D51 in complex with PvFKBP35 by 
Harikishore et al. in 2013 [74] was used to map-out the binding region 
of the limonoids on PvFKBP35. Residues of PvFKBP35 that comprised 
the binding pocket included Tyr43, Phe54, Asp55, Phe64, Glu72, Val73, 
Ile74, Trp77, Tyr100, Cys105 and Phe117. Using the scoring function of 
Auto Dock Vina, the docking which corresponded with the stability of 
docked ligands was calculated and presented in Table 2. The experi-
mentally reported binder, D5I was redocked into its pockets as control. 
As shown in Table 2, compound 1 showed the highest docking score of 
− 6.3 kcal/mol amongst the limonoids suggesting it was the most stable 
with the D5I binding site on PvFKBP35. Based on the docking scores, 
compound 1 was shown to exhibit superior stability within the binding 
region relative to D5I, the experimentally reported binder. The next 
favourably bound limonoid was compound 11 which showed a docking 
score of − 5.4 kcal/mol. The docked complexes of compound 1, com-
pound 11 and D5I were then subjected to 500ns MD simulation to 
further explore the possible structural binding potential of the limonoids 
towards PvFKBP35. 

Table 2 
Molecular docking scores and 2D structures of investigated Limonoids.  

Limonoids 2D structure of compound FK506 Binding Protein 
35 (kcal/mol) 

1 − 6.3 

2 − 5.0 

3 − 0.4 

4 − 1.8 

5 − 2.6 

6 − 3.8 

7 − 4.9 

8 − 0.4 

(continued on next page) 
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3.2. Dynamical behavior of compounds upon ligation 

3.2.1. Compounds stability 
The root mean-square deviations of the atoms which is reflective of 

the stability [128,129] of the compounds within the binding pocket 
were estimated over the 500 ns period of simulation. The deviations 
were computed relative to the C- α atoms starting positions which pre-
sented 1.18 ± 0.19 Å, 3.12 ± 0.60 Å and 1.31 ± 0.35 Å as average 
RMSD values for compound 1, compound 11 and the D5I respectively. 
Fig. 1 depicts the graphical representations of the stability of the com-
pounds over time. As observed from the Figure, Compound 11 and D5I 
showed uniformity in motions over the entire simulation period. Com-
pound 1, however, showed a variation in motions. This is can be as a 
result of loss of electrostatic interactions as loss of electrostatic inter-
action increases the dynamics of a complex [130] It exhibited similar 
motions with the other compounds in the first 70 ns but underwent a 
changed motions trajectory (70 ns to about 90 ns) and became stable 
afterwards. This sharp change in motions underscores the limitations of 
the docking method employed wherein the protein was considered fixed 
while the compounds were taken as conformationally flexible [131, 
132]. Molecular dynamics thus addresses this shortcoming by providing 
the space for both compounds and proteins to assume flexibility as 
observed in biological systems [133]. The realignment of compound 11 
to a more favourable conformation during this course could account for 
the observed different behavior relative to the other compounds and 
hence the elevated average RMSD value. Further investigating this, 
snapshots before, during and after the period of change were taken and 
visualized. The snapshots revealed compound 11 rotated 180◦ after 70 
ns buttressing the graphical representation and the differential in RMSD 
values. Generally, these compounds stabilized upon binding into the 
pocket of FKBP. 

3.2.2. Compounds’ deeper penetration stabilizes PvFKBP35 Binding site 
The SASA metric which could be used to evaluate the degree of 

penetration of the compounds into the hydrophobic core of the protein 
was assessed and presented in Fig. 2C. This was premised on the hy-
pothesis that the deeper the penetration the lesser the surface area 
available for solvent interaction [134]. Average SASA values of 327.88 
± 47.54 A2, 402.18 ± 39.81 A2 and 148.33 ± 14.19 A2 was shown for 
Compound 1, compound 11 and D5I respectively. These results suggest 
D5I had the least surface area available for protein-compound extra 
molecular interactions while compound 11 had the highest. Though this 
metric has been used widely to assess the penetration of the compounds 
into binding cavities, the molecular weight and size of the compounds 
could also influence the SASA values as observed in this study wherein 
D5I and compound 11 had the least and highest molecular weight and 
size respectively. After obtaining the behavior of the compounds within 
the binding site we further probed the interactions between the com-
pounds and the site residues that conditioned these varying conducts. 

3.3. Molecular interactions underscoring the binding mechanism of 
identified Limonoids 

Underlying the binding of compounds to their target protein are 
bond formations between the compounds and the hosting residues. The 
type of bonds formed highlight the therapeutic effects exhibited by the 
complexing [135,136]. As such, the nature and type of interactions these 
compounds engaged in was investigated. This was achieved through 
visual observations of snapshots at specific time frames of the simula-
tion. These snapshots reveal events that manifest at those times of the 
simulations. Thus, snapshots were sampled from 100 ns, 300 ns, 400 ns 
and 500 ns. The results are shown in Fig. 2. It was observed that the 
compounds engaged in varying bond type formations ranging from 
strong conventional and carbon hydrogen bonds, pi sigma and alkyl to 
van der Waals. For compound 1, Asp55 was observed to interact with it 
through conventional hydrogen bonds at 300 ns and 400 ns (Table 3). 

Table 2 (continued ) 

Limonoids 2D structure of compound FK506 Binding Protein 
35 (kcal/mol) 

9 − 1.5 

10 − 3.1 

11 − 5.4 

12 2.4 

13 − 1.2 

14 − 3.1 

15 − 5.1 

16 − 2.5 

D51 − 6.1  
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Arg60 was also observed to form conventional hydrogen bond with the 
compounds at 400 ns while Gly104 formed carbon hydrogen bonds at 
300 ns and 400 ns. Other residues such as Tyr43, Phe54, Phe64, Ile74, 
Trp77, Tyr100, Ile109, Pro110, Leu115 and Phe117 engaged in rela-
tively weaker interactions involving alkyl and pi alkyl at varying times 
of the simulation. At 300 ns, Cys105 was observed to engage in pi-sulfur 
interactions with compound 1. 

Similar interactions were observed to exist between compound 11 
and the site residues. Asp55 interacted through conventional hydrogen 
bonds at 100 ns (Table 3) whiles Tyr100 at 100 ns and 400 ns. Gly104 
formed a carbon hydrogen bonds at 300 ns and conventional hydrogen 
400 ns and 500 ns. Ser108 also observed to form conventional hydrogen 
bonds with the compound at 300 ns. Gly106 and Pro110 formed carbon 
hydrogen bonds at 300 ns and 500 ns respectively. 

Juxtaposing these observations with the interactions that underlie 
the potency of D5I, it was observed that D5I engaged in stable hydrogen 
bonds with critical residues that endured through the simulation period. 
Glu72, Ile74 and Tyr100 formed conventional hydrogen bonds that were 
observed in all the assembled snapshots. Val73 also consistently formed 
carbon hydrogen bond with D5I as observed in the assembled snapshots. 
However, Gly71 formed carbon hydrogen bonds at 300 ns and 500 ns 
only. Tyr43, Phe64, Trp77 and Phe117 engaged in pi and alkyl in-
teractions with D5I at varying times of the simulation. These observa-
tions are critical and would be useful in compounds optimization to 
achieve maximum therapeutic effects. Since snapshots represent events 
at a specific time of the simulation period, we sought to buttress our 
observation by computing the hydrogen bond occupancy (fraction of 
simulation), the average bond distance, and bond angle of the hydrogen 

bonds. The results are presented in Table 3 This computation (high 
percentage occupation) corroborated the earlier observation in which 
Asp55, Ile74 and Tyr100 featured the most via hydrogen bonding. 
Having determined the behavior of the compounds within the binding 
site and the interactions that characterize them, we probed their impact 
on the conformational dynamics of the binding cavity. 

3.4. Binding site dynamics upon ligation 

The effects of the interactions that occurred between the compounds 
and site residues influence the conformations of the binding site. These 
change in conformations at the immediate regions of the compounds 
translate into signals that resultantly induce therapeutic effects [137]. 
The RMSD of the C-α atoms of the site residues and their SASA were then 
computed. These provided insights into the stability and the hydro-
phobicity of the binding pocket upon ligation. As observed in Fig. 3, the 
compounds including D5I stabilized the binding site. Average RMSD 
values of 1.83 ± 0.19 Å, 2.78 ± 0.48 Å, 1.68 ± 0.36 Å and 3.40 ± 0.75 Å 
for compound 1 complex, compound 11 complex, D5I complex and the 
unbound site respectively suggesting that D5I induced the highest sta-
bility of the site while the unbound was highly unstable. These differ-
entials in stability exhibited by the compounds relative to D5I could be 
due to the type of interactions that underlined their complexing wherein 
stronger and consistent bonds were observed for D5I. The SASA of the 
binding site also revealed the compounds influence a reduction in the 
surface area of the pocket available for solvent interactions. They pre-
sented average SASA values of 1328.08 ± 109.27 A2, 1466.33 ± 105.80 
A2, 1321.69 ± 80.09 A2 and 1505.16 ± 76.12 A2 for compound 1 

Fig. 1. Comparative representation of the stability, motion and SASA of the compounds and D5I A) shows the RMSD plots of compound 1 (red) compound 11 (green) 
and D5I (blue), plots show stability of the compounds over the simulation period. B) shows snapshot of the motions of compounds over the simulation period. C) 
show the visual differential positions of compound 1 at 50 ns and 90 ns. Snapshots show a 180◦ repositioning of the compound. D) shows the graphical representation 
of solvent accessibility (SASA) of the compounds. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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complex, compound 11 complex, D5I complex and the unbound site 
respectively. Again, the D5I complex site showed the least available 
surface area while the unbound showed the highest (Fig. 3). Collec-
tively, these findings on the binding site dynamics suggest the com-
pounds induce effects on the binding site of FKBP and serve as efficient 
inhibitors upon modifications. 

3.5. FKBP global protein perturbations upon ligation 

The global conformations of the protein were also investigated to 

determine the impact of the compounds binding on the global structure. 
This was achieved through estimating the motions and stability of the 
protein through the RMSD, the root mean square fluctuations (RMSF), 
the radius of gyration (RoG) and the SASA of the C-α atoms. Investiga-
tion of the deviations of the C-α atoms relative to the starting structure 
revealed the binding of the compounds including D5I induced stability 
of the system in reference to the unbound protein. Average RMSD values 
of 1.83 ± 0.34 Å, 1.49 ± 0.27 Å, 1.32 ± 0.28 Å and 2.10 ± 0.48 Å for 
compound 1- FKBP complex, compound 11- FKBP, D5I- FKBP complex 
and the unbound protein respectively as presented in Fig. 4A. These 
values fall below 2.5 Å which have been reported by several studies as 
the optimal threshold for a well simulated system [138–140]. These 
values thus repose confidence on the on the process and the conclusions 
derived herein. The RMSF, which is reflective of the flexibility of the 
protein at the individual residues revealed average values of 12.60 ±
3.83 Å, 13.14 ± 4.14 Å, 13.11 ± 3.98 Å, and 13.16 ± 3.99 Å for com-
pound 1- FKBP complex, compound 11- FKBP complex, D5I- FKBP 
complex and the unbound protein respectively. These results suggest the 
binding of the compound could have a decreasing effect on the residue 
flexibility of the protein. Compound 1 complex showed the least values 
indicating the residues were least flexible followed by D5I complex and 
then compound 11 complexes. As observed in Fig. 4B, compound 11 
exhibited the highest peaks in fluctuations at the loop regions. Differ-
ential fluctuations were also observed in other regions of the protein as 
presented graphically in Fig. 4B. These differentials relative to the un-
bound protein could underlie the compounds inhibitory potentials. 

Further investigation of the radius of gyration of the C-α atoms 
revealed the compounds binding induced an increase in the gyrations of 

Fig. 2. 2D visualization of snapshots of the compounds over the period of simulation sampled from 100 ns, 300 ns, 400 ns and 500 ns.  

Table 3 
Dynamic hydrogen bond interactions of the compounds at the binding site.  

Compounds H- 
Acceptor 

H-Donor Occupancy 
(%) 

Distance 
(Å) 

Angle 
(◦) 

Compound 1 ASP55- 
OD2 

LIGAND- 
O2 

26.29 2.76 164 

ASP55- 
OD1 

LIGAND- 
O2 

10.60 2.7 163 

Compound 
11 

ASP55- 
0D2 

LIGAND- 
O4 

16.93 2.62 167 

PHE54-O LIGAND- 
O4 

10.80 2.69 161 

D5I LIGAND- 
O16 

TYR100- 
OH 

71.21 2.79 164 

LIGAND- 
O1 

ILE74-N 67.24 2.86 156 

GLU72-O LIGAND- 
N14 

25.12 2.90 159  
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the C-α atoms. The RoG metric is informative on the compactness of the 
protein. The higher the radius of gyration, the lesser compact the protein 
[141] As observed in Fig. 4C, the complexes were less compact 
compared to the unbound protein. They revealed average values of 
14.13 ± 0.11 Å, 14.07 ± 0.08 Å, 14.06 ± 0.08 Å and 14.32 ± 0.11 Å for 
Compound 1 complex, compound 11 complex, D5I complex and the 
unbound protein respectively. These results corroborate with the RMSF 
finding in which reduced fluctuations of the bound protein were 
observed relative to the unbound. With these findings we delved further 
to examine the folding or unfolding events of the protein through the 
SASA metric. An increase in the SASA of the protein suggests an 
unfolding event wherein regions of the protein hitherto unavailable for 
solvent interaction have become available and vice versa [134]. The 
investigation revealed average surface areas of 6084.26 ± 217.49, 
6161.10 ± 180.83, 6089.01 ± 191.57 and 6175.57 ± 172.61 for com-
pound 1 complex, compound 11 complex, D5I complex and the un-
bound protein respectively suggesting folding of the protein occurred 
upon the binding of the compounds. As observed in the graphical rep-
resentation in Fig. 4D and the average values, the surface available for 
aqueous interactions was the least in compound 1 complex and highest 
in the unbound protein. These findings thus reinforce the observations in 
the protein fluctuations and compactness. Taken together, the confor-
mational dynamics presented suggest the compounds significantly per-
turb the protein structure thus underscoring their therapeutic prowess. 

3.6. Thermodynamics estimations of the identified Limonoids 

The binding energy landscape of the compounds were determined 
through the MM-PBSA approach due to its wide usage and efficiency 
[142,143]. The free binding energy is important as its indicative of the 
spontaneity and kinetic reactions of the compounds complexing process. 

The binding energy is underscored by the interaction types that occur 
during and after the complexing process thus stronger and favourable 
interactions is expected to yield low binding free energies (most nega-
tive). The energy profiles of the compounds thus determined are pre-
sented in Table 2. Average binding free energies of − 26.66 ± 3.84 
kcal/mol, − 21.02 ± 3.33 kcal/mol and − 27.99 ± 2.64 kcal/mol were 
determined for compound 1, compound 11 and D5I (Table 4) respec-
tively suggesting that the compounds presented relatively higher total 
free binding energies compared to D5I. This is because of loss of elec-
trostatic interactions in compound 1 and 11 complexes but a more 
negative binding energy does not mean better inhibition [131,144] and 
electrostatic interactions alone does not describe the encounter of a 
complex but hydrophobic interactions also contribute to the formation 
[130]. This seems to corroborate with the type of interactions visualized 
in the snapshots wherein consistent conventional hydrogen interactions 
were observed supported by the occupancy presented in Table 2. 
Generally, the binding free energies for the compounds indicate their 
complexing was spontaneous. van der Waals and electrostatic energies 
contributed significantly to the total binding energies. 

3.7. In silico elucidation of the pharmacokinetic properties of identified 
Limonoids 

The physicochemical and pharmacokinetics of potent molecules are 
crucial determinants of the molecules’ success as therapeutic agents. 
Thus, these potent molecules access respective therapeutic targets in 
concentrations that can elicit a therapeutic response. To provide insights 
into the pharmacokinetics of compounds 1 and 11, we employed in silico 
techniques to assess their absorption, distribution, metabolism, excre-
tion, and toxicity (ADMET). These properties also allowed for the pre-
diction of the bioavailability and ability of compounds 1 and 11 to cross 

Fig. 3. Comparative analysis of the binding site dynamics of FKBP binding site upon the compounds binding. A) shows the FKBP protein highlighting the binding site 
of the compounds. B) shows the graphical representation of the binding site stability over the period of simulation upon bind of the compounds relative to the 
unbound. C) shows the graphical comparative solvent accessibility of the binding site over the period of simulation upon binding of the compounds relative to the 
unbound protein (Apo). 
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the blood-brain barrier. Over the years, computational techniques have 
gained prominence as valid alternatives to conventional experimental 
methods of predicting ADMET properties since they suffice the resource- 
intensive and time-consuming experimental methods [145]. Online in 
silico ADMET predictors employed in this report included SwissADME 
(116), AdmetSar [146], and the Protox web server [117]. Multiple 
platforms were employed to validate the predictions and ensure the 
reliability of the insights proved. Using the SwissADME, concepts and 
criteria followed to predict the pharmacokinetic properties of the com-
pounds included the Lipinski’s rules of five (LRO5) [147] and the Brain 
Or IntestinaL EstimateD permeation method (BOILED-Egg) concept 
[148]. The LO5 rules [molecular weight (MW) < 500 g/mol], Log P < 5, 
H-bond donors (HBD) < 5 and H-bond acceptors (HBA) < 10] allowed 

for an initial assessment of the drug-likeness of compounds 1 and 11, 
whereby a violation of more than two of the rules suggests the respective 
compound is not drug-likely. As shown in Table 5 both compound 1 
[MW = 468.54 g/mol], Log P = 3.42, HBD = 1, and HBA = 7] and 
compound 11 [MW = 468.54 g/mol], Log P = 4.42, HBD = 1, and HBA 
= 6] and were predicted to be drug-likely evidenced by their adherence 
to all the LRO5. Also, based on the Brain Or IntestinaL EstimateD 
permeation (BOILED-Egg) concept [148] as shown in Fig. 5, both 
compounds were shown to fall within the chemical space that suggests 
their ability to cross the blood-brain barrier, possess high intestinal 
absorption, and a consequential high bioavailability. The favourable Log 
P > 5 for both compounds also correlated with favourable lipophilicity 
suggesting their ability to permeate lipid membranes which could intend 
enhance bioavailability. The favourable lipophilicity of both compounds 
also suggests the compounds could possess minimal toxicities since 
highly lipophilic compounds tend to bind to hydrophobic targets other 
than the desired target [149]. The MW below 500 for both compounds 
could contribute to high bioavailability since small molecular weighted 
compounds would easily permeate intestinal epithelium to access tar-
gets with minimal off-target binding [150]. The predicted topological 
polar surface area (TPSA) below 140 Å2 for both compounds suggest that 
they could easily be transported across cell membranes since the 
calculation of TPSA considers the polar atoms on the surfaces of com-
pounds whereby compounds possessing TPSA above 140 Å2 tend to 
exhibit poor cell membrane permeability [151–153]. A prediction of the 
LD50 of both compounds using the ProTox platform showed LD50 of 555 
mg/kg and 10000 mg/kg for both compound 1 and 11 respectively. This 
suggested that compound 1 possesses minimal oral toxicity tendencies 

Fig. 4. Comparative analysis of the impact of the compounds on the global FKBP protein. (A) Shows the differential RMSD plots of the C-α atoms of the protein upon 
the compounds binding (B) Shows the residual fluctuations of the protein upon the compounds binding. (C) Shows the comparative RoG plots of the c-α atoms of the 
protein upon the compounds binding. (D) Shows the comparative plots of the solvent accessibility surface area (SASA) of the protein upon the compounds binding. 

Table 4 
MMPBSA calculations showing the binding energy Profile of D51, compounds 1 
and 11. ΔEele = electrostatic energy; ΔEvdW = van der Waals energy; ΔGbind =

total binding free energy; ΔGsol = solvation free energy ΔG = gas phase free 
energy.  

System Energy components (kcal/mol)  

ΔEvdw ΔEele ΔGgas ΔGsol ΔGbind 

Compound 
1 

− 33.54 ±
3.19 

− 13.06 ±
5.77 

− 46.61 ±
6.28 

19.95 ±
4.13 

− 26.66 ±
3.84 

Compound 
11 

− 28.60 ±
4.39 

− 6.65 ±
10.58 

− 35.25 ±
8.91 

14.23 ±
7.66 

− 21.02 ±
3.33 

D5I − 29.24 ±
2.43 

− 28.33 ±
4.25 

− 57.57 ±
4.50 

29.58 ±
3.07 

− 27.99 ±
2.64  
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while compound 11 was predicted to present no toxicity since molecules 
with LD50 of 0–50 mg/kg is considered highly toxic [154], whereas 
compounds with above 2000 mg/kg present no toxicity. 

The compounds were also computationally explored to assess their 
ability to be retained in the central nervous system (CNS). As presented 
in the BOILED-EGG analysis, both compounds were predicted to be 
substrates of P-glycoprotein and hence could be effluxed out of the CNS 
back into the capillary lumen via P-glycoprotein mediation. Considering 
the crucial role of P-glycoprotein as an ATP-binding cassette (ABC) 
transporter that extruding toxins and xenobiotics out of cells, it could be 
inferred that both compounds would not be retained in high amounts 
within the CNS hence reducing their favourable absorption and 
bioavailability in the CNS. Overall, the predicted pharmacokinetics 
suggested compounds 1 and 11 are drug-like compounds with high in-
testinal absorption ability, minimal toxicity tendencies and could not be 
retained in the CNS. 

3.8. Biological activity prediction of lead compounds 

In order to determine the antimalarial properties of compounds 1 
and 11, Prediction of Activity Spectra for Substances (PASS) was 
employed [118], which estimates the probable biological activity of 
compounds liaising Quantitative Structure - Activity Relationship 
(QSAR). Compounds predicted with probable of active (Pa) greater than 
probable of inactive (Pi) are worth exploring [118,155,156]. Both 
compounds 1 and 11 were predicted to be antiprotozoal with Pa and Pi 
values 0.207 and 0.099 and, 0.162 and 0.155 respectively. Plasmodium 
parasites are protozoans hence antiprotozoal compounds are plausible 
antimalarial compounds [157]. Antiparasitic compounds have been 
shown in a previous study to possess antimalarial properties by killing 
the ring stage of Plasmodium falciparum and also retains activity against 
artemisinin resistant parasites [158]. Compounds 1 and 11 are struc-
turally similar to moxidectin, an antiparasitic compound. 

Table 5 
Physicochemical and Pharmacokinetic profiling of compound 1 and 11 generated from SwissADME.  

Properties compound 1 compound 11 

Chemical formula C27H32O7 C27H33NO8 
Molecular weight(g/mol) 468.54 468.58 
Number of heavy atoms 34 36 
Number aromatic heavy atoms 5 0 
Number of rotatable bonds 6 4 
Number of H-bond acceptors 7 8 
Number of H-bond donors 1 1 
TPSA(A2) 103.04 125.07 
Molar Refractivity 125.11 130.61 
LogPo/w 3.42 2.21 
LD50 mg/kg 555 10000 
Bioavailable Radar 

Fig. 5. “BOILED-EGG representation of the ADME properties of compound 1 and 11 with subclassified as yolk (i.e., the physicochemical space for highly probable 
BBB permeation) and the white (i.e., the physicochemical space for highly probable HIA absorption). 
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4. Conclusion 

In this study, the inhibitory activity of isolated limonoids from the 
stem barks of Entadrophragma angolense against PvFKBD35 was 
explored. Sixteen [16] limonoids were docked against the energy 
minimized PvFKBD35. Compounds 1 and 11 showed favourable pre-
dicted binding affinities and interacted with the critical residues of 
PvFKBD35 throughout the 500 ns MD simulation. The RMSD, RMSF, 
RoG and SASA provided insights into the stability and the conforma-
tional dynamics of the PvFKBD35 upon binding of compound 1 and 11. 
These showed that the binding of both compounds perturbed the 
structure of PvFKBD35 which could underpin the binding potential of 
both compounds. Assessment of the pharmacokinetics of the compounds 
furthers highlighted their therapeutic potential by adhering to the Lip-
inski’s rules of 5, high intestinal absorption with minimal to no toxic-
ities. Compounds 1 and 11 were also predicted to be antiprotozoal 
making them plausible antimalarial compounds. Nonetheless, addi-
tional experimental validation is required to further establish the 
binding potential of these compounds. This findings in the interim 
however, could serve as preliminary data towards the development of 
novel PvFKBD35 inhibitors as therapeutics against P. vivax. 
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