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ABSTRACT 
 
The recent popularity of Connected and Autonomous Vehicles (CAV) corresponds with an 
increase in the risk of cyber-attacks. These cyber-attacks have been instigated by both 
researchers or white-coat hackers, and cyber-criminals. As Connected Vehicles move towards 
full autonomy the impact of these cyber-attacks also grows. The current research details 
challenges faced in cybersecurity testing of CAV, including access and the cost of 
representative test setup. Other challenges faced are lack of experts in the field. Possible 
solutions of how these challenges can be overcome are reviewed and discussed. From these 
findings a software simulated Vehicular Ad Hoc NETwork (VANET) is established as a cost-
effective representative testbed. Penetration tests are then performed on this simulation, 
demonstrating a cyber-attack in CAV. Studies have shown Artificial Intelligence (AI) to 
improve runtime, increase efficiency and comprehensively cover all the typical test aspects, 
in penetration testing in other industries. In this research a similar AI Reinforcement Learning 
model, Q-Learning, is applied to the software simulation. The expectation from this 
implementation is to see similar improvements in runtime and efficiency for the VANET 
model. The results show this to be true and using AI in penetration testing for VANET to 
improve efficiency in most cases. Each case is reviewed in detail before discussing possible 
ways to improve the implementation and get a truer reflection of the real-world application.  
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1. INTRODUCTION 

 

1.1 Problem Statement 

The use of connected vehicles has risen in recent years and is projected to continue 

growing well into the future. This is due to the improved safety and efficiency in connected 

and autonomous vehicles [1]. However, with these benefits there is also some risk. As a 

connected vehicle needs to communicate with vehicles, infrastructure and other road users 

constantly, each of these connections have to be secure and any threats must be detected and 

blocked. Connected vehicles have already been exploited many times by hackers using direct 

or wireless connection. Typical hacks have allowed the infiltrator access to personal data about 

the vehicle owner and control of minor functions such as radio or peripheral controls. 

Sometimes the infiltrator was able to gain full access over the main vehicle components 

including acceleration, braking, and steering [2]. These hacks can cause fatal crashes when 

they are not detected and stopped. For this reason, Original Engine Manufacturers (OEMs) 

perform penetration testing to detect any flaws in the communications infrastructure before the 

vehicle is released to the public. Penetration testing is a simulated cyber-attack on an 

application, network, or computer system to check for exploitable vulnerabilities. To perform 

a penetration test a lot of resources are required, including a highly skilled engineer to design 

and implement the test, the appropriate tools and time to setup and execute the test.  

When analysing connected vehicles there are two layers to be considered – internal 

communications such as CAN, I2C, Ethernet communication buses within the vehicle and 

external channels such as LiDAR, cameras, and vehicle-to-everything (V2X) wireless 

communications. The latter leverages a network named Vehicular Ad-hoc NETwork 

(VANET), a mode of Intelligent Transportation System (ITS). Each node in the VANET sends 

and receives messages between each other and any available roadside units. A typical case in 

penetration testing would be to introduce an attacker vehicle, or an attacker node, and send 

erroneous or intentionally incorrect messages to divert, disrupt or corrupt another vehicle [3] 

[4]. As part of the penetration test exploration the tester would send different messages in a 

simulated scenario and track which message would most benefit the test. The time and 

resources taken to do this will be addressed in this research. In many industries it is common 

practice to perform this level of testing using an automatic system with a built-in 
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Reinforcement Learning algorithm. However, this is not common practice in developing 

Connected and Autonomous Vehicles (CAV), as discussed in the literature review section. 

 

1.2 Scope of Research 

This research will look to address the problem statement by applying an artificial 

Intelligence (AI) solution to automatically create penetration tests for a VANET. This will be 

achieved by first creating a VANET testbed that reflects the true implementation that is used 

in vehicles today. Once this testbed is created a bridge will be created that will allow an external 

AI agent to control the attacker node within the VANET simulation. The AI agent will then 

test each possible message that can be sent to the network and measure the state of the system 

by using a Reinforcement Learning technique.  

 

1.3 Summary of Research 

Chapter 2 will review how cybersecurity is handled within CAV compared to other 

industries and how machine learning techniques can be integrated into penetration testing. This 

will first include a review of penetration testing and how it is used before looking at integration 

with AI. Chapter 3 will detail the methodology and the implementation of the simulated 

environment. It will give the reader an understanding of how the AI model communicates with 

the simulated environment and how to understand the outputs of the model. Chapter 4 will 

present the results from test and experimentation. Chapter 5 will discuss and evaluate these 

results further before drawing conclusions. Chapter 6 and Chapter 7 will present the works 

cited and appendices respectively. 
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2. Literature Review 

This chapter reviews the findings of the literature review. Section 2.1 will detail 

cybersecurity in general and how penetration testing is performed. It will then detail how AI is 

applied to improve the efficiency of penetration testing. This will be followed by section 2.2 

which will detail the cybersecurity measures, common vulnerabilities a penetration testing in 

CAV. This will be followed by reviewing current uses of AI in CAV before finally finishing 

the chapter with some conclusions. 

 

2.1 Cybersecurity  

Cybersecurity is a continuously growing field as society continues to advance in the 

Information and Communications Technology (ICT) industry. With the growth of the Internet 

of Things Technology (IoT), connected devices and systems are becoming more popular in 

public areas (Mobile phones, Smart City devices), homes (Google Home, Home Surveillance) 

and on the road (Connected Vehicles). The increase in connected technology corresponds to a 

greater need for cybersecurity techniques to safeguard our systems from any kind of 

information disclosure. Cybersecurity should be a consideration when developing any 

computer or network related product [5]. There are several main types of cyber-attacks as 

detailed below [6]: 

 Denial-of-Service (DoS) - This type of attack over utilises the resources on the system 

making it inaccessible to others. This is achieved by sending many requests to the target 

server, flooding the network server with traffic. These requests are illegitimate and have 

false return addresses which mislead the server when it attempts to authenticate the 

requestor [7]. 

 Malware – The term “Malware” is derived from “Malicious Software”, meaning it is 

software that causes damage, disruption, or unauthorized access to a computer system. The 

attacker deploys the malware software on the victim’s computer typically to steal, damage 

or destroy data. The intention may also be to compromise computers on the further 

connected network. Malware includes many subgroups including virus, worms, trojan 

virus, spyware, adware, ransomware. Each of these subgroups reflect the various intentions 

[8].  

 Phishing – Phishing leverages social engineering to collect sensitive information about an 

organisation or an individual system/user. This is done by opening communications by 
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social media, email, web pages, cell phone, pop-up messages, instant messages among 

others to collect data from users. The attacker typically pretends to be a trusted company 

to build the victim’s trust. The attacker then asks for some private credentials or may ask 

the victim to download a file, posing as a software update but in fact it is malware [9]. 

 SQL Injection Attack – This type of attack is specific to databases. It is where the attacker 

inputs a SQL statement which can lead to unauthorized access and manipulation of the 

database. This can expose sensitive information or lead to data loss [6]. 

 Session Hijacking and Man-in-the-Middle Attacks – Man-in-the-Middle attacks are a 

type of eavesdropping attack. This is where an unauthorized third party secretly gains 

control of the communication channel between multiple endpoints, observing the data 

being shared, or corrupting the data for the attacker’s advantage [10].  

  

Over the years there has been a wide variety of methods, or defence strategies, used to 

enhance cybersecurity of computers and networks. While Table 1 represents a few of these 

defence strategies, there are many more mechanisms available [11]. In time, the best practices 

around these defence strategies can change as cybercriminals learn and develop their attack 

approach. For example, in many systems a single password is used for user authentication. A 

study showed that people commonly use simple passwords or use the same password for 

multiple systems and so their user login is not very secure [12]. These Single-Factor 

Authentication (SFA) could be broken through dictionary attacks, or social engineering attacks. 

Dictionary attacks is where a script attempts to try all words. Two, or multi-factor 

authentication, is a good defence strategy for securing user login details. By using two or more 

passwords, or security tokens, the account has a much smaller chance of being hacked 

successfully. The main factors of user credentials are, Knowledge, Ownership and Biometric. 

These factors are inputted respectively by secret password, smartphone token or card, and 

biometric data such a fingerprint [13]. Multi-factor is becoming the norm with high-risk 

accounts such as an individual’s bank account.  

Table 1: Defence Strategies to de-risk cyber-attacks 

Defence Strategy Description References 

Fuzzing  Allows detection of software safety errors introduced by 

Man-in-the-Middle attacks. 

[14] 
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Encryption Process of encoding information, converting original 

plaintext into a ciphertext with authorized bodies 

reverting the cipher. 

[15] 

Obfuscation Obfuscation is used to obscure the meaning of the 

message by making it difficult to understand. 

[16] 

Anti-Malware These systems monitor and scan for malware software 

and remove it. 

[17] 

Firewall Monitoring incoming and outgoing network traffic and 

blocks untrusted traffic based on restrictions. 

[18] 

Access Control This involves user authentication and Multi-factor 

authentication as detailed in the previous. 

[19] 

2.1.1 Ethical Hacking 

Penetration testing, also known as ethical hacking, has been around since the late 90s. 

Automotive penetration testing is a controlled attack on automotive software to find any 

vulnerabilities and access potential damage that can be caused by an attack [20].  

There are a few steps to performing a penetration test [21]. 

1. First the hacker must find an entry point. There are several ways to achieve this; the 

hacker may have login credentials, or use a brute force attack, or pretend to be from a 

trusted IP, among other methods. 

2. Once the hacker has infiltrated the device or network, they can start the penetration test. 

At this point the hacker can start to target other connected segments of the device or 

network. The hacker could perform a man-in-the-middle/eavesdrop attack to launch an 

advanced persistent threat test or spoof the system to gain further privilege at this point. 

3. Exploit – the hacker builds on the knowledge they have gained and can either 

disconnect and complete the hack or use their findings to exploit the network further. 

For example, if they have gained elevated privileges from spoofing, they can now 

access more data. 

4. Performing an advanced persistent threat is the ability to access a device or network, 

maintain it and access valuable data without being detected. This is the most dangerous 

attack of them all [21]. 

5. The last step is exfiltration, or to “vanish without a trace”. This involves disconnecting 

while masking or removing any trace of being there. 
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Execution of the five steps describes a very successful penetration test, however being able 

to find a vulnerability as in step one can be difficult. There are many software tools to help 

with this, including Kali Linux, Nmap, Nessus and Wireshark. 

 Kali Linux: This is a Debian-based Linux operating system that allows pen testers to 

perform the same malevolent attacks as hackers with relative ease. [22]  

 Nmap: Performs scans of networks to discover everything that is currently in the 

network and information about each connected port. It also details the versions of each 

port service. This information may be used to exploit a known vulnerability. [23]  

 Nessus: Nessus is a vulnerability scanner that scans a computer and reports any 

vulnerabilities in computers connected to the shared network. [24] 

 Wireshark: Wireshark is a network protocol analyser, meaning it is used to review all 

messages in and out of your network with a very high level of detail. [25] 

  

2.1.2 Artificial Intelligence   

Traditional penetration testing methods are becoming less favourable in recent years due 

to resource consumption and the variance between systems. To ensure equal or better testing, 

AI has become a popular alternative method [26]. Artificial Intelligence (AI) has been used on 

several occasions to enhance cybersecurity defences [27], [28]. In 2019, McKinnel et al. [29] 

completed a systematic literature review on the increase of artificial intelligence in penetration 

testing and vulnerability assessment was complete. This review gave many examples of how 

AI is an effective tool in both vulnerability assessment and penetration testing. Some of the 

recommendations given were to use a specific system rather than being overly abstract. An 

area of suggested research that was presented is to investigate an AI-based approach to identify 

vulnerabilities that are exploitable, and to what degree.  

[29] gives an overview on some common AI models used. The detail of the independent 

variables and AI models used across the 31 relevant papers analysed. In total there were 10 

independent variables – these were problem size, number of hosts in exposure, genetic 

generation, training epoch, network state, number of objectives, action model, AI engine, 

connectivity, and vulnerabilities. Similarly, there are 10 different AI models used across these 

papers. The majority had a common approach that encompassed some degree of attack 

planning via attack graph generation, or attack tree modelling, or another form. Markov 

Decision Process (MDP) was used for attack graph generation approaches. From the attack 
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graph the AI model could then be determined. The most popular approach was Partially 

Observed MDP as nine of the papers analysed utilised it. The second choice, with four papers 

leveraging it, was the fast-forward model with some using contingent fast-forward model to 

enhance the results. A Fast-Forward model is one that starts at an initial state and expands a 

search tree until it reaches its goal state. The meta-analysis concluded this was the highest 

performing group of models for generating attack plans. Other less commonly used techniques 

were Multiple Value, NuSMV (Model Checker), genetic evolution, Reinforcement Learning. 

Some papers used a combination of models. Since McKinnel et al. [29] review paper was 

published in 2019, there has been further papers published supporting the use of Reinforcement 

Learning as an AI engine for penetration testing. Reinforcement Learning is discussed in 

further detail in section 172.2.6. In 2020, Hu et al. [30] suggest using Deep Reinforcement 

Learning for penetration testing. This deep reinforcement learning technique leverages the 

Deep Q-Learning Network (DQN).  Using an attack tree methodology, a reward system is 

constructed and used to train the DQN. This case achieved an accuracy rate of 86% for selection 

the correct attack route from the attack plan.  

 

2.2 Cybersecurity in CAV 

Connected and Autonomous Vehicles (CAV) are becoming more popular in recent years 

resulting in a proportionate increase in the number of cyber-attacks [31]. There are multiple 

networks to be considered when discussing CAV networks:  

 Internal Network – Internal or on-board Connected Vehicle technology includes an 

extensive cable network that connects to the powertrain, vehicle control, HVAC 

controls, on board diagnostics, multimedia system, on board sensors and telematics 

among others. 

 External Network – Consists of all the external communications including Bluetooth 

for a phone or tyre pressure monitoring system, GPS signal, wireless communications 

dedicated short range communications (DSRC), 5G among others. The external 

network of each vehicle is part of a much larger network for this research, where each 

vehicle is an individual node. The larger network also may contain roadside units such 

as traffic signals, traffic cameras etc. External networks are able to perform 
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communications between vehicle-to-vehicle (V2V) or vehicle-to-everything (V2X). 

Figure 1 shows a typical larger external network [32].  

 
Figure 1: Typical External Network in a city [32]. 

 

The external network is openly accessible to many public users and so there is more 

threats than an internal network. Figure 2 shows several potential eavesdropping attack modes 

including V2X and Vehicular Cloud Networks [33]. In the case of V2V, Vehicle-to-Person 

(V2P) and Vehicle-to-Infrastructure (V2I), users are actively transmitting data so any user 

within range can receive messages, including confidential information. When a satellite is 

involved, i.e., Vehicle-to-Satellite (V2S), the wrong recipient may receive the data if it is being 

used as a relay node as great distances are involved. Vehicular cloud networks communication 

shares a lot of data including weather updates, traffic updates, media data however it also 

contains user data which maybe overheard if the messages are decrypted.  
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Figure 2: Major security threats in external CAV networks  [33]. 

 

To mitigate these types of attacks discussed previously there has been several 

improvements made to cyber security for CAV. A few are listed in Table 2.  

Table 2: Cybersecurity Improvements in recent years 

Key Terms Description References 

Fuzzing tools Fuzz testing is an automated software testing technique 

which enables testing of various boundary test cases. 

[34] 

Lattice Model Lattice Model network for V2X communication relies on 

continuous feedback to suppress cyber-attacks 

[35] 

Anomaly 

Detection 

Use of anti-virus scanners to detect when a cyber-attack has 

occurred and flag or disconnect from source of attack. 

[36] 

 

Each of these approaches have several strengths and weaknesses. The anomaly detecting 

is a more repair method as it typically takes action after the attack has already started. In some 

cases, the damage has already been done and repairing the attack point will have little benefit 

to the vehicle. The fuzzing tools have been proven to work effectively on several projects 

however there is the risk that data may be lost or corrupted. The lattice model leverages 
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redundancy to over communicate, that have proven to typically be an effective way to develop 

automotive systems. However it can cost more power and result in some noise.  

 

2.2.1 Regulations 

To protect organizations and to follow best practices there are regulations set out by 

International Organization for Standardization (ISO) to maintain high-level safety. One key 

element of the ISO guidelines for computer security covered under ISO15408 is that 

cybersecurity must be considered in the full organizational process [37]. There are ISO and 

Society of Automotive Engineers (SAE) regulatory documents that focus directly on 

cybersecurity in vehicles including ISO/SAE 21434, Road vehicles - Cybersecurity 

engineering [38] and SAE Guidelines, SAE J3061 [39]. These regulations must be met and the 

product certified for an automotive product to be released. Before 2021 there was no specific 

ISO for regulating cybersecurity in automotive as ISO26262 focused only on functional safety 

and SAE J3061 is only a cybersecurity guideline. This changed with the release of ISO21434. 

That means vehicles released before 2021 were developed with significantly less regulation for 

cyber security. The introduction of ISO 21434 has enabled the improvement of vehicle security 

by ensuring new technologies in the automotive industry meets security standards [40].  

2.2.2 Current Vulnerabilities 

In recent years there have been several vulnerabilities found and exploited in CAV 

technology by both cyber criminals and white hat hackers. Some of these have since been 

addressed by automotive manufacturers. These vulnerabilities are primarily focused on 

network related weaknesses as these are more relevant to the current research. The National 

Vulnerability Database (NVD) maintained by the National Institute of Standards and 

Technology (NIST) is an excellent source of tracking the vulnerabilities discovered. A 

summary table is shown in Table 3 focusing on the five largest auto manufacturers [41] by 

revenue. Tesla is included in the table due to its world-renowned connectivity and public 

interest. 
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Table 3: Vulnerabilities from the NIST's NVD [42] 

Automaker Vulnerability type Count 

Volkswagen*  2  

 Session Hijacking 1 

 Man In the middle attack 1 

Toyota  4 

 Denial of Service  1 

 Non-Critical Session Hijacking  4 

 Man In the middle attack  2 

Daimler  8 

 SQL Injection 1 

 Session Hijacking 3 

 Man In the middle/Eavesdropping attack 2 

 Denial of service 2 

Ford**    

General Motors   3 

 Man In the middle attack 3 

Tesla  15 

 Man in the middle attack 1 

 Session Hijacking 8 

 Malware 1 

 Denial of Service 5 

*Audi is part of the Volkswagen group however due to the limits of the NVD filtering there 

were over 2000 hits when Audi was entered. Only a small percentage of the 2000 are relevant 

to this paper so none were considered 

** Similarly, Ford is a generic term in the NVD and could not be filtered further 

 

Table 3 offers insight into the vulnerabilities in the world and what is being reported. 

These attack types are described in more detail in section 2.1.1. In the case where malware is 

installed or Session Hijacking occurs, these are the high priority vulnerabilities for CAV. In 

the case of a functional behaviour change (i.e., drivetrain) there is risk to human life. If it is a 

denial-of-service attack it is unlikely to affect functional safety but may cause massive 

inconvenience. Some of these vulnerabilities are under dispute or have since been fixed but 

there are still some common trends. As shown in Figure 3 there is a trend of more vulnerabilities 

being found and reported in recent years. The fact that there are the same number of published 
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vulnerabilities in this database for 2021 and 2018 shows that vehicles may have more 

vulnerabilities, or more are being discovered than before. As most of the vulnerabilities listed 

in Table 3 are related to new features, connected phones, over the air updates, remote key fob 

control etc, a correlation between new connected features and an increase in vulnerabilities is 

demonstrated. 

 

Figure 3: Top 5 Automakers Vulnerabilities in recent years [42] 

The vulnerabilities listed in the NVD are documented and recorded by MITRE and other 

similar organizations. Meaning these vulnerabilities are found after-market where the vehicle 

is already publicly available. This highlights the need for more extensive testing by the 

automaker pre-market.  

 

2.2.3 CAV Network Software Simulation 

This section reviews research to find a suitable testbed simulation which can be used for 

completing the current research. Initially both software and hardware solutions were 

considered but a software solution would be preferable due to time and cost constraints. From 

findings an appropriate testbed would then be used for this study. 

Fowler et al. [43] showed promising results that referred to a software simulation tool 

called CANoe, produced by Vector Informatik, a manufacturer of network debug and analyser 

tools. However very brief and did not detail how this simulated vehicle model was produced 

through CANoe or how the hardware was then connected to set it up as a useable testbed. 

Costley et al. [44] leveraged ROS to create a software and hardware solution. From the title 

0

2

4

6

8

10

12

2021 2020 2019 2018 2017 2016 2015 2014 2012 2011 2010 2009

Top 5 Automakers Vulnerabilities

DoS Eavsdrop Unauthorised access

Command/Script injection Man in the middle Other



  
 
 

 14  

this paper expresses a low cost open-source testbed to enable Automated vehicle research 

however on further reading the product is merely an interactive way of controlling a real 

vehicle. It is not a software simulation and requires full access to a vehicle for use and so is not 

an appropriate solution. From this a leaner search for software simulated solutions was taken.  

Some auto manufacturers have also tried to introduce cost effective testbed solutions that 

do not require access to a vehicle. Toyota produces a Portable Automotive Security Testbed 

with Adaptability (PASTA) in 2018 [45]. PASTA consists of a hardware representation of a 

connected vehicle, involving 4 Embedded Electronic Control Units (ECUs); a Central Gateway 

(CGW), and 3 ECUs to control powertrain, body and chassis domains. These are then 

connected using CAN to inputs. The input control can use either the manual input or the inbuilt 

software. From the initial release of PASTA, this looked to be an effective testbed and further 

backed by Baar [46] and Higgins [47]. One drawback of PASTA as mentioned by Baar [46] 

and further discovered by some price comparisons online is that the testbed is ~$28,000 which 

leaves it out of reach for most individual researchers and hence is unsuitable for the current 

research. Despite PASTA being marketed towards researchers, the price positions it towards 

researchers within automotive companies. Baar [46] provided a prototyped alternative to 

PASTA at a much lower budget of approximately €398 which used raspberry pi for the ECUs 

and a CAN bus for streaming data between them. This was certainly a cheaper option, but it 

sacrificed the amount of data and control that was transferred within the vehicle, i.e., it was not 

setup for additional inputs such as drivers’ inputs, nor was the ECU programmed to handle 

typical vehicle systems, such as powertrain, body or chassis control like PASTA. 

As an appropriate vehicle testbed was not obtainable without further developing a 

solution the search parameters were re-evaluated. Instead of viewing messages on an inter 

vehicular level, viewing the vehicles on a nodular level provided significantly more hits [48], 

[49]. Simulation tools such as SUMO, OMNET+, VEINS and INET were used in these cases 

to build a working simulation of VANET. A VANET consists of groups of moving or 

stationary vehicles connected by a wireless network. VEINs break into the following software 

components [50]: 

 OMNET+ - “Objective Modular Network Testbed in C++” is a simulator for building 

network simulation. This can create nodes and communicate between them. 

 SUMO – “Simulation of Urban Mobility” is a road traffic simulator which can build 

maps of roads and place vehicles on them, handle traffic, speeds etc. 
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 TraCI – “Traffic Control Interface” is a technique for interlinking traffic and road 

networks. 

 VEINS – “Vehicles in Network Simulation” is an open-source framework which 

leverages OMNET+ and SUMO, with OMNET+ performing the network simulations 

and SUMO the traffic simulations. TraCI is added to VEINS as a module to understand 

the influence of network on traffic pattern. 

Proceeding forward with VEINS as the simulation tool of choice identified other relevant 

studies in applying penetration testing using VEINS. Some of these are reviewed in the next 

section. 

 

2.2.4 Penetration Testing 

Penetration can be done by the automaker or by an outside team that specialises in 

penetration testing [20]. Using an outside team can be beneficial as they will have limited or 

no knowledge of the product and will have the same access as a cybercriminal. As more 

connected intelligence is added to vehicles, testing must also be amplified. However, there are 

several challenges faced in performing real-world penetration testing on connected vehicles. 

 Environment control - Understandably the environment needs to be extremely 

controlled to guaranteed safety should the vehicle lose control. In performing a test, 

you don’t want to interrupt other vehicles in the area by blasting repeating signals to 

generate noise. Some automakers overcome this by using remote test facilities or by 

using a large faraday cage [51].   

 Aggression and competition between automakers – As the world’s leading 

automakers are competing, there is insufficient collaboration when it comes to setting 

standards. To win this competition, automakers push for unrealistic deadlines when it 

comes to ensuring cyber resilience in their vehicles [52].  

 Skilled workers – The skillset required to be an expert in cybersecurity, automotive 

and testing is specialised resulting in insufficient talent availability. To overcome this 

challenge some vehicle manufacturers such as Tesla have now started to encouraged 

academics and the public to attempt penetration testing on their vehicles to expose any 

vulnerabilities [53].  
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Penetration testing is similar to other test types and requires a clear framework when being 

applied. There are many different methods used on how to plan and record a test, but in general 

a framework like test process documented in [54] should be used. This framework is: 

1. Define Item 

2. Perform Risk and Threat Analysis 

3. Define Security Concept (testing requirements) 

4. Plan Test and Develop Scenarios 

5. Select Test Scripts 

6. Generate Test Cases 

7. Perform Test  

8. Generate Test Reports. 

This template is flexible to be used in various test environments and robustly record the 

relevant data. Similar processes were followed when performing penetration testing using 

VEINS in [55]. VEINS is used in a study of an Intelligent Transport System (ITS) to simulate 

a Misbehaviour Detection feature [55]. While performing the research, the team used VEINS 

to perform V2X attacks, which they would then later run against their Misbehaviour Detection 

algorithm. The V2X attack types simulated were DoS, Disruptive, Data Replay, Eventual Stop, 

Congestion Sybil, and Misbehaviour Authority Stress.  

 

Table 4: Attack scenarios implemented as Open Source in a VEINS project [55]  

Attack Type Description 

Denial of Service 

(DoS) 

In the simulation the attacking vehicle increased the frequency it would 

send messages. It can also toggle between valid data and random data being 

transmitted. 

Disruptive The attacker attempts to flood the network by replaying old data received 

from a beacon. Simultaneously the attacker also increases the transmission 

frequency to maximize the negative effects on the network. As the data 

comes from a trusted beacon originally it may appear as valid. 

Data Replay The attacker chooses a target and replays data with a certain delay so an 

observer may think there are 2 vehicles following each other. 

Eventual Stop After a certain time delay the attacker stops sending signals to beacons and 

sets speed to zero giving the appearance of a sudden stop. 

Congestion Sybil The attacker introduces a ghost vehicle, the attacker transmitting data in 

place of the ghost vehicle. 
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Misbehaviour 

Authority Stress 

The attacking vehicle targets the Misbehaviour Authority (managing server) 

by sending falsified reports, containing identities of neighbouring vehicles 

or random data to confuse it. 

Kamel et al. [55] published their VEINS project and attack scenarios as opensource on 

GitHub. From their findings, the Disruptive attack type proved to be hardest to detect as an 

attack and so it is a strong penetration test, reusing trusted messages as noise. They also created 

a Python/C++ bridge to allow import of AI algorithms.  

2.2.5 Artificial Intelligence 

Building on from section 2.1.2 on how artificial intelligence is used in other industries, 

this section will focus only on AI in automotive cybersecurity. AI is not a brand-new concept 

to automotive cyber security. It has proven to be a useful method in cyber defence. A European 

project CARAMEL [56] uses advanced AI techniques to detect cyberthreats to the internal and 

external perception modules. Kyrkou et al. [56] shared little information as to the type of AI 

model used, which would have been useful information for the current research. Kamel et al. 

[55] use artificial intelligence for advanced misbehaviour detections but again does not detail 

the algorithm used.  

Another application discussed in section 2.1.2 of AI and machine learning is automating 

the process of finding vulnerabilities in a system’s network. In some cases, reinforcement 

learning, a machine learning algorithm that learns through trial and error of its environment, is 

used as an AI solution for penetration testing in general cybersecurity  [57]. The focus of the 

current research is reusing these techniques for automotive. Mckinnell et al. [58] showed a 

wide variety of AI models are available to be used in penetration testing but the challenge is to 

find the best types to fit the simulation. 

2.2.6 Reinforcement Learning and Q-Learning 

Reinforcement Learning is a technique that enables the AI agent to interact with an 

environment and learn from trial and error of the received result [59]. Hanem et al. [26]  states 

that the use of Reinforcement Learning provides better time efficiency, reliable outputs, 

accuracy, and covers more attack vectors when used for penetration in general, i.e. not CAV 

specific. Reinforcement is basically a Markov Decision Process where the agent performs an 

action based on the observations and feedback from the environment, which is illustrated in 

Figure 4. After each loop the outputs are stored in a learning table. The next time the same 
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observation is made so that the agent can predict the feedback/reward for a given action. The 

principle of Reinforcement Learning is all actions are tested for all available observable states 

and the learning table is updated. Each run of the environment from start to finish is known as 

an episode.  

 

Figure 4: Markov Decision Process for Reinforcement Learning [60] 

 

 Q-Learning is a reinforcement learning algorithm that seeks to find the best action to 

take based on the observed state. The best action refers to the action that will return the highest 

reward. The learning table, or Q-Table, stores the best action based on the training so far. In 

each step of each episode the best-known action is selected from the Q-Table or, randomly, a 

different action is selected. If the random action receives a higher reward the Q-Table will be 

updated with this new action. 

 

2.3 Conclusions from Literature Review 

By applying the methodology learnt from this literature review, some of the challenges 

in the CAV cybersecurity area can be overcome. From reviewing the current literature on AI 

in cybersecurity and cybersecurity in automotive it is clear that there is a gap in using AI in 

automotive cybersecurity. When it comes to testing cybersecurity there is clear benefit set out 

in industries of leveraging AI models to improve runtime and to establish the best attack plans. 

From the meta-analysis review, it is clear AI models with an established attack plan had a better 

chance of success. An attack tree should also be designed to complete the process. Using a 

Markov Decision Process partially or fully observable was a common approach taken in other 

industries and proved to have positive results. Applying a Reinforcement Learning technique 

is hard due to the complexity of an automotive environment. However, creating a simulation 

environment to evaluate some selected scenarios would be the best approach to test the 
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potential of Reinforcement Learning models in CAV security. This work could be expanded to 

other areas of CAV if proved beneficial. 

Regarding the simulation, the open-source software VEINS is fit for purpose and 

previous projects using it have performed part of what the research aims to achieve. 

Implementing and creating open-source versions of simulated cyber-attack scenarios [55] gives 

this project an excellent start point for understanding the simulation environment and the 

python/C++ bridge allows AI models to be implemented in python and injected into the 

simulation. 
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3. Methodology 

This chapter will initially review the general Design and workflow before taking a closer 

look at the technical details of the environment. Towards the end of this chapter implementation 

details of the simulation in both VEINs and OpenAI Gym will be presented. Lastly the 

integration of the Q-Learning Reinforcement model will be shared. 

3.1 Research design 

To apply any type of AI Algorithm to a penetration testing of a VANET system, the 

VANET network must first be simulated. From Chapter 2 VEINs is determined as a good 

candidate for building a VANET simulation. Once a VANET simulation is designed an attack 

vehicle is then added. The AI model would instruct the attack vehicle to perform actions based 

on the simulation observation. The simulation would then provide the current outputs to the AI 

model and the next action would be determined by the AI algorithm. The intended output from 

the simulation was the Basic Safety Message (BSM) coming from vehicles and Roadside Units 

(RSUs) within the simulation. Since the AI model action would include the vehicles response 

to the BSM, which has many possibilities that may affect the simulation. If the attack vehicle 

sends a BSM alert message about a crash on a particular route it would potentially divert other 

traffic as shown in in Figure 5.   

 

Figure 5: Implementation Design 

As the simulation is designed to have a lot of back and forth with the AI model a 

reinforcement learning approach makes the most sense. The reasons are outlined in section 
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2.2.5 and the AI model can learn from the real-time observations as the simulation proceeds. 

The focus of the AI Model will be to send misleading messages to redirect other vehicles in 

the simulation. This is a type of disruptive attack. Automating and fine tuning this type of attack 

with an AI algorithm should create a more robust test than a manual implementation. 

 The AI model is developed in Python due to tutorials [61] and skillsets available. The 

following sections will discuss how the simulation and AI components are developed, and the 

results of the implementation. 

 

3.2 Procedure 

To achieve a full end-to-end implementation of a VANET simulation and an integrated 

AI model there are several objectives that this research focuses on: 

 

1. Create a full Vehicle-to-Vehicle simulation containing at least 2 vehicles and at least 2 

routes. 

2. Establish or leverage a messaging system for communication between all road users 

and roadside units. Identify the key message parameters that detail the current route and 

alert messaging that would cause the vehicle diversion. 

3. Identify simulation variables that Q-Learning can control and learn from to perform an 

effective attack.  

4. Integrate the Q-Learning model into the simulation so these actions can be performed 

in real-time, and the model learn from the observations. 

5. Analyse results from simulation with and without reinforcement learning and draw 

conclusions from Q-Learning results. 

  

3.3 Implementation 

To achieve a functional end-to-end integrated VANET Simulation with an AI controller a 

few different techniques were tried and tested. First VEINs [50] was used as the simulation of 

choice as it was used in similar projects in the past [55], [62]. VEINs have several Open-Source 

projects, online video tutorials for project creation along with a Google Groups support 

community. However, it proved difficult to fit the desired implementation, which is reviewed 

in the section 3.4 in more detail. As Python was the preferred coding language for the project, 
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OpenAI Gym toolkit [63] was also utilised. The biggest advantage of using the Gym toolkit 

for building a simulation when compared with VEINs was the ease of integration with a 

reinforcement learning algorithm. To achieve this, the Gym environment for a VANET 

simulation had to be built from scratch. The design and implementation of this is discussed in 

the follow section.   

3.4 Test Environment 

3.4.1 VEINs 

The initial implementation VEIN’s uses SUMO for constructing the foundation of the 

simulation, the road, the routes, and the vehicle attributes. SUMO is relatively easy to setup 

and utilise, especially with available tutorials [64]. The test environment design consisted of a 

crossroads with 2 vehicles following the same route. There were 3 route options, so either 

vehicle could go straight, turn left, or turn right. In Figure 6 you can see the two vehicles on 

the road. The vehicles indicated by red and blue triangles.  

Once the road network and traffic objects are created, the next step in the VEINs 

workflow is to import the road network into an OMNET++ Initialisation file. This initialisation 

file can configure all simulation parameters. Additionally, the TraCI library can be applied in 

the application layer. Utilising the TraCI library saves a lot of time in implementation as it 

already contains a function for doing vehicle communications including V2V and V2X. The 

default example in VEINs triggered V2V messages through RSUs when a crash occurred or 

when it was cleared, and the message would disperse to all other vehicles. The message data 

could be seen in real time moving between each of the road users. This application was applied 

to crossroads network as demonstrated in Figure 7. Here there are 2 vehicles present on the 

Figure 6: SUMO Crossroads Network (Vehicles circled) 
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main road, they are labelled as node[0] and node[1] in the figure. The roadside unit is 

transferring an AirFrame, an over the air message consisting of Basic Safety Message data to 

each vehicle, or node. This Basic Safety Message consists of the vehicle position, speed, 

acceleration, orientation, and alert messages such as a collision, or the use of an emergency 

brake. Figure 7 shows a case where node[0] has identified a crash and sends an emergency 

BSM to come to a stop. The following vehicle then receives and handles this data. 

Figure 7: OMNET++ Crossroads with TraCI 

 

The next step was to add a function to redirect traffic to an alternate route when a crash 

was detected. This was achieved by modifying the TraCI function to receive messages. This 

implementation helped complete many of the objectives as reviewed in more detail in the 

results section. However some limitations remained. 

 Unable to trigger the attacker vehicle (the following vehicle, node[1]) to send 

false crash messages. Instead, they were sent from the lead vehicle on a time 

stamp. 

 The simulation was contained with OMNET++ which made it difficult to 

integrate the Python AI model into it. An alternative solution was to capture the 

OMNET++ output data and post process it with the AI model. The AI model’s 

decision could then be applied in the next iteration. Developing in the VEIN’s 

workflow proved to be difficult as it requires a strong C++ skillset particularly 

when making changes to the TraCI functions.  

3.4.2 OpenAI Gym 

OpenAI has many pre-built environments available for test and comparison but none of 

them fit the purpose of this research. Instead, a custom environment must be built from scratch 
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to represent the desired scenario. To create the custom environment, other premade 

environments were reviewed such as “Taxi-v3” and “MountainCar-v0”. These Gym 

environments proved very useful to understand what is expected for the final implementation.  

Every Gym environment must consist of initialisation, step, reset and render functions 

[65]. Additional functions or submodules may be added after this as necessary. This framework 

is required for performing reinforcement learning with the environment. Each of the core 

functions are described further: 

 

 The initialisation function: This function takes in a JSON configuration file 

containing vehicle and simulation parameters. This configuration JSON is passed 

as an input and sets the total number of gym environment observation states 

available, the actions, total number of states, the reset state, the default setup for 

the simulation map, routes, and the default state for each vehicle. This is 

discussed in more detail later. 

 The step function: The main function for operating and controlling the 

simulation should move the simulation forward one timestep every time it is 

called. An additional Python class was created to handle all the vehicle related 

functions. It has attributes for the vehicle position, speed, route, sending and 

receiving communication messages. The class also has functions for acquiring 

available positions from the roadmap and moving the vehicle. An available 

position is any position that is within range of the vehicle within that timestep 

based on the vehicle speed. This available position must be a valid road and the 

vehicle must make a legal move to get there, i.e. no going through other vehicles 

or over non-road co-ordinates. 

 Reset Function: This resets the simulation, the map, vehicles, and sets 

everything back to the default state, provided by the configuration JSON file. 

 Render Function: This generates a display of the current state of the simulation. 

It will show the vehicles position, their current status, the road and whether an 

action occurred. 

 Other Functions: There are other sub-functions used for calculating the current 

state of the simulation and calculating the reward based on the observation. 

After creating these first 4 functions following the Gym Framework, the low-level logic 

could be developed. As the simulation was to be driven by actions, a Markov Decision Design 
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was adapted. Much of the Markov Decision Design could be derived from the way VEINs 

functioned. The main assumptions and controls built into the OpenAI Gym custom 

environment are: 

 Vehicles are constantly sending BSM messages within the network at every time 

interval 

 Vehicles could not overtake one another, this obviously is not reflective of the 

real-world but as the communications channel is under test and not the vehicle 

manoeuvrability, this is a fair assumption to make. 

 Vehicles cannot pass through each other – if the lead vehicle is moving slower 

than the following vehicle, it will move where it can but will not share space with 

the lead vehicle. 

 Vehicles cannot move off-road and must follow a designated route preventing 

them from travel on the wrong side of the road, or off road. It also stops them 

from U-turns.  

 The other vehicle always has multiple route options. 

 

Figure 8: Scenario2 Road network of a staggered Crossroads 

Figure 8 shows the initialised output of the Gym environment. This example road map 

contains vehicle 1, the attack vehicle, and vehicle 2, the other vehicle. Both vehicles are moving 

towards a common end point, labelled in Figure 8. Here the attacker is moving 2 units per time 

interval whereas vehicle 2 is only moving 1 unit per time interval. The reason behind applying 

Q-Learning in this case is to create a testcase where the attacker vehicle redirects vehicle 2 so 

vehicle 1 can reach the destination first. The simulation can perform one of four actions per 

time step to achieve this goal:  

 0: Send a message to vehicle 2 saying all routes are good. 

 1: Send a message to vehicle 2 indicating route1 is blocked by a collision. 

 2: Send a message to vehicle 2 indicating route2 is blocked by a collision. 

 3: Send a message to vehicle 2 indicating route3 is blocked by a collision. 
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When an action is passed into the step function both vehicles will update their route and 

positions with respect to their speed and available path. Based on the state change a reward is 

calculated. The reward table is shown below. 

Table 5: Rewards Table for Simulated Environment 

Area Check Points if True Points if False 

Running For every time step is run. -5 NA 

Progress towards 

goal 

Vehicle 1 is closer to its 

destination (multiplied by 

vehicle 1 speed) 

5 -20 (-5 if same 

distance) 

Divert Traffic Vehicle 1 Route is 

different to Vehicle 2 

Route 

10 -5 

Message Vehicle 1 sends an error 

message instead of an “all 

clear” 

-10 5 

 

The reward table was influenced heavily from the results in chapter 2 and then further 

tested and tweaked to try and reflect a real-world case as much as possible. In previous VANET 

simulators misbehaviour detection was applied, and it detected cases where the same message 

was sent repeatedly [55]. To prevent misbehaviour detection the “Divert traffic Message” 

reward would encourage the AI agent to send error messages only when it provided the 

maximum benefit. “Running” reward check was received every time the step function is called. 

This is a constant negative reward when the goal has not been achieved and the simulation is 

still in progress. The “progress towards goal” reward check is key to ensuring the vehicle is 

moving to the destination quickly. This is achieved by redirecting a vehicle if necessary. When 

a step is complete the simulator returns to current simulation state, the reward, a done status, 

and an info field. These are then given back to the operator; in this case this is the AI Agent.  

 

 Previously the JSON configuration file was mentioned. It gets pulled in during 

environment initialisation. The configuration file comprises the following: 
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 Simulation Map 

 Simulation starts state (also the reset state) 

 Number of Simulation states available  

 Simulation Route details 

o The path for each route. 

 Vehicle Parameters for each vehicle 

o Speed 

o Route 

o Destination position 

 Metadata 

o Total Rewards when action is 0 

o Runtime, to slow the runtime of the simulation to render in real time. 

 

During development, several scenarios were tested with different routes and road 

configurations. Scenario 2 is shown in Table 6 for each timestep it runs. This scenario consists 

of 2 vehicles approaching a staggered crossroads, the rear vehicle being the attacker. It is the 

same scenario detailed in Figure 8. In Table 6 the full scenario is shown where vehicle 1 

progresses using route 1 in 17 steps. The total reward achieved is 20, which can be taken as a 

baseline for Scenario 2 when it comes to comparing how the Q-Learning performs. 

 

Table 6: Step by step simulation of Scenario2 

Initial State Step #: 0 Step #: 1 

  

Simulation State: [22 24 0 0] 

Reward: 0 

Simulation State: [22 24 0 0] 

Reward: 10 

Simulation State: [23 25 0 0] 

Reward: 0 
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Step #: 2 Step #: 3 Step #: 4 

   

Simulation State: [24 26 0 0] 

Reward: 0 

Simulation State: [25 27 0 0] 

Reward: 0 

Simulation State: [26 28 0 0] 

Reward: 0 
   

Step #: 5 Step #: 6  Step #: 7 

   

Simulation State: [27 29 0 0] 

Reward: 0 

Simulation State: [28 30 0 0] 

Reward: 0 

Simulation State: [29 31 0 0] 

Reward: 0 
   

Step #: 8 Step #: 9  Step #: 10 

   

Simulation State: [30 32 0 0] 

Reward: 0 

Simulation State: [31 33 0 0] 

Reward: 0 

Simulation State: [32 34 0 0] 

Reward: 0 
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Step #: 11 Step #: 12  Step #: 13 

   

Simulation State: [33 35 0 0] 

Reward: 0 

Simulation State: [34 36 0 0] 

Reward: 0 

Simulation State: [35 37 0 0] 

Reward: 0 
   

Step #: 14 Step #: 15  Step #: 16 

   

Simulation State: [36 37 0 0] 

Reward: 0 

Simulation State: [36 22 0 0] 

Reward: 10 

Simulation State: [37 22 0 0] 

Reward: 0 
   

 

Next a review of how Q-Learning is applied within the AI agent to further improve the 

score and reduce the step count. 

 

3.4.3 Q-Learning 

OpenAI Gym is published widely [65], [63] with articles on how to integrate 

reinforcement learning using a variety of Q-Learning techniques. OpenAI Gym commonly uses 

other techniques such as Random Walker to test a new simulated environment. In this case 

each new scenario ran through a single loop of the simulation, to ensure it worked as expected. 

Random Walker was then used to test the environment structure and root out any bugs in the 

implementation for unique actions. Q-Learning was applied once any bugs were resolved. The 
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Bellman equation [66]  is leveraged to apply Q-Learning on a Markov Decision simulation. 

Using the following breakdown, it can be implemented within the software with relative ease:  

𝑄ே௪(𝑠௧, 𝑎௧) = (1 − 𝑙𝑟) ∗ 𝑄(𝑠௧) + 𝑙𝑟 ∗ (𝑟௧ + 𝑌 ∗ 𝑚𝑎𝑥𝑄(𝑠௧ାଵ)) 

were 

𝑄ே௪(𝑠௧, 𝑎௧) 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑄 𝑉𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 

𝑄(𝑠௧) 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑙𝑑 𝑄 𝑉𝑎𝑙𝑢𝑒 

𝑚𝑎𝑥𝑄(𝑠௧ାଵ)) 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑢𝑡𝑢𝑟𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 

𝑟௧𝑖𝑠 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑒𝑤𝑎𝑟𝑑 

𝑙𝑟 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 

𝑌 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑟𝑎𝑡𝑒 

 

This implementation uses 2 hyper parameters, the learning rate and the discount. The 

learning rate controls how quickly the values stored in the Q-Table change when the algorithm 

is run. This is usually low value, approximately 0.1, to prevent a constantly changing Q-Table. 

The discount is a value representing how much the AI agent cares about the future reward. This 

is typically close to 1 in this project as a higher reward means a better performing simulation. 

Therefore, the rewards table, Table 5, applied negative rewards to make it reflective of the real 

interpretation to give the Q-Learning model value. The Q-Table learns the best action to apply 

based on the predicted reward. 

 To effectively develop the Q-Table the simulation was run many times, using an 

episode approach as detailed in section 2.2.6. While each episode is running, with each step 

applying an action is sent and a reward is received, and the Q-Table is updated based on the 

output of the Bellman Equation. The action applied will be selected by the Q-Table based on 

the current state of the system. However, based on the learning rate a random action will be 

applied intermittently with the aim of enhancing the model’s learning.  

The next chapter further reviews the results of applying different variables to the Bellman 

equation and the results of reusing the same Q-Learning algorithm on different scenarios.  

 

4. Experimentation and Results 

This chapter discusses the experimentation and final implementation of the simulation on 

AI Agent. It details the results achieved by applying Q-Learning to the custom made OpenAI 

Gym environment. 
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4.1 Test Results 

The test results were obtained by running the full simulation cycle with the Q-Learning 

AI Agent on each scenario, varying the Q-Learning setup. The hyperparameters were initially 

varied to understand the range of effect they would have. Before analysing the Q-Learning 

performance on each scenario, an initial baseline was taken by running the simulation with 

only one action. In all cases action 0, which was sending message “all clear” as detailed section 

3.4.2, was initially taken as the baseline. This is the safest action as all other actions added an 

element of risk. This is because there is a much larger negative reward for sending the same 

message constantly than not changing the route of the vehicle. 

 This chapter will first analyse the Hyperparameter and Q-Learning Configuration before 

discussing  the scenario results.  

 

4.1.1 Hyperparameter and Q-Learning Configuration 

Initially the Learning Rate was tested to find the most optimal rate. Four runs were 

performed to trial learning rates of 0.05, 0.1. 0.25 and 0.9 over 150,000 episodes, whilst the 

Discount value was a consistent 0.95. The results of these tests are shown in Figure 9. Across 

all 4 learning rates the results stabilized after 75,000 episodes so it could be selected as the 

desired episode count moving forward. Additionally, 0.1 and 0.25 learning rates performed 

well demonstrating a mean reward score of 60, with little variance between them. A value of  

0.1 was selected as a lower Learning rate, which allowed greater stabilization within the Q-

Table. This aligns with the results observed in other use cases [66]. 
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Figure 9: Comparison of Learning Rate for Q-Learning 

 

The Discount value was configured next. By testing the Q-Learning algorithm with 

consistent learning rate of 0.1, the Discount value was tested with a value of 0.1, 0.5, 0.8, 0.9 

and 0.95. As shown in Figure 10 the Discount Value 0.8 and 0.9 under performed, never 

achieving a high mean reward score. The other three values were much similar but 0.95 was 

the most stable and so it was selected for running the algorithms on the various scenarios. 

 

Figure 10: Comparison of Discount Values for Q-Learning 
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4.1.2 Scenario 1 

Scenario 1 consists of a simple crossroads. The simulation map is 9x7 units big, with 3 

routes. All routes start at the left road from a top-down perspective and route 1, route 2, route 

3 proceed to go straight, turn right, or turn left respectively. Initially both vehicles are on route 

1, going straight and travelling at the same speed. When running with Q-Learning with a 

baseline of reward 10 when only action 0 is used, an increase of three times the mean average 

reward is seen in Figure 11. This took 33,000 episodes before a better mean reward is achieved. 

It is after 70,000 episodes when the maximum average mean reward is achieved at reward 35.9. 

For the remaining 5,000 episodes the mean reward started to decline. 

 

Figure 11: Scenario 1 Baseline and Q-Learning 

4.1.3 Scenario 2 

Scenario 2 is like Scenario 1 but the junction is a staggered crossroads with the right turn 

being closer than the left. The simulation map is 16x7 units big, with 3 routes. All routes start 

at the left road from a top-down perspective and route 1, route 2, route 3 proceed to go straight, 

turn right, or turn left respectively. Initially each vehicle is on route 1, going straight. This time 

the rear vehicle is twice as fast as the lead vehicle at 2 units per second, but this will only have 

an impact if the lead vehicle is redirected. The baseline reward of the simulation using only 

action 0 is 20.  
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Running with Q-Learning yielded three times the improvement as presented in Figure 

12. Scenario 2 ran with 80,000 episodes instead of 75,000 as an initial run did not show 

stabilization after 75,000 episodes. With 80,000 episodes the highest mean reward achieved 

was 62.875.  

 

 

Figure 12: Scenario 2 Baseline and Q-Learning 

4.1.4 Scenario 3 

Scenario 3 leverages the same road map as scenario 2 however in this case route 2 starts 

at the lower right and turns right onto the staggered crossroads and route 3 starts in the lower 

edge, meets the staggered crossed roads and turns left. Vehicle 2 is following route 2. Figure 

13 shows the initialised simulation where the red vehicle is the attacker vehicle, and the blue 

is vehicle 2.  

 

Figure 13: Scenario 3 Initialized State 

 

-100

-80

-60

-40

-20

0

20

40

60

80

0

30
00

60
00

90
00

12
00

0

15
00

0

18
00

0

21
00

0

24
00

0

27
00

0

30
00

0

33
00

0

36
00

0

39
00

0

42
00

0

45
00

0

48
00

0

51
00

0

54
00

0

57
00

0

60
00

0

63
00

0

66
00

0

69
00

0

72
00

0

75
00

0

78
00

0

M
ea

n 
Re

w
ar

ds

Episode

Scenario2, Q-Learning over baseline

Mean Reward Baseline



  
 
 

 35  

This is a much harder scenario for the simulation environment to handle as vehicle 2 and 

vehicle 1 start on different routes and vehicle 2 is not immediately in the way. It only gets in 

the way when it turns onto the staggered crossroads. The baseline reward is 90 when running 

action 0 (all default routes being followed) however it takes 15 steps to achieve this.  

Q-Learning performs poorly even with 150,000 episodes in terms of mean reward, but it 

only took 8 steps to complete the simulation. This is a vast improvement in runtime and is 

prime result of this experimentation. The reward graph is shown here in Figure 14.  

 

Figure 14: Scenario 3 Baseline and Q-Learning 
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Figure 15: Scenario 2's Q-Table reused for Scenario 1 

 

4.2 Test Results Summary 

The results of Scenarios 1,2 and 3 are super imposed on each other in Figure 16. This 

presents a clear comparison between them. From Figure 16 it is clear where Scenario 3 

struggles to perform, especially when compared with Scenarios 1 and 2.  

 

Figure 16: Scenarios 1, 2 and 3 Baseline and Q-Learning 
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5. Conclusion and Evaluation 

 

5.1 Evaluation of Results 

The previous chapter presented several findings from this research. The current Q-

Learning algorithm shows a lot of value in evaluating Scenario 1 and 2. As a penetration test 

the overall implementation shows where the tester can leverage different actions to misdirect 

another vehicle. In the case where the application under test requires a built-in misbehaviour 

protection, further testing from different angles can be performed efficiently by using this Q-

learning approach. This is one of the main benefits of using Q-Learning in penetration testing.  

More complex cases such as Scenario 3 challenged both the simulator and Q-Learning 

and it flags a significant gap in the simulation design reward table where finishing early is not 

correctly rewarded. The reward table needs further optimisation as Scenario 3 with Q-Learning 

finishes 7 steps early, almost 50% less steps than the baseline, but is not reflected in the mean 

reward. Like Scenario 1 and 2, this shows the benefit of using a Q-Learning algorithm in the 

penetration test to find alternate options. In this case the optimised route had Vehicle 2 end up 

in a completely different direction which could be identified easily by a threat detection 

mechanism due to the degree of change. This is due to typical redundancy of sensors, Inertial 

Measurement Unit, Geo-Tracking etc. This a valid test approach as although it may be detected 

easily, the Q-Learning algorithm still has a chance to redirect to another route. 

 The experiment of reusing a Q-Table proved that further changes to the Q-Learning 

algorithm would be required rather than simply reusing the trained Q-Table as was done in 

section 4.1.5. Taking an approach like Q-Transfer Learning may be a more suitable approach 

to effectively reuse training from a previous run [67]. 

 

5.2 Conclusion 

This research gives a complete end-to-end report on how a VANET simulation was 

designed, what was required to implement it in both VEINs and OpenAI Gym, and how a Q-

Learning algorithm can be used to launch thousands of cycles of the simulation that produces 

a Q-Table. 

The initial simulation implementation, VEINS, was unusable for this project instance due 

to the necessity for a strong C++ skillset for building the simulation which the author did not 
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have. However, the alternative approach of using OpenAI Gym environment met the 

requirement for a functional VANET simulation. By researching typical VANET simulations 

and reviewing the design of VEINs, it was relatively straightforward to implement a custom 

OpenAI Gym environment. Testing a Q-Learning algorithm revealed there are improvements 

that can be made to the simulation. These are discussed further in the next section. 

The custom OpenAI Gym environment provided much better integration with 

Reinforcement Learning algorithms. As shown in Scenarios 1, 2 and 3, integration of Q-

Learning with a VANET simulation creates an effective testbed for performing penetration 

tests, proving the premise of this project. There are however more tweaks required to future 

proof this approach. 

 
 

5.3 Future Work 

There is a lot of scope for future development and research in this concept. This project 

implemented Q-Learning for a VANET simulation, but other machine learning techniques may 

also be leveraged. As attempted in section 4.1.5, Q-Transfer learning could be applied between 

simulations to save time learning. Runtime of the algorithm is not currently an issue and takes 

approximately 10 minutes to run 75,000 episodes on an Intel i7-9750 with 16Gb RAM and 

NVIDIA GeForce RTX 2060. However, as the simulation develops to add more functionally 

this may become more of an issue. 

 The simulation itself is an area that requires improvement. From testing there are a few 

areas in the simulation that can be improved as listed below: 

 Further test and modify the reward table, currently the Q-Learning result from Scenario 

3 does not represent the improvement in the number of steps taken. 

 Increase the length of the road network, add larger routes and more junctions. A trial 

where multiple vehicles are run through a road network would be an interesting test 

case. 

Future work may also focus more on the application under test. The current simulation does 

not safeguard the messages it receives, and the non-attackers merely follow what they are told. 

A real-world example is to send messages from an RSU and have the attacker vehicle 

manipulate the data and resend this message to other vehicles, claiming to be from a trusted 

source. 



  
 
 

 39  

 Another approach is to reuse a similar structure but with a CAV network rather than a 

VANET. This project scope was originally set out to investigate how a full penetration test 

could be done using reinforcement learning but this requires advanced skills and access to 

costly hardware.  Further experimentation should be performed to investigate the use of AI in 

penetrating a CAV network from an external source. 
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7. Appendices 

Appendix I – Raw Results 
Episode Scenario 1 with 

Q-Learning 
Scenario 1 
Baseline 

Scenario 2 with 
Q-Learning 

Scenario 2 
Baseline 

Scenario 3 with 
Q-Learning 

Scenario 3 
Baseline 

0 -0.1 10 -0.09 20 -0.115 90 
1000 -49.43 10 -87.905 20 -81.085 90 
2000 -49.79 10 -87.71 20 -80.8 90 
3000 -49.82 10 -87.395 20 -81.385 90 
4000 -50.87 10 -88.25 20 -80.785 90 
5000 -49.64 10 -86.885 20 -82.03 90 
6000 -50.165 10 -88.265 20 -81.565 90 
7000 -50 10 -87.86 20 -80.83 90 
8000 -49.88 10 -88.85 20 -82.525 90 
9000 -50.405 10 -86.69 20 -81.13 90 

10000 -50.045 10 -86.81 20 -81.565 90 
11000 -47.015 10 -83.24 20 -78.865 90 
12000 -42.785 10 -76.235 20 -74.2 90 
13000 -38.51 10 -68.795 20 -69.145 90 
14000 -35.705 10 -63.89 20 -65.335 90 
15000 -31.685 10 -55.175 20 -60.28 90 
16000 -28.28 10 -49.85 20 -57.115 90 
17000 -23.99 10 -44.51 20 -52.285 90 
18000 -22.7 10 -36.83 20 -49.09 90 
19000 -18.455 10 -31.625 20 -45.505 90 
20000 -14.075 10 -28.94 20 -43.42 90 
21000 -13.16 10 -22.325 20 -40.765 90 
22000 -11.21 10 -18.56 20 -36.49 90 
23000 -7.175 10 -14.915 20 -34.09 90 
24000 -6.305 10 -9.605 20 -32.56 90 
25000 -4.595 10 -6.29 20 -30.52 90 
26000 -0.62 10 -2.525 20 -28 90 
27000 0.01 10 0.43 20 -24.595 90 
28000 1.585 10 4.195 20 -23.17 90 
29000 4.9 10 6.58 20 -20.08 90 
30000 6.61 10 11.065 20 -19.105 90 
31000 8.605 10 12.1 20 -17.245 90 
32000 10.15 10 16.81 20 -15.22 90 
33000 10.81 10 19.435 20 -14.005 90 
34000 12.595 10 21.49 20 -11.68 90 
35000 13.225 10 23.2 20 -9.505 90 
36000 14.74 10 25.525 20 -8.8 90 
37000 16.09 10 28.645 20 -6.535 90 
38000 17.32 10 30.7 20 -6.385 90 
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39000 18.805 10 32.665 20 -3.94 90 
40000 19.18 10 34.855 20 -2.98 90 
41000 21.61 10 34.57 20 -1.99 90 
42000 20.665 10 37.36 20 -1.765 90 
43000 22.135 10 38.05 20 0.245 90 
44000 22.42 10 41.455 20 0.455 90 
45000 23.695 10 42.04 20 2.75 90 
46000 25.105 10 43.24 20 3.035 90 
47000 25.045 10 44.425 20 3.56 90 
48000 26.98 10 46.54 20 4.64 90 
49000 26.71 10 46.93 20 4.43 90 
50000 27.475 10 48.265 20 5.87 90 
51000 28.015 10 49.045 20 7.25 90 
52000 29.17 10 50.14 20 7.46 90 
53000 28.375 10 51.625 20 8.51 90 
54000 29.515 10 52.885 20 9.59 90 
55000 30.535 10 52.735 20 9.425 90 
56000 29.98 10 54.76 20 9.44 90 
57000 31.42 10 54.64 20 9.845 90 
58000 31.39 10 55.765 20 11.105 90 
59000 32.11 10 56.395 20 10.835 90 
60000 32.35 10 57.235 20 11.57 90 
61000 32.65 10 57.715 20 11.9 90 
62000 33.085 10 57.355 20 12.56 90 
63000 33.835 10 58.54 20 12.65 90 
64000 33.895 10 59.125 20 12.905 90 
65000 33.91 10 59.89 20 13.25 90 
66000 34.345 10 60.34 20 13.505 90 
67000 34.375 10 60.97 20 14.33 90 
68000 34.96 10 60.64 20 13.985 90 
69000 35.095 10 62.095 20 14.735 90 
70000 35.905 10 61.915 20 14.765 90 
71000 35.305 10 61.66 20 15.725 90 
72000 35.455 10 62.23 20 15.275 90 
73000 35.275 10 61.585 20 14.825 90 
74000 35.65 10 62.215 20 14.705 90 
75000 35.005 10 61.45 20 15.455 90 
76000 

  
61.495 20 61.495 90 

77000 
  

61.345 20 61.345 90 
78000 

  
62.875 20 62.875 90 

79000 
  

62.47 20 62.47 90 
80000 

  
62.23 20 62.23 90 

 
 



Appendices  

 48  

Appendix II – Code 
All results and code are available on GitHub - https://github.com/Dazack/v2v_sim  
 


