/

G M I T
GALWAY - MAVO INSTITUTE OF TECHNOLOGY
FomiaU) T2 JCKFOLATOIHTA KA CAILUMHF +HAIGIH FO

A Framework for High Availability and
Optimum System Performance in an
Application Service Provider (ASP)

Environment

M.Sc. Thesis
By
Kenneth Kirrane, B.Sc.

June 2006

Research Supervisor
Sean Duignan

~ToSabrina... my soul mate, my inspiration, myfriend. And to my
family -for all their support and guidance.

Declaration

I hereby certify that this material, which | now submit for assessment on the programme
of study leading to the award of Masters of Science in Computing is entirely my own
work and has not been taken from the work of others save to the extent that such work
has been cited and acknowledged within the text of my work. It has not been previously

used to obtain any other award in this institution, or elsewhere.

Name of Candidate: Kenneth Kirrane
Student ID Number: 10007165
Signature of Candidate: ..o

DaAte: e ———

Table of Contents

Dedication AV
Declaration V
Table of Contents VI
Abstract X
Acknowledgements X |
List of Figures X 1
Section One - Introduction & Research Framework
Chapter 1: Introduction & Thesis Structure 2
1.1 Introduction 2
11.1 Application Service Provider (ASP) 2
1.1.2 High Availability 3
1121 Failover 3
1122 Disaster Recovery 3
1.1.3 Scalability 4
1.2 Research Contribution 4
1.3 Structure of Thesis 5
Chapter 2: Research Background & Methodology 7
2.1 Research Background 7
2.2 Limiting Factors 11
2.3 Research Methodology 11
Section Two - Literature & Technology Review
Chapter 3: Application Service Provision 14
3.1 ASP Introduction 14
3.2 Analyst ASP Predictions 18
3.3 ASP Advantages 19
3.4 ASP Growth Inhibitors 21
3.5 Types of Application ServiceProviders 22
3.6 Chapter Summary 24
Chapter 4: High Availability and Scalability 26
4.1 High Availability 27
41.1 High Availability Planning 33
4.1.2 Availability Paradigms 41

-VI-

4.2 Clustering
4.3 Load Balancing
4.3.1 DNS Load Balancing
4.3.2 Hardware Load Balancing

4.4 Scalability

4.4.1 Scalability Types
4.4.2 Scalability Architectures
4.4.3 Design Principles for Scalable Systems

4.43.1 Principle of Independence
4.4.3.2 Principle of Balanced Design
4.43.3 Principle of Design for Scalability
4.5 Disaster Recovery
4.5.1 FullVSIncremental Backups
4.5.2 Commercial DR Software Features
4521 CompleteHardware Usage
4521 HotBackups
45.2.2 OpenTapeForm at
4523 Centralised Management
4524 QuickDisasterRecovery
4525 Hardware Supportand Flexibility
4526 MatureProducts with Reference Sites
4.5.2.7 MultiplePlatform Support
4.5.3 Seven Tiers of Recoverability
45.3.1 Tier 0 - No Offsite Data
4532 Tier 1-Pickup Truck Access Method (PTAM)
4533 Tier2 -PTAM & Hot Site
4.5.3.4 Tier3 -Electronic Vaulting
4.5.3.5 Tier 4 - Active Secondary Site
4536 Tier 5- TWO Site Two Phase Commit
4537 Tier6-Zero Data LOSS
4.6 Singl.eView andBilling4Rent
46.1 Singl.eView Components
46.1.1 ConvergentBilling
46.1.2 Customer Management
4.6.1.3 Financial Assurance
46.1.4 Lifecycle Management Suite

46.1.5 Commerce Engine

4.6.2 Singl.eView Availability and Scalability

4.7 Chapter Summary

-VII-

44
50
51
52
53
54
55
57
57
57
59
60
61

63
63
64
64
64
65
65
65
66

66
66

66

67
67
68

68
69
70
72
72
73
74
74
75
75

76

Section Three - Research Contribution

Chapter 5. Proposed Framework 79
5.1 Billing4dRent Functional Requirements 80
5.2 Billing4dRent Prototype 82
5.3 B4R Admin Interface 88
5.4 Proposed Network Architecture 100

5.4.1 B4R Network Diagram 100
5.4.2 Architecture Breakdown 101
54.2.1 firewall_ I 101

5.4.2.2 Load Balancing Switch 102

5.4.2.3 HTTP server 102

5.4.2.4 E-mail Server 103

5425 DMZ 103

5426 Firewall 2 104

5.4.2.7 Application Server 104

5.4.2.8 D atabase Server 104

5.4.3 Inter-tier Traffic Flows 104
544 Inter-tier TRAFFIC Flow Details 105
5.4.5 Vertical Scaling 106
5.4.6 Backup Internet Connection 107
5.5 Code Optimisation for Improved Performance 108
5.5.1 Memory Usage 108
5.5.2 Session Management 108
5.5.3 Servlets and Java Server Pages (JSPs) 109
554 Logging 109
5.5.5 Enterprise Java Beans 110
5.5.6 Database Access 110
5.5.7 General Coding Considerations 111
5.6 Billing4dRent Disaster Recovery 112
5.6.1 BillingdRent Backups 112
56.1.1 Offsite DR Location 113

5.6.2 Disaster Recovery Policies 114
5.6.3 Disaster Recovery Prevention 116
57 Chapter Summary 117

Section Four - Research Evaluation

Chapter 6: Research Evaluation 119
6.1 Fulfilment of Objectives 119
6.1.1 BirttingdRent Architecture 120

6.1.2 Model/View/Controller and The B4R Prototype 122

-vrn-

6.1.3
6.13.1
6.1.3.2
6.1.3.3
6.1.3.4
6.1.3.5

6.1.5

B4R and Code Optimisation

Memory Usage
Session M anagement
Logging

D atabase Access

General Coding Considerations

Disaster Recovery

6.2 B4R Prototype and Accepted Benchmarks

6.2.1
6.2.2
6.2.3

Oracle Database
Jakarta Tomcat Webserver

Java Virtual Machine

6.3 Outsourcing B4R Deployment

6.3.1
6.3.2

Outsourcing Features & Benefits

B4R Outsourcing

6.4 Chapter Summary

Chapter 7: Research Conclusion

7.1 Summary of Research Contribution

7.2 Research Conclusions

7.2.1

Bibliography

Future Research Potential

ListofAcronyms Used

Appendix One - Related Research

Research PaperPresented atthe sthAnnuatl Information

Technology & Telecommunications (IT&T) Conference, Cork,

Ireland, October 2005, and Published in the Conference

Proceedings

Appendix Two - B4R Prototype Screenshots

Appendix Three - BAR Prototype CD-ROM

-1 X-

124
124
124
125
126
127
127
130
130
132
132
133
135
135
137

138
139
140
142

144
152
155

164
193

Abstract

The Application Service Provision (ASP) model offers access to centrally managed and
hosted applications, via the Internet, on a subscription / rental basis. From its inception
in the late 1990s, many have heralded the ASP delivery model as the new wave of IT
outsourcing. Initially however, uptake of the ASP paradigm failed to match the hype,
due in no small part to the de-valuation of dot.com share prices in early 2000, which
caused the closure of numerous on-line service providers, and which eroded the
confidence of many with regard to renting application access. However uptake of the
ASP model is steadily increasing (recent estimates indicate spending on software-as-a-
service should reach $15.2 billion by 2007) and the emergence of hosted applications
from key industry players indicate that the delivery of software-as-a-service may become
an increasing feature of software product releases. Presented herein, is a framework,
including the architecture and system configuration required, to ensure High Availability
and Optimum System Performance in an Application Service Provider (ASP)
Envimoment. This thesis contends that High Availability and Scalability are becoming
increasingly important components of overall system architectures. For many,
application performance and cost-effective scalable platform configurations are
emerging as the distinguishing features for software solutions. The function of most
products is well understood, and well documented. The ASP innovation of hosting the
application and making it available to end-users via the Internet, relies heavily on
scalability and availability considerations in order to deliver a service with sufficiently
high performance levels. This research project then, investigates the current state of
Application Service Provision, and proposes a framework for Availability, Scalability
and System Performance that can be used by ASPs going forward. Furthermore, an ASP
prototype solution (BillingdRent) provides the platform on which recommendations

arising from this research were implemented and quantified.

Acknowledgements

I am very grateful to many people who have helped me over the course of this M.Sc. |
would particularly like to express my gratitude to my supervisor Sean for his input,
guidance, motivation and support throughout the duration of this research. | also wish to
thank Gabriel Hicks, and the rest of the lecturers and technicians in the Computing &
Maths department for their help and encouragement, who have not only assisted in this
work but who have made working in GM1T a pleasure. | would also like to acknowledge
my family and Mends for all their continued support, especially Stephen for his
meticulous proof-reading (minus the toothcomb). Last, but certainly not least, | thank

Sabrina- for everything.

-X]-

List of Figures

Figure 3.1 - Essential ASP Components
Figure 3.2 - n-tier ASP Architecture
Figure 3.3 - ASP types

Figure 4.1 - Operate-Repair Cycle

Figure 4.2 - Representation of Availability

Figure 4.3 - Relative Cost of Availability

Figure 4.4 - Sample Internet Application Configuration
Figure 4.5 - Introducing Redundancy

Figure 4.6 - Webserver Configuration with Increased Redundancy

Figure 4.7 - Sample HA Configuration

Figure 4.8 - Causes of Downtime

Figure 4.9 - Standby Cluster Configuration (Hot Standby)
Figure 4.10 - Takeover Cluster Configuration

Figure 4.11 - Mutual Takeover Configuration

Figure 4.12- Heartbeat Network

Figure 4.13 - Sample Load-Balancing configuration
Figure 4.14 - Hardware Load Balancing Configuration
Figure 4.15 - Shared-nothing Architecture

Figure 4.16 - Shared-disk Architecture

Figure 4.17 - Shared-memory Architecture

Figure 4.18 - Total Execution Time

Figure 4.19 - Incremental Backup Schedule

Figure 4.20 - Tier 1 Recovery Solution

Figure 4.21 - Tier 2 Recovery Solution

Figure 4.22 - Tier 3 Recovery Solution

Figure 4.23 - Tier 4 Recovery Solution

Figure 4.24 - Tier 5 Recovery Solution

Figure 4.25 -Tier 6 Recovery Solution

Figure 4.26 - Data Loss & Service Loss

Figure 4.27 - Billing4Rent/ Singl.eView n-Tier Architecture
Figure 4.28 - Singl.eView Components

Figure 5.1 - B4R Prototype Home Page

Figure 5.2 - B4R Contact Details

Figure 5.3 - B4R Client Login

Figure 5.4 - B4R Client Home

Figure 5.5 - B4R Administrative Interface Hyperlink
Figure 5.6 - B4R Administrative Interface

Figure 5.7 - B4R Administrative Interface Home Page
Figure 5.8 - No Privileges

Figure 5.9 —Database Properties

Figure 5.10 - Tablespace Properties

Figure 5.11 - Table Sizes

Figure 5.12 - JAMon Performance Monitor

Figure 5.13 - B4R.properties

Figure 5.14 - Filter Logger

Figure 5.15 - Display Log Records

Figure 5.16- Billing4dRent Architecture

Figure 5.17 - Inter-tier Traffic Flows

Figure 5.18 - Application Server Vertical Scaling

Xn

Page 16
Page 17
Page 22

Page 29
Page 30
Page 32
Page 34
Page 35
Page 36
Page 36
Page 40
Page 45
Page 45
Page 46
Page 47
Page 51
Page 52
Page 55
Page 56
Page 56
Page 58
Page 63
Page 67
Page 67
Page 68
Page 68
Page 69
Page 69
Page 70
Page 71
Page 72

Page 83
Page 83
Page 84
Page 84
Page 88
Page 89
Page 89
Page 90
Page 92
Page 93
Page 93
Page 94
Page 94
Page 97
Page 98
Page 101
Page 105
Page 106

Figure 5.19
Figure 5.20

- HTTP Server Vertical Scaling
- Backup Internet Connection

Figure 5.21 - B4R Disaster Recovery Solution

Figure 6.1 -
Figure 6.2 -
Figure 6.3 -
Figure 6.4 -
Figure 6.5 -
Figure 6.6 -
Figure 6.7 -
Figure 6.6 -

Billing4Rent Architecture

MVC in a B4R Transaction

Hidden forra fields used in B4R
B4R.properties

Closing B4R resources

Downtime Estimate Formula

B4R Component Benchmark Summary
DataElectronics Co-location Package

- XHI -

Page
Page
Page

Page
Page
Page
Page
Page
Page
Page
Page

107
107
114

120
123
125
126
127
128
133
136

SECTION ONE

Introduction and Thesis
Structure

Chapter 1 Introduction and Thesis Structure

Chapter One: Introduction & Thesis Structure

This chapter introduces the dissertation topic by outlining Application Service
Provision in general, as well as a brief introduction to High Availability and
Scalability. Finally, an overview of each of the chapters of this dissertation is

provided.

11 Introduction

Regardless of its continual rebranding; from ‘software-as-a-service’, to ‘on-demand’
computing, and to the latest (2005) embodiment as ‘hosted application management’,
the Application Service Provision (ASP) model offers multiple users subscription-
based access to centrally managed and hosted applications, via the Internet. Due to
centralised hosting, ASPs provide access to software on a one-to-many basis.
Consequently the cost of ownership and maintenance of the solution is shared by
several clients, which introduces enormous economies of scale for end users. Despite
the initial hype, user uptake of the ASP model has been slow to materialise. This can
be attributed in part to the bursting of the dot.com bubble in early in 2000, which
caused the closure of many on-line service providers, and which severely dented the
confidence of many with regard to renting application access. However uptake of the
ASP model is steadily increasing. Indeed, some ofthe largest players in the software
industry have recently introduced ASP offerings including Microsoft (Office Live),
Google (Wrightly) and Oracle (Oracle On Demand). Current estimates indicate
worldwide spending on software-as-a-service (and associated software license
revenue) should reach $15.2 billion by 2007 - much lower than earlier predictions

but substantial nonetheless.

111 Application Service Provider

An ASP (Application Service Provider) is a third party entity that deploys, hosts

and manages access to a packaged application or service, and delivers this software

-2-

Chapter 1 Introduction and Thesis Structure

based service to customers across a wide area network, usually from a central data

centre. Applications are typically provided on a subscription or rental basis.

112 High Availability

High availability refers to a system or component that is continuously operational
for a desirably long length of time. A fault-tolerant application's goal is to be
available 24 x 7 x 365 to minimize the potential losses that will be incurred if the
application suffers downtime. Availability can be measured relative to “100%
operational’ or a ‘never failing’ system. An ideal, but difficult to obtain standard of
availability for a system, would be 99.999% availability. Downtime of a system
usually affects customers and will have a drastic effect on the company's image or

profitability.

1121 Failover

Failover is a backup operational mode in which the functions of a system
component (such as a processor, server, network, or database) are taken over by
secondary system components when the primary component becomes
unavailable through either failure or scheduled down time. Used to make systems
more fault-tolerant, failover is typically an integral part of mission-critical
systems that must be constantly available. The procedure involves automatically
offloading tasks to a standby system component so that the procedure is as
seamless as possible to the end user. Failover can apply to any aspect of a

system.

1.1.2.2 Disaster Recovery

Disaster recovery, or Disaster Recovery Plan (DRP) - sometimes referred to as
‘business continuity plan’ (BCP) - describes how an organization deals with
potential disasters. Just as a disaster is an event that makes the continuation of
normal functions impossible, a disaster recovery plan consists of the precautions
taken so that the effects of a disaster will be minimized, and the organization will
be able to either maintain or quickly resume mission-critical functions. Typically,
disaster recovery planning involves an analysis of business processes and

continuity needs; it may also include a significant focus on disaster prevention.

-3 .

Chapter 1 Introduction and Thesis Structure

Disaster recovery is becoming an increasingly important aspect of enterprise
computing. As devices, systems, and networks become ever more complex, there
are simply more things that can go wrong. As a consequence, recovery plans
have also become more complex. Current enterprise systems tend to be too
complicated for simple and hands-on disaster recovery approaches, however, and
interruption of service or loss of data can have serious financial impact, whether
directly or through loss of customer confidence. Disaster recovery planning may
be developed within an organization or purchased as a software application or a
service. It is not unusual for an enterprise to spend 25% of its Information

Technology (IT) budget on disaster recovery.

1.13 Scalability

Scalability is the ability of a computer application or product (hardware or
software) to continue to function appropriately when it (or its context) is changed
in size or volume in order to meet new user needs. In most cases, the rescaling is to
a larger size or volume to accommodate larger volumes of users and processes to
use a system. Scalable systems should not only function well in the rescaled
situation, but also take full advantage of it. For example, an application program
would be scalable if it could be moved from a smaller to a larger operating system
and take full advantage of the larger operating system in terms of performance
(user response time and so forth) and the larger number of users that could be

handled.

1.2 Research Contribution

Thesis title: ‘A Framework for High Availability and Optimum System
Performance in an Application Service Provider (ASP) Envirnoment’

The aim of this project is to develop a framework, which includes the architecture
and system configuration required, to ensure High Availability and Optimum System
Performance in an Application Service Provider (ASP) Envirnoment. This thesis
investigates the current state of Application Service Provision, and proposes a

framework for Availability, Scalability and System Performance that can be used by

Chapter 1 Introduction and Thesis Structure

ASPs going forward. The ASP solution, Billmg4Rent, will provide the real world

platform on which any recommendations or proposals arising out of the body of

research will be implemented and allow the research to be objectively analysed and

quantified in a real world environment.

1.3

Structure of Thesis

The remainder ofthis document is structured as follows-:

Chapter Two - describes the research framework used. This includes a
description of the background of the Billing4Rent project (the real world ASP
platform on which any recommendations will be implemented), the research

methodology, as well as the research objectives.

Section Two - Literature and Technology Review

Chapter Three —reviews the current literature available in the general area of
Application Service Provision. This chapter will provide an insight into the
origins of ASP; it’s evolution over the years; the advantages / disadvantages
of the ASP model; analyst predictions for the ASP paradigm, as well as the

various types of ASPs currently serving the market.

Chapter Four - reviews the current literature available in the general area of
High Availability and Scalability. This chapter provides an introduction to
High Availability in general, highlighting the historical reasons for designing
Highly Available systems. An outline of the metrics and benchmarks used to
evaluate availability as well as desired levels of availability is discussed. The
consequences of server downtime, and high availability planning will also be
highlighted. In addition, Scalability (and scalability drivers) is discussed. The
various types of scalability, as well as the architectures and design principles
are also covered. Finally, an outline of clustering, load balancing and Disaster

Recovery, and their importance within an ASP environment is examined.

Chapter 1 Introduction and Thesis Structure

Section Three - Research Contribution

Chapter Five —this chapter details an ASP solution (Billing4Rent) which will
provide the real world platform on which any recommendations or proposals
arising out of the body of research will be implemented and allow the
research to be objectively analysed and quantified. Chapter five also
describes the proposed ASP framework for Billing4dRent. The architecture of

Availability and Scalability is detailed here.

Section Four - Research Evaluation

Chapter Six - this chapter provides a substantive evaluation of the proposed
framework and how it performs in comparison with accepted industry
benchmarks. The evaluation considers the real world implementation

(Billing4Rent) discussed in the previous chapter.

Chapter Seven —this chapter details the conclusions of this research project.
It also identifies avenues of possible future research that arise from this

project.

A Bibliography, a List of Acronyms used in the Thesis, as well as a number of

Appendices follow Chapter Nine.

Chapter 2 Research Background & Methodology

Chapter Two: Research Background &
Methodology

This chapter details the background to this body of research (i.e. the development of a
framework for Application Service Providers) in order to achieve Optimal System
Performance and High Availability. The proposed framework is then implemented in a
real word solution (Biling4dRent) which allows objective analysis of the framework

within a live production environment.

2.1 Background

The following abstract and background material is reproduced from the Enterprise
Ireland ‘Innovation Partnerships - Company / Third Level College Collaboration for
New Product / Process Development’ [1] proposal document. The proposal was
subsequently approved, and was given the title ‘Billing4dRent - The ASP Hosted Billling
Service’ (Project Code: IP-2004-333).

Abstract
“The Billing4Rentproject will analyse, design and implement a highly innovative

billing solutionfor communications providers. The solution will be realised using
Application Service Provider (ASP) technology, enabling tier 3 and 4 network
operators, content providers, service aggregators and other genres of service
providers to access state-of-the-art billing functionality on a subscription/rental

basis.

The project partners, ADC, WIT and GMTT, have identified a unique and
innovative way of overcoming these barriers. The approach will harness the

functionalityprovided by AD C sflagship Singl.eView” product, which will

f At the time of the Billing4Rent project proposal (circa May 2004), Singl.eView was an ADC product.
However on 4th June 2004 - Intec Telecom Systems announced the acquisition of ADC’s 'Singl.eView'
retail billing software division for $74.5 million.

Chapter 2 Research Background & Methodology

be enhanced to provide the core of an ASP billing service providing the
flexibility, ease-of-use, architecture and business model required by the intended
customer base. The results of the project will provide a full solution to an
underserved target market and, in doing so, will provide a major boost to
Ireland’s competitive positioning in both the billing and the communications
industries. The Billing4dRent ASP billing service will enable providers to enter the

market by offering an affordable, effective billing solution

Background

“The tier 1 and 2 billing market is today dominated by five product vendors:
Amdocs, Convergys, CSG Kenan, Portal and ADC, with Amdocs and Convergys
being in a dominant market position due to their relatively larger revenue
earnings. A large number of additional vendors compete for specific market
niches such as adjust rating, inter-connect rating, content rating and pre-paid

services support.

The ongoing rollout of 3G networks and increasing deregulation of the wired
telecommunications market isfostering a very dynamic services and application
market place involving a large number of creative and innovative SMEs. Such
SMEs require billing solutions to allow them to capture their share of the
revenue and to break down existing entry barriers to markets. Hence, the project
partners have identified a significant underserved market - provision of
outsourced billing solutions for tier 3, 4 and 5 mobile and wired operators,
content providers, service aggregators and other genres of service providers.
Hence, theprojectpartners have identified a significant

underserved market - provision ofoutsourced billing solutionsfor tier 3, 4 and 5
mobile and wired operators, content providers, service aggregators and other
genres ofservice providers. The lack o feffective, affordable outsourced solutions
hasprohibited a lot o fthese entitiesfrom entering the market on their own terms
and has, in a lot ofcases, allowed them to be exploited by the larger network

operators whoperform billing on their behalf.

The solution proposed here is to create a robust online billing service that could

be shared by these entities, hence making it more affordable. Such a solution can

-8-

Chapter 2 Research Background & Methodology

be assembled using ASP technologies founded on the third generation of
distributed component technologies —HTTP based transport, XML interchange

using SOAP and contract based management using WSDL.

A key differentiatingfactor ofthe Billing4Rent ASP service will be that its core
(the Musketeer platform) will incorporate core components of ADC?% highly
successful Singl.eView dynamic transaction management platform. In addition
the service willprovide customers with the option o futilising innovative dynamic
tariffing schema which can vary the charges appliedfor service usage based on

service usage information.

This Innovation Partnership will address a number of research and technical
challenges required to leverage the functionality ofSingl.eView in an innovative
ASP billing solution to target the tier 3/4 operator and communications service
provider market. Theprojectpartners recognise that an ASP billing solution will
need to offer an end-to-end solution that supports a low cost ofusagefor target

customers. The major areas o finnovation required to realise this vision include:

+ Creation ofintuitive user interfacesfor configuration o fthe service;
+ Creation ofinnovative tariffing schema design tools;

e Strategies to address ASP performance and security issues.

The Telecommunications Software & Systems Group (TSSG) at WIT has
researched the area of on-line (ASP) billing through a number of European
Commission and Elfunded projects and has developed a prototype ‘Rating
Bureau Service ” (RBS) that addresses some (but not all) ofthe needs ofan ASP
billing solution. Both TSSG and GMIT have significant experience in creating
ASP type services using web services and similar technologies. ADC will
contribute market research, industry experience, software integration, training,
partner relationships and core components of Singl.eView to the project.
Together the proposalparties will create apartnership to apply their expertise to

create an innovate ASP billing solution.

Chapter 2 Research Background & Methodology

ADC see the opportunity for the results ofthe project to be fed into a start-up
organisation called Billing4dRent. ADC is currently discussing the possibility with
an a external third party with an interest in commercially exploiting any viable
results arising out o f the partnership, who would create the company and bring
together a team andfunding to exploit the results ofthis project and launch the
ASP billing solution. This external thirdparty may also play a critical mentoring
and advisory role throughout the lifetime ofthe project to ensure that he can sell
the ASP billing service that will emerge. For theirpart ADC see Billing4Rent as
apotential channel to address afocussed market. The TSSG has an opportunity
through this initiative to further develop its online portal billing IPR for

exploitation by ADC.

ADC is currently working with industry partners, GMIT and Enterprise Ireland
on a High Performance Commercial Computing initiative to address the business
challenge of selling, delivering and supporting always on, highly scalable
solutions for Operational and Business Support systems targeted at the
communications and content industry. This project will support this initiative
building on the highly successful ASP model to provide a very large centralised

solution thatwill serve as aproofpointfor the industry.

In summary, the Billing4Rent solution will target the innovative builders of the
new economy, the new smaller communications providers, competing in the
deregulated market and the new economy digital media companies building a
new market around content. Specifically Billing4Rent will prove to be a critical
service for new entrants that will emerge aspart ofthe EU enlargementprocess.
It is important to note that a major problem for these new companies is the
ability to billfor the delivery oftheir products and services. BillingdRent would
thus not only create new value for Ireland but also support the development of

existing Enterprise Ireland ICT companies.”

Chapter 2 Research Background & Methodology

2.2 Limiting Factors

The author acknowledges the important role security plays in achieving high levels of
availability within an ASP model. Robust security policies and plans (e.g. data
encryption and strong passwords) ensure that unauthorised persons do not gain access to
the ASPs systems for the purpose of pilfering / corrupting data, or compromising the
availability of the service. It is worth noting that the Billing4Rent project proposal
identified two areas of research relevant to the ASP model. One of these areas was

security, with the other being:

“Performance: The huge increase in the volume of metering data associated
with emerging IP-based services, together with the necessity for real-time
processing to accommodate prepaid service provision, places stringent
performance requirements on billing components. The adoption ofan ASP model
introduces particular performance issues relating to the transfer ofinformation
to an externally hosted billing service, using web service technologies. A careful
analysis ofthese issues will be carried out to ensure that the Musketeer platform

can meetperformance targets, especially inprepaid scenarios.”

It is recognised in the project proposal that although the areas of security and
performance have several commonalities, each is distinctly different from the other.
Accordingly, this thesis focuses on Optimal System Performance and, consequently,

security-only concerns and plans are beyond the scope of this dissertation.

2.3 Research Methodology

The principal research objective is to design a framework / architecture, for an ASP
solution that is Highly Available, Scalable, Maintainable, and performs optimally within
a production environment. The steps involved in achieving this objective are summarised

as follows:

e The completion of a comprehensive literature review to fully understand the
nature of Application Service Providers in general, and High Availability in
particular. The knowledge gained from this phase ofthe project served as a solid

theoretical basis for the design of the deployment architecture for the

- 11 -

Chapter 2 Research Background & Methodology

BillingdRent ASP. In particular, acclaimed textbooks, research papers and
Internet websites dealing with Application Service Provision, High Availability
and Scalability were studied and evaluated to ensure that any decisions arising
out of the literature review will be following best practices and industry

standards.

e The completion of a comprehensive technology review to evaluate the latest
developments and advances in technologies relevant to Application Service
Provision. In particular the design, implementation and deployment of Highly
Available solutions was studied and evaluated. The knowledge gained from this
phase of the project meant that technical design decisions taken at later stages of
the project were based on best practices as evidenced in current technology

standards.

« A formal proposal for the deployment architecture necessary for the Billing4Rent
ASP will be made, reflecting the lessons learned from the literature and
technology review phases of the project. The proposal will incorporate the
design, definition and deployment of the Billing4dRent ASP, in order to meet the

criteria of High Availability, Scalability and Optimal Performance.

« The design and efficient implementation of a deployment architecture based on
the above formal proposal. An evaluation of the effectiveness of the proposed
Billing4Rent deployment architecture will also be carried out. This step will
involve a critical and comprehensive evaluation of the Billing4dRent ASP against
accepted criteria for High Availability, Scalability and Optimal System

Performance in an ASP environment.

SECTION TWO

Literature & Technology
Review

Chapter 3 Application Service Provision

Chapter Three: Application Service Provision

Increasingly, the defining characteristic of Internet era software is that it is delivered
as a service, not as a product [2]. This new delivery model is known as Application
Service Provision. This chapter will provide an overview of Application Service
Provision, and will include a review of the origins of ASPs. A comprehensive
evaluation of recent research literature and industry analysis reports provides an
indication ofthe state ofthe ASP sector, as well as the various types of ASP players.
The benefits associated with adopting an ASP solution are discussed, along with the

drawbacks. The following areas will be addressed:

« An introduction to Application Service Provision in general, outlining the
historical reasons for the existence of this application outsourcing option.
Industry analyst predictions with respect to the application outsourcing option

will also be discussed.

e An outline of the advantages of the ASP model, from the provider, and the
end-user perspective. The various types of ASPs - and the market segments
they occupy - will be discussed. This section will also highlight the obstacles

and inhibitors to ASPs serving a larger segment of the business community.

 The five distinct types of ASP offerings identified in the literature will be

examined and a commercial example ofeach type will be identified.

3.1 ASP Introduction

Application Service Providers (ASPs) are defined by the Information Technology
Association of America (ITAA) as: “Any for profit’ company which provides
aggregated information technology resources to subscribers / clients remotely via
the Internet or other networked arrangement” [3]. The term ‘ASP’ is slowly being

superseded by terms such as ‘Software-as-a-Service’ (SaaS), and ‘on demand’ [4],

Chapter 3 Application Service Provision

[5], as well as its latest embodiment (2005) by the International Data Corporation
(IDC) as ‘hosted application management’ [6]. However, what does remain
unchanged is the underlying principal of renting software services via the Internet.
An ASP will typically be responsible for hosting and deploying the application or
service, as well as its day-to-day management thereafter. ASP revenues typically fall
into two main categories: start-up fees and usage fees [7]. Start-up fees encompass
any integration, training or customisation activities required to get a customer setup
for an ASP services. Usage fees are an important aspect of Application Service
Provision as users are charged only for the portion of an application they actually
use. With an estimated 60% of an application not accessed during typical usage [8],

per usage billing could amountto a considerable saving for an organisation.

Heralded by many as the third wave of IT outsourcing, the ASP business model came
to prominence during the late 1990’s. While the term ‘Application Service Provider’
may be relatively new, the concept of application hosting dates back to the 1960s. At
that time, many customers could not afford expensive mainframes, and sourced
business applications through the first wave of outsourcing, called time-sharing [9].
Commercial organisations and educational institutions took turns renting mainframe-
processing capabilities. All the processing capacity, as well as the memory and disk
storage resided on the mainframe. A ‘dumb terminal’ —the terminals did not do any
thinking or processing - relayed messages to and from the mainframe. This allowed
users to access applications online on a pay-per-use basis as an alternative to
purchasing and maintaining expensive and complex software at each company’s

physical site.

However there were problems with the mainframe/timesharing approach. This was
due for the most part to availability; for example if too many people were connected
to the mainframe at the same time, the response was often slow [10], During the late
1960s and 1970s, the advent of minicomputers drove hardware costs low enough to
justify customer ownership and control of assets. The early 1980’s saw the advent of
client/server computing. The Personal Computer (PC) allowed users to perform
much of the processing load at their desks. Given that they were the only one
accessing the processing power of their PC, users did not encounter the slow

response time synonymous with timesharing or concurrent usage. Over time

-15 -

Chapter 3 Application Service Provision

however, IT managers became aware that large applications installed on users
machine were not being utilised on an ongoing basis. Enterprises spent large amounts
of money on licences for software that remained unused for large periods of time.
Consequently, towards the end of the 1990’s, organisations took the opportunity to
outsource their IT application needs to an Application Service Provider, who would
charge them on a per-usage basis. The 180-degree turnaround from client/server

computing back to centralised computing was complete.

In addition to organisations becoming more enthusiastic about outsourcing IT
applications, and the emergence of application hosting companies, the final element
required for greater ASP adoption was the acceptance of the Internet Browser as the
new application interface. Due to the advent of the World-Wide Web during the
1990s, when the Internet evolved from being almost entirely unknown outside
universities and corporate research departments, to becoming an almost-ubiquitous
aspect of modem information systems, the usage rate of the Internet has increased
exponentially - resulting in users becoming increasingly familiar with performing
many tasks and procedures via their Web Browser. Figure 3.1 summarises the

essential ASP components (Adapted from [11]):

A common ASP framework is the n-tier architecture. N-tier architecture refers to an
application with at least at least 3 ‘logical’ layers: user interface, functional logic (i.e.
business rules), data storage and data access. N-tier application architecture provides
a model for system designers, architects and developers to create flexible and
reusable applications. Splitting applications into tiers allows easier modification or
additions rather than have to rewrite the entire application, as each tier is developed

and maintained as an independent module. This allows the modules to be upgraded

-16-

Chapter 3 Application Service Provision

or replaced independently as technology or application requirements change. A
particular advantage to the n-tier architecture is scalability should an ASP decide to
cater for increased workloads. A three-tier ASP architecture is shown in Figure 3.2

(adapted from [12]).

Client Client Client
Presentation
Level
\
i HPPP Server 4
Content Level
U = o ¥ .
—
ASP Portal Application Server
Data & Service Q AS P Provider
Level [silling Inventory RDBMS I
Figure 3.2: n-tier ASP Architecture
The three-tier architecture is made up ofthe following components:
Presentation: This layer is concerned with displaying data to the

user, and accepting data from the user — it represents
the ‘look and feel” of the ASP. Users use a thin client
(i.e. a Web Browser) to interface with the ASPs web

offerings.

Content: This layer is concerned with Business Logic, and is
usually powered by an Application Server. The
integrity of the data is verified before it is added to the
database, or is displayed for the end-user. This tier will
drive the Relational Database data queries, updates,

and transactions.

Data: The data tier is the layer that manages the persistence
of ASP information - data manipulation performed by
the ASP will be carried out at this tier. A Relational

Database is commonly used at this tier.

-17-

Chapter 3 Application Service Provision

3.2 Analyst ASP Predictions

Many ASPs entered the market in the latter years of the 20th century, but struggled to
stay afloat due to a number of factors: the large amount of competition, service
offerings that were poorly conceived, and the economic downturn after the dot.com
bubble burst in the early years of the 21st century. As a microcosm of the ASP boom
and bust cycle, the ASP Industry Consortium began with 25 members in 1999, and
boasted more than 300 by the middle of 2000 [13]. However by November 2001, the
ASP Industry Consortium met the very fate of many of its members - it was taken
over by the Computing Technology Industry Association (CompTIA). Therefore,
analyst predictions and expectations with respect to the growth of this new e-

business model have not been realised, and in some cases, varied dramatically:

* In 1999, Deloitte Research estimated that ASP revenue would reach $48.5
billion by 2003 [14].

* By 2001, IDC estimated that ASP revenue would reach $24 billion by
2005 [15].

« Also in 2001, Gartner estimated that ASP revenue would reach $25.3
billion by 2004 [16].

However the collapse of dot.com shares prices in April 200 and the subsequent
decline in global IT spending resulted in analysts revising down their earlier
predictions: In 2002 IDC estimated that ASP revenue would reach $7.7 billion by
2004 [13]. Also in 2002, Desai et al [17] predicted that only 40% of ASPs created
before 2001 would survive in their initial form until mid 2002. A follow-up
investigation in 2003 showed accuracy of this prediction: of the 424 companies
reviewed in the study, 203 had failed, 40 had been acquired and eight had merged.
Only 173 companies out of 424 were surviving - just 40.8% [18].

In 2004, actual worldwide spending on software delivered as a service only reached
$4.2 billion, which, although up 40% from 2003 [19], was still a long way short of

earlier figures. Although the ASP paradigm is slowly beginning to realise its

Chapter 3 Application Service Provision

potential, as of 2004, software revenue derived from ASP delivery accounted for
only 3%-t0-5% of all software revenue [81]. Consequently the most recent prediction
from the IDC (2005) forecasts that revenue from software-as-a-service would reach

$10.7 billion by 2009 [19].

3.3 ASP Advantages

There are many suggested benefits to the ASP model [10], [11], [17], [20], [21], [22],
[23], [24], [25]. ASPs by definition provide application/service access to multiple
users/subscribers on a rental or subscription basis. This one-to-many application
delivery method affords huge Economies ofScale to ASP users. In economic terms,
Economies of Scale are achieved when the average cost of producing a product
diminishes as each additional product is produced, as the fixed costs are shared over
an increasing number of products - i.e. the cost per unit made declines with the
number of units produced [26]. The Economies of Scale inherent in the ASP business
model allows the ASP to operate a secure, reliable data centre at a lower cost per user
[20]. Indeed, analyses of ASP cost savings have borne this out. One finding by Miley
[27] suggests the cost savings to be in the order of 20% to 50%, while 14% of
respondents in one survey by the Information Technology Association of America

(ITAA) [28] placed the cost savings at between 51% and 100%.

Due to the global nature of the Internet, companies have a extensive choice as to
which ASP offering worldwide they can choose, regardless of national borders or
time zones. In a typical ASP service encounter, applications are transmitted to the
user machine over a network using a variety of thin client models [20]. Thin Client
Networking refers to any network in which the lions share of all application
processing takes place on a server, instead of a client, with little in the way of local
processing power [29]. Typically, the local client interface is a Web Browser. Web
sites were traditionally the home of static content, but they now host live applications
with increasing frequency. The Web Browser interface has advantages for both the
ASP and the end user, as can be evidenced in the removal of the installation
procedure. From an ASP perspective, installation of software via a Web Browser

eliminates the expense of having to provide installation support, whereas end users

-19-

Chapter 3 Application Service Provision

benefit by eliminating the need to employ expensive administration staff to operate
complex software installations [11]. From an ASP perspective, the inconvenience
and expense of an offsite client installation is eliminated as software can be used
immediately. Users do not have to worry about compatibility with their existing
legacy systems, or whether their system is powerful enough to run online software,

as access to the ASP offerings is via a Web Browser.

The ASP delivery model reduces an ASPs software release and distribution
overheads enormously. Because applications are transmitted to the user machine over
a network, this eliminates the need to print manuals, press disks, create packaging,
manage stock and operate a stock return policy. The network-centric delivery model
allows the ASP service provider to produce instant upgrades, bug fixes, and new
features to the software without the user having to discover (or be notified),
download and install the upgrades. From a support viewpoint, a knock-on effect
would be the consistent user base; users will all be using the same version of the
software, so the ASP does not have to support different versions and release levels.
Additionally, given that the bulk of the processing resides on the server, this reduces
software piracy, as unscrupulous users cannot copy and distribute the full version of

the software.

ASPs will generally facilitate reduced down time, as service providers will be better
equipped to provide 24/7 availability, and at a lower cost. The cost of this expertise
is significantly lower, due to the cost being spread among multiple users. Kern, et al
note that the ASP outsourcing model reduces a users need to retain in-house skilled
IT professionals [21]. Because the ASP usually has more expertise in technology
forecasting and a larger customer base, it can usually make better technology
investment decisions than customer organisations that are not IT specialists [20].
ASP outsourcing also gives the enterprise the flexibility to change direction without
losing major IT investments [10], whereas the pricing model of ASPs enables

predicable and controllable usage and application costs [21].

An ASP has the advantage of distributing the cost of surplus capacity across several
organisations [22]. Because the ASP can constantly monitor usage, it is able to

evaluate the features used most often, identify any features that cause the user

-20-

Chapter 3 Application Service Provision

problems, and any features that can be streamlined to increase productivity [11]. The
ASP benefits from knowing it has a constant revenue stream - it is not necessarily

under pressure to deliver annual releases to generate revenue [11].

3.4 ASP Growth Inhibitors

There are several hypotheses put forward as to the reason for the slow take up of the
ASP model. Firstly, one of the main reasons cited was the ASP users loss of control
of IT functions and their management [17], [21]. Many organisations are reluctant to
become increasingly reliant on external suppliers, where they have little or no input
in how their IT operations are managed. In the early days, users were reluctant to
adopt the paradigm, mainly due to lack of understanding of the ASP model. As with
all emerging technologies, many organisations decided on a ‘wait and see’ policy,
whereby a decision would be made on ASP adoption once the embryonic nature of
the ASP marketplace had taken a proper shape. Due to the large mortality rate of
early ASP players (as noted in section 3.2, in 2001 it was forecast that only 40% of
exiting ASPs would still be in business in 2002), there were many companies that
were unwilling to outsource critical IT applications to ASPs that may or may not be
in business long enough to fulfil their contractual obligations [7]. Also, there was
considerable resistance to the ASP paradigm from organisations IT Departments.
Many IT Departments perceived ASPs as a threat to their livelihood. Mark Clancy, in
his 2001 article “The Insidious Resistance to ASPs” [16] identified the large power
displacement felt by many IT Departments as they felt that they were becoming
surplus to requirements. For example, if a company adopts an ASP model for a sales
application, it may make more sense for the operating budget to be transferred from
IT to the sales department. Given that that many IT departments would have been
entrusted with responsibility for deciding whether or not to outsource IT

applications, this may have been a contributing factor to the slow adoption of ASPs.

Finally, some software vendors are also resistant to the concept of Application

Service Providers. Often, full software package installations are more lucrative for

vendors [16] and can give rise to further revenue from additional “professional, \

/ / , V, Vo
services contracts. Given that - as highlighted by one St>L/de - pity MQ% Afmop|
1J i

I 3"MNAJy
-21 -

Chapter 3

Application Service Provision

shrink-wrapped software was utilised [8], a software delivery model where the

customer paid by usage would seriously affect the revenues of software vendors.

Even if a software vendor becomes its own ASP, they may still advise their

customers toward purchasing a packaged solution in order to generate higher short-

term revenue.

3.5 Types of Application Service Providers

The most common types of ASPs to have engaged in the market in recent years is

summarised in Figure 3.3 (Adapted from [4], [7], [17], [18]).

No Name (Type)

1 Horizontal

2 Pure Play

3 ASP enablers

4 Vertical

5 Enterprise

Main Features

An Independent Software Vendor (ISV) or start-up
firm, which delivers ‘business’ software such as CRM
or payroll, as well as collaborations tools (Groupware)
A start-up firm, which enters into partnership with an
ISV to deliver software on a remote model over the
Internet
Telecommunications Companies with the necessary IT
infrastructure (backbone) to deliver software using a
remote model
An ISV, or start-up ASP, focusing upon a specific
industry sector
A large ISV, or start-up ASP, which aims to deliver
enterprise wide or ERP software to the end-user via a
remote model, or via a virtual private network

Figure 3.3: ASP types

« Horizontal ASPs are the most popular of ASP offerings, where the ASPs Web

enabled applications were relevant to most companies. The main advantage of

Horizontal ASPs is their ability to gain market share without having to acquire

vertical (i.e. industry specific) knowledge of their customers business sector.

Salesforce.com [30] is one of the worldwide leaders in on-demand Customer

Relationship Management (CRM) services, which encompasses all aspects of

interaction a company has with its customer, whether it be sales or service

related.

-22-

Chapter 3 Application Service Provision

Pure-play ASPs are typically independent start-up companies that do not own
any applications of infrastructure. Pure-play ASPs pull together many elements
that make up the ASP solution, as they may licence the hosted application from
one company, buy network access from another, rent server space in a server
farm at a hosting company, as well as application support elsewhere. Pure-play
ASPs typically provide minimal service integration activities for their
customers, as their focus is primarily on the customer interface. In general Pure
Play ASPs offer web-enabled solutions only. An example of a pure-play ASP
was Corio [31] (Corio was purchased by IBM in March 2005 for $182m) who
offered subscription-based services for several applications, including software

from companies such as Oracle, SAP and Siebel Systems among others.

ASP enablers are large companies that provide telecommunications, hardware,
or Internet connectivity, as well as co-location services to ASPs. ASP enablers
have the advantage of partnering with existing (enterprise, vertical, horizontal
and pure-play) ASPs, as well as those seeking to become ASPs offering a
range of web-enabled applications. A leading ASP enabler is the South Africa
based Korbi.net [32], who bring together a wide variety of applications to
achieve economies of scale and make it possible for an organisation to become

an ASP by removing the associated cost of technology and infrastructure.

Vertical ASPs target specific market segments for their services. The primary
focus of this type of ASP is to provide vertical industries (e.g. the travel agency
industry) with all the industry specific tools and applications they need ‘under
one roof. An example of a Vertical ASP would be LearningStation.com [33],
a leading provider of customised web desktops for schools, used in order to

support and advance learning.

Enterprise ASPs deliver a variety of high-end applications to enterprises, for
example to divisions, subsidiaries and business units of very large enterprises.
This type of ASP generally offers some degree of customisation availability
guarantees. An example of an Enterprise ASPs is Usi.net [34], who deliver

application outsourcing, remote management, professional services, ISV

-23 -

Chapter 3 Application Service Provision

enablement, eBusiness development, as well as hosting, information security

and risk management services.

In recent years, a new type of ASP has emerged onto the market in the form of
Independent Software Vendor (ISV) ASPs. These types of ASP are software vendors
that have decided to expand beyond solutions provisioning and offer ASP services
directly to the customer [7]. ISV ASPs generally have two sub-categories: the first is
where the software vendors have decided against allowing other ASPs to host or
provide their applications and is hosting it themselves. The second sub-category is a

software vendor who licences their software to an ASP for delivery.

3.6 Chapter Summary

This chapter has focused on providing summary detail on Application Service
Providers, and the origins of the application outsourcing option. Also analysed were
the advantages and disadvantages of the ASP paradigm, as well as the types of ASP
players serving the market at the present time. Although the emergence of the
Application Service Provision model suffered during the bursting of the dot-com
bubble in the Autumn of 2001, there is little doubt that software-as-a-service is here
to stay. A memo released by Microsoft [35] in November 2005, announced the
emergence of a new generation of web-based software, commonly refered to as Web
2.0 [2]. Microsoft’s Chief Technology Officer stated that Web 2.0 is “about
‘services’ (ranging from todays web-based e-mail to tomorrows web-based word
processor) delivered over the web without the need for users to install complicated
software on their own computers”. To this end, Microsoft announced plans to launch
Windows Live and Office Live in early 2006 [36]. Office Live promises to provide
an organisations business management applications (i.e. customer, project, and
document management tools), all hosted and maintained by Microsoft. While many
users may consider ASPs solely useful within a business context, there are increasing
examples of Application Service Provision encroaching into everyday life. Consider
for example the huge upsurge in mobile phone usage in the early years of the 21¢
century. Many network operators offered a value added service whereby the user can

send text messages to other mobile phone users via the operators website. This

-24-

Chapter 3 Application Service Provision

offering has all the hallmarks of an ASP encounter - the primary interface between
customer and texting service is a Web Browser; the service is based on a one-to-

many model.

While this chapter has focused on the abstract details of ASPs, Chapter Four will
focusoon High Availability and Scalability. As already discussed, ASPs are typically
hosted in large datacenters, where the concepts of high availability and scalability are
essential components in delivering a solution that has near 100% uptime and a high

Quality of Service (QoS) to its end users.

Chapter 4 High Availability and Scalability

Chapter Four: High Availability and Scalability

ASPs are typically hosted in large datacenters, where the concepts of High

Availability (HA) and Scalability are hugely important. Indeed, HA, Scalability and

Reliability are often cited as the major inhibitors to the widespread uptake of the

ASP model [7], [10], [17], [37]. This chapter will provide an overview of HA and

Scalability. Supported by a comprehensive evaluation of recent research literature

and industry analysis reports, this chapter will commence with a review of the

origins of HA. It will provide an indication of HA planning and the rationale for

introducing HA. The motives behind designing scalable systems will be also

explored. The following areas will also be addressed:

An introduction to High Availability in general, highlighting the historical
reasons for designing Highly Available systems. An outline of the metrics
used to evaluate availability, as well as desired levels of availability will be

discussed.

The consequences of server downtime, highlighting the drivers of high
availability. This section will examine high availability planning, as well as

various high availability paradigms.

Scalability, encompassing the drivers of scalability will be highlighted. The
various types of scalability, as well as the architectures and design principles

will also be covered.

An outline of clustering, load balancing and Disaster Recovery, and their

importance within an ASP environment will be discussed.

A brief overview of Singl.eView, the dynamic transaction management
platform from Intec, which will provide the backbone of the Billing4Rent

ASP service.

-26-

Chapter 4 High Availability and Scalability

41 High Availability

Application hosting servers may need to support tens of thousands of concurrent
service sessions with high availability and short response times [11]. In order to truly
benefit form the ASP model, ASPs need to ensure their service offerings are not only
reliable, but have near 100% availability. High Availability (HA) is a proactive
application of specific hardware and software technologies that minimizes unplanned
downtime [38]. A highly available system should provide immediate and automatic
recovery in the event of system failure and the recovery process should insulate the
end-users from the effects of downtime. The birth of concepts - such as mission-
critical systems and high-availability - are to be found in military and space
exploration systems where computer failures can place missions, individuals and
even nations at risk [39]. There are many known threats to system availability,
ranging from natural disasters to malicious attacks. Threats can include, but are not

limited to:

* Loss of power.

» Denial-of-service attacks

* Loss ofkeys to encrypted data.

» Physical damage to equipment from accidents, sabotage or terrorism
* Natural disasters, including lightning, flooding, earthquakes or war.

* Magnetic erasure from electromagnetic pulses, electric currents, or magnets.

Malicious attacks on corporate IT systems, such as viruses, worms and Trojan
Horsesf, are on the rise and are growing by 15% a year, according to recent data
released by ICSA Labs [40]. Consequently, over the past few years, system owners
and operators have placed increased emphasis on the actual amount of time

equipment is capable of performing its intended function, and is accessible to users.

f Viruses and worms are programs, or pieces of code, that are loaded onto a computer without the
users knowledge, and run against their wishes. All computer worms and viruses are manmade, and can
replicate themselves over a computer network i.e. can make a copy of itself over and over again.
Viruses and worms usually perform malicious actions, such as using up the computer's resources and
possibly shutting the system down. A Trojan horse is a destructive program that masquerades as a
benign application. Unlike viruses, Trojan horses do not replicate themselves but they can be just as

destructive.

227

Chapter 4 High Availability and Scalability

In the 1960s and 1970s, hardware components were the major source of faults and
outages. Today, hardware faults are a relatively minor cause of systems outages
compared to operations, environment and software faults [41]. Because of these
factors, system requirements and Service Level Agreements (SLAS) usually specify
availability goals. The SLA usually defines a minimum level of availability a system
must offer. High Availability refers to the availability of resources in a computer
system, in the wake of component failures in the system [42]. The basic requirement
of a Highly Available system is that it should tolerate faults. The system should have
the ability to not only detect a fault but also to report the fault, mask the fault so that
it is transparent to the user and then continue service while the fault is repaired

offline [41].

A fault usually takes the guise of a component failure, which is the failure of some
service component to behave as expected - a hard drive failing to spin up when it is
power cycled, a software crash, an operator misconfiguring a network switch, etc. A
component failure can cause a service failure if it prevents an end user from
accessing the service or part of the service [43]. In the event of a component failure,
a HA system should have the ability to fail over to a redundant node. A redundant
node is a component of a computer system that is used as a backup system in the
event of a failure to the primary system. Redundant components can include both
hardware elements of a system (such as disk drives, peripherals, servers, switches,
routers) as well as software elements (such as operating systems, applications and
databases [38]). A HA system should support user connections on either the primary
node or the redundant node and have well-defined procedures to deal with startup
and shutdown of the system, coupled with clear and specific backup, restore, and

upgrade policies.

There are various metrics available to measure availability [41], [44], [45]. As
highlighted in Figure 4.1, a computer system operates normally for a period of time
before it fails. The failed system is then repaired and the system returns to normal

operation.

Chapter 4 High Availability and Scalability

The operate-repair cycle is shown in Figure 4.1 (Adapted from [46]).

OK Fault Occurs OK
Normal Operation Being Repaired
A Time
Mean Time Betven . . Mean Time to
Failures (MTBF) Repair (MTTR)

Figure 4.1: Operate-Repair Cycle

High Availability is the proportion of time a system is productive and is usually

expressed as a percentage:

Expected reliability is proportional to the Mean Time Between Failures
(MTBF). Each failure has some Mean Time To Repair (MTTR). Availability

(Av) can be expressed as a probability that the system will be available:

~ MTBF
(MTBF + MTTR)

As the Mean Time Between Failures (MTBF) gets larger, Av increases and
Mean Time To Repair (MTTR) has less impact on Av. As Mean Time To
Repair (MTTR) approaches zero, Av increases towards 100% [44].
Computers built in the 1950s offered a 12-hour Mean Time To Failure. A
maintenance staff of a dozen full-time computer engineers could repair the

machine in eight hours. This failure-repair cycle provided 60% availability

[41].

12
(12 + 8)

60 % =

In a distributed system, some parts may be available while others are not. In these

situations, the availability of all ofthe devices is taken into consideration:

1T 90% of the database is available to 90% of the terminals, then the system is

0.9 x 0.9 = 81% available.

Chapter 4 High Availability and Scalability

As increasingly critical business applications are placed on computer systems
customer tolerance to downtime has decreased dramatically. Some years ago
organisations could tolerate hours of downtime caused by computer failures or
planned maintenance. Today the majority of enterprises tolerate only seconds or
minutes of downtime. A recent study [47] found that 29% of enterprise customers
can tolerate only 0-3 seconds of downtime per outage of their critical applications
and another 37% of these customers can tolerate only up to 3 minutes of downtime.
When these figures are aggregated 66% of respondents can only tolerate up to 3
minutes of downtime per outage. For many enterprises, a desired level of availability
is 99.999% (commonly referred to as ‘five nines’). This level of reliability, for a
service running twenty four hours a day / seven days a week / three hundred and
sixty five days a year, equates to just over five minutes of downtime per year, or six
seconds downtime per week. Figure 4.2 summarises availability levels and the

corresponding average weekly and yearly downtimes (Adapted from [41], [44], [45],
[48]).

9s One9 Two9s Three9s Four9s Five9s Six 9s
Uptime (%) 90% 99% 99.9% 99.99% 99.999% 99.9999%
Downtime per week 16.9h 1.7h 10.1m Im 6s 605ms
Downtime per year 36.5d 3.7d 8.8d 52.5m 5.3m 31.5s

Figure 4.2: Representation of Availability

When a service is required to run twenty-four hours a day, seven days a week, three
hundred and sixty five days a year without any planned and unplanned downtimes,
this is commonly referred to as fault-tolerant computing by some commentators [49],

and continuous availability by others [50].

» Fault tolerance relies on specialised hardware to detect a hardware fault and
instantaneously switch to a redundant hardware component, regardless of
whether the failed component is a processor, memory board, power supply,
I/0 subsystem, or storage subsystem. When this cutover appears seamless to
the user and offers non-stop service, a high premium is paid in both hardware
cost and performance because the redundant components do not perform any
processing. This contingency approach to maintaining system availability,

whereby a second system - with the same configuration as the main system -

- 30

Chapter 4 High Availability and Scalability

is kept running and ready to take over the processing load instantaneously is

known as a Hot Standbyf .

» Continuous Availability implies non-stop operation, with no lapse in
service. For most computer systems, this represents an ideal state and is
generally used to indicate a high level of availability in which only a small
quantity of downtime is allowed. High Availability, however, does not imply
continuous availability [42]. In reality, unmanaged computer systems on the
Internet typically fail every two weeks and on average take ten hours to

recover. This equates to roughly about 90% availability [41].

The difference between fault tolerance and high availability is that a fault-tolerant
environment has no service interruption, while a highly available environment has
(minimal) service interruption. Many sites are willing to absorb a small amount of
downtime with high availability rather than pay the much higher cost of providing
fault tolerance. However the fault-tolerant model does not address software failures,

by far the most common reason for downtime [49].

Figure 4.3 is an approximation of the cost of implementing a Fault Tolerant, or
Continuously Available, server and illustrates how the cost gets more and more

prohibitive the closer the curve gets to 100% availability (Adapted from [49], [51]).

f Standby configurations can be classified as hot, warm or cold. Hot Standby occurs when the primary
and backup systems run simultaneously. The data is mirrored to the backup server in real time, so that
both systems contain identical information. Warm Standby occurs when the secondary system runs in
the background of the primary system. Data is mirrored to the backup server at regular intervals,
resulting in times when both servers do not contain the exact same data. Cold Standby occurs when
the backup system is only called upon when the primary system fails. The system on cold standby

receives scheduled data backups, but less frequently than a warm standby.

-31

Chapter 4 High Availability and Scalability

Availability

Figure 4.3: Relative Cost of Availability

For the enterprise, there are a number of consequences for server downtime:

1. Loss of Business revenue: When an e-Business Webserver goes down, any
business transactions that were in progress will be unable to complete,
leading to a loss of revenue for any transactions that would have completed

had the server remained operational.

2. Loss of Productivity: While the system is unavailable users cannot work on
it, thus impacting their productivity and leading to a waste of resources. A
report by IDC [39] highlighted the fact that computer-based design and
development tools are becoming standard equipment for a wide variety of
engineering tasks. If these tools are not available, then - as noted in the end-

user survey - the engineers are not working.

3. Loss of Reputation: A lost Customer never comes back. Many economists
acknowledge that it is five to seven times more expensive to find a new
customer than to retain an existing one [52], Negative publicity caused by
frequent outages, or downtime at peak business hours, could possibly result in
the loss of a customer, which is far worse than the loss of a single purchase.
The credibility of the IT department may be diminished within the company

should recurring outages occur.

Chapter 4 High Availability and Scalability

4. Loss of market opportunity: Many products have limited life spans, in that
they can only be kept on the market for a finite amount of time before they
can no longer be sold profitably. For example, in the integrated circuit
industry, each day a chip is late to market represents for the company
involved a million dollar loss [39]. A reduction in the design and initial
manufacturing times can increase the effective sales time of the product.
Also, companies that are first to market with products can charge premium

prices, at least for a time, and can establish product brands.

5. Compromised product quality/competitiveness: In many industries
engineers ‘design to schedule,” (i.e. they are given a fixed schedule for
designing a product and they work to design the best product possible in the
given amount of time). However, lost resources can spell the difference

between a ‘workable’ design and an optimal design.

6. Lost data: Data pertaining to product design is critically important to most
organisations. System failures leading to lost or compromised data can be
equated to the loss of months or years of product development work and

market opportunity.

7. Regulatory and legal concerns: Deadlines may be missed due to lack of
availability or customer response time may be increased. In some instances,
where minimum levels of application availability are guaranteed by SLAs,
this may result in penalties and/or fines. It may even lead to legal action from

those affected.

41.1 High Availability Planning

It is vitally important when implementing a HA system, that proper planning and
testing is done at the design and pre-production stage [45], [51], given that failure
in operation and the consequent diminished reputation can be very costly to an
organisation. Frequently however, IT professionals entrusted with making purchase
and policy decisions often get caught in a tug-of-war between (a) the demand to
improve service levels, and (b) the pressure to reduce service level costs. High

Availability planning should be tackled just like any other business policy. The

-33 -

Chapter 4 High Availability and Scalability

organisation involved should document the availability objectives to be met, threats
and vulnerabilities to be countered, the risks to estimate, security mechanisms to be
used, any real-world constraints and measures of effectiveness, as well as any
legacy availability policies. Perhaps the most important consideration when
designing a HA system is removing Single Points of Failure. A Single Point of
Failure (SPOF) is a single component of a system (hardware, firmware, software or
otherwise) whose failure will cause some degree of downtime [53]. A SPOF is the
weakest link in a system; when that link breaks the entire system fails regardless of
the quality or cost of the rest of the system. Most systems have obvious potential
SPOFs, such as servers, disks, network devices and cables. For most system
designers the most obvious protection against SPOFs is via redundancy. However
the cost involved in introducing redundancy may be prohibitive. Consider the Web
Application server detailed in Figure 4.4, deployed on a single machine
configuration i.e. the HTTP Server, Application Server and Database server are all
co-located on the one machine, with a firewallf protecting the system from the

external network.

Internet

Figure 4.4: Sample Internet Application Configuration

f Firewalls are products designed to prevent unauthorised access to, or from, a private network.

Firewalls can be implemented as a dedicated piece of hardware, as installed software, or as a

combination of both.

Chapter 4 High Availability and Scalability

In Figure 4.4, there are two obvious SPOFs. Aside from the fact that the HTTP
server, application server, and database server processes will be competing for
CPU resources, if a failure occurs on the machine, then the entire system fails.
Similarly, the firewall protecting the system form malicious external, and internal,
attack is a SPOF. In order to reduce these SPOFs, a second firewall is introduced.
Also, the HTTP server, the Application server, and the Database server are all
migrated to separate machines. This removes the SPOF inherent in all three being
on the one machine, while it allows resource intensive applications like Database
servers access a dedicated CPU, rather than compete for CPU cycles. The new

configuration is illustrated in Figure 4.5.

There are still clear SPOFs evident in the configuration in Figure 4.5. While the
HTTP server, the Application server, and the Database server have been moved to
separate machines in order to reduce the SPOF inherent in having them reside side-
by-side in one machine, each of them have now become SPOFs in their own right.
For example, the database server is on a separate machine. However if it were to be
compromised, the overall Web Application would be no longer able to function. A
simple remedy would be to replicate the HTTP server, Application server and

Database server in order to introduce further redundancy, as shown in Figure 4.6.

Chapter 4 High Availability and Scalability

Internet

Figure 4.6: Webserver Configuration with Increased Redundancy

This new configuration has eliminated many SPOFs, however one still exists in the
form of the underlying network that provides connectivity between the various
elements. If for example, the underlying network connection from the HTTP server
to the Application server was accidentally severed, the application would again be
jeopardised. In order to avoid this, redundant cabling is introduced, as shown in

Figure 4.7.

Internet

-36-

Chapter 4 High Availability and Scalability

While the above example is by no means an optimal HA configuration, it does

illustrate some important points:

1. Firstly, in the examples above, a two-machine Web application server
configuration became an eight-machine HA configuration, which
incorporated redundant network connectivity between nodes. The consequent
increase in hardware expenditure to cover the purchase of the equipment
necessary, as well as the added network complexity, can add enormous strain

to an organisations operating budget.

2. Secondly, given the increased amount of equipment needed to implement HA
policies, it is recommended that hardware and software be standardised
within the proposed solution [51]. Industry-standard hardware and software
should be favoured over proprietary solutions. The rationale behind using
industry-standard solutions is that these solutions all have a public,
documented standard. Implementing a solution using various servers,
firewalls, software etc. from a multitude of vendors - some of them using
proprietary solutions - can add confusion, be difficult to document, and may
result in the organisation having to spend extra time and resources on

maintenance, recovery and troubleshooting.

3. Finally, it may not be possible to eliminate every single SPOF [53], mainly
due to either budget constraints, or the fact that while the set-up may be fully
redundant - if it were to be housed in one datacenter - then that datacenter
itself becomes an SPOF. Similarly, if separate datacenters were used, but
each was geographically located within close proximity to each other (e.g. on
the same power grid), then the power grid serving both datacenters could be

regarded as an SPOF.

When planning for HA, it is important that availability targets for systems are well
defined in advance [51]. Measurable, yet achievable availability goals should be
set, and if possible written into Service Level Agreements. Availability goals in
SLAs result in the IT Department having clearly defined responsibility for systems
availability. It is also equally important that, prior to implementing a HA policy, a

test environment is set-up. Having a test platform will allow an organisation to test

-37-

Chapter 4 High Availability and Scalability

their HA policies before they are incorporated into a production domain. Any or all
possible failure scenarios can be simulated to ensure the proposed architecture is
resilient, recovers quickly from failure, as well as ensuring that the different
hardware and software components work together as expected. Any problems can
be found and rectified without affecting end users or live data. Having a test
environment also has added benefits when any changes to a live system
configuration are mooted. The changes can be tested thoroughly, prior to

propagating the update to production systems.

Planning for high availability does not stop after the HA configuration has been

implemented. Procedures and codes of practice should be put in place, e.g.

Colour coding and correctly labelling all cables and components in a

system. This could save time when correcting a system outage.

. Implementing a management environment capable of informing the IT
Administrator, or other authorised persons, of the status of systems in a

correct and timely way [51].

. Servers should be stored in a secure, fire-protected room where

temperature and humidity are adequately controlled.

e Written procedures should be put in place to ensure that physical access

to servers is restricted only to people who are responsible for the server.

No departure from accepted procedures should be permitted without the person
responsible for the server being aware of the action, and assuming responsibility

for it.

A monitoring tool should be used, and any outputted data from the monitoring tool
should be analysed on a regular basis, as trends may become evident that indicate
potential problems (e.g. degraded software / hardware performance). A remote
control / monitoring tool is an invaluable utility allowing a System Administrator
to remotely monitor a systems health from their own desk / workstation. It is also

recommended [51] that common tasks be automated, as this Proactive Management

- 38.

Chapter 4 High Availability and Scalability

allows the Systems Administrator to spend more time on failure prevention rather

than reacting to systems failure.

In 2003, Sun Microsystems identified a Seven Step Approach to Availability [54],
designed to aid HA planning, which enables the delivery of a highly available

system while also reducing costs.

Step 1 - Inventory Systems by Business Impact:

Classify systems as task-critical, business-critical, or mission-critical. This allows
organisations to identify which of its systems are critical, and require as near to
continuous availability as possible (not all systems require 99.999% uptime). One
study by Greschler and Mangan (2002) showed that for most shrink-wrapped
software, only 40% ofthe application was utilised [8]. For example, the failure of
a task-critical application like a print server may disrupt a few users, however the
effect on the company as a whole is negligible. When a mail server goes down,
the impact will be higher because it affects employees' ability to do business.
While the loss of the e-mail server will affect the business, its effect is not as

integral part of how an ISP earns revenue.

Step 2 - Analyse Availability in Tiers:

This step is concerned with understanding which components of the
organisations infrastructure support each system. A tiered analysis approach to
availability results in identifying various tiers (such as a system layer, data layer,
and application layer). Inspection of each tier to determine the systems ability to
recover quickly from failure, the systems overall reliability, as well as the ease of
maintenance is vitally important. Knowledge of the availability requirements at
every tier and for each system helps planning for different levels of availability

based on the criticality ofthe application.

Step 3 - Migrate Availability Costs and Risks Architecturally

The system designed should provide the agreed-upon service levels, at a cost
proportional to how critical to the organisation the system is. Simple, yet flexible,
architectures allowing fail-over and redundancy can considerably reduce
downtime without incurring too many costs. Another factor worth considering is

the predictability of the system. For example, a system with predictable need for

-39-

Chapter 4 High Availability and Scalability

maintenance, allows maintenance to be scheduled at a time least disruptive to the
business. Thus a predictable system allows an organisation to achieve high
service levels without taking on the cost of implementing a mission-critical

system.

Step 4 - Reduce the Time to Value:

Time to Value is the amount of time it takes to draw value out of a solution after
implementation. One method to reduce costs, as well as time to value, is to
choose a solution from a vendor that not only provides the availability
infrastructure but also takes responsibility for its performance. This method is
preferable to buying separate products and integrating them with existing legacy
systems. This takes time, is prone to glitches, adds extra integration costs to an
availability solution and it is more difficult to pinpoint the cause of system

outage.

Step 5 - Address the Complete Environment:

Typically, costs are only associated with acquisition of products, and
implementation of HA systems. In reality, process and people often influence the
cost of providing high service levels. Good HA planning also involves the
processes and people that support the environment. One Gartner Group Study
showed that physical reasons for failure are responsible for only about 20% of all

downtime (Figure 4.8, adapted from [51]).

O Application Failure
m Other
00 Operator Error

20%

Figure 4.8: Causes of Downtime

Systems failures are more likely to result from operational or human errors than

software or hardware glitches.

40

Chapter 4 High Availability and Scalability

Step 6 - Design and Implement Comprehensive Recovery Plans

A good availability solution should include a comprehensive recovery plan for
each system. Being able to quickly detect failure ensures a speedy recovery when
a system outage occurs. A first-rate recovery plan can help reduce the overall

cost of downtime to the business

Step 7 - Partner for Experience

Organisations should provide a complete availability solution that meets service
level requirements, and also keeps costs to a minimum. While this is an obvious
goal, partnering with an company that specialises in providing HA solutions will
bring expertise, practical methodologies, real customer experience, and evidence
of successful implementations, so an organisation can implement a HA solution

with greater ease, lower cost, and above all, confidence.

4.1.2 Availability Paradigms

Availability paradigms have been evolving the over the years as the shift from
large centralised systems to distributed computing has gathered pace. Hosmer
(1996) identified the Single Computer, Network and Cyberspace paradigms [55],
which mirror the move away from large monolithic systems. The single computer
paradigm cantered on large mainframe, minicomputer, workstation or personal
computers that housed applications crucial to the organisation. The primary threats
to such systems were mechanical (e.g. loss of air-conditioning in the server room),
or human accidents (e.g. dropping a disk pack). HA systems had goals of 99.9%
availability, whereas low availability systems tolerated 60% availability. Systems
designers had to anticipate the maximum loads an application would experience,
and plan / design for them accordingly, which invariably meant fail-safe and fault
tolerant components, duplicated systems, alternate communications routes, and
back-up procedures. The network paradigm offered increased availability due to
redundant systems, distributed processing, and distributed databases. The major
threats to availability in this model were SPOFs, and external threats such as
denial-of-service attacks, viruses, worms, and Trojan horses. The Cyberspace
Paradigm emphasises information availability as much as system and network

availability. In this model, threats are social (terrorists, hackers, and competitors) -

41 -

Chapter 4 High Availability and Scalability

as well as technical (censorship, electronic junk mail, and system or bandwidth
limitations). Availability policies must cover a wider range, and while
responsiveness may be highly desired, it may depend on circumstances, as slow
response time may be the policy of choice in a variety of situations. In the
cyberspace paradigm, availability may cover information content as well as system
availability. Parents may be able to restrict their children from seeing certain types

of programs or playing certain types of games!

A Whitepaper published by Compaq (1997) echoed Hosmer’s findings. Within the
Five Levels ofAvailability [47] model, customer requirements regarding HA were
identified. The resulting solutions model proposed by Compag ranged from simple
to complex, incorporating single machine systems, multiple machine systems,

single sites and multiple sites.

Level 1:In level 1 HA, customers utilise single, standalone servers for their
computing services. Redundancy can be incorporated into a single machine
set-up, with many server models equipped with redundant cooling fans that
ensure continuous cooling of the server even when one fan fails. Similarly,
redundant power supplies enable the server to continue to receive power even
if one power supply fails. The use of modular architecture design allows users
to upgrade their systems gradually and easily over time, while the ability to
install software programs and upgrades quickly and easily is also important in

increasing system uptime.

Level 2: Level 2 HA builds on the features present in Level 1. In this level,
data availability is improved considerably, commonly by implementing a
relational database (RDBMS), while also moving to hardware RAIDf

technology. DBMS are typically used in smaller organisations, where security

f RAID now stands for Redundant Arrays of Independent Disks, however during the 1980s, RAID
stood for Redundant Arrays of Inexpensive Disks. As hard disks became cheaper, the RAID Advisory
Board changed ‘inexpensive’ to ‘independent’. While RAID appears to the operating system to be a
single logical hard disk, it is a method of storing the same data in various places on multiple hard
disks, thereby ensuring redundancy and fault tolerance. Also, by placing data on multiple disks, 1/0

operations can overlap, improving performance.

Chapter 4 High Availability and Scalability

of data is not a major concern. An RDBMS however, is designed to process
larger amounts of data, and to provide enhanced security. Customers
implementing Level 2 HA frequently enhance their services contract to

provide faster response time or extended hours of service coverage.

Level 3: While Level 1 and Level 2 HA were concerned with high
availability through single server configurations, Level 3 HA is based on
multiple machine, or ‘cluster’, configurations. In Level 3, the focus is on high
server and application availability. Clusters are configurations of two or more
servers connected together for HA and performance. A simple cluster
configuration designed for high availability could comprise of two servers (or
‘nodes’), both are operational and actively serving requests from separate
application workloads. Both nodes are linked together and communicate with
each other. A health manager program constantly monitors the health of each
server. If one of the servers experiences component or complete server failure
the cluster management software will detect the error or failure. It will then
immediately pass ownership of application software, disk, and network
resources to the remaining operational node in the cluster, ensuring minimal
service interruption for the end-user. Error / failure detection and application
failover is fully automated so that no operator intervention is required. Due to
the added complexity, HA clusters are more expensive to implement than a

single server configuration.

Level 4: Level 4 HA is built upon Level 3 and is usually defined by a move
from an availability cluster to a scalability cluster. In a Level 3 HA cluster,
each node is active on its own separate application workload. However, in a
scalability cluster each node is active on a separate ‘instance’ (or ‘copy’) of
the same application. Since more than one node is working on the same
application, more computing resources can be applied to the same
application, thus increasing performance. Consequently, scalability clusters
are commonly referred to as ‘performance clusters’ or ‘performance
scalability clusters.” In addition to increased performance, scalability clusters

also deliver high availability. Given that separate copies of the same

Chapter 4 High Availability and Scalability

application reside on all nodes in the cluster, a catastrophic failure of one

node in the cluster will not cause an application outage.

Level 5. The HA Levels detailed so far incorporate computer systems at a
single site, most likely in a single room. As detailed already, single site
configurations have limitations, as they become a Single Point Of Failure
should a fire, flood, earthquake or other such force majuere destroy the
building housing the application, or a power grid outage eliminates power to
an entire city. Placing servers and storage devices some distance from each
other in a separate building can eliminate the SPOF inherent in a single site
set-up. Such a configuration is known as a campus cluster. Campus clusters
ensure high levels of availability, since an outage affecting one building can
be recovered by automatically transferring application resources to another
node in the cluster, resident in another unaffected building. A campus clusters
still has limitations; it cannot recover from a power grid outage, or from a
natural disaster, that affects both buildings in the campus. The solution to this
limitation is known as a Geographically Dispersed Cluster (GDC). In a GDC,
the nodes of a cluster are in a wider distribution, not only building-to-building
as in a campus cluster, but also city-to-city, region-to-region, or even
country-to-country. A GDC is still a single cluster, whereby a collection of
servers is connected by a very high speed interconnect, and they share a
single heartbeat. With GDC’s, automatic failover in the event of failure
occurs not just node-to-node in the same room, or building-to-building in a
campus, but city-to-city, region-to-region, or country-to-country,

automatically returning service back to the end user.

4.2 Clustering

Increasingly the dominant software platform is evolving from one of shrink-wrapped
applications installed on end-user PCs to one of Internet-based application services
deployed in large scale, globally distributed clusters [43]. Clustering is the practice
of connecting two or more computers together in such a way that their behaviour is

that of a single computer, with the obvious benefits of HA, parallel processing, load

44

Chapter 4 High Availability and Scalability

balancing and fault tolerance. Clusters can automatically detect and recover from
server or application failures, while also eliminating the need for server or
application downtime during planned maintenance [56]. Redundant system
components provide backup in case of a single component or server failure. Server
components - including network adapters, disk adapters, disks and power supplies -
are duplicated to eliminate single points of failure. There are two basic types of
cluster configurations, Standby and Takeover [49]. A Standby Cluster Configuration
is the traditional redundant hardware configuration, whereby one or more standby
nodes are set aside, waiting for a primary server in the cluster to fail. This is also

known as hot standby (See Figure 4.9).

Node A Node B

Figure 4.9: Standby Cluster Configuration (Hot Standby)

In the Takeover Cluster Configuration all cluster nodes process part of the cluster’s
workload; there are no nodes set aside as standby nodes. Each node works on a copy

ofthe application, and services the application workload (See Figure 4.10)

Node A Node B
App App
B
Mass
Storage

Figure 4.10: Takeover Cluster Configuration

-45 -

Chapter 4 High Availability and Scalability

When one node fails, one of the other nodes assumes the workload of the failed node
in addition to its existing workload. This is also known as mutual takeover, and is
usually considered to be a more cost effective choice since it avoids having a system

installed just for hot standby (See Figure 4.11).

Node A Node B

=

E* j

((pp

Mass
Storage

Figure 4.11: Mutual Takeover Configuration

The main benefits of clustering are scalability and high availability. Scalability
occurs because the extent of a cluster is not limited to a single server or a single
machine [49]. This means that the capacity of the cluster can be supplemented by
dynamically adding new servers. If extra hardware or processing power is needed, a
new server can be added. Additionally, a cluster uses the redundancy of multiple
servers to insulate clients from hardware or software failures, as the same service can
be provided on multiple servers in the cluster. If one server fails, another can take
over, ensuring no SPOF. From the end users perspective, the availability of the
server is constant; the failover from a malfunctioning server to a functioning server
appears seamless, so much so that the end user never knows that there was a
problem. As previously noted, having redundant cluster members allow routine
maintenance of the servers to be scheduled. Indeed, the ability to cleanly migrate
services off a cluster member so that routine maintenance can be performed without
disrupting service to client systems has been noted as one ofthe greatest benefits of a
high availability cluster [57]. This is because it allows organisations time and
opportunity to upgrade software to the latest release or add memory while keeping a
site operational. An additional clustering benefit is hardware and operating system

independence [58]. Clusters can be run on multiple independent platforms, ensuring

46

Chapter 4 High Availability and Scalability

that organisations do not have to rely on specific platform features. Clusters can be
comprised of anything from Intel machines running Microsoft Windows NT and its
derivatives, to large-scale Unix multiprocessors and IBM OS/390 Mainframes. If an
outage occurred on one member of the cluster the other cluster members will
conclude that a server has become non-responsive and commence a take over of the
services provided by the failed node [57]. This is possible as each cluster member is
monitoring the health of the others cluster members, usually over very high speed
interconnects. The monitoring process is known as a heartbeat network [53] (See

Figure 4.12).

Duel Heartbeat

Figure 4.12: Heartbeat Network

Cluster nodes send heartbeat packets to each other, with each packet containing state
information about each server, as well as commands from one server directing the
other to change states, or execute some function. The primary objective of the
heartbeat network is to ensure that cluster nodes can learn of the failure of an
individual node when the heartbeats stop. In the eventuality of a stopped heartbeat,
the remaining node will take over the services and workload of the failed node and
continue service to end-users. Usually heartbeat networks are replicated, with no
hardware or equipment in common, or no network paths shared. This greatly reduces
the likelihood of the heartbeat stopping for reasons other than a downed server.
Failures to networks cards, network cable or hubs, may result in the heartbeat
stopping even though all nodes are folly functional. Equally it is important to

replicate the heartbeat process itself. In both scenarios, each individual node assumes

47

Chapter 4 High Availability and Scalability

it is the only operational node and attempts takeover of services, which could cause
data corruption, and a system deadlock or crash. Consider the standby / failover
cluster configuration in Figure 4.12, Node A is serving a single database, and Node B
is a backup cluster. In the scenario of a heartbeat failure, there are two policy options
employed by most cluster products Pessimistic Assumption and Optimistic

Assumption [57].

1. Pessimistic Assumption: Node A is serving the database, but is unaware of
Node B’s state, so Node A continues to serve the database. Node B is unable
to communicate with Node A and, assuming it is down, commences serving
the database. This results in both cluster members serving the same database,

causing data corruption and a possible system crash.

2. Optimistic Assumption: After a site wide outage, both Node A and Node B
boot up at the same time. Because the heartbeat network is not operational,
neither node is able to confirm if the other node is alive. In order to avoid
data corruption scenario shown in a pessimistic assumption scenario, each
node assumes that the other is operational and does not serve the database.
This results in a failover cluster configuration with neither node serving the

database.

There are situations when a failover from one node to another may be undesirable
[53]. One such case is known as a ping-pong failover, while the other scenario is

known as a runawayfailover.

Ping-Pong Failover: This occurs when there is a shared disk failure. NodeA
cannot access the disk, so it shuts down, initiates a failover and reboots. NodeB
takes over, but also cannot access the disks. Once NodeA reboots, NodeB fails

back to it. This process continues until the System Administrator intervenes.

Runaway Failover: This occurs when NodeA fails and NodeB takes over. To
determine the problem on NodeB, the System Administrator initiates a reboot of
NodeA. Upon rebooting, NodeB notices that NodeA is operational again, gives up
critical resources and fails back over to NodeA, before the system administrator

has an opportunity to diagnose the problem with NodeA.

48

Chapter 4 High Availability and Scalability

Both of these scenarios could be avoided if a ‘state locking mechanism’ was used:
should NodeA failover to NodeB, system resources are held by NodeB until such time
as the System Administrator is satisfied the problem is fixed on NodeA, and

manually switches back.

An important consideration when implementing a failover cluster is to use
compatible systems, rather than, for example, having a Windows server failing over
to a Unix server. Even though it may be cost efficient to combine two systems
already within an organisation possession rather than purchasing new equipment,
according to Marcus & Stem [53] a number of important issues need to be resolved

in order for a successful failover to occur:

» A compatible Failover Management System (FMS) must be in place on both
systems and this management system must be able to communicate
successfully with each other. However there are very few examples of FMS

that run on different systems

» The applications would need to function identically on both systems, despite
architectural differences. Thereis the potential for incompatibility with the

filesystems (word size, big-endian versus little-endianf etc).

o If the Network Identification Cards (NIC) are of incompatible types it
introduces added complexity tothe heartbeat networks. Consequently, it may
be necessary to use a network bridge, which introduces another potential
Single Point of Failure (SPOF).

f The terms big-endian and little-endian are derived from Jonathan Swifts “Gulliver's Travels”. In
computing terms, big-endian and little-endian refer to which bytes are most significant in multi-byte
data types, and describe the order in which a sequence of bytes is stored in a computer’s memory. In a
big-endian system, the most significant value in the sequence is stored at the lowest storage address
(i.e. first). In a little-endian system, the least significant value in the sequence is stored first. For
example, consider the word UNIX stored in two 2-byte words (UN + IX). In a big-endian system, it

would be stored as UNIX. In a little-endian system, it would be stored as NUXI.

49

Chapter 4 High Availability and Scalability

e Complications may arise when one of the systems vendors needs to be
contacted regarding a support issue. While the support staff for either system
will have experience using combinations of its own servers, it is unlikely that
they will have experience of any combination of its own server working in

tandem with arival server.

e The System Administrator needs to be accomplished in the management of
both of the server’s operating systems, hardware environments and scripting

languages.

* Any shared disks between the two systems must also be compatible with both

Servers.

4.3 Load Balancing

When a system is highly available it will have the ability to failover during a
component failure to redundant nodes. Redundant nodes increase reliability by
allowing system users to predictably and quickly access computing resources. When
implementing a highly available system, a method whereby network / user traffic is
directed to all nodes evenly so that no single device is overwhelmed and then
redirecting traffic away from a downed node in the event of a failure, is essential
[53].

The most popular method of achieving this is load balancing. Load balancing is
especially important for networks where it is difficult to predict the number of
requests that will be issued to a server. Busy Web sites typically employ two or more
Web servers in a load-balancing scheme. If one server starts to receive extra requests
and its response time becomes slower, requests are forwarded to another server with

more capacity (see Figure 4.13)

- 50

Chapter 4 High Availability and Scalability

Figure 4.13: Sample Load-Balancing configuration

There are two basic high-level approaches to Load Balancing, a DNS approach and a

hardware-based approach.

4.3.1 DNS Load Balancing

DNS (Domain Name System) is an Internet service that translates domain names
into IP addresses [59], It is used primarily because, as domain names are
alphabetic, they are easier for users to remember than IP addresses. Each website
has its own hostname, and its own interface to the Internet. A DNS hostname can
be mapped to a list of multiple IP addresses. When a client connects to a
Webserver, the DNS server will cycle sequentially through the list of IP addresses
on each lookup of the hostname, so that each time a client resolves the URL it will
get the next address in the cycle [58]. This is known as round-robin DNS. When a
client gets an IP address via round-robin DNS it will use the IP address until the
DNS lifetime has expired. A site using round-robin DNS will typically shrink the
DNS lifetime to several minutes, which forces the clients to rebind the hostname to
an IP address more regularly, and reduces the average window of an outage [53].
Round Robin DNS is a low cost method of load balancing, and is a relatively

reliable method of masking failures in a system.

However Round-robin DNS does not manage failovers; it just makes the failover
transparent to the user by supplying an alternate server IP address when the client
connects to a hostname. It does however have some drawbacks. A reduced DNS
lifetime increases the workload of DNS servers and it assumes that clients do not

make persistent mappings of IP addresses. Another disadvantage of round-robin

-51 -

Chapter 4 High Availability and Scalability

DNS lies in the fact that maintaining state on the server is difficult with this form
of load balancing. An extreme case, but a drawback nonetheless is a situation
where a four-server configuration is served by round-robin DNS. If every fourth
connection is for a large file - while the other three are for much smaller files - one

ofthe servers could be overworked while the remaining three are underworked.

4.3.2 Hardware Load Balancing

Also known as network redirection, hardware load balancing avoids the drawbacks
of the round-robin DNS approach by operating at the IP level rather than the
hostname level. In the hardware load balancing approach, a client connects to the
load balancer, which routes the connection to one of the servers behind it. Load-
balancing hardware can track the ‘health’ of each server and avoid sending
requests to downed servers; it can also incorporate load information in its load-
balancing decisions. Hardware load balancers can store state information for each
client so that when a server goes down client information - such as login
credentials, shopping cart information etc - can be preserved and transferred to a
functioning server. Normally a hardware load balancer is replicated for
redundancy, and located behind a firewall. Figure 4.14 illustrates an example of a

hardware load balancer.

Figure 4.14: Hardware Load Balancing Configuration

-52-

Chapter 4 High Availability and Scalability

Because a hardware load balancer does not need round-robin DNS support it only
uses one public IP address. Clients resolve the hostname to this address and are
then connected to the appropriate back-end server based on load, time, equal

distribution etc.

The advantages of load-balancing hardware:

* Wider choice of load-balancing algorithms.
» Health monitoring allows load balancer to skip downed servers, resulting in

increased response times.

The main drawback to hardware load balancers is that they are significantly more

expensive than the round-robin DNS approach.

4.4 Scalability

Scalability is a measure of the ability of hardware or software systems to adapt to
changing demands. For example, a scalable network system would be one that can
start with just a few nodes but can easily expand to thousands of nodes. Scalability
means not just the ability to operate but to operate efficiently and with adequate
Quality of Service (QoS), over the given range of configurations [60]. In today’s
business environment, organisations must be able to dynamically increase capacity to
meet changing demand. The scaled-up system should exhibit increased computing
power proportional to the increase in resources. However, it is worth noting that a
scalable system should also be able to scale downwards, or reduce its resources to
reduce costs. Additionally, an unscalable system is defined as a system where the
additional cost of coping with increases in traffic or size is excessive or that it cannot
cope at this increased level at all [61]. Cost is not just limited to monetary terms but
can also encompass response time, processing overhead, space or memory. An

unscalable system adds to labour costs or negatively impacts the QoS.

-53-

Chapter 4 High Availability and Scalability

44.1 Scalability Types

Bondi (2000) identifies four types of scalability: Load Scalability, Space
Scalability, Space-Time Scalability, and Structural Scalability [61]. A system or
system component may have more than one of these attributes, and two or more

types of scalability may mutually interact.

1. Load scalability. A system is load scalable if it exhibits the ability to
function without unnecessary delay and without unproductive resource
consumption at light, moderate, or heavy loads, while at the same time

properly utilising available resources.

2. Space scalability. A space scalable system isone where the system or
applications memory requirements do not grow to unbearable levels as the
number of items it supports increases. Various programming techniques can
be used to achieve space scalability, including compression. However,
because compression takes time, it is possible that space scalability may only

be achieved at the expense of load scalability.

3. Space-time scalability. A system is space-time scalable if it continues to
function competently as the number of objects it encompasses increases by
orders of magnitude. It is space-time scalable if its internal data structures and
algorithms continue to operate to smooth and speedy operation regardless of
its size. For example, a search engine that is based on a linear search is not
space-time scalable, while one based on an indexed or sorted data structure

such as a hash table or balanced tree is.

4. Structural scalability. A structurally scalablesystem is one where its
implementation or standards do not impede its growth, or will not do so
within a chosen time frame. This is a relative term, because scalability
depends on the number of objects of interest now relative to the number of
objects later. Any system with a finite address space has limits on its
scalability given that the limits are inherent in the addressing scheme. For

example, a packet header field typically contains a fixed number of bits. If the

- 54

Chapter 4 High Availability and Scalability

field is an address field, the number of addressable nodes is limited. Load
scalability may be improved by modifying scheduling rules, avoiding self-

expansion, or exploiting parallelism.

4.4.2 Scalability Architectures

Hwang (1998) identified three scalable architectures, which have much in common
but have increased levels of resource sharing [46]. The first of these is the shared-
nothing architecture, which consists of a number of nodes connected by an
interconnection network. In this configuration, the data on one server is replicated,
via a network, to the other server / servers. Each node can contain more than one

processor. The shared-nothing architecture is detailed in Figure 4.15.

Node 1

Figure 4.15: Shared-nothing Architecture

The shared-nothing architecture is optimal for remote failover. For local failover,
when the systems in question are in close enough proximity to be connected by
Small Computer System Interface (SCSI) and / or Fibre Cables, the shared-disk
architecture is a superior and more reliable architecture [53]. The shared-disk
architecture has one main difference from the shared-nothing architecture. In this
approach, the disk module where the critical application data resides is moved out
of the individual nodes and is shared among all nodes. The unshared, local disk
contains the operating system, as well as any other files required by the Node to

initiate and maintain the failover process (see Figure 4.16).

Chapter 4 High Availability and Scalability

Node 1
Cache
Processor
Memory
Local
Disk NIC
C Interconnect J

Shared Disks

Figure 4.16: Shared-disk Architecture

In the shared-memory architecture main memory is also shared among the various
nodes (see Figure 4.17). As with the shared-disk architecture, each node also has
access to its own local, non-shared, private memory. The disadvantage to the
shared-memory architecture is when one processor caches memory that it needs
fast access to. Whenever one cache is updated with information that may be used
by the other processors, the change must be replicated to the other systems or else

all processors will be working with different data.

(CI Shared
Shared Disks Memory

Figure 4.17: Shared-memory Architecture

-56 -

Chapter 4 High Availability and Scalability

4.4.3 Design Principles for Scalable Systems

Introducing scalability to an existing system is considerably more difficult that
designing a scalable system from scratch. To this end, Hwang (1998) documented
three design principles, that when used, will considerably reduce the complexity

inherent in building scalable systems [46]. The three principles are:

1) Principle of Independence
2) Principle ofBalanced Design

3) Principle of Designfor Scalability

4431 Principle of Independence

The underlying premise of this principle is that when designing a system, the
individual components of the system should be independent of each other. If
complete independence is not achievable, then the dependence that some
components have with other components should be as small and as clear as
possible. The main advantage to having independent components is that it greatly
increases the possibility of Independent Scaling. Independent scaling (also
known as Incremental Scaling) is achieved by scaling a system along one
dimension by improving one component, independent of the other components.
There is no requirement to simultaneously, or subsequently upgrade any of the
other components. An example of independent scaling would be in the case of an
extra node being added to a system where the existing nodes are running on the
Windows 2000 Server operating system. Even though the new node may be
running on Windows 2003 server there would be no need to upgrade the
operating system ofthe existing nodes. There is however one major downside to
independent scaling: an efficient system cannot be built just by scaling up one, or
a few, components alone. An example, consider scaling a system by adding a
faster processor. If the existing communications systems or memory is too slow

for the newer processor, then the system is unbalanced.

4432 Principle of Balanced Design
As if to acknowledge the stated downside to independent scaling, the second

design principle is focused on designing a system that minimises any

Chapter 4 High Availability and Scalability

performance bottlenecks. A bottleneck can occur when a relatively slow
component reduces the performance of the overall system, even though the
remaining components are fast. Equally, Single Points ofFailure (as discussed in

section 4.1.1) should be eliminated in order to design a balanced system.

One method of ensuring a balanced design is by following Amdahl Law [62]. For
example, Figure 4.18 shows an application program which is divided into two
types of computational structure: part X and part Y. Combined, the two

components take X% + Y% of the total execution time

Figure 4.18: Total Execution Time

Ifpart X is improved to run n times faster, the speedup S is defined.

Original Time 1 1

[— = >

Improved Time (X /n)% + 7% Y

For example: consider a system which has an execution time of X equal to 60%
and Y equal to 40%. If X were improved to run 3 times faster, the speed up ofthe

system would be 0.0167%.

0,167% = ° riginal Time = N > 1
Improved Time (60/ ri)%+ 40% 60

The implications of the above computations show that:

» The methods of component X will execute more often, and is a good

candidate for optimisation (i.e. speed up the common areas).
* The optimum speedup of the application has an upper boundary of 1/Y.

» The slow component Y is the bottleneck. Y should be made as small as

possible.

Chapter 4 High Availability and Scalability

» As illustrated above, in order to achieve a relatively insignificant
improvement of 0.0167%, it was necessary to improve X to run 3 times
faster. There may be a trade-off between the resources required to

improve an application, and the improved execution time.

4433 Principle of Design for Scalability

When designing a system, scalability should be the main objective from the start
of the design process, rather than as an afterthought at the end. The design should
have provisions so that the system can scale to achieve greater performance, or
scale downwards to allow greater cost-effectiveness. There are two approaches to

designing for scalability:

Overdesign: As the name implies, upon design the system should not only
satisfy the minimum requirements it was designed for, but also include
additional components that allow for scaling in the future. While the extra
components may seem superfluous at the design stage, they should allow for
a smooth migration into future scaled up systems. For example, if an
organisation needs an 8-CPU (Central Processing Unit) server, it is
recommended that a 16-CPU server be purchased, and only 8 CPUs be
installed into the server [53]. If an 8-CPU server is purchased and fully
utilised, when the organisation needs to scale up to 16 CPUs, it may have to
buy an additional server. It is important to note that overdesign may be more

costly upfront, but should result in greater long-term savings.

Backward Compatibility: In some ways, backward compatibility would
seem to be the opposite of overdesign. In this approach, the requirements of a
scaled down system are taken into consideration. An example would be a
system with a new, faster processor. The new processor should still be able to
execute code and run applications designed for older, slower processors. It is
important to note that when designing for backward compatibility, not all
components of the old system need to be kept - obsolete components should

be discarded.

Chapter 4 High Availability and Scalability

4.5 Disaster Recovery

Disaster Recovery (DR), and Disaster Recovery Planning (DRP), consists of a set of
activities aimed at reducing the likelihood - as well as limiting the impact - of
disaster events on critical business processes [63]. The ability to quickly recover
client data after a disaster is becoming an increasingly important component in
delivering high levels of availability in an ASP environment. A disaster is an event
that causes an interruption of mission critical information services to a firm.
Normally, in a disaster situation, users are aware that an outage has occurred. The
duration of the outage is mainly dependent on the recovery solution, which can be

measured by two different components [50]:

» Data Loss: This represents the loss of data an organisation has i.e. how much

work must be re-executed once the system is recovered.

o Service Loss: This represents the loss of computing experienced from the

moment of disaster up to the moment when a system has been recovered.

However, it is worth noting that, what constitutes a disaster for company A, may not
necessarily be a disaster for company B [64]. For example, a hard disk failure on a
PC might be a disaster for a small firm if that PC managed the firms’ accounts, but
might not be a disaster to a much larger organisation. Indeed, a Disaster Recovery
plan suitable for a large organisation may not be achievable for many Small and
Medium-sized Enterprises (SMEs). Many SMEs simply do not have the resources for
Disaster Recovery - from the hardware / software required to implement a Disaster
Recovery plan, to the properly trained IT personnel to execute the plan in the event

of a service outage.

Regardless of size, when implemented correctly, a proper DR plan allows for a quick
restoration of an organisations’ IT services, by making a backup of servers and files
critical to the organisation and quickly restoring those files in the event of a disaster.
A good example of an extremely efficient disaster recovery plan was seen in the
wake of the September 11th 2001 terrorist attacks on the cities of New York and
Washington. The New York Board of Trade (NYBT), whose office was located

Chapter 4 High Availability and Scalability

adjacent to tower 2 of the World Trade Center in Lower Manhattan, New York,
suffered complete buildings and systems destruction. However, due to a
comprehensive DR plan, by 8pm that evening the NYBT was ready to resume
trading [53], While the NYBT was a commendable example of a good Disaster
Recovery plan, it was estimated that prior to September 11", only one in five

Companies in the New York area had a disaster recovery plan [65].

While a DR plan is essential, there are two main factors that hamper the disaster
recovery effort [66]. Firstly the daily growth of business information, results in more
and more data to be backed up. Due to the increasing need for services to be
operational twenty-four hours a day / seven days a week / three hundred and sixty
five days a year, the optimal time available to backup data has shrunk dramatically.
Secondly, customers expect services to resume rapidly after a business disruption -
regardless of the circumstances. From a financial and resource standpoint, larger
organisations are better equipped to provide speedy recovery than small or mid-size
organisations. There are two main factors that support this assumption. Firstly, many
small and mid-size organisations have little or no dedicated IT personnel to enable
them to respond quickly to business interruptions. Secondly, it is common for
smaller organisations to house all of their business data on one server, with the result
that if that server goes down, all business operations cease until the server is fully

restored.

45.1 Full Vs Incremental Backups

Marcus & Stem [53] contend that backups are the heart of any design of critical
systems. Handled properly, they represent the last line of defence against just about
any catastrophe. Backing up files means copying files to a second medium, which
can be a disk or a tape, as a precaution in case the first medium fails. Because even
the most reliable computer will break down at some stage, it is vitally important
that files are backed up regularly. Ideally, at least two copies of the backups are
made. One copy should be stored close to the servers that are backed up. In the
case of a disaster like a hard disk crash, the backups are on hand for quick
recovery. A copy of the backup should be stored off-site, in a different location to

the servers. In the event of a critical failure where the servers and backups are

Chapter 4 High Availability and Scalability

destroyed, having a copy of the backup in a different geographic location means
that not all data is lost. Many companies may take daily backups but might just
makes copies for off-site locations only once or twice a week or less frequently. It
is important that the copies of backups are up to date, unless the organisation can
cope with losing a week, or months, worth of business data. Some especially
paranoid organisations make a second copy of the backups and store them in
different countries or continents, to guard against a catastrophic countrywide

disaster but the cost of implementing this may be prohibitive to most organisations.

It is recommended that every file, on every system, should get backed up,
regardless of how trivial the file may seem. The general rule of thumb is that if a
file could ever be needed in the future, or if it would take time for a user to recreate
data in that file, then the file should be backed up. Special care should be taken to
ensure that hidden files, and System registries, are also backed up. However it is
not enough to just backup an organisations server. It is also essential that a backup
include desktops and especially laptops. It is estimated that up to 60% of all critical
data is stored on laptops [53]. Given that laptops are portable, and as such are
susceptible to breakage, being dropped, theft etc, it is especially important that

their contents are backed up.

A full backup is a backup where every bit of data on an organisations system is
copied to backup media. However a full backup of a system is time intensive, and
copies all data regardless of whether it has changed since the last backup. An
alternative to daily full backups is an incremental backup, which only backs up the
data that have been modified since the previous backup. There are two approaches

to incremental backups:

Cumulative Incremental: In this backup, all data that has changed since the

last full backup is backed up.

Differential Incremental: In this backup, all data that has changed since the

last differential, or full, backup is backed up.

-62-

Chapter 4 High Availability and Scalability

Differential backups are faster than cumulative backups as they backup less data. A

typical incremental backup schedule is detailed in Figure 4.19 (Adapted from [67]).

Friday Weekend Monday Tuesday Wednesday Thursday

Figure 4.19: Incremental Backup Schedule

While daily full backups are more time intensive, their main advantage is evident
in the aftermath of a disaster. With a full backup only one set of backup media are
generated. In the event of a disaster, only one full restore operation needs to be
carried out in order to completely re-establish an organisations data system.
However, with incremental backups, there is more than one set of backup media.
When restoring incremental backups, the last full backup needs to be applied first,
followed by each additional incremental backup in sequence. For example,
consider an organisation that perform a full backup on the 1% of every month, and
then perform an incremental backup every other day of the month thereafter. If
their system were to suffer a disaster on the 30th of the month, in order to complete
the restore process they would need to apply 1 full backup, and 29 incremental

backups. This is atime consuming exercise, and can be prone to mistakes.

45.2 Commercial DR Software Features

There are many commercial software products available that aid backup and
restore operations. Regardless of the supplier, the following are desirable features

in a commercial DR product.

45.2.1 Complete Hardware Usage

As discussed in section 4.5, due to the frequent continuous operation of some
applications, the available window for data backups can be quite small.
Therefore, an important feature of a commercial DR product is the optimal usage

of backup equipment. For example, if backup media had a maximum write speed

Chapter 4 High Availability and Scalability

of 1.5 Megabytes per second, but the DR product in use could only write to the
media at a speed of 1 Megabyte per second, then this is an inefficient use of
hardware. Good backup software should drive the hardware to its maximum

capacity.

45.2.2 Hot Backups

In an ideal world, an organisation should be able to backup files and databases
without taking them offline, and without a performance degradation to the user.
This is known as a ‘Hot Backup’. However, in a production system, the demand
for continuous operation means that the window of time available for backups
has diminished considerably [63]; backups may be difficult if users are accessing
files while a backup is taking place. Many products advocate temporarily taking
a system offline prior to a backup, in order to get the data into a consistent state,
making a backup, and then bringing the system back online. While the system is
down for backup, users will not have full access to the data. In most cases, read
access will still be granted, but write access will be revoked for the duration of
the backup. Ideally the time in which the data is in read only mode should be
minimised as much as possible to avoid disruption to users. Another solution to
backing up files in use is to only back up the files not in use, and log any open

files. When the file, database table etc next becomes stable, it is then backed up.

4523 Open Tape Format

In a disaster situation, the system administrator, or person charged with carrying
out the systems recovery operation should be able to read and restore tapes
without needing specialised or proprietary hardware or software. If however the
software required for restoration needs a licence key for operation, it is vitally
important that this information is stored with the backup files and is replicated in
any off site location. In the event of the total destruction of an organisations
building, existing licence keys may also be lost. Any delays in obtaining software

or licence keys will increase the systems Mean Time to Repair (MTTR) [53].

45.2.4 Centralised Management
It should be easy to administer an entire backup environment from a single

console, rather than from dispersed consoles throughout the organisation. Many

- 64

Chapter 4 High Availability and Scalability

products also offer a Web enabled management console, which allows remote,
centralised management of storage servers from any location worldwide. This
helps reduce expenses and operating errors and simplifies administration.
Centralised management also allows for the generation of reports that are
considerably more accurate than reports collated piecemeal from scattered

locations.

4525 Quick Disaster Recovery

Some DR products require rebuilding their media databases or catalogs before a
post-disaster recovery can begin. In this scenario, should the catalog rebuilding
also require pre-reading every tape in the library, it can add hours, if not days, to
the recovery process. Therefore it is vitally important that an organisation knows
and understands the entire process involved with system recovery, not just the

process involved in making backups.

4.5.2.6 Hardware Support and Flexibility

Implementing a site-wide backup and restore environment can be very cost
intensive, and the DR budget may not stretch to brand new tape hardware, or
even in some cases to brand new tapes. Therefore, it is important that a
commercial DR product has backward compatibility with existing backup

hardware.

45.2.7 Mature Products with Reference Sites

It can be a good idea to purchase products that are well established, with a
proven track record of successful implementation, rather than new or start-up
solutions. Given that established products tend to come from larger companies,
these companies may provide telephone support, on site support, informative
websites, user groups, user conferences etc. Because of these established support
structures, it may be easier to get assistance from many diverse viewpoints.
Equally, mature products have generally been tested more rigorously, and

improved upon, over time.

Chapter 4 High Availability and Scalability

45.2.8 Multiple Platform Support

When purchasing DR products, it should be possible to purchase one solution
that can back up and restore all major platforms, such as Windows, NetWare,
UNIX (including Solaris, HP-UX, AIX, Tru64), Linux (including Red Hat,
SuSE, Turbo Linux), Max OS X, VMS etc. An organisation should not need to
purchase one backup solution for PCs running Windows, and another for Solaris

boxes, and a third for your Novell servers etc.

453 Seven Tiers of Recoverability

The Seven Tiers of Recoverability is a guideline to Disaster Recovery, whereby
seven tiers of recoverability were ranked based on the recovery method used and
recovery time taken after a disaster [50]. The IBM association SHARE is an
independent, volunteer-run association, providing IBM customers with user-driven
education and resources to make enterprise-computing specialists more effective
professionals [68]. SHARE has been in existence since 1955, shortly after IBM
released its first computer, when a group of interested IT professionals decided to
band together to ‘share’ ideas about how best to install and implement IBM’s new
release. At the 1992 SHARE conference, the Automated Remote Site Recovery

Task Force presented seven tiers of recoverability:

4531 Tier 0- No Offsite Data

This tier provides the lowest level of Disaster Recovery preparation. Very little
planning is made for saving or replicating information, gathering DR
requirements, the establishment of a backup hardware platform, or development
ofa ‘Plan B\

Typical Recovery Time: The length of time from disaster to recovery at this tier

can be unpredictable. In some cases, recovery may be impossible.

453.2 Tier 1-Pickup Truck Access Method (PTAM)
At Tier 1 (Figure 2.20 adapted from [50]) an organisation has developed a
(limited) contingency plan, has backed up required information and stored this

information at an off-site location.

Chapter 4 High Availability and Scalability

m
Daily
Figure 4.20: Tier 1 Recovery Solution

The organisation had begun to determine recovery requirements and may, at this

stage, have established a backup site.

Typical Recovery Time: The length of time from disaster to recovery at this tier

is usually more than a week.

45.3.3 Tier2- PTAM & Hot Site

Tier 2 is made up ofthe requirements of Tier 1 as well as a backup platform with
sufficient hardware and network support for the organisations critical business

applications. See Figure 4.21 adapted from [50].

Daily at Recovery Time
Figure 4.21: Tier 2 Recovery Solution

Typical Recovery Time: The length of time from disaster to recovery at this tier

is usually more than one day.

4534 Tier 3 - Electronic Vaulting

Tier 3 is made up of the requirements of Tier 2, as well as support for electronic
archiving of some of the organisations critical information. The receiving
hardware must be physically separate from the primary site and the data stored

for recovery after a disaster. Figure 4.22 adapted from [50].

67

Chapter 4 High Availability and Scalability

Figure 4.22: Tier 3 Recovery Solution

Typical Recovery Time: The length of time from disaster to recovery at this tier

is usually one day.

4535 Tier 4 - Active Secondary Site

A CPU at the recovery site, as well as bi-directional recovery makes up tier 4,
which is a follow-on from the requirements of Tier 3, as well as the introduction
of active management of the recovery data. The receiving hardware must be

physically separated from the primary platform. Figure 4.23 adapted from [50].

Bandwidth connection
Daily £ 0

E3 P [Pt

at Recovery Time

Figure 4.23: Tier 4 Recovery Solution

Typical Recovery Time: The length of time from disaster to recovery at this tier

is usually up to one day

45.3.6 Tier 5 - Two Site Two Phase Commit

Tier 5 is made up of the requirements of Tier 4, as well as allowing database
updates to be applied to both the local and remote copies of the databases with a
single commit. A commit is not completed until both the primary and secondary
locations are updated. Tier 5 requires hardware on the secondary platform with
the ability to automatically accept the workload of the primary site during an

outage. Figure 4.24 adapted from [50].

- 68

Chapter 4 High Availability and Scalability

Figure 4.24: Tier 5 Recovery Solution

Typical Recovery Time: The length of time from disaster to recovery at this tier

is usually less than 12 hours.

4537 Tier 6 - Zero Data Loss

At Tier 6, organisations exhibit zero data loss in the aftermath of a disaster, due
to the immediate and automatic transfer to the secondary site. Figure 4.25
adapted from [50].

Data Sharing

Figure 4.25: Tier 6 Recovery Solution

Typical Recovery Time: The length of time from disaster to recovery at this tier

is usually a few minutes.

As with various availability paradigms, the ability of an organisation to achieve
Tier 6 recovery is directly proportional to the amount of money the organisation is
prepared to invest in Disaster Recovery. Figure 4.26 (Adapted from [50]) illustrates

the data loss and service loss aspects of each tier of the recovery solution.

- 69

Chapter 4 High Availability and Scalability

Figure 4.26: Data Loss & Service Loss

4.6 Singl.eView and Billing4Rent

The Billing4Rent (B4R) project provides the real world platform on which
recommendations or proposals arising out of this body of research will be
implemented. The B4R project will be built upon the Singl.eView [69] billing engine
from Intec. Singl.eView is an large-scale enterprise solution, for Tierl and Tier2
service operators - as an example of Singl.eView’s scale, Intec recently (2005) won
a US$15 million (€11.9 million) contract with a leading African operator to provide a
billing system to support over 7.7 million pre and post-paid subscribers [70].
Accordingly, the following summary details are necessary to provide an overview of
Singl.eView - its relevance will be shown in the Thesis Contribution section of this

dissertation.

Singl.eView is a scalable, highly available billing and rating solution that allows
service providers to design, deliver, and bill the products and services their
customers subscribe to. Singl.eView provides modules for rating, discounting, and
bill production. Rating is the process in which events (i.e. telephone calls, internet
usage etc) are converted into rated events, using tariffs that have been defined for a
particular service or customer. Billing is the process whereby rated events are
processed to generate billing information. Generally the result is a set of invoices,

which can either be sent electronically to the customer or printed for postal delivery.

- 70

Chapter 4 High Availability and Scalability

Singl.eView’s ‘out-of-the-box’ configuration is an enterprise wide solution designed
to manage the billing and rating of large-scale global Tierl and Tier2 service
providers such as Deutsche Telekom, Virgin Mobile etc. However, the costs
associated with implementing Singl.eView are prohibitive for many smaller Tier3
and Tierd service providers. Consequently, the Billing4Rent project proposes to
modify Singl.eView to deliver a hosted billing solution, which can be accessed on a

subscription / rental basis (see Figure 4.27).

B4R Client 1 B4R Client 2 B4R Clientn

Figure 4.27: Billing4Rent / Singl.eView n-Tier Architecture

In the past, Singl.eView has been targeted at Tierl and Tier2 operators. Billing4Rent
will allow Intec to focus on lower tier operators and hence move into a new market
segment. As more and more networks are moving towards consolidated IP based
technology [36] (witness the recent emergence of VOIP phone calls over broadband
Internet, or streaming video on mobile handsets), as well as the constant change and
evolution of mobile phone pre and post payment packages, a secure cost-effective
converged billing solution is essential for service providers of any size. As a measure
of the enormous potential of the Billing4Rent solution, the ‘Innovation Partnership’
proposal document [1] conservatively estimated a monthly, recurring revenue stream

of € 2,500,000. This figure is broken-down as follows:

Number of Clients subscribing to Billing4Rent: 500
Number of Customers per Client: 5000
Monthly rental fee per Customer: €1
Potential monthly revenue for Billing4Rent: €2,500,000

-71 -

Chapter 4 High Availability and Scalability

4.6.1 SingLeView Components

Figure 4.28 illustrates the components of Singl.eView (adapted from [71]).
' Dynamic Transaction Management

SingLeView Convergent Billing Singl.eView Customer Management Singl.eView Financial Assurance

Service Management (Always-On Services)

Payments Singl.eView Lifecycle Payments
Voucher Debit Card Management Siite Telephony Utilities
mPay Credit Card Finance Ticketing
Direct Debit .
Iée}feque I Loyalty Points Singl.eView Commerce Engne Transport Other
Any Service Delivery Platform
IT Network Vending Machine Cable Other
Customer Interface
Phone PDA Web / Internet Shop

Figure 4.28: SingLeView Components

The following points illustrate important Singl.eView components:

46.1.1 Convergent Billing
The rating and transaction engine within the Convergent Billing module is the

most important module in Singl.eView. It manages transactions (i.e. phone calls,
broadband usage) in real-time using business rules specified by the service

providers. Convergent Billing features:

e Only one solution is necessary, regardless of product, service, delivery
network, customer type, or payment method. For example, this allows a
provider offering phone and Internet service to utilise a single billing

solution.

» The flexibility to process and rate transactions in real-time, or as a batch in

times of low-usage.

712

Chapter 4 High Availability and Scalability

Real-time processing that not only protects transactions from errors and fraud
but also allows accurate up-to-the-minute information on revenue and

customer accounts.

Singl.eView is expression-driven, which means service providers can easily

configure the solution to grow and evolve with changing business needs.

46.1.2 Customer Management

Customer Management is an application allowing clients to store all customer

information in one place. It allows clients to create and manage all customer

information, from Prospect Management (initial customer contact with client

company) and Marketing Campaigns, through to Treatment and Collections

management. Customer Management features include:

Campaign Management: facilitates tailoring Marketing Campaigns to target
specific consumer groups, potentially increasing uptake and reducing the cost

of sales.

Sales Support: during interactions with customer support staff, real-time
guidance (in the form of screen-pops) can be given to agents on opportunities

for selling new products, or premium versions of existing products.

Contact Management: a comprehensive contact history is stored regardless
of the customer interaction (phone / email / web), which ensures that follow-

ups are targeted, for reduced time-to-sale and increased customer confidence.

Payment Assurance: provides complete functionality for Payments,

Collections, Adjustments, invoice disputes and Promises-to-Pay.
Analysis And Reporting: provides built-in or ad-hoc reporting and analysis

to enable complete management of customers, and the clients organisation

overall.

73 -

Chapter 4

4.6.1.3

High Availability and Scalability

Financial Assurance

Financial Assurance provides clients with a complete view of customer and

supplier transactions, enabling them to better manage their business, as clients will

have complete and up-to-the-minute data. Financial Assurance is a reporting and

error management application consisting of three main features:

4.6.1.4

A reporting framework to create and modify data collections and database

views.

A process in which business users can report on underlying data enabling
service providers to minimise lost revenue and maximise return on
investment by monitoring and controlling revenue streams in real-time.

A single user interface to prioritise, test and bulk-reprocess event errors.

Lifecycle Management Suite

The suite provides an XML based catalogue, tools, and wizard interfaces to

populate and manage product information.

SingLeView Catalogue: The catalogue is a repository for all Singl.eView
product data. Singl.eView Lifecycle Management Suite allows any
suppliers (a client has) to publish to the product catalogue, enabling the
supplier to validate, modify, and deploy their products as integrated

offerings with the clients’ own products.

SingLeView Workbench: The workbench is the client front-end, which
utilises wizards to set up common products. The wizard is used to capture
variable information. Using a ‘Build Once, Deploy Many’ model means

that intricate business processes are automated for future use.

SingLeView Configuration Tools: These tools manage the catalogue
data, including the processes for it to be transferred from one environment
to another. It also provides the tools to create the wizards that are used in

the workbench.

74

Chapter 4 High Availability and Scalability

4.6.1.5 Commerce Engine
Singl.eView’s Commerce Engine allows service providers to offer the same level
of service regardless of product type: prepay or post-pay mobile, dial-up or

broadband Internet. Singl.eView Commerce Engine features:

* Authentication And Authorisation: Real-time authentication of users;
their account balances and eligible services is determined up-front during

service encounters.

* Real-Time Rating And Discounting: Singl.eView Commerce Engine
works in conjunction with the Rating and Transaction Engine to calculate
charges, and ensure the customer has the necessary funds. Fixed charges
can be applied to discrete functions (e.g. downloading games), while
incremental charging can be used for time or other variable dependent

transactions.

» Balance Management: Customer balances are checked throughout a
transaction to ensure there is available credit. If the customer has multiple

accounts, they can select which account is to be used.

» Payments And Settlements: Singl.eView Commerce Engine provides a
variety of payment methods (banks, credit cards, post-paid and prepaid

accounts).

4.6.2 SingLeView Availability and Scalability

Singl.eView supports scalability by allowing application server processes to be
split across multiple servers. Processes such as billing, reporting, invoice
generation etc can be run in parallel, resulting in increased processing performance

and efficiency.
In terms of High Availability, Singl.eView supports clustering, component

redundancy and data replication. Redundant components and data replication allow

upgrades and changes to be made without loss of service. Similarly, replication

-75 -

Chapter 4 High Availability and Scalability

allows the failover from a master server to a backup server during a service outage,
with a transparent continuity of service to the end users. Finally, Singl.eView also
supports Oracle RAC (Real Application Clusters). Oracle RAC allows multiple
computers to run the Oracle RDBMS software simultaneously while accessing a

single database [72].

4.7 Chapter Summary

While chapter three presented an overview of Application Service Provision in
general, the aim of this chapter was to present a picture of High Availability,
Scalability and Reliability, and their importance not just in an ASP environment but
also for any application environment. In a survey conducted by the ITAA of key user
expectations with respect to Application Service Provision, over 80% of respondents
cited guarantees on network reliability as a very important feature of Service Level
Agreements (SLAs) between ASP and clients [15]. Consequently, this chapter
documented the origins of High Availability and gave an overview of the metrics
used to evaluate the availability of an application to its end users. It was shown that
many organisations have a desired level of 99.999% application availability. This
level of availability (commonly referred to as ‘five nines’) equates just 31.5 seconds

downtime in ayear, or only 605 milliseconds a week!

Also examined in this chapter was clustering. Clustering is the process in which two
or more machines are connected together in such a way as to act like a single
computer. Clusters can automatically detect and recover from server or application
failures, allowing routine planned maintenance without the need for server or

application downtime.

This chapter examined Scalability - the ability of a system to maintain or increase
performance under an increased load when resources are added. The drivers of
scalability were highlighted, as well as the four types of scalability (i.e. load, space,
space-time and structural). Common scalability architectures and design principles

were also covered.

Chapter 4 High Availability and Scalability

An important area of High Availability - Disaster Recovery - was also addressed in
this chapter. The merit of full versus incremental backups was discussed, as was the
(desirable) features of commercial Disaster Recovery Products. Also illustrated was
the Seven Tiers ofRecoverability (a tiered approach to Disaster Recovery) advocated
by the IBM association SHARE, where each tier was ranked based on the recovery
method used, as well as the time taken for recovery. Finally, this chapter provided an
overview of Singl.eView (the transaction management platform from Intec), which
will provide the backbone of the BillingdRent ASP service. Singl.eView is a billing
and rating solution that allows service providers to design, deliver, and bill the
products and services their customers subscribe to. The various components that
make up Singl.eView were examined, as well as Singl.eView’s ability to support
scalability (by allowing application server processes to be split across multiple
servers) and high availability (by supporting clustering, component redundancy and

data replication).

SECTION THREE

Research Contribution

Chapter 5 Proposed Framework

Chapter Five: Proposed Framework

This chapter describes the proposed ASP framework for Billing4Rent. The

Billing4Rent (B4R) project provides the platform on which recommendations or

proposals arising out of this body of research will be implemented, and allows these

proposals to be objectively analysed and quantified. Consequently, an online B4R

Billing ‘prototype’ was developed in order to incorporate all these recommendations

and allows these proposals to be analysed and quantified in an objective manner.

This chapter will address the following areas:

The functional requirements for developing the Billing4Rent project will be

outlined, as well as the technical objectives and challenges.

An overview of the B4R prototype. The prototype consists of a B4R client
website, where clients can add, remove, update customers, products /

services, and invoices.

The design and development of Availability and Scalability components for
the B4R ASP will be detailed and objectively examined. An ‘Administrative
Interface’ was created in order to administer Billing4Rent and to incorporate
these availability and scalability components. The Administrative Interface
allows authorised B4R personnel to create and manage user accounts for
clients. Potential clients must contact Billing4Rent, and their eligibility for
subscribing to B4R services is evaluated against any criteria for joining B4R
deem necessary. From the Administrative Interface, authorised personnel can
create users, view statistics relating to B4R storage media (i.e. Database or
Filesystem) usage, as well as view audit and error logs and launch a
Monitoring program which collects statistics about Billing4Rent such as page

hits, page completion times etc

Recommendations for Availability and Scalability of the B4R ASP will be
documented: a Proposed Network Architecture, Code Optimisation for

Improved Performance and Disaster Recovery Guidelines.

79

Chapter 5 Proposed Framework

51 B4R Functional Requirements

The following functional requirements are adapted from the Billing4Rent
‘Innovation Partnership’ proposal document [1]. The goal ofthe Billing4Rent project
is to build an ASP hosted billing service platform - to be known as the Musketeer
Platform - based on Singl.eView components, as well as web services technologies.

The W3C [73] define Web Services as follows

“Web services provide a standard means ofinteroperating between different
software applications, running on a variety ofplatforms and/ orframeworks.
Web services are characterized by their great interoperability and
extensibility, as well as their machine-processable descriptions thanks to the
use of XML. They can be combined in a loosely coupled way in order to
achieve complex operations. Programs providing simple services can interact

with each other in order to deliver sophisticated added-value services

BillingdRent will be designed to allow functionality to be added during several

iterations and will allow service providers to:

* Automatically generate and test tariffing schemas for their products.

» Deploy and manage tariffing schemas via a web-based User-Interface (Ul).

e Upload customer usage records to BillingdRent via secure web services
interfaces.

» Perform rating and discounting, electronic billing and Payments.

¢ Monitor and generate reports on usage and earnings.

Successful development and deployment of BillingdRent will require a number of
technical challenges to be addressed. The main challenges, as outlined by the

‘Innovation Partnership’ are:

» Usability: One of the reasons cited for the adoption of the ASP business
model (outlined in Section 3.3) is the elimination of the need for Small / Mid-
Sized service operators to employ IT staff with specific expertise in the
installation, configuration and maintenance of complex billing products.
Because of this, actual end-users of the BillingdRent service may not have

experience using billing software. Therefore, in order to make Billing4dRent a

-80-

Chapter 5 Proposed Framework

success, it is important that Billing4Rent includes intuitive, yet flexible user
interfaces. Accordingly, BillingdRent proposes to design stateful web-based
user-interfaces for the creation / configuration of tariffing schema, invoice

layouts, report contents / presentation and other configurable elements.

* Error Handling: As with any service where financial data is generated and
utilised, it is vital the data from which invoices are generated is correct. The
BllingdRent ASP services must include robust error handling to detect and
rectify a wide range of faults and error conditions. In addition, the user
interfaces must be carefully designed to ensure that incorrect or inappropriate

configurations are not applied to the service.

* Dynamic Tariffing Schema: A desired feature of a billing service is the
ability to implement dynamictariffing schema which can be automatically

adjusted in reaction to service usage.

e Security: Customer usage data is an important source of billing information
for a service provider; therefore, the transfer of such data securely to an
external ASP will raise significant security-related concerns (e.g. How will
the transfer of data from the client to BillingdRent across the Internet be
secured? How will the integrity of customer data stored by Billing4Rent be

ensured?)

* Availability & Performance: Availability and Performance of the
BillingdRent ASP service will bea key issue for potential clients. Due to the
large volumes of data to be processed - and the potential revenues involved -
there must be near continuous uptime of the Billing4Rent ASP while the

service should also operate correctly and within an acceptable response time.

-81 -

Chapter 5 Proposed Framework

5.2 Billing4Rent Prototype

The Billing4Rent development team comprised of five members, with two located in
Galway (at the Galway-Mayo Institute of Technology (GMIT)), and three located in
W aterford (at the Telecommunications Software & Systems Group (TSSG)). The
GMIT team concentrated their efforts on the research and development oftwo areas
identified by the project proposal as being relevant to the ASP model: Security and
Performance. In parallel to these efforts, the TSSG team had responsibility for
developing the Billing4Rent User Interface (Ul), as well as customising Singl.eView
to support multiple clients and their customers. Due to the logical separation of both
teams, the efforts of the GMIT team was analogous to a ‘black box’ (i.e. the GMIT
team worked in isolation, and developed components to plug into the commercial
B4R release). How this work was completed was of little consequence to the second
B4R team. The GMIT team developed a web-based B4R prototype in order to
incorporate components and recommendations relating to both Security and
Performance. The following sections details this prototype, and the related

Performance, Availability and Scalability components and recommendations.

The ASP web-based billing prototype was developed using Java, Java Servlets and
Java Server Pages (JSP) [74]. The prototype has an Oracle 9i RDBMS [75] backend
to store client and administrative data and runs in a Jakarta Tomcat [76] web-
container. The prototype was developed using the Model / View / Controller (MVC)
design pattemf. MV C consists ofthree components:

* Model: Holds all data, state and application logic.

* View: Provides a presentation ofthe model.

e Controller: Defines the way the Ul reacts to user inputs.
Billing4dRent encompasses all three of the above components. However these
components are decoupled to increase flexibility and reuse [77] —for example, the

B4R prototype allows the Oracle database to be interchangeable with another data

f A design pattern relates to the use of a solution (or a partial solution) that solves a design problem
that keeps occurring across projects. A design patterns purpose is to codify existing design knowledge

so that developers do not constantly ‘re-invent the wheel’.

-82-

Chapter 5 Proposed Framework

storage medium etc. Figure 5.1 shows the Billing4Rent prototype home page.

1 AJLillmrj iP.pnt vici rvsntt Internet Cxplorer Slajxj
EB E* yew Fayotes locfc ttefci 1fr 1
o 6**0 ETI Gl B Fam** <5 >Ir .]J T
Address 111 banniront fotiV J H G Ms *

billing~rent.com
ontint.: iiWitig service provider

Everyone needs to bill in order to take inrevenue "I1fyou can't bill itskill it" is what
large earners say about a particular service

While it is critical to thew revenue, carriers and service providers do not need to be billing
experts Tins is Billing"Rent'sjobl

BiUmg4Rent offer an online billing service based on a rental model that any service
provider can use to bill then customers

Using ASP (application service provider) tecbiology, version updates to the software are
seemless to the user

No downloads and 110 installs are required All that is needed is an Internet connection

T +353 51 3029641F +353 51 3029011E info@bdlingJtem le © 2005 Biiling4Rent Allrights lesetved
b i Dane I 10T % teal

Figure 5.1: B4R Prototype Home Page

The BillingdRent client site provides details about Billing4dRent (including a
biography ofthe organisation, latest news, staff vacancies etc). The site also provides
a client login page, which clients can use to access their data, as well as a link to the
Billing4dRent ‘admin’ interface. In order to subscribe to B4R, the prototype provides

a ‘contact us’ page (Figure 5.2), which lists the various methods available to contact

Billing4Rent.
i>» ivm rrade* lot* tv-ii
z' . 'Sevch F«yorttes 4P} *
Aiirfrms | 11, hirtiicyj*wJbtoginvnt owrif -3) Go Urte *
billlngT ‘rent.com
utJfitia xt-rvicc firt*s/utt?

Contact TJs
Address
BsUing4P.en1,1'SSG. WTT, Cork Road. W aterfoid, Ireland
Telephone
+353 51 302964
Fax

About IJs H353 51 302901

Latest News Email

Careers info@bUJmgd4reirt.ie

Vacancies

ContacrUs

T +353 51 3029iv=) |F +353 51 302901 |E info~billing'Utjiil 1 © 2005 Bilint*Renl AD aghU tetorve.!

N H H 1
116:33 riri fiS%

Figure 5.2: B4R Contact Details

-83 -

mailto:info@bUJmg4reirt.ie

Chapter 5 Proposed Framework

This allows an authorised officer of Billing4Rent to appraise potential new customers
to ensure they meet any criteria B4R deem necessary for joining. Only at this point
are clients given a username and password. Clients can then gain access to

Billing4dRent via the ‘Client Login’ page (Figure 5.3).

mitfljs]
0Oa gdt yjew Fayortas loots Hefe J
) Back - z Soarth revorte
Adcfrwss <+ ; U tp Vv //e*e>* LAn</tiftit.cam/ Ms "
billing~~~rent com
OHI/tftv m itiny SGfvti'c p/ovaiet
Home Stoico Adiuiiuttiariun Suw oM "About U o
Billing-1Reiit Client Login
Client1d: J
New Users: Please contact BilEng4Reni
For details on how to signup and ieceive
your clientid and password
OjDoft« 25 * HooW>tind
Figure 5.3: B4R Client Login
After logging in, clients are presented with the client home page (Figure 5.4)...
*liHuiniMKrot " brrotolt Internet lwnlwr»
Bte &A Jflav Faytrtes Ip* befc 3 ‘]L‘I
O 0> J
Address | - htlp«;//www.b*i9Var«.<csiV J*j fcjoo links *
*
bi“ing‘llw it.com
ani/trt: Gii/itm stt/vtt e prvwndtir
(-brut Dai«

UiipU; CUkmi IV ulb
lydalr CU«»l
i'minmcn

Display All Customers
Register New C'ostonier
Update Existing Customer
Delete Customer
Products

Display AU Product
Register New Produci
Update Existing Pivducl
Delete Product
Invoices

Display AU Invokes
Create New Im-aire
Delete bwokes

File Upload

Logout

Pnvacy Stalemenl |Secunly Statement © 2005 BiUing4Renl Allrights ieserved ii
ro) i i orar v.

Figure 5.4: B4R Client Home

-84-

Chapter 5 Proposed Framework

The home page provides links from which clients can perform various actions (see

Appendix 4 for a selection of B4R prototype screenshots):

1) Display Client Details: This option displays all details for the currently

logged in client.

2) Update Client Details: By selecting this option, the client can change
some, or all, of their recorded details including their address, phone
number, e-mail address, password etc. The only field that cannot be

changed is the Client ID, which is unique to each client.

3) Display All Customers: A client can display a list of all ofthe customers
who subscribe to their products or services. By clicking on an individual
customer, the client can retrieve more detailed information for that

customer, including address, phone number, e-mail address etc.

4) Register New Customers: This screen allows the client to add new

customers and record appropriate contact details for that customer.

5) Update Existing Customers: This option allows a client to update
details relating to one, or more, of their customers. By selecting the
appropriate customer from the dropdown list, details (including changes

ofaddress or phone number) can be recorded.

6) Delete Customers: By selecting this option, a client can delete all details
for any customer(s) who no longer subscribes to the clients products /
services. The client is then asked to confirm his / her intention to delete a

customer prior to the customers details being completely removed from

Billing4dRent systems.

7) Display All Products: This shows a summary of all products or services
the client currently provides. This screen shows the product ID, name,
unit price, and the product status. B4R allows products to be enabled or
disabled, where enabled products are products or services the client is
currently providing, and disabled products are products which the client

is not providing at the presenttime, but may do so again in the future (i.e.

Chapter 5

8)

9)

10)

11)

Proposed Framework

a seasonal product). By clicking on the product name, further details
relating to that product are shown: a brief description of the product, tax
applicable on the product, the invoice string (the description of the
product as it appears on an invoice), and the General Ledger (GL) code
(code corresponding to the General Ledger account type involved i.e.

Assets, Liabilities, Revenue etc).

Register New Product: By selecting this option, a client can create a
new product or service they can provide to their customers. The
following details are recorded: Product ID, name, a brief description of
the product, the invoice string (the description ofthe product as it appears
on an invoice), unit price, tax applicable on the product, the General

Ledger (GL) code and the product status (i.e. disabled or enabled).

Update Existing Products: This option allows a client to update details
relating to one, or more, of their products. The client initially selects the
product to be updated from a dropdown list and is then presented with a
page where all details relating to a product can be changed: name,
description, invoice string, unit cost, tax, GL code and profile. The only
field exempt from being updated is the Product ID, which is the unique

identifier for that product.

Delete Products: By selecting this option, a client can delete all details
for any product(s), which will no longer be provided by the client. The
client is then asked to confirm his / her intention to delete a product prior
to the product details being completely removed from Billing4Rent

systems.

Display All invoices: This option allows a client to display details of
previously generated invoices for any of the client’s customers. The
client initially selects the appropriate customer from a dropdown list and
all invoices for that customer stored on BillingdRents systems are
displayed in summary form. Fields shown are customer ID, invoice ID,

invoice date, invoice total and the Purchase Order (PO) number. By

-86-

Chapter 5

12)

13)

14)

Proposed Framework

clicking on the invoice ID, full invoice details are displayed onscreen.
The invoice lists the name and address of the client, as well as the name
and address of the customer the invoice relates to. As on the summary
screen, the invoice ID, invoice date, and the PO number are shown. The
bottom section of the invoice details the products / services being billed
for. For each product, the product ID, name, description, quantity used
and product cost is listed. All products are subtotalled, and the aggregate
tax for all products is shown. The final invoice total is shown at the

bottom.

Create New invoice: By selecting this option, a client can create a new
invoice for a particular customer. The client initially selects the
appropriate customer from a dropdown list. The client is then presented
with a form with a unique invoice ID, the customer ID, as well as a field
for entering the PO number relating to the invoice. A dropdown list
displays all the products the customer is subscribed to. Using the
dropdown list and the quantity used field, the client can add products to
the invoice, as well as remove products if a mistake is made. No products
can be added twice to a single invoice. All products are subtotalled and
the aggregate tax for all products is shown as products are added or

removed. The final invoice total is shown at the bottom.

Delete invoice: By selecting this option, a client can delete some, or all,
invoices for a customer. The client selects the appropriate customer from
a dropdown list before all invoices for that customer is displayed. The
client is then asked to confirm his / her intention to delete a invoice prior
to the invoice details being completely removed from BillingdRent

systems.

File Upload: Choosing this option allows the client to upload a logo
image file to Billing4dRent. This logo can then be used to ‘brand’ the
clients organisation or services and can then be utilised for web page

customisation and on generated invoices.

Chapter 5 Proposed Framework

15) Logout: When a B4R client selects the logout button their current

session is invalidated.

5.3 B4R Administrative Interface

In order to perform administrative tasks and to incorporate and test availability and
scalability components, an ‘Administrative Interface’ was developed. The
Administrative Interface is a separate website, also developed using Java, Java
Servlets and JSP (and implemented using the MVC design pattern). The
Administrative Interface allows authorised B4R personnel to create and manage user
accounts for clients. A potential client wishing to subscribe to Billing4dRent must first
contact B4R in order for their eligibility for joining to be evaluated. Additionally,
authorised B4R personnel can also create users, view statistics relating to B4R
storage media (i.e. Database or Filesystem) usage, as well as view audit and error
logs. Finally, from the Administrative Interface, users can launch a Monitoring
program which collects statistics about B4R such as page hits, page completion times
etc. At present, the Administrative Interface is launched (in a new browser window)

via a hyperlink on the B4R prototype client site (Figure 5.5)

pub- himi _ — — .

gle tfew Fgyortes Took Hefc

Qadi- x z \y

Link to B4R Admin Interface

1*1 1i Q * Careers

Bifling-1E".erU is a busy energetic oignnisation, which offei? challenging!oies for suitably
nnaltfwnl iiK-Wuhiak it. a ivnamir jjnfi rivesrhw fimarraimpnt #amip f.ur oiYics peivs |i

Figure 5.5: B4R Administrative Interface Hyperlink

When launched, the Administrative Interface displays a login dialog (Figure 5.6).

Chapter 5 Proposed Framework

B*o &A Mew Favoritos loots tHp
O -© o Cl i((l |/ Soardi Favoritas &
Anfress | « inps://mw.mng4em.mﬁadxfri
billing~reiit.com
vt/fi/ia SRfi/zv/j tireviite f

Bflling4Rent Administration Tool

User Name: j
Password:

login 1

Pxivacy Statement| SecunLy 3 talemerA © 2005 Bdling4Recil, Allnghts teserved 1

Figure 5.6: B4R Administrative Interface Login

When users are successfully logged in, the home page is displayed (Figure 5.7)

In(W

9a E/* vyaw Fflvcrtos look tHp

C Cel el vl W

A *tas|U Mt(n;f/iwM blnotd«nl.(arifchn -1£_Go Lrs 1
mHHSSII b illin g ~ n nt-com
aninm oUh/m wfvice u/uvular
. | AN
K& I~) _jISSTTmr.T?. M__1]Bsh* * = ~JFSt . S [——;

o Alclck <SF5m lle—
0 Home

- U»*rAdmbrictr*li*a
0 Display All Users
O Re*ister Nor User
0 ledale ExistLFig User
O Delete Users

« File I>Wad
O Hie Upload

A «dit\W AU

Eitor View All
Security; View All
Admii Audit: View All
Admin Errar: View All
Audit: Delete Single

Security: Delete Single
Admin Audi): Delete Single
Admin Errar: Delete Single
Audit: Delete All
Error: Delete All

© SecuHtj: Delete All

0 Admin Audit: Dele te M

0 AdminError: Delete All

o
o
o
o
o
o
0 Error: Delete Single
o
o
o
o
o

+ Statistica
O B4R Database Properties
O B4R Talilespace Properties
O B4R Table Sires
O Lamttk JAMon

- Loftil
0 Logout

H PrivacyStatement|Security Statement ©ZE3ng4<a1 AUngbls teserved

Figure 5.7: B4R Administrative Interface Home Page

Chapter 5 Proposed Framework

The home page provides links from which clients can perform various actions (see

Appendix 5 for all BAR Administrative Interface screenshots):

1) Users Menu:

» Display All Users - When this option is selected, the user can view a list
of all B4R Users with their full name, username, role, credential and
profile. Profile indicates whether the user is currently active or inactive.
There are currently two profiles in B4R, ‘admin’ and ‘user’. ‘Admin’
profile allows full access to the Administrative Interface. ‘User’ profile
allows the viewing of Administrative Interface pages, but does not allow

the user to make any updates or alterations (Figure 5.8).

0B £dt §tow Ffivortfis loofc toip
OBack- B - X ZJ Swch Favorites

i it WM Tt ¢j-io Urts *
biNirt&4rent-com

Hmiu* Umi Admin CUvni Attain NtMittir» i ouun Logout

Yon donothave die required privileges to access this page!

Pivracy Sialiiiizill | Security SUUjot 'Si SODJEdIms-aRenl AU lights ie

& Locaittranet

Figure 5.8: No Privileges

* Register New User - This screen allows a B4R user with an ‘admin’ role
to create a new user and record appropriate details for that user including

name, username, password, role, credential and profile.

* Update Existing User - By selecting this option, an ‘admin’ user can
change some, or all, of any users recorded details. The user is initially
presented with a dropdown box containing the usernames of all users on

the B4R system. When a user is selected, details for that user including

-90-

Chapter 5

2)

Proposed Framework

their name, password, role, credential and profile can be amended. The
only field that cannot be changed is the Username, which is unique to each

user.

Delete Users - By selecting this option, ‘admin’ users can delete all details
for any user(s). A confirmation dialog is shown prior to the users details

being completely removed from Billing4Rent systems.

Client Menu:

Display All Clients - This page displays a summary of all clients currently
subscribed to Billing4Rent. This screen shows the name, username,
company details, role, credential and profile. B4R allows clients to be
enabled or disabled, where enabled clients are currently receiving B4R
services and disabled clients are clients whose accounts are currently
disabled. By clicking on the client name, further details relating to that
client are shown: company name, address, postcode, email address and

contact phone number.

Register New Client - A potential new B4R client initially contacts
Billing4dRent and that client is then evaluated as to their suitability. If a
client is deemed suitable, their details are recorded on this page where the
following are recorded: name, username, company details, role, credential

and profile.

Update Existing Client - This option allows a user to update details
pertaining to one, or more, B4R clients. By selecting the appropriate client

from the dropdown list, details for that client can be amended.

Delete Clients - By selecting this option, details for any client(s) who no
longer subscribes BillingdRent can be selected for deletion. The user is
then asked to confirm his / her intention to delete prior to the clients details

being completely removed from Billing4dRent systems.

Chapter 5

3)

Proposed Framework

Storage Statistics and Performance Monitoring Menu:

B4R Database Properties - This screen displays statistics relating to the
database used for storing Billing4dRent data. As Singl.eView runs on an
Oracle database, Oracle was also selected as the database for the GMIT
B4R online billing Prototype and Administrative Interface. The properties
shown for the database are: instance name, database version, the date and
time the database was started as well as the current status of the B4R

database (Figure 5.9).

13 «llk Admmlomok -fcwofl Inline* INpW f *14]xj
00 gdt fie« Fflvwiw lod< [jet J *|
T Pxfe, xi X D Swrdi Favwitw
Ad*«s]: Wips®/fww.banert.ccfnyadfin Links "

il Irent, com
Client Ailrtun ~ J Sfamati Logger 1 Logout

B4R Database Properties

talm N w B4R
DBVenkx 9204.0
ur— 05-Apt-06.1037.24 AM
lQ " ACTIVE
PnY «y iJUI<!ii?nt[3eranly ?Uienient ©3101 Billing-JReiil AUr.ghtsifstrvtd

'i§ >j Locaihtrawt

Figure 5.9: Database Properties

B4R Tablespace Properties - A database is divided into Logical Storage
Units called tablespaces. This screen displays details relating to the B4R
Tablespace used for storing Billing4Rent data. The tablespace properties
shown are: name, size, size used, size remaining, and the percentage

tablespace used (Figure 5.10).

Chapter 5

Proposed Framework

Fic odfc iflew Fgvortes look ftfefc i* |
BaA. j - X £ Seadi - Favorites . . . I

lit NJhmettBuaitddn yi5® al
tailling”nent.com

Si.iinr>f g logitw Loaoni

B4R Tablespace Properties

Téh"nRw B4R
FtUnfteaSin 15X0UB
0.69UB
Free 14-31UB
44 «fTaUMpaeaV M m
Pavary Slaltm”nl | Secoiily St&Lisr.int ‘9 2>/)1>Billuig-tR7ril Alllights «serve,d,
* b 3 »aafir

Figure 5.10: Tablespace Properties

B4R Table Sizes - This page displays a list of all eleven tables used for
storing B4R data, both client specific and admin. The number of rows in

each table is shown (Figure 5.11).

| A HIH Adniu» (nfttolr HKIOWIt Interne» Ixplorrf

fite gdft iJow Favrritos loot tipfc 1
Back | i Search . Favorites "pi
Ait*ess | -ij https://www,bfcgafent.com/adnii ¢ 3» Links wi

>>illing™Tnent.i

Admin I Client Adjiuit I Siatiturt I 1<n

B4R Tables Sizes

B4Rtber Numb« of Row«mTaMt: 2
;B4RCUeal Nuabtr ofRetrain Tabi»: 2
MRCwtanr timrfwr ofRowam Table: 2
B4RPntei Humbar ofRovtinTable: 7
B4RIMIce Staler Hunt« cfRw t BKT«Ua: 2
BJRhnkeDetafito Hunttr of Row*niTtbA# 4
B4RBmrLag lewbuofA(KrttfiT«Mt 2
B4RAijtftLa(Hue”rro/RofrimTtott b
B4RS#e*rftyl*f tfunbar ofRamin TabV }
B4RA4idmai*rLe* Huefrw o fR(w» ai TabU;2
S4R Atei» AMUU | NuabflafRowymTtU« 139
Puva;y Sl1%I*meul| Security Sutftmat f?ZBOSE[IimgARem AUf.gtrlc fesfrvsd
DO» 1 jia ~JLocalrtrinet

Figure 5.11: Table Sizes

Launch JAMon - The Java Application Monitor (JAMon) [78] is a free
Java Application Program Interface (API), which allows the monitoring of

production applications (Figure 5.12).

-93-

https://www,bfcg4fent.com/adnii

Chapter 5

Proposed Framework

1 “Vmsw -n-iuuio lirfmirt t*pinrcr

08 jow Favortes look ttefc
*1 12 i~ sesch Favtxtos & *

Jffj £] ¢ Jgo Unte »
b illing-/rent

Perform ance M onitor

Forrau*d
0§ DdtSM

Htaftn m m #Nr\lte «O.A Uta — — Lite Uto

R
L]
TISh». Wiliffliwdud 110 IQ 010 10 0 1 1 aMMIKf&9037 OODIJK 153091 IfISHiom
13SJL.tictfC wte m * O(riil*tsp 110 0 0 10 0 o0 1 1 CMMIMIX JIiJJ' 06040615:31:17 inofloo,
USP. 10 00 0 O O 1 i <exHMi&}i<8 OUMiavis}i.«» 10(1«7j
jJSP. cieniDKptayCustomersjsp 225 A 10 O 0 t i 084 BissmBs UMHOO 1S1Wi8 1/I0<IOff)
.cfertHomedsp 10 000 0O 0 t 10104061*31» 0504061*31;« 10(100)
t 00 D an 0O O 1 i ie4HC*1St6f OUMOU 18:30tsi + Iffiglailj
iJSP. Oi»«WMCTHI* avAC 10 3 0 20 2 0 1 1 06040615 31rl3 060406 (£31:13
tJSP, ctientUpdateCBenUsp « o 10 01Q 1 0 1 1 06040615:31:11 06040615:31:11 | ino(ioc)
:«H .safC T from BAKCUSTOMB* »here CUBFTD 21S » 2 0 3 0 1 ~ 10604061S3IH5 06040615:31:10 10(100)
£SQL, SELECT ' from WRCUSTOHBRwhereCUSTOMER» 1 38 20 0 w 30 0 1 1 06*40615:31:17 06040615:31:17 2
Is 0 t. SHIECTfhun 04RCUB(T Ntere CLBtTD iUa, 00 0 1 1 06040615:31:09,0604061531:11 20(100)
SOL Mpdotu B4ftdvert 14 < 040140 0 1 1 06040615:31:13 06040615:31:13
r-Scftfct. Le?*ONdiUooe«»! 10 Oo0 0 o0 0 1 06040815:31-13 06040615:31:13 10(100)
;j'S*sn*t. CfcertCherJiPrMJagodAction 13 3 40 4 0 10 0o_ n 1 06040615:31:06 06040615:31:10 i3R(iona)
Smtel. dentCustwnerftetaas 130 30 030 300 0 1 1 06040615:31:16 06040615:31:17
*S*xsS. cfienitXsptayClien! 1341 31 034 3 0o 1 1 06040615:31:09 06040615:31:09
. r' 4 KI1<»I1-M4C nonne (CX <a
- T

* JLocai Intranet

Figure 5.12: JAMon Performance Monitor

JAMon can be used to identify application performance bottlenecks, user /
application interactions, track application scalability etc. JAMon gathers
statistics such as hits, execution times (total, average, minimum, maximum
and standard deviation), as well as concurrency information (i.e.
simultaneous application requests). Performance monitoring, as well as
Logging on the BillingdRent Prototype is entirely configurable.
Performance monitoring and logging can be turned on / off by setting a

field in the B4R.properiies file (Figure 5.13).

¢ TextPad - [C: lakarta-tomcat-S.S.9\wcbapps\b'InW CB-XNficl<ites -IR- =Jnl2£l
Si Fite Edit Search ylew Tools Macros Configure Window Help -|g| X1
OlosIBIl gl&lcaHBI 7 IN el jQI -1 «Imi
al Tl |y laillai o[JJ *z

db.url-jdbo:oracle-thin :CPlocalhost *1521 :B4R

db.user=SYSTEM

db,pass=research

b4r.debug=true

b4r,monitorServiet=true

b4r monitorSQL=true

ANSI Characters

33 1
34
35
3G
37
38
39
40

~ X -

ar
IFor Help, press Fl 20

Figure 5.13: B4R.properties

-94-

Chapter 5

Proposed Framework

The properties file is read by the B4R application and, depending on the
setting - logging and monitoring of B4R is performed. For example, in each
servlet, the B4R.properties file is read and the value for monitorServlet
(either true or false) is stored in a Boolean variable. At the start of each
servlet execution, the following code checks the value of that variable and

monitors the specified code if monitoring is set to true:

import com.jamonapi.*;
public class ClientCustomerDetails extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

final String MODULE = “ClientCustomerDetails”;
boolean monitorServlet = false;
Monitor mon = null;

try {
/I Check if Monitoring is enabled
if (session.getAttribute(“monitorServlets™) !=null) {

/I Retrieve monitorServlet value from session obj
String strMonServ = (String) session.getAttribute(“monitorServlets”);

Il Convert monitorServlet string to boolean
monitorServlet = Boolean. valueOf(strMonServ).booleanValue();

L . ky . .
/I 1fmonitoring Servlets is enabled, start the servlet monitor for this servlet
if (monitorServlet)
mon = MonitorFactory.start(“Servlet - ClientCustomerDetails™);
1

1 CODE BEING TIMED
/1

catgh (Exception e) {
1/
1l EXCEPTION HANDLING
11

I
finally {
if (monitorServlet)
mon.stop();

}

JAMon gathers statistics for any code that comes between the startO and
the corresponding stopO method. The code MonitorFactory.start(“Servlet -
ClientCustomerDetails”) creates a monitor, with the label Servlet -

ClientCustomerDetails and begins gathering monitoring statistics.

-95 -

Chapter 5

4)

Proposed Framework

Summary statistics are gathered for all monitors, which are passed identical

labels.

JAMon can also be configured to gather statistics without altering existing
B4R code. For example, JAMon can gather statistics for all JSP pages in
BillingdRent, including the number of hits a page receives, the page
execution times etc. In order to take advantage of this feature, JAMonjar
should be placed in the Webserver’s classpath, with the following code

inserted into the B4R web.xml:

<web-app>
<display-name>Billing4dRent Performance Monitor</display-name>
<filter>
<filter-name> JSP Filter</filter-name>
<filter-class>com.jamonapiJAMonFilter</filter-class>
</filter>
<filter-mapping>
<filter-name>JAMonFilter</filter-name>
<url-pattem>/* jsp</url-pattem>
</filter-mapping>

</web-app>

Logger Menu: extensive debugging / logging of Billing4dRent can also be
configured via the B4R.properties file (see Figure 5.13, page 104). The
B4R.properties file is read and the value for debug (either true orfalse) is
stored in a Boolean variable. W hen an action is performed, and debugging /

logging is enabled, the action is logged.

if (debug) {
String auditmsg = “SQL insert complete™;
log.addToLogger(B4RauditUser, “5”, MODULE, auditmsg, B4RauditDatabase);

» B4RauditUser is the currently logged in client

« 5corresponds to the logging level (i.e. 1is a critical issue, 5 is informational)
* MODULE is the module / class the log entry originates from

» auditmsg is the description ofthe logger entry

» B4RauditDatabase is the database the log entry is stored in

-96-

Chapter 5 Proposed Framework

At present in the B4R prototype a scheduled daily DBMS job deletes all

entries from the B4R database that are greater than two weeks old.

CREATE OR REPLACE PROCEDURE SYSTEM.B4R HOUSEKEEPING AS
BEGIN
Delete from B4RauditLog where Date Logged < SYSDATE-7;
Delete from B4RerrorLog where Date Logged < SYSDATE-7;
Delete from B4RsecurityLog where Date Logged < SYSDATE-7;
Delete from B4RadminAuditLog where Date Logged < SYSDATE-7,
Delete from B4RadminErrorLog where Date Logged < SYSDATE-7;
COMMIT;
END B4R_ B4ARHOUSEKEEPING;

In a production BillingdRent environment these records should be saved to

a file in order to be archived

Audit: View All - By selecting this option a user can view all entries in the
Audit Log. The audit log stores all log entries from the B4R client
prototype and serves as an ‘audit trail’ for each client as he / she interacts
with Billing4Rent and executes various actions. When the log viewer page
first loads no records are displayed. Instead the user can choose to display

all records orjust display certain records (Figure 5.14).

[3 P (K ArffiiHi Cor>Hilr ‘iKIOW ft IfKCAWiti Hplilfrf S13ix 1
E* Fgvortos i°ds 1
i) E** . Ce 2 Search Favorites .V

fE] https://ww.bihg4rert: com/adrtn Jflu links *

H i« Admin __ Stiimtirt

UserID: [AU 3 ~ ate Logged: *] Status: IAIl jjj | SetFilte~|

s |

Figure 5.14: Filter Logger

Users view all records in the log, or filter the results by Client ID
associated with the log message, the date the log entry was logged or the

status of the log entry (i.e. 1 is a critical issue, 5 is informational). When the

-97-

https://ww.bihg4rert

Chapter 5

Proposed Framework

‘Set Filter’ button is clicked, the appropriate records are retrieved from the

B4R database (Figure 5.15).

2fuf! ArTiiiftComokr Mmovill Intérne* +
Qe f£de yew Favertos look tfefc

X 2

N

Sewch

I'm Ailntiu

UserID: JAU 3

Falortos

billing~rerrt. <

1IBBIUTOIiuUSSI

Date Logged: [AU 3

B4RaadltLog

Si.un nei l . |

1. ottimi

Status: |All

Um-ID DA S tt. IM ifc L«arrVmi(t

nbtxH 05-ApMK; 14:5153PM 5 B4£hnt AiUhmlkH* BARCE*nl [nkntnj

ok*ant 05-Apr-Qfi, 14:51:55PM 5 RdbasHwailLogmMotlula 7«litUHon oflogin d*Ua* far BffiCHenl [nlcetcu]
okMDS 15-Af»-06,14i51J5 PM 3 RdhtuCfanil-oginModul» Tiyjngto ewmtfi lo deibu«

ntaai» al-Aj*OU4S1:36PM 5 RdbcuCStfd)*pnModuU GoooftcUdto dtUbtnl

tilveu 05-Apr-06,14J1.06PM 5 RAEm Csmillapdim Ut SELECT» FROMBARCLENTwImI citnlHnhtnel
nkfona OS-Apr-Ofi, 143L50FU 5 RdheuCbtntljig*nModul« SQL *d*rt compliU

Cfovtna 05-Apr-iiB, 14J1.56PM 5 RI&EMIRIi0])oUoilUJt PmivohWdo HOT bhUM

nktan* Q5-Apr-06,1451.56 PM 5 RdbafCbeniLogmModuk Validation oflogia detadi for B4RCietd [doti»] fvbd
okMftt Q5-Apr-06.145156 PM 5 RfRwCteiilngnModuk Abat

Disant OtMpsUK. 145156 PM 5 RdtNuCluniLoyiUodutt Logout

ckeat» 05-Apf-0fi, 145206PM 5 RdhgjCbnlltgniioilulfl Connected to dal*b«sel

niato* QJ-Afa-06,14-5206PM 5 RdbRuCS*ntLogj]Moduli Pu*iradiukbt

nkaiDe 05.Apr.04,145106PM 5 RdhnaCEanUjjpniodou JPDATEBARCLET lathit Jopn tnt -

ritt«oB 0>Api0114J206PM 3 B&MCfcniMgMMoAil« SQLup44« coapltt«

nksoa* Q5-Apr-06,1452116PM 5 RabnaClantLoginModug+ - Vi0ation oflogm datetifo tBfiCieentintoant]

Pages: 12345678910 [Neal

62005 BiilsvgiRenV All nghls reserved

a ivdniant

pjiva;y Sulijr.inl [3ec*jjtly Sulerr.erd

Figure 5.15: Display Log Records
Error: View All - This log displays all error messages generated by the

B4R prototype.

Security: View All - This log displays all security messages generated by
the B4R Prototype.

Admin Audit: View All - By selecting this option, a user can view all

entries in the Audit Log relating to the B4R Administrative Interface.

Admin Error: View All - This log displays all error messages generated

by the B4R Administrative Interface.

Audit: Delete Single - When this option is selected, the user is displayed a

dropdown box containing all Client Ids stored in the B4R Prototype audit

-98-

Chapter 5

Proposed Framework

log. When a client is selected, the user will be prompted to confirm his / her

intention to delete all logger entries for that specific client.

Error: Delete Single - When this option is selected, the user is displayed a
dropdown box containing all Client Ids stored in the B4R Prototype error
log. When a client is selected, the user will be prompted to confirm his / her

intention to delete all logger entries for that specific client.

Security: Delete Single - When this option is selected, the user is
displayed a dropdown box containing all Client Ids stored in the B4R
Prototype security log. When a client is selected, the user will be prompted
to confirm his / her intention to delete all logger entries for that specific

client.

Admin Audit: Delete Single - When this option is selected, the user is
displayed a dropdown box containing all Client Ids stored in the B4R
Administrative Interface audit log. When a client is selected, the user will
be prompted to confirm his / her intention to delete all logger entries for

that specific client.

Admin Error: Delete Single - When this option is selected, the user is
displayed a dropdown box containing all Client Ids stored in the B4R
Administrative Interface error log. When a client is selected, the user will
be prompted to confirm his / her intention to delete all logger entries for

that specific client.

Audit: Delete All - When this option is selected, the user is prompted to
confirm his / her intention to delete all logger entries from the B4R

Prototype audit log.

Error: Delete All - When this option is selected, the user is prompted to
confirm his / her intention to delete all logger entries from the B4R

Prototype error log.

-99-

Chapter 5

5)

5.4

Proposed Framework

Security: Delete All - When this option is selected, the user is prompted to
confirm his / her intention to delete all logger entries from the B4R

Prototype security log.

Admin Audit: Delete All - When this option is selected, the user is
prompted to confirm his / her intention to delete all logger entries from the

B4R Administrative Interface audit log.

Admin Error: Delete All - When this option is selected, the user is
prompted to confirm his / her intention to delete all logger entries from the

B4R Administrative Interface audit log.

Logout- When a B4R user selects the logout button their current session is

invalidated.

Proposed Network Architecture

The architecture of a system always defines its broad outlines, and may define

precise mechanisms as well. The term architecture can refer to either hardware or

software or to a combination of hardware and software.

54.1

B4R Network Diagram

Figure 5.16 illustrates the BillingdRent network architecture. Each network

connection in the proposed architecture should include a redundant component.

However, these redundant components are not evidenced in the diagram in order to

aid clarity.

-100-

Chapter 5 Proposed Framework

Singl.eView
Oracle RAC Oracle RAC
DMZ Billing4Rent Housekeeping
HTTP Server 1 E-mail Server 1 Application Server 1 Database Server 1
S y
Switch §:5 -
1 R
Internet
» FIREWALL 1 FIREWALL 2
Requests \
Switch
HTTP Server n E-mail Server n Application Server n Database Server n

Figure 5.16: Billing4dRent Architecture

5.4.2 Architecture Breakdown

The following sections breakdown the various components of the BillingdRent

architecture:

5421 Firewall_|I

A firewall is a system designed to prevent unauthorised access to or from a
private network. Firewalls can be implemented in either hardware or software, or
a combination of both. Firewalls are frequently used to prevent unauthorised
Internet users from accessing private networks connected to the Internet,
especially intranets. All messages entering or leaving the intranet pass through
the firewall, which examines each message and blocks those that do not meet the

specified security criteria.

Firewall 1 will protect the Billing4Rent HTTP servers from external attacks, and
is the first line of defence between the B4R network and any external threats.

While the HTTP server may be using various ports to provide services, these

-101 -

Chapter 5 Proposed Framework

ports should not be accessible by external users. Consequently, Firewall 1 will
limit remote access to only the following ports:

* Port21: FTP

. Port 80: HTTP

e Port443: HTTPS

e Port990: FTPS
Optional open ports:

* Port22: SSH remote login
* Port23: Telnet

5422 Load Balancing Switch

A Switch is a device that filters and forwards packets between Local-Area
Network (LAN) segments. Switches operate at the data link layer (layer 2) and
occasionally the network layer (layer 3) of the OSI Reference Model and
therefore support any packet protocols. A switch is commonly connected to at
least two networks or devices and is usually located at gateways, the places
where two or more networks connect. Switches determine the best path for
forwarding packets. However very little filtering of data is done through
switches. In the set-up depicted in Figure 5.16 the switch redirects Billing4Rent
HTTP requests to an available HTTP server. This enables effective load
balancing in periods of increased network traffic, as the switch will direct a
stream of requests across all of the available HTTP servers and avoid sending
requests to servers that are out of operation, or are otherwise busy. To address
the Single Point of Failure (SPOF) at the switch, a second switch is implemented
in a hot standby configuration in the event of the first switch being out of

operation.

54.23 HTTP Server

A HTTP server is a server process running at a web site, which sends out web
pages in response to HTTP requests from remote browsers. Every Web server
has an IP address and possibly a domain name. For example, when a user enters
the URL http://www.billing4rent.com/index.html in a browser, this sends a
request to the server whose domain name is billingdrent.com. The server then
fetches the page named index.html and returns it to the requesting browser. In

many production environments, the HTTP server is co-located on a single

-102-

http://www.billing4rent.com/index.html

Chapter 5 Proposed Framework

machine with either the application server, or database server, or both. However,
by separating the HTTP server from both the application server and the database

server, this alleviates any resource contention between the three sets of processes.

54.2.4 E-mail Server

An e-mail server is a process and device that provides ‘post office’ facilities. It
stores incoming mail for distribution to users and forwards outgoing mail through
the appropriate channel. The term may refer to just the software that performs
this service, which can reside on a machine with other services. The Billing4Rent
e-mail server will support both incoming e-mail (in the form of service cost
inquiries, invoice inquiries etc) as well as outgoing e-mail (in the form of replies
to client enquiries and customer invoice data in HTML or Portable Document
Format (PDF)). BillingdRent customers will have the facility to upload their
entire client usage data in a single file, which will be imported and processed by
Billing4dRent. However these files will be uploaded via FTP or FTPS rather than

submitted via e-mail.

5425 DMz

In order to protect application servers from unauthorised access, the separation of
the Web server from the application server using firewalls is often used to create
a secure DeMilitarised Zone (DMZ) surrounding the Web server [79].
Application data, and business logic is protected by isolating the HTTP server in
the DMZ, which restricts access from the public Internet. Machines with very
limited, well-understood and logged services are placed in the DMZ. The two
firewalls - one between the public Internet and the DMZ and the other between
the DM Z and the BillingdRent LAN - strictly limit traffic in and out ofthe DMZ.
HTTP servers in general have limited capabilities and, because it is well
understood how to protect these HTTP servers from attack, they are situated in
the DMZ. Application servers are not placed in the DM Z, because if the outside
firewall were compromised, it would expose B4R business logic as well as
confidential client information. Additionally, application servers include a Java
Virtual Machine (JVM), which could potentially be used to assist an attacker in

further compromising the website.

- 103-

Chapter 5 Proposed Framework

5.4.2.6 Firewall 2
The second firewall in the DMZ configuration only allows traffic to pass
between the HTTP server within the DMZ and the Billing4dRent Application

Server situated in the trusted private Billing4dRent LAN.

5.4.2.7 Application Server

Application servers are typically used for complex transaction-based
applications. The applications server is essentially where the ‘brains’ of
BillingdRent reside and it contains items such as B4R business rules and data
manipulation. The application server handles all application operations between

users and Billing4Rent’s business applications and databases.

5428 Database Server

The Billing4Rent database server consists of an installation of Singl.eView from
Intec. There are two databases administered by Singl.eView, a production
BillingdRent database as well as a Housekeeping database. The Billing4Rent
database contains all customer details, their client details and billing information.
The Housekeeping database is used for administrative purposes (for example to
store user logins and passwords, user profiles etc). It is envisioned that Oracle 9i
will be used as the underlying DBMS, deployed in an Oracle 9i Real Application

Cluster (RAC) configuration.

5.4.3 Inter-tier Traffic Flows

Figure 5.17 depicts typical inter-tier network traffic flow as a result of a Web-

based transaction.

- 104-

Chapter 5

Proposed Framework

Figure 5.17: Inter-tier Traffic Flows

544 Inter-tier Traffic Flow Details
Flow: 1
Interfacel: Client
Interface2: Switch
Protocol: HTTP /HTTPS
Description:

Client initiates Web Request

Flow: 3

Interfacel: Web Service
Interface2: Application Service
Protocol: LDAP
Description:

Web service ‘talks’ to the
Application server through a Web
connector.

Flow: 5

Interfacel: Database Service
Interface2: Application Service
Protocol: SQL / PLSQL
Description:

Database request completed.

- 105-

Flow: 2

Interfacel: Switch
Interface2: Web Service
Protocol: HTTP /HTTPS

Description:

Switch redirects client request to a
particular Web server based on load-
balancing algorithm.

Flow: 4
Interfacel: Application Service

Interface2: Database Service
Protocol: SQL /PLSQL
Description:

Application service requests to
retrieve or update a row/rows in the
database table.

Flow: 6

Interfacel: Application Service
Interface2: Web Service
Protocol: RMI

Description:

Application server returns dynamic
content to Web server.

Chapter 5 Proposed Framework

Flow: 7 Flow: 8

Interfacel.: Web Service Interfacel: Switch
Interface2: Switch Interface2: Client
Protocol: HTTP /HTTPS Protocol: HTTP /HTTPS
Description: Description:

Switch receives reply from Web Switch rewrites IP header, and
server. returns HTTP request to client.

545 Vertical Scaling

In addition to horizontal scaling - where many machines are added to the B4R
system to improve availability and performance - all existing or additional
machines should support vertical scaling (i.e. many instances of an application on
one machine). Figure 5.18 depicts an Application server set-up with n instances on

each machine.

Application Server 1 Database Server 1

App Server 1 (Instance a
-H

App Server 1 (Instance n)

FIREW ALL_2

App Server n (Instance 1) =l

1
App Server n (Instance n)
Application Server n Database Server n

Figure 5.18: Application Server Vertical Scaling

Similarly, Figure 5.19 depicts a HTTP server set-up with n HTTP server instances

on each server.

- 106-

Chapter 5 Proposed Framework

Figure 5.19: HTTP Server Vertical Scaling

5.4.6 Backup Internet Connection

There should be two separate, independent connections from the Internet to the
BillingdRent network in the event of one of the service providers’ infrastructure
becoming compromised, which would lead to the entire Billing4dRent network
becoming isolated from the Internet. In that eventuality, Billing4dRent clients
should still have access to the Billing4Rent service via a backup Internet service

(Figure 5.20).

Figure 5.20: Backup Internet Connection

- 107-

Chapter 5 Proposed Framework

55 Code Optimisation for Improved Performance

Code optimisation involves writing code so that it runs as fast as possible on its host
computer [83]. Many high-level language compilers offer options as to what type of
code to generate at compile time (i.e. optimisation for run-time or for code size).
Designing B4R with optimised code would provide improved performance.
BillingdRent was developed using Java, Servlets and JSP and the following

recommendations (both general and Java specific) were implemented where possible:

55.1 Memory Usage

By limiting memory usage, the performance impact of memory management
performed automatically by Java (Garbage Collector) is minimised. It is envisioned
that Billing4Rent will run for long periods; therefore even a small memory leak can

cause the Java Virtual Machine (JVM) to run out of free memory.

* Only create objects as needed. The more objects that are allocated, the more
memory pressure this puts on a system, potentially resulting in more frequent,

longer garbage collections.

» Delete references to objects no longer required i.e. ‘loitering objects’.
Loitering objects are objects that are allocated, not used, and not garbage
collected. The effect of these objects is to increase the size of the JVM heap,
causing excessive overhead on the garbage collector, as well as causing

memory leaks, such as an ‘out-of-memory error’.

A common source of memory leaks in Java is due to not closing Java
Database Connectivity (JDBC), Java Message Service (JMS) and Java
Connector Architecture (JCA) resources when they are no longer required,

particularly under error conditions.

55.2 Session Management

In a Web application, state information relating to each client is typically stored in
an HTTP session, which is identified by a unique identifier that is associated with

an HTTP cookie. The amount of data stored in a session should be minimised, as

- 108-

Chapter 5 Proposed Framework

session data is usually shared, and as such it must be serialised. Serialisation also
involves serialising all objects that are reachable from the session. In Java,
serialization is a memory intensive operation. |If persistent sessions are
implemented the serialized session data must be stored in a database, which
introduces further overhead as session data is stored as a Binary Large Object
(BLOB). The use of sessions can be avoided by implementing any of the

following:

» Using hidden form fields, or cookies, to store session data.
e Storing data directly in a database, as using native data types instead of
serialized BLOBs can produce better performance.

* Entity Enterprise Java Beans (EJBs) can be used to store session data.

553 Servlets and Java Server Pages (JSPs)

« Minimize the use of the “<jsp: include>"tag, since each included JSP is a

separate servlet.

« The “<jsp: usebean>"tag should only be used to obtain a reference to an
existing object, rather than for creating a new object. When a *“<jsp:
usebean>” tag is encountered and an existing Java bean object with the
appropriate name does not exist, a new one is created. This is usually done
by a call to the Beans.instantiateO method which is an expensive operation

because the JVM checks the file system for a serialized bean

* When executing a JSP, a session object is normally created implicitly if one
does not already exist. However, if the session is not required, creation can

be avoided by the use ofthe “<% @ page session="false” %>"directive.

55.4 Logging

Logging on a system is an important tool, not only for isolating an action which
caused a systems failure, or to assist in the recovery of that failure, but also to
provide an ‘audit trail’ for a user to track his/her actions. When employing logging
on a system, it is important to determine if the level of logging is adequate for

system recovery. However excessive logging can utilise too much processing time.

-109-

Chapter 5 Proposed Framework

Regardless of logging levels, applications should Ilimit wuse of the

SystenuoutprintinQ command, as I/O provides excessive performance overhead.

555 Enterprise Java Beans (EJBs)

There are a number of performance considerations that need to be taken into

account when using EJBs:

e Obtaining EJB references involves a lookup process, which can take a
relatively long time. Caching any obtained references can improve

performance on subsequent lookup operations.

e« All access to Entity EJBs should be performed through stateless session
beans, as this greatly reduces the number of remote method calls. Calls to
EJB methods are implemented as remote method calls even if the EJB

exists in a container that shares the same JVM as the Web container.

* Accessing entity beans from session beans can limit the number of

transactions.

e If an entity bean has methods that do not update attributes (i.e. getter type

methods), specify these methods as read-only in the deployment descriptor.

* The use of stateful session beans should be avoided. If they are to be used,

they should they should be keptto a minimum if possible.

5.5.6 Database Access

When accessing a database, obtaining and closing a connection to a database using

Java Database Connectivity (JDBC) can be a relatively expensive exercise.

e« Using connection pools can significantly reduce overhead. A connection
pool contains a (defined) number of connections to the database that have
already been established. When a database operation is to be performed, a
connection can be obtained from the pool. Similarly, when the connection

is closed, itis returned to the pool and made available for reuse.

-110-

Chapter 5 Proposed Framework

5.5.7

JDBC resources should always be released once they are no longer
required. Failure to properly close resources can cause memory leaks, and
can cause slow response due to threads having to wait for a connection to

become available from the pool.

If an application repeatedly executes the same query, but with different
input parameters, then performance can be improved by using a

java.sql.PreparedStatement instead ofjava.sqLStatement.

General Coding Considerations

The use of string concatenation, which involves the creation of new strings

with the data copied from the original strings, i.e.

String concatString = origString + newString;

Concatenating strings is a slow process and it also creates more work for the
garbage collector. Using java.lang.StringBuffer as an alternative to

java.lang.String can improve performance, e.g.

String concatString = new StringBuffer(origString)
.append(newsString).toString();

When creating classes, the structure of the class should not be excessively
complicated as there is a performance overhead in loading and instantiating

these classes.

Avoid excessive and repeated casting. Once an object has been cast, assign a

variable ofthe correct type and reuse this reference.

W hen iterating n items, iterating from n-1to 0 instead of 1to n is quicker for

most JVMs

Avoid repeatedly calling the same method within a loop if the result is the
same every time. As an alternative, store the value in a variable prior to

entering the loop and use this stored value for each iteration of the loop.

Chapter 5 Proposed Framework

* Use the System.arraycopyQ method to copy the contents of one array to
another rather than iterating across each array element and copying it

individually.

 Exceptions should be mainly used for infrequent error conditions, and their
overuse should be avoided, unless the exception checking is performed with

the aid oftry/catch blocks, as this is not particularly performance intensive.

e Input/output (1/0) to peripherals takes time and should be limited. A counter
that says ‘XX % complete’ is inefficient and should not be used inside a loop.
Should a warning or message to the user be required, general messages like

‘please wait while process completes’ will perform better.

5.6 Billing4Rent Disaster Recovery

When implementing a Disaster Recovery (DR) Plan for Billing4Rent it is worth
acknowledging that the impact of a disaster situation would have a twofold effect:
not only would B4R clients experience service interruption, any outage may also
impact the customers of those clients. The ability to quickly recover client data after
a disaster is an important component in delivering high levels of availability in an
ASP environment. When implemented correctly, a proper DR plan allows for a quick
restoration of an organisations’ IT services, usually implemented by making a
backup of servers and files critical to the organisation, and quickly restoring those
files in the event of a disaster. However, simply making a backup of data does not
constitute a complete disaster recovery plan. In the event of an organisations offices
being destroyed, if the backups are held at the same location as the servers the data

was backed up from, both the servers (and the backup) may be irrecoverable.

5.6.1 Billing4Rent Backups

Backing up files means copying files to a second medium (i.e. a disk or a tape), as
a precaution in case the first medium fails. Even the most reliable system will
break down at some stage; therefore it is vitally important that files are backed up

regularly. Regardless of the commercial software used for Disaster Recovery,

-112-

Chapter 5 Proposed Framework

Billing4Rent should create two copies of each backup; one copy should be stored
on-site in close proximity to the servers that are backed up. This ensures quick
recovery in the case of a (relatively) minor disaster such as a hard disk crash. The
second copy of the backup should be stored off-site, in an entirely different
location to the Billing4Rent servers. If a critical failure occurs in which both the
B4R servers and the on-site backups are destroyed, there will still exist a copy of

the backup in a different geographic location.

It is important that the copies of backups are made daily and are up to date; as the
nature of Billing4dRents clients means they would be unable to cope with losing a
few days, or a week worth, of business data. A full backup should be made once a
week, and daily incremental backups should be taken. A full backup of B4R
systems would be a time, and processing intensive operation, whereas an
incremental backup (which only backs up the data that have been modified since
the previous backup) would not have the same impact to B4R service performance.
Full backups are more time-intensive, however in the aftermath of a disaster, only
one full restore operation needs to be carried out in order to completely re-establish
an organisations data system. With incremental backups, the last full backup needs
to be applied first, followed by each additional incremental backup in sequence. If
the B4R system were to suffer a disaster on the sixth day of the week, to complete
the restore process would require applying one full backup, and a maximum of six

incremental backups.

5.6.1.1 Offsite DR Location

As was noted in the previous section, two copies of each backup should be made,
with one copy stored in an off-site location in order to preserve B4R data in the
event of a critical disaster. The second site should be in a different city to the
original, to legislate against a large-scale disaster such as a power outage
affecting an entire city. Due to the nature of Billing4Rent clients, only a short
service interruption would be tolerated. Therefore Billing4Rent should, at a
minimum, implement an active secondary site with the ability to resume B4R
services as quickly as possible in the event of an outage in the primary B4R site.
In order to implement such a recovery solution, a high bandwidth connection

between the two sites would need to be established (see Figure 5.21).

- 113-

Chapter 5 Proposed Framework

Figure 5.21: B4R Disaster Recovery Solution

Backups taken on the primary site could be quickly transferred to the
secondary site and applied to the secondary sites systems. Such a solution
would provide a Disaster Recovery solution with the ability to quickly recovery

from a system outage, with a maximum ofone day’s data loss.

5.6.2 Disaster Recovery Policies

Within the Billing4Rent organisation, a person should be assigned as Disaster
Recovery Manager. The Disaster Recovery Manager has the sole responsibility of
designing and implementing disaster recovery plans and policies. The following

tasks are the responsibility ofthe DR manager:

» Create a Disaster Recovery Plan (DRP): A Disaster Recovery Plan is a
comprehensive set of processes to be implemented before, during and post
disaster. The primary goal of any DRP is the restoration of normal system
activities as quickly as possible. The plan should be thoroughly tested to
ensure the continuity of operations and availability of critical resources in the
event of a disaster. In order to create a DRP, the DR manager must have a
clear understanding of the Billing4Rents infrastructure and how all of its
resources are interconnected, as well as how B4R clients (and their customers)
would be affected in the event of a disaster. Secondly the manager must assess
B4R for vulnerabilities: contingency planning, operating procedures, physical

space and equipment, data integrity.

-114-

Chapter 5 Proposed Framework

e Maintain and update DRP: When a DRP has been created, it is important
that the plan is re-evaluated annually, or semi-annually. As Billing4dRent

evolves and changes, it is vitally important the DRP also evolves.

* Create a DR team: The DR manager should appoint a team, responsible for
implementing the DR plan in the event of a service interruption. Each team
member should be made familiar with the Policies and Procedures specified in
the DRP. The DR manage should also train team members with regard o the

plan ifrequired.

e Test the DRP: The plan should be tested annually in order to test its
effectiveness in the face of a disaster situation. All Procedures used to test the
plan should also be documented. The goal of DR testing is to provide
reassurance that all necessary steps are included in the plan. Testing will not
only highlight areas of the plan that are inadequate, it may also demonstrate
the ability of B4R to recover from a disaster situation (and provide a ‘selling

point’ to attract new clients).

Any Disaster Recovery Plan should be evaluated and approved by B4R. In the event

of a disaster, the DR manager will have the following responsibilities:

 Damage Assessment: In the aftermath of a disaster, the first task of the DR
manager will be to assess the extent of the damage to B4R facilities and
systems. The ability of B4R to continue to provide billing services to clients

should be evaluated.

* Notification: The DR manager will be responsible for providing initial

notification of disaster to:

1) Disaster recovery team members.

2) B4R Management

3) B4R Clients. In the event of a disaster it may be appropriate to
notify clients of the service interruption, in order for them to be

able to further notify their own customers.

-115-

Chapter 5

Proposed Framework

4) Admin team. If B4R implements a secondary DR site, it may be
necessary for some DR team members to travel to the secondary
site. Accordingly, travel and accommodation arrangements for

designated teams members will have to be made.

* Co-ordinate Recovery Teams: The DR manager will co-ordinate all recovery

processes and direct team members where appropriate. He / she may have to

authorise any necessary purchases in order to complete the recovery process.

5.6.3

Disaster Recovery Prevention

A good preparation for Disaster is to implement policies to prevent a disaster

situation in the first place. Accordingly, B4R should implement some, or all of the

following:

Good Housekeeping: The building where B4R is located should be kept
clean and free of obstructions and fire hazards. Loose paper bums at a
quicker rate than large, tightly bound books, directories etc. Therefore a ‘tidy
desk policy’ should be implemented to remove loose paper from desktops to
reduce losses due to fire. This will also help to protect documents from

sprinkler discharge and other incidents.

Ban non-essential electrical items: In order to eliminate overloaded
electrical circuits, B4R employees should be prohibited from using non-
business electrical appliances such as radios, heaters, fans, mobile phone
chargers etc. These appliances could cause electrical fires by overloading

circuits not designed for these appliances.

Security: Security procedures should be implemented in the B4R facility in
order to prevent unauthorised persons gaining access to B4R and purposely

causing a system outage.

- 116-

Chapter 5 Proposed Framework

5.7 Chapter Summary

Chapter five proposed an ASP framework for BillingdRent. The functional
requirements for developing the Billing4Rent ASP were outlined. The prototype was
to provide the platform on which all recommendations or proposals will be
implemented and allows these proposals to be analysed and quantified in an
objective manner. Accordingly, this chapter detailed the B4R prototype, which
consists of a B4R client website, where clients can add, remove, update customers,
products / services, and invoices. A second ‘Administrative Interface’ was created in
order to manage and administer the B4R ASP prototype. This Administrative
Interface incorporated various availability and scalability components and allows
authorised B4R personnel to create and manage user accounts for clients. From the
Administrative Interface, authorised personnel can also create users, view statistics
relating to B4R storage media {i.e. Database or Filesystem) usage, as well as view
audit and error logs. In order to Monitor B4R, users can launch a Monitoring
program which collects statistics about BillingdRent such as page hits, page

completion times etc

This Chapter also detailed a Proposed Network Architecture for Billing4dRent, and
de-composed the proposed architecture into its constituent parts. Various
recommendations for those parts were also suggested, as well as source code
optimisations in order to improve B4R performance were also detailed. Finally,
documented in this chapter was a Disaster Recovery Plan suitable for restoring
service not only to Billing4Rents clients, but also to their customers in the event of a

disaster situation.

- 117-

SECTION FOUR

Research Evaluation

Chapter 6 Research Evaluation

Chapter Six: Research Evaluation

This chapter provides an evaluation of the proposed framework detailed in the
previous chapter. The evaluation considers the real world implementation,
Billing4dRent, and how it performs in comparison with accepted industry
benchmarks. Also considered are the frameworks and recommendation for High
Availability and Scalability detailed in chapter five. The appraisal will be conducted

along the following criteria:

 Fulfilment of objectives.
e Comparison of the individual components of BillingdRent with accepted

industry benchmarks and / or related technologies.

This chapter also provides a recommendation for the deployment of Billing4Rent, as

well as justification for this proposal.

6.1 Fulfilment of Objectives

The aim of this project is to develop a framework, including the architecture and
system configuration required, to ensure High Availability (HA) and Optimum
System Performance in an Application Service Provider (ASP) Envimoment. This
thesis commenced with an investigation into the current state of Application Service
Provision. Chapter Four examined High Availability and Scalability, while Chapter
Five proposed a framework for Availability, Scalability and System Performance,
which can be adopted by ASPs going forward. The prototype ASP, Billing4Rent
(B4R), provided the real world platform on which the proposals arising out of this
body of research were implemented. The B4R prototype allows the research to be
objectively analysed and quantified in a real world environment. In addition to the
B4R prototype, an Administrative Interface was also created in order to administer

Billing4dRent and to incorporate availability and scalability components.

-119-

Chapter 6 Research Evaluation

Internet

Requests

6.1.1 BillingdRent Architecture

The architecture of B4R defines its broad outlines, and can refer to either hardware
or software, or to a combination of both. When designing a system architecture,
there may be a trade-off between cost and performance. Figure 6.1 illustrates the
BillingdRent network architecture proposed in Chapter Five. Each network
connection in the proposed architecture should include a redundant component.
However, these redundant components are not evidenced in the diagram in order to

aid clarity.

Singl.eView

DMz

Figure 6.1: Billing4dRent Architecture

When designing a HA system, one of the most important considerations is
removing Single Points of Failure (SPOF). As outlined by Marcus and Stem [53], a
SPOF is a single component of a system {i.e. hardware, firmware, software or
otherwise) whose failure will cause some degree of downtime. Equally, in their
article “Architecture and Dependability of Large-Scale Internet Services”,
Oppenheimer and Patterson [43] likened SPOFs to the weakest link in a system;

when that link breaks the entire system fails. Most systems have obvious potential

- 120-

Chapter 6 Research Evaluation

SPOFs (i.e. servers, disks, network devices and cables). For most systems, a
significant protection against SPOFs is achieved via redundancy. However, the
cost involved in introducing redundancy into an entire system may be prohibitive.
In the above architecture, all major components of the system have redundant
components (Load Balancing Switch, HTTP Server, Application Server, E-mail
Server and Database Server). There are, however, obvious SPOFs in the above
configuration - there is no redundancy built into either Firewall | or Firewall 2.
This design was intentional, as each firewall acts as a redundant component for the
other. For example, if Firew alll were to stop functioning, the only section of the
B4R enterprise exposed to the public Internet would be the HTTP server and the E-
mail server in the De-Militarised Zone (DMZ). Only machines with very limited,
well understood, and logged services are placed in the DMZ. Firewall _2 would still
protect the business logic contained in the application server and client data stored
on the database server. Similarly, should only Firewall_2 cease activities, the entire
B4R enterprise would still be protected from the public Internet by Firewall I. The
B4R service would not experience any unnecessary downtime while either of the

Firewalls are being replaced or repaired.

In the architecture outlined in Figure 6.1, the precise number of redundant
components is not shown. Instead, the redundant component(s) are referred to as
component n. While the precise budget available to Billing4Rent to provide high
availability is unknown at this point, the proposed architecture is an optimal
configuration, designed to scale up (or down) in order to respond to changing
workloads. However, in the opinion of this author, the minimum number of
redundant components should be one, to provide a hot standby in the case of the
primary component developing a fault. This will allow the standby component to
seamlessly assume the workload of the primary component without any noticeable
loss of service to the end user. Should this be the case in Billing4dRent it is vitally
important (as Gray and Siewiorek [41] point out) that the spare component be
installed and configured in advance so that when one component fails the
redundant component can replace it almost immediately. This allows the failed
component to be repaired off-line while the system continues to deliver service. In
the case of a database server, it may be necessary, in order to assure it is

transactionally consistent, to copy data immediately to the backup database server.

-121 -

Chapter 6 Research Evaluation

W hile this may introduce further overhead on a system, its primary benefit will be
a secondary server, which can be brought into operation quickly, minimising B4R

downtime.

The proposed architecture for Billing4Rent has been designed with scalability in
mind. In the words of André Bondi [61], scalability is “the ability ofa system to
accommodate an increasing number of elements or objects, to process growing
volumes of work, and/or to be susceptible to enlargement\ Jogalekar and
Woodside [60] further advance this definition by stating that the new configuration
should not just operate, but operate efficiently and gracefully when dealing with
increased capacity. For example if - in order to accommodate an increased
workload - an additional HTTP server were required to supplement the HTTP
servers currently deployed in the DM Z depicted in Figure 6.1. In order to integrate
the new HTTP server (which has the same configuration as the existing server), the
system administrator only has to update the routing table on both the primary and
redundant load-balancing switch to declare the new HTTP server ready to handle
client requests. Similarly, should a new Application server be introduced to B4R, it
would simply require configuration changes on all the HTTP servers to reflect the
additional Application server. Finally, should a redundant E-mail or Database
server be required, the existing Application servers would have to be updated to

reflect the newly added hardware.

6.1.2 Model / View / Controller and The B4R Prototype

The Billing4dRent prototype was developed using Java, Java Servlets and Java
Server Pages (JSP). The prototype has an Oracle 9i RDBMS backend to store
client and administrative data and runs in a Jakarta Tomcat web-container. The
prototype was developed using the Model / View / Controller (MVC) design
pattern, which consists of three components:

« Model: Holds all data, state and application logic.

e View: Provides a presentation ofthe model.

* Controller: Defines the way the User Interface reacts to user inputs.
The advantage of the MV C design pattern (as advocated by Yonglei Tao [84]), is

that it is designed to provide multiple views of the same data. This means that the

- 122-

Chapter 6 Research Evaluation

various components of the BillingdRent prototype can be interchangeable. Figure
6.2 illustrates how MVC works on an online Billing4Rent transaction (adapted

from [85]).

Figure 6.2: MVC in a B4R Transaction

1) A client, via a web browser makes a HTTP request. The request can
commonly contain form data (such as usernames / passwords). A servlet

receives the form data.

2) The servlet acts as the controller and processes the request. In most cases

this processing involves making requests on the database (or model).

3) & 4) The controller obtains the data from the Database and forwards
it to the JSP whose job is to generate the page representing the

view ofthe model.

5) The view returns a page to the browser viaa HTTP response.

The above transaction displays a separation of model, view and controller during
the completion of a Billing4dRent service encounter. The B4R prototype was
designed using MV C and Java Interfaces which allows any / all components to be
interchangeable. This effectively,future proofs Billing4Rent by making it possible
to change any component. For example, should a newer, more powerful, data
storage medium with the capacity for larger numbers of transactions per second

become available it would be relatively straight forward to change the way B4R

- 123 -

Chapter 6 Research Evaluation

handles data storage to utilise the newer medium. Due to the fact that B4R used
Interfaces, a class designed to interact with the new storage medium would only
have to implement the writeDataO, retreiveDataO, deleteDataO etc methods in

order to harness the power ofthe new date storage mechanisms.

6.1.3 B4R and Code Optimisation

Code optimisation allows (according to Cutts el al [86]) “an executing system to be
incrementally improved' in order for it to run as fast as possible. Designing
BillingdRent with optimised code will provide improved performance. As
evidenced in the research contribution chapter (pp 79-123), various
recommendations were made to optimise B4R (which was developed using Java,
Servlets and JSP), and those recommendations (both Java specific and general)

were implemented where possible.

6.1.3.1 Memory Usage

The Garbage Collector performs memory management automatically in Java in
order to remove objects no longer required by B4R. The more objects that are
allocated will potentially result in more frequent and longer garbage collections.
Objects in Billing4dRent are only created when they are required. For example,

calls to create new invoice objects...

B4RinvoiceDetails invoice = new rdbmsB4RinvoiceDetails(debug,

B4RAuditDatabase, BARAuditUser);

...are only made when B4R interacts with invoices and at no other time.

Consequently, this displays

6.1.3.2 Session Management

In a Web application, state information relating to each client interaction is
typically stored in an HTTP session. The amount of data stored in a session
should be minimised, as session data is usually shared, and as such it must be

serialised. One method proposed to store session data is the use of hidden form

- 124-

Chapter 6 Research Evaluation

fields in JSPs to store session data. Figure 6.3 (a code extract from the
clientNewinvoice.jsp page) illustrates the use of hidden form fields. This

proposal has been adopted throughout the Billing4dRent prototype.

Code Extract from: clientNewinvoice.jsp

<td width="25%" class="requiredinput">

<%

if (session.getAttribute("invoicelD") = null)
{
String invID = (String) session.getAttribute("invoicelD");
%>

<inputtype="TEXT" name="invoicelD" size="30" value="<%=invID%>"
disabled="TRUE"></input>

<input type=MHIDDEN" name=""invoicelD" size=""30"
value=""<%-=invID%>"x/input>

<%

}

else

{

%>
<input type="TEXT" name="invoicelD" size="30" disabled="TRUE"/>

<% } %>
</td>

Figure 6.3: Hidden Form Fields used in B4R

6.1.3.3 Logging

Logging on a system is an important tool, and can be used for:

e Isolating an action which caused a system failure

. Assisting in the recovery ofthat failure

e Providing an ‘audit trail’ for a user to track his/her actions.
There are however disadvantages to excessive logging. For example, if the
logging program is too complex, it may consume excessive CPU time and
memory. Similarly, if the logging program blocks when writing the logs, there is
a possibility of causing a denial of service on the system. When employing
logging on a system, it is important to determine if the level of logging is

adequate for system recovery. Billing4dRent provides for logging to be

- 125-

Chapter 6 Research Evaluation

configurable: logging can be turned on / off by setting a field (b4r.debug) in the

B4R .properties file (Figure 6.4).

t. TeKtPad - [C:‘ljakarta~tomcat-5.5.9\webapps\b4r\WEB INFVcla*ses\B4R.prt>pertitis

iS) Fte Edit 5earch Miew Tools hlacros Configure Wffidow Help lifl x|
ila?(0] il# ElHi Jjjtelel i In
alir $1 B (ftfgpi . i* \?

+1 %) db url=jdbc:oracle:thin:@ localhost:1521 B4R
db.user=SYSTEM —
db.pass=research
b4r.debug=true
b4r .monitorServilet=true
b4r .monitorSQL=true

d*J
ANSI Chaacteis N
33 1
34 " Z3
35 «
36 $
37 X
38 &
39
@ (31 hi i>r
|For Help, press FI 6 | 20 |[Feed |uvi |Blogs

Figure 6.4: BAR.properties

The properties file is read by the B4R application and depending on the setting,
logging is performed. When logging is performed, it can also be configured to
log all messages or to just log messages with a high priority. This allows B4R to
monitor the performance impact of logging and adjust the logging level as

necessary - a significant design feature.

6.1.3.4 Database Access

In Java, accessing a database (obtaining and closing a connection to a database)
using Java Database Connectivity (JDBC) can be a relatively computationally
expensive exercise. Consequently, Chapter Five recommended that JDBC
resources should always be released once they are no longer required, as failure
to do so can cause memory leaks. The following code extract illustrates how this

is implemented in practice...

Code Extract from; rdbmsB4RloggerDetails.java

// Connect to the B4R database
B4Rdb.connectQ;

-126-

Chapter 6 Research Evaluation

/I Execute the SQL statement
stmt = B4Rdb.getStatement();
stmt.executeUpdate(SQLstatement);

/I Disconnect and close the B4R database connection
B4Rdb.disconnect();

Figure 6.5: Closing B4R resources

6.1.3.5 General Coding Considerations

It was recommended in Chapter five that string concatenation be avoided where
possible as the use of string concatenation involves the creation of new strings
containing the data copied from the original strings. Concatenating strings is a
slow process and it also creates additional work for the garbage collector. Using
java.lang.StringBuffer - as an alternative to java.lang.String - can improve

performance, and the B4R source code reflects this by using this alternative e.g.

Code Extract from: B4RviewLogger.java

String errmsg = new StringBuffer("[B4RviewLogger] ")
.append(e.getMessage())
.toStringO;

6.1.4 Disaster Recovery

Disaster Recovery is a vitally important component in delivering a Highly
Available system. As noted in the literature review (according to Jon William
Toigo [63]), Disaster Recovery (DR) and disaster recovery planning, consists of a
set of activities aimed at not only reducing the likelihood of a disaster on critical
systems, but also minimising their impact. In an ASP environment, downtime will
have a two-tier effect. The first tier affected are the clients directly receiving
service form the ASP. The second tier are the customers of those clients who will
experience the knock-on effect of the ASPs downtime. Typically, in a disaster
situation, users are aware that an outage has occurred. However, due to the multi-

tiered business model of an ASP, the second tier of customers may not be aware

-127-

Chapter 6 Research Evaluation

that the service provider has been compromised. It was advocated in the research
contribution (chapter five) that a role be created (i.e. a Disaster Recovery Manager)
with the sole responsibility for Disaster Recovery and Disaster Recovery Planning.
One of the tasks identified for this DR manager would be - in the event of a
disaster - to notify clients of the service interruption. Due to the nature of an ASP
business model, this allows Billing4dRents clients to notify their own customers of
the service interruption, thereby minimising the ‘bad press’ that inevitably arises as

aresultof downtime.

Gregor Neuga, et al [50] identified two different measurements in which Disaster
Recovery can be quantified: data loss and service loss. Data loss refers to the
amount of data an organisation loses as a result of a disaster and is often expressed
in how much work must be re-executed once the system has been restored to return
all data to previous levels. Service loss refers to the loss of an organisations IT
systems (usually from the moment of disaster, right up to the moment the system is

restored to normal operation).

When deciding which Disaster Recovery Solution to implement it is important that
Billing4dRent estimate the exact cost of downtime in monetary terms, which will
allow B4R to establish a DR budget. Figure 6.6 presents a formula put forward by
lan Masters [87], and also referred to in NSI Software’s whitepaper on business

continuity [66], to estimate the cost of downtime.

Downtime Estimate Formula

Productivity Impact + Revenue Impact
= Downtime Estimate

Productivity Impact: Average worker rate or salary x estimated
number of business hours the users would be impacted

Revenue Impact: Average monthly gross revenue for the
critical application x number of business hours the application
is impacted

Figure 6.6: Downtime Estimate Formula

-128-

Chapter 6 Research Evaluation

Productivity impact can be calculated on the basis of the average employee salary
or rate multiplied by the number of business hours the users are likely to be
impacted. Revenue impact can be calculated on the basis of the average monthly
gross revenue for the critical application multiplied by the number of business
hours that the application is affected. These are then added together to achieve the
estimated cost of downtime. Consider the following estimates from the

BillingdRent Innovation Partnerships proposal document [1]:

Number of Clients subscribing to Billing4Rent: 500
Number of Customers per Client: 5000
Monthly rental fee per Customer: €1
Potential monthly revenue for Billing4Rent: €2,500,000

Should a system experience a service interruption of 10 minutes (which is all a
system designed for 99.9% HA can tolerate on a weekly basis [41], [44], [45],

[48]), the estimated cost of downtime would be €422,510:

Average worker salary (estimated): €30,000

Length Users Impacted: 0.167 hours
B4R Monthly Revenue (estimated): €2,500,000
Length Application Impacted: 0.167 hours

Cost of Downtime: 30,000 * 0.167 + 2,500,000 * 0.167 —€422,510

As is evidenced in the above figures, the potential revenue loss to Billing4Rent in
the event of a service outage is considerable. However, it worth noting that the
Downtime Estimate Formula is commonly used to estimate downtime in a ‘real-
time’ system, where continuous operation is essential to an organisation (e.g. a
mobile telephone operator). Due to the batch-processing nature of B4R
transactions, it is conceivable that a 10-minute interruption to Billing4Rent services
would not impact B4R clients to the same degree as a real-time system.
Consequently, the estimated cost of downtime for BillingdRent could be
considerably lower than €422,510. Regardless of the estimated cost of downtime,

the Disaster Recovery solution in place must be adequate to quickly restore service

- 129-

Chapter 6 Research Evaluation

operations. The DR solution proposed for BillingdRent equates to level six in the
Seven Levels ofAvailability proposed by the IBM associated SHARE organisation
[68]. Level six in the Seven Levels of Availability guidelines applies database
updates to both the local and remote copies of the databases with a single commit.
A commit is not completed until both the primary and secondary locations are
updated. Level six requires hardware on the secondary platform with the ability to
accept the workload ofthe primary site during an outage. The typical recovery time

associated with Level six is usually less than 12 hours.

In a worst-case scenario, should the Billing4Rent organisation be inoperable for 12
hours, the potential cost of downtime could be considerable. Therefore, it may be
necessary to implement Level seven of the Seven Levels of Availability, which
guarantees zero data loss. In the event of a disaster, an immediate and automatic
transfer of operations is made to the secondary site, resulting in a typical recovery
time of only a few minutes. The associated cost of implementing Level seven may
prove prohibitive to many organisations, but with the potential cost of downtime
resulting in €422,510 for every 10 minutes Billing4Rent is inoperable, it could well

be, in the opinion of this author, an expenditure well worth making.

6.2 B4R Prototype and Accepted Benchmarks

The following section details accepted benchmarks for the various components of
Billing4Rent. When taken separately, each component is a proven, industry-leading
product, which delivers high levels of performance. Therefore, the use of these
components in Billing4Rent guarantees a high level of performance for the B4R

service as a whole.

6.2.1 Oracle Database

The Transaction Processing Council (TPC) [88] is a non-profit organisation
founded to define transaction processing and database benchmarks. One of the
benchmarks the TPC use to evaluate Database performance is known as TPC-C,

where transactions are executed against a target database and their throughput is

- 130-

Chapter 6 Research Evaluation

measured. The TPC-C benchmark simulates the activities of an order-entry
environment (i.e. transactions include entering and delivering orders, recording
Payments, checking the status of orders, and monitoring the level of stock at the
warehouses)f. Therefore the TPC define throughput as “how many New-Order
transactionsper minute a system generates while the system is executingfour other
transactions types (Payment, Order-Status, Delivery, Stock-Level)”. The primary
metric produced is the transaction rate (tpmC). A system exhibiting a tpmC of 500
is capable of generating 500 New-Order transactions per minute, while
simultaneously executing the rest of the TPC-C transaction workload. The database
chosen for the B4R prototype is the Oracle database [75], version 9i. Similarly, the
billing and transaction engine Singl.eView, to be incorporated into the B4R service
also runs on an Oracle RDBMS. The current TPC benchmark for Oracle 9i,
running on a HP-UX Ili UNIX machine, is 423,414 tpmC - 423,414 New-Order
transactions while simultaneously executing the rest of the TPC-C transaction
workload. This figure shows Oracle to be a reliable, industry leading RDBMS
solution, capable of providing Billing4dRent with sufficiently high levels of

performance.

Additionally, should BillingdRent upgrade to Oracle 10g in the future, it is notable
that Oracle 10g is capable of 1,601,784 tpmC - 1,601,784 New-Order transactions
while simultaneously executing the rest of the TPC-C transaction workload, and
was the first RDBMS to exceed one million transactions per second [89] in

November 2003.

t The TPC stress that it is not their intent to specify how to best implement an Order-Entry system.
While the benchmark simulates the activity of a wholesale supplier, TPC-C is not limited to the

activity ofthis particular business segment.

Chapter 6 Research Evaluation

6.2.2 Jakarta Tomcat Webserver

The Standard Performance Evaluation Corporation (SPEC) [90] is a non-profit
corporation formed to establish and maintain standardised set of benchmarks,
which can be applied in high-performance computing. One of the SPEC
benchmarks is SPECweb2005, which can be used to evaluate the performance of
Webserver’s. SPECweb2005 measures the maximum number of simultaneous
connections a secure web server is able to support while still meeting specific

throughput and error rate requirements, i.e.

* Simultaneous user sessions
e« Dynamic content (i.e. JSP and PHP)
 Page image requests using 2 parallel HTTP connections
* Simulates standard workloads -
o Banking (HTTPS)
0 E-commerce (HTTP and HTTPS)
0 Support (HTTP)
 Simulates browser caching

. File accesses

SPECweb2005 results are measured in simultaneous user connections. The
Webserver used for the BillingdRent prototype is the Jakarta Tomcat [76] web-
container. The overall SPEC benchmark for Jakarta Tomcat using Tomcat version
5.5.9, on a Dell PowerEdge 2850 server with a SUSE Linux Operating System (OS)
is 7881. The benchmarked figure indicates that Tomcat is capable of 7881

operations per second.

6.2.3 Java Virtual Machine

Another benchmark provided by The Standard Performance Evaluation
Corporation (SPEC) is used to measure the performance of Java runtime
environments. SPECjbb2005 is designed to emulate a 3-tier web application and,
as in the previous SPEC benchmark - the system modelled is a wholesale company.

The benchmark simulates a users interaction with the wholesale company (i.e.

-132-

Chapter 6 Research Evaluation

placing new orders, requesting the status of an existing order). Additionally, the
wholesale company itself also processes orders for delivery, entering customer
Payments, checking stock levels, as well as the ability to request a report on any
user. For the benchmark test, users map directly to Java threads, which execute
operations in sequence. As the benchmark test runs, the number of threads
increase. For Billing4dRent, the JVM used was Sun Microsystems Java Platform,
Standard Edition (Java SE, formerly known as J2SE) [74], version 1.5.0 06. The
performance of JVMs is measured in Business Operations Per Second (BOPS), and
a Java Runtime Environment (version 1.5.0 06) running on a SuSE Linux
Enterprise Server 9 was benchmarked at performing 26,698 operations per second.
The following table (Figure 6.7) provides a summary of the benchmarks achieved

for the various components used in the B4R prototype.

Component Technology Hardware Metric Date
Oracle 9 HP 9000 423,414 August
Superdome tpmC 2002
Database
1,601,784 .
Oracle 10g IBM eServer April 2005
tpmC
7881

Jakarta Tomcat Dell PowerEdge September

simultaneous
Webserver 5.5.9 2850 . 2005
connections
Java SE February
JVM Tyan S2865 26,698 BOPS

(1.5.0_06-b05) 2006

Figure 6.7: Component Benchmark Summary

6.3 Outsourcing B4R Deployment

An organisation may outsource to another company (e.g. a consultancy firm or an
Application Service Provider), to provide a service that - although the organisation

has the ability to provide itself - can be accomplished more efficiently or more cost

- 133 -

Chapter 6 Research Evaluation

effectively when performed using a third-party resource. According to Claver et al
[91], in Information Technology (IT) terms, outsourcing “means that the physical
and/ or human resources related to an organisations information technology needs
are supplied and / or administered by an external specialised supplierAn
outsourcing contract can be for a temporary period of time or can run indefinitely.
Equally, organisations can outsource all of their IT needs or only parts of it. The
primary reasons for outsourcing suggested by Lonsdale and Cox [92] include the

following:

* Focus resources on core activities: for example, an insurance company
which outsources its IT needs (e.g. e-mail or data storage) will have greater
resources available to devote to activities critical to their business like

customer interaction, and offering reduced premiums.

e Cost reduction: IT outsourcing can save an organisation 20% - 25% over
maintaining the same applications in house (reports Kate Gerwig [93]), while
Ravi Patnayakuni and Nainika Seth place the cost savings (upfront and total)

at between 30% and 70% [22].

* Innovation: Patnayakuni and Seth also allude to the fact that outsourcing IT
operations allows organisations to have access to state-of-the-art hardware and
software from the outsourcer [22]. An outsourcing company can afford to
provide up-to-date software and hardware as well as the newest upgrades as

the total cost of providing new solutions is spread across multiple customers.

* Awvailability, Scalability and Performance: Organisations who provide IT
outsourcing capabilities will generally invest heavily in backup and redundant
systems in order to minimise service disruption. In most cases (as Walsh [20]
notes), these safeguards are above and beyond what many small to midsize
companies can afford. Tao [24] also subscribes to this view and suggests that
providers do a better job of ensuring 24 /7 application availability than
customers could. Additionally, organisations can scale up and down based on

actual usage [22],

- 134-

Chapter 6 Research Evaluation

6.3.1 Outsourcing Features & Benefits

The following list illustrates some of the features (co-location services) commonly
provided by outsourcing providers:
e 24 x 7 x 365 operation
e Full systems redundancy
* Heating Ventilation Air-Conditioning (HVAC) systems
« Redundant Power with UPS and generator systems
e Communications with multiple fibre routes
e Security
0 24-hour Security Guard in many cases
o CCTV monitoring
0 Intruder-detection systems
 Data storage in fire-proofcages

* Comprehensive Service Level Agreements

6.3.2 B4R Outsourcing

While it is feasible for BillingdRent to purchase and configure the equipment
necessary to provide Availability, Scalability and Optimal system performance, the
associated cost may make outsourcing the deployment of BillingdRent a more
attractive proposition. A hosting company able to deploy Billing4Rent in its data
centre will be able to do so for a fraction of the cost involved in self deploying
B4R. There are numerous hosting companies that guarantee 100% application
availability, scalability, comprehensive Disaster Recovery policies, and are able to
distribute the costs involved across multiple clients. Should there be a legal
requirement that Billing4Rent be located physically on Irish soil there are a number
of data centres available. An example of an Irish based data centre would be
DataElectronics [94], located in Dublin. See Figure 6.8 for breakdown of

DataElectronics Co-location package...

-135-

Chapter 6

Data Electronics Co-location Package

19” standard cabinet (42Ux600x900)
Redundant power (A&B)

Power guaranteed at 100% availability
A constant temperature is maintained
on the data centre floor by N+I Close
Control Units

All cooling charges (again up to
2.2KW) are included in the co-location
charges

Each cabinet has front and rear-locking
perforated doors

24x7 Access to the data centre.

Internal & external CCTV security.
Dual Fire Detection.

Extensive leak detection systems.

Research Evaluation

Managed Services
Managed Internet (100% availability)
Managed Security (Managed Cisco
P1X and Nokia Checkpoint)
Managed Load Balancing (Managed
Alteon load balancing service)
Managed Storage (Storage Area
Network on a High Availability Hitachi
SAN)
Managed Back-Up (Real-time and
encrypted Tape and SAN backup
solution offerings)
Managed Platforms (Windows, Unix,
Linux, Exchange, Citrix etc.)
Monitoring Services (All Server,
Telecoms and Software Systems
monitoredi

Figure 6.8: DataElectronics Co-location package

A selection of other Irish based data centres, offering similar services:

TeleCity [95]
Hosting365 [96]

Ketec [97]

Additionally, the following non-Irish based hosting companies could potentially

host Billing4Rent while offering 100% service availability:

FirstServ (London) [98]
Below Zero (Edinbrough) [99]
Verio (New York) [100]
PowerTel (Melbourne) [101]

PSINet (Paris) [102]

- 136-

Chapter 6 Research Evaluation

6.4 Chapter Summary

This chapter provided an evaluation of the proposed framework detailed in chapter
five. The evaluation was conducted in order to determine if the framework proposed
fulfilled its objectives. Secondly, the evaluation included a comparison of the

individual components of Billing4Rent, against accepted industry benchmarks.

In order to determine if the framework fulfilled its objectives, the proposed B4R
architecture was evaluated to ascertain if it displayed any Single Points of Failure,
whose occurrence could potentially cause downtime to the entire B4R system. The
design of the B4R prototype was examined and it’s use of the Model / View /
Controller architecture was highlighted. The prototype was also appraised to
determine if the recommendations for code optimisation outlined in chapter fire were
implemented. This chapter also evaluated the Disaster Recovery plan recommended
for BillingdRent and how the costs associated with downtime not only effect B4R
clients but also their customers. Consequently, this evaluation highlighted the fact

that a more comprehensive DR plan may be necessary.

Finally, this chapter also provided a recommendation for the deployment of
Billing4Rent in an external data center. This recommendation is justified not only by
the cost saving accruing from outsourcing B4R deployment but also from the

guarantees hosting companies give with respectto application availability.

- 137-

Chapter 7

Research Conclusion

Chapter Seven: Research Conclusion

The primary focus of this project has been the study and development of a

framework (including the architecture and system configuration required) to ensure

High Availability and Optimum System Performance in an Application Service

Provider (ASP) Environment. The ASP solution (BillingdRent) provided the real

world platform on which any recommendations or proposals arising out of the body

of research were implemented and allowed this research to be objectively analysed

and quantified in a real world environment. This thesis investigated the following

areas:

Application Service Provision: An Application Service Provider (ASP) is
a third party entity that deploys, hosts and manages access to an application
or service. The service is delivered to customers across a wide area
network (usually the public Internet), and applications are typically
provided on a subscription or rental basis. ASP has had many guises over
the years, from ‘Software-as-a-Service’ (SaaS), ‘on-demand’ computing,
as well as the current branding as ‘hosted application management’. ASPs
provide access to software on a one-to-many basis. Consequently, the cost
of ownership and maintenance of the solution is shared by several clients,
which introduces economies of scale for end users. Despite initial
projections, user uptake of the ASP model has been slow to materialise.
This is mostly due to the downturn of dot.com share prices in early 2000,
which caused the closure of many on-line service providers, and which
severely dented the confidence of many with regard to renting application
access. In the past few years however, uptake of the ASP model is
increasing - indeed current estimates on software-as-a-service spending

predict revenue of $15.2 billion by 2007.

High Availability: High availability refers to a system (or system
component) that remains continuously operational for prolonged periods of

time. The goal of a fault-tolerant application is to be available 24 x 7 x 365,

-138-

Chapter 7 Research Conclusion

which minimises potential losses that may be incurred if the application
suffers downtime. Typically, availability is measured relative to ‘100%
operational’ availability. For many organisations a desired level of
availability is 99.999%, commonly referred to as ‘five nines’. This level of
reliability, for a service running 24 x 7 x 365, equates to just over five

minutes of downtime per year, or six seconds downtime per week.

. Scalability: Scalability is the ability of a product - either hardware or
software - to continue to function appropriately when it is changed in size
or volume, usually to facilitate increasing workloads. In the majority of
cases, an application will scale to a larger size or volume in order to
accommodate a larger number of users and processes on a system. When
designing a scalable system, a common goal is to develop a system, which
not only functions in the rescaled environment but also takes advantage of

the additional resources in terms of increased performance.

7.1 Summary of Research Contribution

Chapter five detailed the proposed ASP framework. The functional requirements for
developing the Billing4dRent ASP were also outlined and an online Billing
‘prototype’ was developed. The aim of developing this prototype was to provide a
platform on which all generic recommendations or proposals could be implemented.
The B4R prototype consists of a B4R client website where clients can add, remove,
update customers, products / services, and invoices. Additionally, an ‘Administrative
Interface’” was created in order to manage and administer the B4R ASP prototype.
The Administrative Interface allows authorised B4R personnel to create and manage
user accounts for clients. From the Administrative site, authorised personnel can also
create users, view statistics relating to B4R storage media (e.g. Database or
Filesystem) usage, as well as view audit and error logs. A monitoring program is also
available and provides the ability to Monitor B4R and collect statistics relating to
page hits, page completion times etc. The research contribution also detailed the
Proposed Network Architecture for an ASP, and decomposed this proposed

architecture into its constituent parts. Recommendations for each of these parts were

-139-

Chapter 7 Research Conclusion

also suggested. Source code optimisations in order to improve the prototype system
performance were also detailed. Finally, Chapter Five also documented the detail of
a Disaster Recovery Plan suitable for restoring service to ASP tier-1 level clients and

their respective clients in turn in the event of a disaster situation.

The research contribution was subsequently evaluated in order to determine if the
proposed framework fulfilled its objectives. The proposed architecture was evaluated
to ascertain if it displayed any Single Points of Failure, the occurrence of which
could potentially cause downtime to the entire system. The design of the B4R
prototype (including the use of the Model / View / Controller architecture) was
highlighted and evaluated. The evaluation also considered the Disaster Recovery
plan recommended for BillingdRent and how the costs associated with downtime
affect clients and their customers. In the case of B4R, it was recommended that the
deployment of the service be outsourced to an external data center. Given the
background business model, this recommendation is justified across cost and service

level / availability criteria.

7.2 Research Conclusions

The Computing Industry has come full circle from Mainframe Batch Orientated
Processing of the 1950’s, 60’s and 70’s, through to batch orientated centralised
processing ASP’s such as B4R and others. Although the ASP business model came
to prominence during the late 1990’s, application hosting dates back to the 1960s.
Indeed, Electronic Data Systems (EDS) was one of the first ASPs, renting time on
their mainframe computers to customers who either could not afford a mainframe or
who did not have enough usage to justify the purchase of a dedicated mainframe
[103], Known as the first wave of outsourcing - or time-sharing [104] - commercial
organisations and educational institutions took turns renting mainframe-processing
capabilities. The mainframe performed all the processing and all memory and storage
resided on the mainframe. Access to the mainframe was via a ‘dumb terminal’. The
terminal, which was not capable of any processing, but relayed messages to and from
the mainframe. The time-sharing approach allowed organisations to access

applications online on a pay-per-use basis rather than purchasing and maintaining

-140-

Chapter 7 Research Conclusion

hardware and / or software at the organisations physical site. The 1980’s and 90’s
saw the emergence ofthe Personal Computer (PC), which allowed applications to be
installed on individual machines. However, towards the end of the 1990’s,
organisations began outsourcing various applications to Application Service
Providers, who would charge them on a per-usage basis. While the user interface,
processing speed and the speed of the network connection have all increased

exponentially, many of the principals of time-sharing remain essentially the same.

Scalability and High Availability are becoming increasingly important components
of overall system architectures. For many applications, their function is well
understood, well coded, and well documented for the end user. In many application
domains, there are numerous competing software products essentially delivering the
same level of features to their user base. Consequently, the ability of the application
to deliver high performance levels regardless of user load, or to scale gracefully is
becoming a decisive selling point. Application features are becoming more a given,
application performance and cost-effective scalable platform configurations are
emerging as the distinguishing features for software solutions. For example, in terms
of B4R, the concept of billing is well understood by potential users of the service,
and, there are numerous billing solutions for them to choose from in the market
place. The innovation of Billing4Rent lies in the ASP solution architecture; the
billing application will be hosted and available to end-users on a subscription / rental
basis. This hosting innovation is heavily reliant on scalability and availability
considerations in order to deliver a service with high (expected) levels of
performance and with minimum service interruption. As was evidenced in the
literature review chapter on high availability and scalability (pp 26-77), a study
conducted by Compaq found that 29% of enterprise customers can tolerate only 0-3
seconds of downtime per outage of their critical applications. A further 37% of these
customers can tolerate only up to 3 minutes of downtime per outage of their critical
applications. These figures clearly indicate that two out of every three respondents
will only tolerate up to 3 minutes of downtime per outage. Similarly, Kern et al [9]
report that 85% ofpotential ASP customers rate quality of service as being one of the
key factors in ASP satisfaction. Various sources - including Nozar Daylami et al

[37], Bany Jaruzelski et al [7] and Bhavini Desai et al [17] - cite performance

- 141 -

Chapter 7 Research Conclusion

considerations in terms of high-availability, scalability and reliability as the major

inhibitors to the widespread uptake ofthe ASP model.

With revenues set to rise in the coming years, it is worth noting the emergence into
the ASP marketplace of many of the larger players in the software industry. This
trend would suggest that many organisations view delivery of software-as-a-service
as being a potentially rich source of income. Consequently, the ASP delivery model
may be utilised on a more regular basis for future software releases. For example,
some of the worlds largest technology companies have ASP offerings: Oracle On
Demand [105] is a hosted Customer Relationship Management (CRM) solution
designed to manage an organisations IT infrastructure, software, security, service
levels etc. Similarly, Office Live [80] from Microsoft provides an organisation with
e-mail accounts, business management applications, as well as a Web site managed
and maintained by Microsoft. Additionally, Google have recently (2006) added a
word-processing package to their suite of products. ‘Wrightly’ [82] will provide an

alternative to Microsoft Word, and will be delivered to users via the web.

7.2.1 Future Research Potential

The author identifies significant further research potential in the following areas:

. Formal benchmarking of ASP solutions. In the research evaluation chapter
of this thesis (pp 125-143), a comparison of accepted benchmarks for the
various components of Billing4Rent, for example, was documented. Each
component, when taken separately, is a proven, industry-leading product,
capable of delivering high levels of performance. The use of these
components in BillingdRent should guarantee a high level of performance
for the B4R service as a whole. Future research could consider issues
surrounding the benchmarking of individual components in a system

versus the benchmarking ofthe system as a whole.

. The influence of the ASP and software-as-a-service paradigm on

application design and development methodologies. |If the premise is

correct that application features are essentially expected / given, and that

-142-

Chapter 7

Research Conclusion

application performance and cost-effective scalable platform
configurations are emerging as the distinguishing features of software
solutions, to what extent does that affect current design and development
methodologies going forward. Many accepted methodologies are
‘features’ driven and tend to focus on iterative prototype development,

testing, integration etc....

The formal integration of Singl.eView and the B4R prototype. The
Billing4Rent prototype was designed using the Model / View / Controller
design pattern, in order to allow interchangability between various
components of the BillingdRent prototype. This design allows the
Singl.eView rating and billing engine to be plugged-in to the B4R
prototype, to provide B4R billing capabilities. Currently, the prototype
back-end is an Oracle RDBMS.

Enhancement of the logging capabilities of Billing4Rent. Currently, the
B4R prototype allows logging to be either enabled or disabled. If the
logging is enabled, different logging levels can be specified to log all
messages or to just log messages with a high priority. This allows B4R to
monitor the performance impact of logging and adjust the logging level as
necessary. A future enhancement would be the setting of logging levels on

an individual basis for each client.

- 143-

Bibliography

[1] Innovation Partnerships —2005,
“BillingdRent —The ASP Hosted Billing Service”, Enterprise Ireland, ADC, WIT, GMITpartnership
documentation.

[2] Tim O’Reilly - 2005,

“What Is Web 2.0”, Design Patterns and Business Modelsfor the Next Generation ofSoftware,
http://www.oreillvnet.com/pub/a’ prei]|v/tin\Vnews/2005/09/30Avhat-is-web-20,html?page=I.
Accessed: 25'1January 2006

[4] Dr. Philip Seltsikas and Prof. Wendy L. Currie- 2002,
“Evaluating the Application Service Provider (ASP) Business Model: The Challenge of Integration”,
Proceedings ofthe 35thHawaii International Conference on System Sciences (HICSS-35 2002)

[3] Information Technology Association of America (ITTA) - 2000,

“ITAA’s Application Service Provider (ASP) Service Level Agreements (SLA) Guidelines”,
)itlr>/Awww.itaa.om/isec/pubs/e2000Q9-2,pdr,

Accessed: 811March 2005

[5] Ben Pring- 2004,

“ASP Transforms Into ‘On Demand’ and ‘Software-as-a-Service’”, Gartner Research - 1D Number:
G00124529,

IUIp:/Amww.Utirtner.com/DisplavDocmnent?ref=g searcli£id-459608.

Accessed: 7l March 2005.

[6] Barry M. Rubenstein, et al -2005,
“From the Ashes and Beyond: The Evolution of ASPs into Hosted Application Management
Providers”, IDC Insight —Document Number: 33408

[7] Barry Jaruzelski, Frank Riberio, Randy Lake - 2001,

“ASP 101: Understanding the Application Service Provider Model”, Booz, Allen, Hamilton
Consulting,

hi tr>://extiHc. ball.coni/livelink/livel ink/61813/?lunc=doc.Fetch&nodeid-61813.

Accessed: 1llhMarch 2005

[8] David Greschler, Tim Mangan - 2002,
“Networking lessons in delivering ‘Software as a Service’ - Part 2”, International Journal ofNetwork
Management 2002; 12: 339 (DOI: 10.1002/nem.447)

[9] Thomas Kern, Mary Cecelia Lacity, Leslie Willcocks, Mary Lacity - 2002,
“Netsourcing: Renting Business Applications and Services Over a Network”,
ISBN: 0-13-092355-9, Pretence Hall Publishing Inc.

[10] David Greschler, Tim Mangan - 2002,
“Networking lessons in delivering ‘Software as a Service’ - Part 17, International Journal ofNetwork
Management 2002; 12: 317 (DOI: 10.1002/nem.446)

[11] LixinTao-2001,
“Shifting Paradigms with the Application Service Provider Model”, IEEE Computer Society, October
2001 (Vol. 34, No. 10) pp. 32-39

[12] Bill. Vassiliadis, K. Giotopoulos, K. Votis, S. Sioutas, N. Bogonikolos, S. Likothanassis - 2004,
“Application Service Provision through the Grid: Business models and Architectures”, Proceedings of
the International Conference on Information Technology: Coding and Computing (ITCC™04)

http://www.oreillvnet.com/pub/a',orei%5d%7cv/tinVnews/2005/09/30Avhat-is-web-20,html?page=l
http://www.itaa.om/isec/pubs/e2000Q9-2,pdr
http://www.Utirtner.com/DisplavDocmnent?ref=g

[13] Bandula Jayatilaka, Andrew Schwarz, Rudolf Hirschheim —2002,
“Determinants of ASP Choice: an Integrated Perspective”, Proceedings ofthe 35lhHawaii
International Conference on System Sciences (HICSS-35 2002)

[14] David J. Roddy —1999,
“The Internet-based ASP Marketplace”, Deloitte Consulting and Deloitte & Touche Research

[15] Anjana Susarla, Anitesh Barua, Andrew B. Whinston - 2001,
“Making the Most out of an ASP Relationship”, IEEE Computer Society
hlIn://cscll.computer.orii/comp/matis/it/2001/Q6/1'6063abs-htm.
Accessed: 711March 2005

[16] Mark Clancy-2001,

“The Insidious Resistance to ASPs”, Internet News Article,
Intp./Avww. inlcrnelnews.com/bus-news/article-phD/73832 1

Accessed: 6'I March 2005

[17] Bhavini Desai, Vishanth Weerakkody, Wendy Currie, D. E. Sofiane Tebboune, Naureen Khan
2002,

“Market Entry Strategies of Application Service Providers: ldentifying Strategic Differentiation”,
Proceedings ofthe 36, hHawaii International Conference on System Sciences (HICSS-36 2003).

[18] Bhavini Desai, Prof. Wendy L. Currie —2003,
“Application Service Providers: A model in Evolution”, The Fifth International Conference on
Electronic Commerce, ICEC 2003

[19] Rob Garretson-2005,
“The ASP reincarnation”, NetworkWorldPrint Edition, 29thAugust 2005

[20] Kenneth R. Walsh - 2003,
“Analysing the Application ASP Concept: Technologies, Economies, and Strategies”,
Communications ofthe ACM, August 2003/Vol. 46, No. 8

[21] Thomas Kem, Jeroen Kreijger, Leslie Willcocks - 2002,
“Exploring ASP as sourcing strategy: theoretical perspectives, propositions for practice”, Journal of
Strategic Information Systems 11 (2002) 153-177

[22] Ravi Patnayakuni, Nainika Seth - 2001,
“Why Licence When You Can Rent? Risks and Rewards of the Application Service Provider Model”
Proceedings ofthe 2001 ACM SIGCPR conference on Computer personnel research

[23] Rivka Ladin, Barbara Liskov, Liuba Shrira, Sanjay Ghemawat - 1992,
“Providing High Availability Using Lazy Replication”, ACM Transactions on Computer Systems,
Volume 10, No. 4

[24] Thomas Kem, Jeroen Kreijger—2001,
“An Exploration of the Application Service Provision Outsourcing Option”, Proceedings ofthe 34h
Hawaii International Conference on System Sciences (H1CSS-34 2001)

[25] Beth Cohen —2004,
“Consider Purchasing Real-Time Collaboration Applications Through An ASP”, InformationWeek
Advisory Council,
littp:/Avww. infbnnalionweek.com/siorv/sliowArticle.ilUml7arlicleID- 55800233.
Accessed: 10thMarch 2005

[26] The Economist - 2006,

“Economies of Scale”, Economics A-Z,
http://www.ecoiiomist.com/research/Ecoiiomics/alpliabetic.clhi7”TERM~ECONOMIES%200P/020S
CALEtfECONOMI ES%20QF%20SCALE.

Accessed: 23mdJanuary 2006

http://www.ecoiiomist.com/research/Ecoiiomics/alpliabetic.clhi7TERM~ECONOMlES%200P/o20S

[27] Michael Miley - 2000,
“Reinventing Business: Application Service Providers”, Oracle Magazine, November/December
Edition 2000

[28] Tinabeth Burton - 2002,

“I'TAA Survey Shows ASP Customers Achieve Real Benefits from Outsourcing”, Information
Technology Association ofAmerica
hUD:/iwww.ilaa.org/news/pr/PressRclease.cfm’?ReleaselD” 1017252264.

Accessed: s'IMarch 2005

[29] Sybex - 2002,
“Networking Complete - 3rdEdition”,
ISBN: 0-7821-4143-9, Network Press

[30] Salesforce.com,
http://www .salesforce.com/

[31] IBM’s Applications on Demand (formerly Corio),
lutp://www-1 .ibni.com/servicesAis/index.wss/itservice/aod/a 1011244

[32] Korbi.net,
http://www .korbi.net

[33] LeamingStation.com,
littp://www. Icam inastation.coro/

[34] Usintemetworking,
http://www .usi.net/

[35] The Economist - 2005,
“Microsoft —The Latest in Memoware”, The Economist North American Print Edition, 19 ' November
2005

[36] Kathleen Simpson - 2002,

“Data/Voice Convergence”, Gartner Research — D Number: M-14-5991,
hit))://mww.r"arinci.coin/DisplavDocument?doc ed= 104600&ref=g fromdoc.
Accessed: 19hApril 2005

[37] Nozar Daylami, Terry Ryan, Lome Olfman, Conrad Shayo - 2005,
“Determinants of Application Service Provider (ASP) Adoption as an Innovation”, Proceedings ofthe
38, hHawaii International Conference on System Sciences (HICSS-38 2005)

[38] Hewlett-Packard - 2000,
“High Availability Overview”, Hewlett-Packard: High Performance Computing White Paper

[39] Christopher G. Willard - 2005,
“Assessing the Costs of Computer System Failures in Technical Environments”, IDC Customer
Survey 2000

[40] Cyberguard White Paper - 2002,

“The Business Case For High Availability (HA)”,
http://www.cvbermiard.com/download/wliite naper/en ce business case.pdf.
Accessed: 6I'April 2005

[41] Jim Gray, Daniel P. Siewirok- 1991,
“High-Availability Computer Systems”, IEEE Computer Archive Volume 24, Issue 9

-146-

http://www.ilaa.org/news/pr/PressRclease.cfm'?ReleaselD%5e
http://www.salesforce.com/
http://www.korbi.net
http://www.usi.net/
http://www.cvbermiard.com/download/wliite

[42] IEEE Task Force on Cluster Computing - 1999,

“High Availability (HA)”, IEEE Task Force on Cluster Computing,
http://www.ieectfee.org/hmh-availabilitv .html.

Accessed: 301 March 2005

[43] David Oppenheimer, David A. Patterson —2002,
“Architecture and Dependability of Large-Scale Internet Services”, IEEE Internet Computing, Volume
6, Issue 5, Sept-Oct 2002

[44] Han Wang, Hao Wang, and Jinmei Shen —2004,

“Architectural Design and Implementation of Highly Available and Scalable Medical System with
IBM Middleware”, Proceedings ofthe 17thIEEE Symposium on Computer-Based Medical Systems
(CBMS04)

[45] Gene J. Schroeder, Marvin M. Johnson - 1988,
“Simulation: The correct approach to complex availability problem”, Proceedings ofthe 1988 Winter
Simulation Conference.

[46] Kai Hwang, Zhiwei Xu - 1998,
“Scalable Parallel Computing”,
ISBN: 0-07-031798-4, WCB/McGraw-Hill Companies Inc.

[47] Compaqg- 1997,
“Five Levels of High Availability”, Compaq High Availability White Papers

[48] Jane Dallaway - 2003,

“Microsoft Seminar on SQL Server 2000 High Availability”,
hitp://lwww.ieeetfee,ors/high-availability. htm .

Accesscd: 5hApril 2005

[49] Vasfi Gucer, Satoko Egawa, David Oswald, Geoff Pusey, John Webb, Anthony Yen - 1999,
“High Availability Scenarios with IBM Tivoli Workload Scheduler and IBM Tivoli Framework™,
ISBN: 0-738-49887-4, IBMRedbooks

[50] Gregor Neaga, Pierluigi Buratti, Christian Labauve, Gordon Raffel, Allan Sarlo, Maryela
Weihrauch - 1998,

“Continuous Availability S/390 Technology Guide”,

ISBN: 0-738-41231-7, IBMRedbooks

[51] Steve Russell - 2001,
“High Availability without Clustering”,
ISBN: 0-738-41966-4, IBMRedbooks

[52] The Provident Bank - 2002,

“The Value of Customer Loyalty”, Business Finance Articles,
hUp://hasslefree.providemconnect.eom/contenimanai;er/www/business/Bf;Lisl.asPx?ArticleTvpelD=2
Accessed: 17thMay 2005

[53] Evan Marcus, Hal Stem - 2003,
“Blueprints for High Availability - 2rdEdition”,
ISBN: 0-471-43026-9, Wiley Publishing Inc.

[54] Sun Microsystems - 2003,

“Seven Steps to Highly Available Systems”, Sun Inner Circle,
han://lwww.smi.com/emrkt/iuneicirclc/newsletter/feature0203 .htm|
Accessed: 15IhApril 2005

[55] Hilary H. Hosmer- 1996,

“Availability Policies in an Adversarial Environment”, Proceedings of the 1996 Workshop on New
Security Paradigms

-147-

[56] Hewlett-Packard —2003,
“Increasing availability with ProLiant Essentials Workload Management Pack”, Hewlett-Packard:
High Availability Computing White Papers

[57] Tim Burke-2000,
“High Availability Cluster Checklist”, ACM Linux Journal Voi 2000, Issue 80es

[58] BEA-2001,
“Achieving Scalability and High Availability for E-Business”, BEA Systems Inc. White Paper

[59] The Internet Engineering Task Force - 20086,
“RFC 1034”, Domain Names —Concepts and Facilities,
hlt»:/lwww. iel f.org/rfc/rfc 1034.txt.

Accessed: 23rdJanuary 2006

[60] Prasad Jogalekar, Murray Woodside - 2000,
“Evaluating the Scalability of Distributed Systems”, IEEE Transactions on Parallel and Distributed
Systems Volume 11, No. 6 (June 2000)

[61] André B. Bondi -2000,
“Characteristics of Scalability and Their Impact on Performance”, Proceedings ofthe 2rd
International Workshop on Software and Performance

[62] H. Edward Donley —2005,

“Amdahl’s Law”, Indiana University Mathematics Department,
http://www. ma.iuD.edu/~hedonlev/ima4 51 /amdalil.html.
Accessed: 7IhJune 2005

[63] Jon William Toigo - 2003,
“Disaster Recovery Planning: preparing for the unthinkable”,
ISBN: 0-13-046282-9, Pearson Education, Inc.

[64] Jon William Toigo - 1996,
“Disaster Recovery Planning: For Computers and Communication Resources”,
ISBN: 0-471-12175-4, John Wiley & Sons, Inc.

[65] Stephen Pritchard - 2002,

“Alarm bells ring over plans for disaster recovery”, Financial Times IT Specials,
http//specials.t.com/sndocs/I-T333ULZXAD.pdf

Accessed: 6* February 2006

[66] NS1 Software-2003,

“6 Tips Small and Midsize Businesses Can Use to Protect Then Critical Data”, NSI Software: White
Papers,

hitp://www. nsisoHwarc.com/ pdf/MSNSI%620SMB%620white%20pupcr%620l;INAL%620104%20Form
atted.pdf.

Accessed: 8thJune 2005

[67] Hewlett-Packard - 2004,

“Better backups through Replication”, HP White Papers,
http://i-i.com.com/cnwk.Id/html/itp/66 better backups replication.pdf.
Accessed: 8lUJune 2005

[68] SHARE-2005,
“About Us”, Share Inc,
http://www.share.org/About/.
Accessed: 13thJune 2005

-148-

http://i-i.com.com/cnwk.ld/html/itp/66
http://www.share.org/About/

[69] Singl.eView,
http://www.inlec-telccoin-systems.com/its/productsservices/siimleview/

[70] Intec - 2005,

“Intec wins $15 million Singl.eView billing contract with MTN, Africa’s leading wireless operator”,
Intec Telecom Systems Press Release,
http://www.intec-telecom-svstems.com/its/pressfooin/nressreleases/pr20Q5/2005-02-28/

Accessed: 4 hApril 2006

[71] Intec -2005,

“Singl.eView - Creating Profitable Customers”, Intec Telecom Systems Product Brochure,
Wp :/lwww.iiHec-telecom-svstems.com/its/siteservices/downloads

Accessed: 21st December 2005

[72] Barb Lundhild- 2005,

“Oracle Real Application Clusters 10Gg”, An Oracle Technical Whitepaper - May 2005,
http://www.oracle.com/techno ogv/nrodticls/dalabase/c lusterillii/pd t?TWP RAC 10aR2.mif.
Accessed: 3id May 2006

[73] Hugo Haas-2005,

“Web Services Activity Statement”, World Wide Web Consortium (W3C) Activity Statement,
http://www.w3.0rg/2002/ws/Aciivity

Accessed: 24thFebruary 2006

[74] Java, Java Servlets and Java Server Pages Specifications,
http://iava.sun.com/

[75] Oracle Database
httn://www.oracle.com/database/index.html

[76] The Apache Jakarta Project
http://iakarta.apache.org/

[77] Eric Gamma, - 1995,
“Design Patterns: Elements of Reusable Object-Orientated Software”,
ISBN: 0-201-63361-2, Addison-Wesley Publishing.

[78] JAMon-2006,

“A Monitoring API””, JAMon (Java Application Monitor) Users Guide,
http://iamonani.soiirceforge.iiel

Accessed: 4"1April 2005

[79] Birgit Roehm, Balazs Csepregi-Horvath, Pingze Gao, Thomas Hikade, Miroslav Holecy, Tom
Hyland, Namie Satoh, Rohit Rana, Hao Wang- 2004,

“IBM WebSphere V5.1, Performance, Scalability, and High Availability - 2rdEdition”,

ISBN: 0-738-49780-0, IBMRedbooks

[80] Microsoft Office Live
hitp://olTicelive.microsolt.com/

[81] L. Haber-2004,
“ASPs Still Alive and Kicking”, ASPnews.com - Trends
http://wvvw.aspnews.com/trends/aiticle.php/3306221. 7,hDecember 2005

[82] Wrightly,

http://www.writelv.com/

-149-

http://www
http://www.intec-telecom-svstems.com/its/pressfooin/nressreleases/pr20Q5/2005-02-28/
http://www.oracle.com/techno
http://www.w3
http://iava.sun.com/
http://www.oracle.com/database/index.html
http://iakarta.apache.org/
http://iamonani.soiirceforge.iiel
http://wvvw.aspnews.com/trends/aiticle.php/3306221
http://www.writelv.com/

[83] Software Compass —2001,

“Optimising Code for Faster Processors”, Developer 1Q Magazine, February 5h2001,
http://www.tlcveloncrig.com/Maaazmestoritfs/02hil31oDtimisalion.plin3

Accessed: 19hApril 2006

[84] Yonglei Tao-2002,

“Component Vs. Application-Level MVC Architecture”, Proceedings ofthe 32ndASEE/IEEE
Frontiers in Education Conference 2002, Volume 1, Pages: T2G-7

ISSN: 0190-5848

[85] Elisabeth Freeman, Eric Freeman, Bert Bates, Kathy Sierra—2004,
“Head First: Design Patterns”,
ISBN: 0-596-00712-4, O'Reilly Media Inc

[86] Quintin Cutts, Richard Connor, Graham Kirby, Ron Morrison - 1994,
“An Execution Driven Approach to Code Optimisation”, Proceedings ofthe 17th Australasian
Computer Science Conference, Christchurch, New Zealand, 1994, Pages: 83-92.

[87] lan Masters - 2004,

“Surviving unplanned downtime...”, Continuity Centrals Business Continuity e-Journal,
http://www.conliiHiitvcentrai.com/featureO 115.him.

Accessed: 9UMay 2006

[88] Transaction Procession Council,
http://www .tpc.org

[89] Hewlett-Packard - 2003,

“HP and Oracle Set World Record Performance Mark -First to Top 1 Million Transactions per
Minute”, Hewlett-Packard Press Release,
http://mww.hp.com/lipinlb/newsroom/press/2003/031 1C8b.litml.

Accessed: 10lhMay 2006

[90] Standard Performance Evaluation Corporation,
http://www .spec.org

[91] Enrique Claver, Reyes Gonzales, José Gase6, Juan Llopis -2002,

“Information systems outsourcing: reason, reservations and success factors”, Journal ofLogistics
Information Management 2002, Vol 15; Part 4, Pages: 294-308

ISSN: 0957-6053, MCB University Press

[92] Chris Lonsdale, Andrew Cox —2000,

“The historical development of outsourcing: the latest fad?””, Journal ofIndustrial Management And
Data Systems 2000, Part 8/9,Pages: 444-450

ISSN: 0263-5577, MCB University Press

[93] Kate Gerwig- 1999,
“Apps on Tap: Outsourcing Hits the Web”, netWorker Archive, Volume 3 Issue 3, Pages: 13 -16
ISSN: 1091-3556, ACM Press

[94] DataElectronics.
http://www .dataelectronics.ie

[95] TeleCity,

http://www .telecitv.com

[96] Hosting365,
http://www.hosting365.com

[97] Ketec,
http://www .ketec.ie

-150-

http://www.tlcveloncriq.com/Maaazmestoritfs/02hil31oDtimisalion.plin3
http://www.conliiHiitvcentrai.com/featureO
http://www
http://www.hp.com/lipinlb/newsroom/press/2003/031
http://www.spec.org
http://www.dataelectronics.ie
http://www.telecitv.com
http://www.hosting365.com
http://www.ketec.ie

[981 FirstServ,
http://www.firstserv.com

[99] Below Zero,
http://belowzero.biz

[100] Verio,
http://www.verio.com

[101] PowerTel,
http://www.powertel.com.au

[102] PSINet,
http://www.psinet.fr

[103] Alan Eamshaw - 2000,

“ASP Success Factors: An Analysis of the Critical Areas Required for Success as an Application
Service Provider”, Information Management Systems Whitepaper,
http://www.infoms.com/wp-asp.html.

Acccssed: 81 March 2005

[104] Adam Braunstein - 1999,

“The State of ASPs”, Robert Francis Group Research,
http://www.rruonline.com/rese3rch/iietnoie.lilml7ciocid- 121699ni,
Acccsscd: 11 March 2005

[105] Oracle On Demand
http://www.oracle.com/ondemand/index.html

-151-

http://www.firstserv.com
http://belowzero.biz
http://www.verio.com
http://www.powertel.com.au
http://www.psinet.fr
http://www.infoms.com/wp-asp.html
http://www.rruonline.com/rese3rch/iietnoie.lilml7ciocid-121699n
http://www.oracle.com/ondemand/index.html

List of Acronyms Used

API Application Program Interface
ASP Application Service Provision
ASPs Application Service Providers
B4R Billing4Rent

BCP Business Continuity Plan

BiDi Bi-Directional

BLOB Binary Large OBject

BOPS Business Operations Per Second
CompTIA Computing Technology Industry Association
CRM Customer Relationship Management
CPU Central Processing Unit

DBMS Database Management System
DBCS Double Byte Character Set

DMz DeMilitarised Zone

DNS Domain Name System

DR Disaster Recovery

DRP Disaster Recovery Plan

EJBs Enterprise Java Beans

ESP External Service Provider

FMS Failover Management System
GDC Geographically Dispersed Clusters
GL General Ledger

GMIT Galway-Mayo Institute of Technology
HA High Availability

IDC International Data Corporation

1/0 Input / Output

IPSec IP Security

ISV Independent Software Vendor

IT Information Technology

ITAA Information Technology Association of America
JAMon Java Application Monitor

JCA Java Connector Architecture
JDBC Java Database Connectivity

JMS Java Message Service

JSP Java Server Pages

JVM Java Virtual Machine

LAN Local-Area Network

NYBT New York Board of Trade

MVC Model / View / Controller

MTBF Mean Time between Failures
MTTR Mean Time to Repair

NAT Network Address Translation

NIC Network Identification Card

0S Operating System

PC Personal Computer

PDF Portable Document Format

PO Purchase Order

-152-

QoS Quality of Service

RAE) Redundant Array of Independent Disks
(Oracle) RAC Real Application Clusters

RDBMS Relational Database Management System
SaaS Software as a Service

SCSI Small Computer System Interface

SLA Service Level Agreement

SME Small and Medium-sized Enterprise

SPEC Standard Performance Evaluation Corporation
SPOF Single Point of Failure

TPC Transaction Processing Council

TSSG The Telecommunications Software & Systems Group
Ul User Interface

UTP Unshielded Twisted Pair

VPN Virtual Private Network

Ww3cC World Wide Web Consortium

-153-

Appendices

Appendix 1. Related Research
Appendix 2: B4R Prototype Screenshots

Appendix 3: B4R Prototype CD-ROM

Appendix 1- Related Research

Paper Title: Perception: The Real Inhibitor to ASP Adoption?
Authors: Informatics Research Group, GMIT
Kenneth Kirrane Sabrina McNeely
Sean Duignan John Healy
Presented at: 5th Annual Information Technology & Telecommunications

(IT&T) Conference, Cork, Ireland. (October 2005).

The below paper was presented at the Industry Track Session I(Critical Issues in Software
2006 - 2010: Development & Sourcing) at The 5th Annual Information Technology &
Telecommunications (IT&T) Conference in Cork on October 26th 2005. The paper was
also published in the conference proceedings (ISSN: 1649 - 1246).

Perception: The Real Inhibitor to ASP
Adoption?

Sabrina McNeelyl, Kenneth Kirrane2,
John Healy3 Sean Duignan4
Department of Maths & Computing,
Galway-Mayo Institute of Technology,
Galway, Ireland.

Tel: +353 (0) 91 753161
E-maill: sabrina.mcneelv@gmit.ie
E-mail2 Kenneth.kirrane@gniil.ic
E-mail : iolm.licMIv@gniit.ic
E-mail4: sean.tluignan@gmit.ie

Abstract: Upon its inception, many heralded the ASP paradigm as the
death knell of software-as-a-product, and the birth of software-as-a-
service. Despite the hype however, uptake is struggling to reach the levels
many analysts predicted for the ASP model. This paper identifies and
examines the key factors influencing the adoption of ASP, and highlights
the inconsistencies in the available literature. We identify several
questions that remain unanswered, which may be adversely influencing
user perceptions of the model. In order to address these questions, areas of
further research are proposed to deconstruct the inhibitors of the ASP
paradigm, and ultimately answer the most burning question: Is perception
the primary inhibitor to the uptake ofthe ASP model?

1. Introduction

The Application Service Provision (ASP) model has had many guises over the years
including software-as-a-service, on-demand computing and utility computing.
However, its underlying premise remains unchanged: Application Service Providers
(ASPs) offer multiple users a subscription-based access model via the Internet to
centrally managed applications [1]. ASPs provide access to software on a one-to-
many basis and thus the cost of ownership and maintenance of the solution is shared
by several clients. Service level agreements (SLAs) assist in ensuring client
expectations are met with regard to the performance ofthe ASP solution.

- 155-

mailto:sabrina.mcneelv@gmit.ie
mailto:Kenneth.kirrane@gniil.ic
mailto:iolm.licMlv@gniit.ic
mailto:sean.tluignan@gmit.ie

Despite the initial hype, user uptake of the ASP model has been slow to
materialise. In 2001 the International Data Corporation (IDC) Group forecast that
spending on ASPs would grow to $24 billion by 2005 [2]. By 2002/2003, the ASP
market seemed all but dead, with a 90 percent failure rate according to industry
analysis [3]. EDC reports that the ASP market had only reached $5 billion by 2003
falling far short of that which was first envisaged [4]. Current estimates indicate
worldwide spending on software as a service and associated software license revenue
will reach $15.2 billion by 2007, much lower than earlier predictions but substantial
nonetheless [4] [5]. The above statistics suggest that ASP has been given a new lease
of life.

Although many papers are quick to quote statistics and outline the
determinants of ASP adoption, few delve into the reasoning behind these
determinants, be they positive or negative. The objective of this paper is to identify
and examine the key factors influencing the adoption of the ASP model. To
accomplish this objective, this paper explores the existing literature in order to
formulate a consensus on the reasons pertaining to the uptake or otherwise of the
ASP model. Our analysis is divided into three distinct sections. First, we establish the
key factors that individually lead to either an affirmative or adverse decision with
regard to the uptake ofthe ASP model. Second, we attempt to expand on the research
to date by examining each of these factors and their relevance to the adoption of the
ASP as a whole. Finally, we conclude the paper by highlighting the required
direction for further research of the ASP model.

2. ldentification of the key factors influencing ASP adoption

In depth analysis of the literature highlights economies of scale as the key driver of
the ASP paradigm [1], [6], [7], [8]. [9], [10]. ASPs exhibit economies of scale as the
cost of the solution is distributed among its customers on a one-to-many basis. In
addition to economies of scale, Walsh [10] interestingly highlights security and
reliability as major benefits of the ASP model, and states that for small or midsize
organisations, ASPs can provide greater levels of security and reliability than the
customers own organisation [10]. Walsh’s point is contrary to the norm, as
uncertainties with regard to security and privacy as well as performance concerns in
the form of availability, scalability and reliability, are cited as the main inhibitors to
the uptake of the ASP model [5], [11], [12]. This section is dedicated to examining
each of the above factors in order to assess the benefits or threats they potentially
pose to the adoption ofthe ASP model.

2.1 Economies ofscale

In economic terms, economies of scale are achieved when the average cost of
producing a product diminishes as each additional product is produced, as the fixed
costs are shared over an increasing number of products. The economies of scale
model is equally viable with regard to service provisioning. ASPs achieve economies
of scale by lowering the average cost of the service through sharing fixed costs
among many users. A survey conducted by the Information Technology Association
of America (ITAA) in 2002 investigated key user expectations in selecting ASPs.
Results of that survey indicate that 39 percent of respondents estimate their return on
investment of between 10 and 50 percent, while an additional 14 percent of

- 156-

respondents placed it between 51 and 100 percent [13]. The cost savings highlighted
by the ITAA survey offer some solace to companies burdened by an increased
reliance on IT, and its associated costs. ASPs can alleviate this burden, thus allowing
a company to focus on other core areas of their enterprise. By contrast, a survey of
250 IT managers conducted by Informatiomveek.com highlights a high degree of
scepticism with regard to the claimed cost advantages / economies of scale [14].

2.2 Performance (high availability, scalability and reliability)

Due to ASPs network-centric delivery model, performance considerations in terms of
high-availability, scalability and reliability are often cited as the major inhibitors to
the widespread uptake ofthe ASP model [5], [11], [12], [15], High Availability (HA)
requires systems designed to tolerate faults —to detect a fault, report it, mask it, and
then continue service while the faulty component is repaired offline [16]. In the
majority of cases, availability is expressed as a percentage of system up time, with
“five nines” or 99.999% availability a desired level of availability for most ASPs.
Scalability refers to the ability of a system to accommodate an increasing number of
elements or objects, to process growing volumes of work gracefully, and/or to be
susceptible to enlargement [17]. Systems should not only adapt to their new
configurations, they should be able to operate with the same level of efficiency and
to the same standard of service. Reliability is defined as the assurance a product will
perform its intended function for the required duration within a given environment.
Reliability is best described as product performance over time [18]. A reliable system
should consistently produce the same results, while meeting, or exceeding customer
expectations.

Kem et al (2002) report that 85% of potential ASP customers rate quality of
service as being one of the key factors in ASP satisfaction. The majority of potential
ASP customers also rate scalability and flexibility as being very important [19]. A
large factor in service quality, availability and scalability, for web-hosted
applications is the quality and speed of the underlying network in delivering the
service offering to its customers. Many factors influence network quality, such as
bandwidth limitations, network latency and reliability of the Internet. This is
especially true in the ASP paradigm as all the application processing takes place on
the application server, with the results returned to geographically dispersed users
over the network in a thin-client model. These findings are corroborated by ITAA’s
(2001) survey of key user expectations with respect to ASP - over 80% of
respondents claimed that guarantees on network reliability were a very important
feature of Service Level Agreements (SLASs) between ASP and clients [2].

Availability and performance are probably two of the most important
characteristics of an ASP. Consequently, ASPs will generally invest heavily in
backup and redundant systems in order to minimise service disruption. Walsh notes
that these safeguards go beyond what many small to midsize companies can afford,
and are thus seen as a benefit of the ASP model [6], Tao also suggests that most
online service providers do a better job of ensuring 24/7 application availability than
customers could [20]. Walsh and Tao’s position is further strengthened by various
other references in the literature pertaining to availability, scalability and reliability
as benefits of the ASP model [8], [11], [21], [22].

- 157-

2.3 Security

Several researchers refer to security and privacy of data as one of the primary areas
for concern with regard to the realisation of an ASP solution [6], [8], [5], [12], [23].
Fears of compromised security and privacy have prevented many firms from fully
investigating and integrating the ASP business model [12]. Although both security
and privacy are concerned with guarding the clients sensitive data, they can be
distinguished as follows:

e Security is used to refer to protection of the ASP solution and the data
exchanged or stored as part of the ASP solution. ASP security can be broken
into three distinct considerations: physical security, solution security and
security and integrity of client data [24].

e Privacy is exclusively concerned with ensuring the protection and integrity of
the client data exchanged or stored as part of the ASP solution from
unauthorised access.

Linthicum [23] outlines three possible security issues, which can be used to
collaborate the above definition of security. Poor network security may leave the
hosted solution open to external intrusion. Second, an unsatisfactory physical
security policy may result in an internal attack. Finally, there are concerns around the
security firewalls that are placed between the hosted application domains [23].

While the majority of research literature focus on the negative aspect of
security, Walsh [10] looks at security from a different perspective concentrating on
the security benefits that can be leveraged from an ASP solution. ASPs are
responsible for defining and adhering to a security policy, which meets the needs of
their clients. Walsh [10] states that often the security and reliability safeguards
implemented by ASPs go beyond what many small to midsize companies can afford
and thus are a benefit of the ASP model.

3. Analysis of the key factors influencing ASP adoption

Based on an in-depth analysis of the available literature, Economies of Scale,
Performance and Security have been identified as the key factors that influence the
uptake ofthe ASP model. The aim ofthis section is to expand on the research to date
by examining each ofthese factors and to assess their relevance to the success of the
ASP model in greater detail.

By operating a one to many business model ASPs can achieve economies of
scale in terms of applications, network costs, server technology and implementation
expertise [8]. It is argued however that clients who demand a high degree of
customisation destroy much of the value that economies of scale provide [25]. This
results in the need to pay higher fees for customised solutions. Do client requirements
for customisation need to adversely affect the benefits obtained through economies of
scale? Ifthe ASP offering is based on open standards, then high levels of customisation
may not equate to higher costs. For example, many dedicated concert and entertainment
venues see economies of scale inherent in outsourcing their ticketing operations, an
illustration that customisation can be accommodated within a centralised environment -
the ticketing solution provided by “ASPs” can be customised with regards to venue,
artist, date, etc, while the underlying service offering remains the same.

Much of the literature suggests that performance considerations (and in
particular the issues of high-availability, scalability and reliability) are significant
inhibitors to ASP adoption. Notwithstanding that, other researchers suggest that

- 158 -

given the sizeable investments undertaken by ASP solution providers, the ASP
model may actually offer enhanced availability, scalability and reliability to the
solution adopter. Indeed, many mature and industry proven solutions can be cited
that offer support to this notion. Hewlett Packard's flagship version of the popular
Unix operating system (HP-UX 1li) is a case in point. Like many other product
offerings in the marketplace, this operating system is implemented on systems
ranging from workstations and access servers to application servers and data center
servers - systems where high availability is of paramount importance. HP-UX Ili
scales easily to 64 processors and is designed to allow for future scaling to 256
processors in a single system [26]. Other players in the operating systems
marketplace provide similar functionality in their products. Sun Microsystems, for
instance, offers Sun Fire E25K Server; a massively scalable, highly available data
center server that scales to 72 UltraSPARC 1V processors. A key factor in the design
of the Sun Fire E25K Server is the ability to consistently deliver high levels of
reliability and availability [27], Why then is performance perceived as an inhibitor to
ASP uptake, when industry proven solutions exist that support high-availability,
scalability and reliability?

Time and time again security and privacy are cited as major drawbacks to the
uptake of the ASP model. As previously outlined by Walsh [10], ASPs often have
the ability and resources to provide a higher level of security than many small to
midsize companies [10]. The above begs the question: Is trust the key to viewing
security as a benefit or a threat to the uptake ofthe ASP model? In an attempt to
answer this question we examine security and specifically consider physical security,
solution security and security and integrity of client data.

Information Technology (IT) organisations have trusted data centers with the
security of their solution hardware for decades. Data centers have gained customer
trust by implementing strict physical security policies, ensuring access is restricted to
authorised personnel through the use of biometric scanners such as fingerprint or
IRIS identification, in addition to the use of passwords and armed guard protection of
facilities [6]. Surely ASPs have a vested interest in ensuring the physical security of
their hardware? Authentication, authorization and encryption all fall under the
solution security umbrella. Organisations have made signification progress in
securing systems through authentication by enforcing the use of strong passwords.
Restriction of access (both local and network) is achieved through authorisation
policies. Advances in network security have alleviated the fear of transferring
sensitive data such as bank and credit card details. HyperText Transfer Protocol over
Secure Sockets Layer (HTTPS) ensures the privacy, integrity and consistency of data
through the use of the encryption. Secure Sockets Layer (SSL) has been widely
implemented and is now the de facto standard for providing secure e-commerce
transactions over the web [28]. Are ASPs not equally dedicated to preventing
unauthorised access to machines on their network as their clients? Although
appropriate levels of physical and solution security assist in ensuring security and
privacy of data it is also essential that proven encryption techniques are used and
redundant hardware is disposed of in an appropriate manner. Software and data that
is no longer needed should be uninstalled and erased to ensure that it is not accessible
to unauthorized individuals. Yet again by implementing an appropriate security
policy ASPs could overcome this perceived problem. Surely ASPs strive to meet or
even exceed customer expectations?

Economies of scale, Performance and Security have been identified as the
key factors that influence the uptake of the ASP model. However our analysis of

- 159-

these factors suggests than ‘perception’ may in fact be the factor most relevant to the
success of the ASP model. Is itpossible that badpress ’has influencedperception of
the ASP model and ultimately its uptake?

4, Conclusion

Our analysis of the factors influencing the uptake ofthe ASP model suggests that the
research conducted to date is at best, incomplete, or at worst, vague and ambiguous.
Further research is required to fully clarify the relevance of Economies of Scale,
Performance and Security, and most importantly Stakeholder Perceptions (Users, IT
Managers, Software Developers, Industry Analysts and Academics) to the adoption
of the ASP model as a whole. Perceptions have in the past greatly influenced the
emergence or otherwise of new paradigms and / or the rate of adoption of new
products. Global adoption of the automobile for instance was initially predicted to
be in the low thousands due to the fact that not enough people would work as
chauffeurs. History tells us that thisfact was in the end an ill-informed and poorly
validated perception. Closer to the world of ASP there are similar examples of
perceptions influencing critical thinking - consider some ofthe IT industry’s view of
the potential market for personal computing some 20 - 25 years ago! We suggest
that perception is in fact a key inhibitor to the uptake of the ASP model and seek to
further this hypothesis. Highlighting the issue through this paper is an initial step.
Furthering the body of research focusing on ASP adoption is another step in
assessing our hypothesis. To begin to achieve this second step then, we propose a
survey of IT organisations that specifically explores all the factors pertinent to ASP
adoption at a much finer level of granularity. The primary focus of such a survey is
to explore “perceptions” in particular and how they influence ASP adoption rates.
Interviews should supplement the survey where appropriate to clarify any
ambiguities that arise. It is intended to finalise the design ofthe survey and target a
representative population in Ireland in 2005. An analysis of the research
methodology and ofthe survey results will be the subject of a later paper.

5. References

[1] T. Kem et al - 2002,
“Exploring ASP as sourcing strategy: theoretical perspectives, propositions for
practice”, Journal o fStrategic Information Systems 11 (2002) 153-177

[2] A. Suasaria et al - 2001,
“Making the Most out of an ASP Relationship”, IEEE Computer Society
httn://csd l.com puter.ora/comp/maus/U/2001/06/f6063abs.htm. 7thMarch 2005

[3] L. Haber-2004,
“ASPs Still Alive and Kicking”, ASPnews.com - Trends
http://www.asDnews.com/trends/article.php/3306221. 7thDecember 2005

[4] A. M. Konary - 2004,
“Presentation to the ITAA”, IDC Analyst Presentation to the ITAA - February 12,
2004, http://www.IDC.com

- 160-

http://www.asDnews.com/trends/article.php/3306221
http://www.IDC.com

[5] N. Daylami et al - 2005,

“Determinants of Application Service Provider (ASP) Adoption as an Innovation”,
Proceedings ofthe 38thHawaii International Conference on System Sciences
(HICSS-38 2005)

[6] K. R. Walsh-2003,
“Analysing the Application ASP Concept: Technologies, Economies, and
Strategies”, Communications o fthe ACM, August 2003 Vol. 46, No. 8

[7] B. Desai and W. L. Currie - 2003,
“Application Service Providers: A model in Evolution”, The Fifth International
Conference on Electronic Commerce, ICEC 2003

[8] T. Kem and J. Kreijger- 2001,

“An Exploration ofthe Application Service Provision Outsourcing Option”,
Proceedings ofthe 34thHawalii International Conference on System Sciences
(HICSS-34 2001)

[9] B. Vassiliadis et al - 2004,

“Application Service Provision through the Grid: Business models and
Architectures”, Proceedings o fthe International Conference on Information
Technology: Coding and Computing (ITCC’04)

[10] K. R. Walsh-2003,
“Analysing the Application ASP Concept: Technologies, Economies, and
Strategies”, Communications o fthe ACM, August 2003 Vol. 46, No. 8

[11] B. Jaruzelski et al -2001,

“ASP 101: Understanding the Application Service Provider Model”, Booz, Allen,
Hamilton Consulting,
http://extfile.hah.com/livelink/livelink/61813/?func=doc.Fetch&,nodeid=61813. 11th
March 2005

[12] B. Desai —2002,

“Market Entry Strategies of Application Service Providers: Identifying Strategic
Differentiation”, Proceedings o fthe 36th Hawaii International Conference on System
Sciences (HICSS-36 2003).

[13] T. Burton-2002,

“ITAA Survey Shows ASP Customers Achieve Real Benefits from Outsourcing”,
Information Technology Association o fAmerica,

http://www .itaa.orii/pcws/pr/PressRelease.cfm?ReleaselD=1017252264, 8th March
2005

[14] J. Mateyaschuk - 1999,

“Leave the Appsto us! ASPs offer benefits through economies of scale”,
Informationweek.com, http://www.iniormationweek.com/756/asp.htm, 25th April
2005

- 161 -

http://extfile.hah.com/livelink/livelink/61813/?func=doc.Fetch&,nodeid=61813
http://www.itaa.orii/pcws/pr/PressRelease.cfm?ReleaseID=l017252264
http://www.iniormationweek.com/756/asp.htm

[15] D. Greschler and T. Mangan - 2002,
“Networking lessons in delivering ‘Software as a Service’ - Part 17, International
Journal ofNetwork Management 2002; 12: 317 (DOI: 10.1002/nem.446)

[17] A.B. Bondi-2000,
“Characteristics of Scalability and Their Impact on Performance”, Proceedings ofthe
2nd International Workshop on Software and Performance

[16] J. Gray and D. P. Siewirok- 1991,
“High-Availability Computer Systems”, IEEE Computer archive Volume 24, Issue 9

[18] IEEE Reliability Society - 2000,
“Reliability Engineering”, IEEE Reliability Society,
http://www.ewh. ieee. oni/soc/rs/Reljability Engineering/index,himl, 25th April 2005

[19] T. Kem etal - 2002,
“Netsourcing: Renting Business Applications and Services Over a Network”, ISBN:
0-13-092355-9, Pretence Hall Publishing Inc.

[20] L. Tao - 2001,

“Shifting Paradigms with the Application Service Provider Model”, IEEE Computer
Society, http://csdl.computer.om/coinp/mags/co/2001/10/rx032abs.htm, 08th Dec
2004

[21] B. Cohen-2004,

“Smart Advice: Consider Purchasing Real-Time Collaboration Applications through
an ASP”, InformationWeek Advisory Council,
hUp://lwww.in[brmati»nweek.com/shared/priiUab[eArticleSrc.ihtmI?artidcID E55800
253. 25IhApril 2005

[22] D. Sovie and J. Hanson - 2001,

“Application Service Providers: Where are the real profit zones? ”, Mercer
Management Consulting,
http://www.mciccrmc.com/Perspcctives/Perspectives pdfs/hanson sovie-
ASPprofit.pdf, 20lh January 2005

[23] D. Linthicum - 2002,

“To ASP or Notto ASP?”,

httn://www .softwarenum.com/L.cihi?Doc=archivc/2000apr/ASPorNot.html. 27th
April 2005

[24] T. Anderson - 1994,
“Management Guidelines for PC Security”, ACM SIGICE Bulletin - July 1994 -
Volume 20, Issue 1, Pages 7-14

[25] P. Bendor-Samuel - 2001,

“Maximizing the Benefits of Economies of Scale”, Outsourcing Journal Insights,
Outsourcing Journal May 2001

- 162-

http://www
http://csdl.computer.om/coinp/mags/co/2001/10/rx032abs.htm
http://www.mciccrmc.com/Perspcctives/Perspectives

[26] Hewlett-Packard - 2005,
“HP-UX ili, the Proven Foundation for the Adaptive Enterprise”, Hewlett-Packard,
http://vvww.hp.com/products Yunix/operatina/index.himl. 2" May 2005

[27] Sun Microsystems - 2005,
“HP-UX Ili, the Proven Foundation for the Adaptive Enterprise”, Sun High End
Servers, hlttr//www.sun.com/servers/nmhend, 2nd May 2005

[28] W. Chou

“Inside SSL: The Secure Sockets Layer Protocol”, IT Professional - July/August
2002 Vol. 4, No. 4 Pages 47-52

-163-

http://vvww.hp.com/products
http://www.sun.com/servers/hmhend

Appendix 2 - B4R Prototype Screenshots

1) Client Site: Home Page

13 BMhnrjJHent Mirrnsnft Inlrrnet Fxplnrei
Oe gft Jjsw Favorites Iwfa ydp

Q"Back v j - [*1 Iyr'Search "AFavorite 1 > L

Address ra Nrps*ww.tfiriric/.ceifi/

billing~/rent com

ottiino itintu Vif /vice provider

Smilce* CHfTit 1-ogin

Support About Vi

Everyone needs to bill in order to take in revenue "If you can’t bfl] it, kill it" is what

large earners say about a particular service

While it is critical to their revenue, earners and service providers do not need to be billing

experts This is BilkgIRent's job |

Billuig4Rent offer an online billing service based on a iental model that any service

provider can use to bill their customers

r ’

Using ASP (application service provider) technology, version updates to the software aie

seemless to the user

Mo downloads and no installs are required All that is needed is an Internet connection

T +353513029641F +353i| 3029011E infc<8billing4tenL ie

JOre

2) Client Site: Services

j Billinn-P~nl- - Microsoft Intern® Explorer

fite £dt yew Favorites Ipok Help
1Qe*k »Q - j« 1{jl ¥il 1*'swdi Fjrot« 0 - .= -

AjJcfrwsf C 1hnps://WW.hfligAfenI,cocri/

billing refit com

©2005 Billing4Renl AUrightsreserved

LTI 1 @i

T +35351 3029641F: +353 51 3025011E info@billing4reniie

oniitta Oiiiiaa aotuics provider

A
Home M Client Login Admiiustiation Suppuri About Us

HASP Services 3

H .Solution Hooting
BUIling4R«nt ANt* Service
Bilng4Ren.t L td, offers an Application Service Provider (ASP) hilling solution, winch e-nables tier 3 & 4 network
operators, content providers, service aggregators and other genres ofservice providers to access state-ofthe-ait bi
functionality on a subscription/rental basis
What is ASP?
The term Application service provision (ASP) applies to the supply of online software functionality on a rental basis
Human resources, call centre services and customer relationship management, software applications all lend themselves

to the ASP model The ASP provider agrees a service level with the client con

access to the software on a one-to-many basis

© 2005 Billing4Rent AHrights reserved

—~pi- r~

- 164-

J

v) Qo)

1

tloo

itsjjij
1*1

Urte *

Zi

U*s »

https://ww.bftig4fent,cocri/

3) Client Site: B4R Secure & Robust Hosting

I UflHhny iRt-itl Hmaiofl Iltrnnrl

B3 &* Fayortes look befc “I If
Qiwk - £ x] ¢1 H S»* Fnotes 0 e U2 "
Ad*w® | httpsif*ww,fc*n(j Irent.corn/ jritia» Urte"
ng- ettt com.
ottiine trittidé sarvicc wravitizr
Houio Client LoBin Atlnnrattiarion Supparr About U*

Billi)igdRent Secure & Rcbust Hosting

The hosting infrastructure we offer through oui hosting partner has been created
making use oEthe leading vendors ui the industry, from high-quality redundant
Internet connections to climate conti ol systems to robotic tape backups, etc
The hoshng infrastructure is monitored and supported by certified network
administrators 24 hours a day/ 7 days aweek The network is protected by
various Intrusion Detection Systems and a hardware-based firewall, as well as
load balancing appliance

T +353513029641F: +35351 302901 [E: info@biUmg4mit ie © 2U15 Billing4Rexvt All aghts reserved

3 Localintranet

4) Client Site: Latest News

eifijxj
Ob 8* fon Fffiwi« loot ydp - T>1
Qm *0O ' 121 1) Ss*<h F o 0 * -
Asjcknesjf)] hitpsi/Amwnbiird) Srivl,coiryl *[Joo inks "

3

Nng-~rent .com
onJinc QUiiiti iatvice promtJar

Latest News

01/06/06 Billing4Rent launch online biiHng service based on a rental model *
provider can use to bili thetr customers

About Us
Latest News
Careers

Vacancies
ContactlTs

T +353 51 302964| F: +353513029011E info@billing4ienl ie © 2003 Billing4Renl All rights reserved

a local rt/ms«

5)

Fte &U

O 8o

Ajkfress | « |

e

6)
Ete E*

A&fress |

ifiDofie

Client Site: Careers

1 'JbiltHM]IKi.'rit Mttr&wn Internet Inplorct

ibw Pflvortfet 3pot

m il

tMp

L
JaT [mxy

oo

billlng~frent.com

smina entita» smmice provider

Homi’ Smite* CUppi Login Adminhn-uion Support

Care«s

Bilting4Renl is a busy energetic organisation, which offers challenging roles for suitably
qualified individuals in a dynamic and proactive environment Joining our progressive team
will provide the opportunity to develop your existing sldli set and to participate in working
towards die gi owth and success ofa young and dynamic company

Billing4Rent are always keen to hear from qualified and enthusiastic people and
routinely recruit for die following positions:

Account Managei s
Software Engineers
Systems Architects

Web Developers

Quality Assurance Experts
Helpdesk Administrators

You can send aCV to careers @billmg<4rent.ie or alternatively check out the c-uneut
vacancies

T +35351 3029641F: +353 51 3029011E: tnfo@billing4real le © 2005 BiBingiRenl AUughisreserved

o1 Local Wiwnct

Client Site: Current Vacancies

>gOililng<Riant Miio»ofl Inin »mfx|>loin

Bew F*ot« looh H*
j.) Search

bfcigdrait.com/

billing

Fsyort« 6

it.com

oniiitc <Wittmsorvfce provider

Home Servie** Client T.oc¢ht Adminiitrarinn S'nppon

About Us

LatestNews
Careers
Vacancies
ContactTJs

Current Vacancies

Dfticripiion | Location | salary | CloiiniiDati«

There aie currently no vacancies.

T +35351 3029641F +353 51 3029011E mfo@billing4ientie © 2005 BillingdRent All nghls reserved

F I~r~ "iffigsine™"

rmK
J9

u*J

b

zZi

7) Client Site: Contact Us

9s f* Mew rtmrttt loots bet
. * 2l IJ W H Favei*« fj* *

Ad*«a | r ,mpi-II'Nmi,bEn~tatxan]

b ilH n ANrorit.com
untine aititu* trtv/ce proniitnr

Homo »Piyicci Clioni Login Administration
Contact Us
Address

Billing”"Rent, TSSG, WIT, Cork Road, "Waterford, Ireland

Telephone
+353 51 3Q29W

Fax
About Us +353 51 302901
Latest News Email
Careers info@biUing4reut.ie
ContactUs

T: +353 51 3029641F: +353 51 3029011E info@fcillirtg4retil ie

I"Oona

8) Client Site: Client Logon

| ¢jBilferHijtflent Microsoft Internet Explorer

Oe 81t 55» Favorites loots Help

iQfiadt - j « [*\ [y]| ! 1SM«h Fwortw 0 t r-

Anfress | ¢]I7T/jW w.binAwtrEA

billing'lurent.com
onMat- Utitiaft ft'tuiee proviti?t

Hniup w Seivirps Adminiati arimi

Bflling4Reit Client Login

Client Id:

Password:

New Users: Please contact BfflingIReot
for details on how to sign up and receive
your clientid and password

faVUoSkI*" USif<ink™ A=ilnl

Gie

jIfiiS

1$

*J (jGo Links

Support

© 2005 BiilingdRent Allrights reserved

I it) localMraiet
jgjuj
i
ths ”
Support About Us
am AHwW#*« WA -1

5 Lodntrnat

mailto:info@biUing4reut.ie

9)

1

Client Site: Display Client Details

Mumirili Jrtternrt | K|>nri
Look ft*)

(Wit

Se &* iw Favor*«

(o] 4"
Affefress |

o ft 1y
rttps!//\ww.tnglrent,com/

M s“rr Piw* K

billlNng—iwvwit com
online HitHut trrvH'e provider

Home Serviro*

Client Data

Display Client Details
lodate Client Details Client Name:
Customers Street Address:
Display All Customfrs

Register New Customer

Update Existing Customer

Delete Customer Post Code:
Products
Display All Products Email;
| Register New Product Phone Numi)er:
Update Existing Product o .
Delete Product Coniaci Details:
L ivoicbs Client|d:
Display All Invoices

Create New Invoice

Delete Invoices

Eie Upload

| Logout

1 Privacy Sifttement] Security Statement

10)

fr lim
08

Client Site: Update Client Details
i m shwwiilw»ffu» 1,'1111 — i
td* £Mp

Na a i«

7
t«M Favorites loote

tjitodt ~ \ud el

tyfin** | 0 Jht(|»i/irV A hafAifirit,Corr

**rch Fftttrttt &

billing>**rrefit —COrm
uiHmv UMtttim Mirutcc pruv/der

Itiiiut* Smirn
ClientData

Display Client Details

Update Client Details

Customers

Display All Customers

Clkntld:

i Register New Costomei
L Street Address:
lodate Existing Customer
Delete Customer
IM ucii
| Display All Products
Register New Product Post Code:
Update Existing Product
Delete Product Email:
Invoices Ph Numb
. . one Number:
1 Display All Invoices

Create New Invoice Contact First Kame:
Delete Invoices
Fde Upload

Logout

ContactSurname:
Passwort:
Confirm Passwort:

* Required Field

Pnyacy Statement| Security Statement

mtone

Client Cong)any Name :

Administration

Administration

|0)faw
|tofi»rd

Ifti

*H jfC-i¥IrrNi-CS.m

777175

(llcePs

Ju*s »

Supuuit ~ Almut 1h 1

B4R Client Information

HP

Ballybnt

Galway

Ireland

Gl

nkéané@holmail com
091 772378

Nicola Kean«

nkesne

©2005 BtHtngfécenl All nghls reserved

-ig i xi

1V

<) E3® Unte ”

A

Supunit Aliout Tfs

Enter new B4R client details

Submit 1

© 2003 BillmgiRent AUrights reserved

3 localWron*

11) Client Site: Display All Customers

gla gdi itew XcoH ttedp

QtoA -~ v} Sear* Favor*» 0

address 1V i M(pt:|l/vrtw.bIniy*ent.comi

billing' rent.com

on/ine inning service provitct

liftiiip N fsVmrps
ClientData

Display Clienl Details
Update Client Details
Customers

Display All Customerc |

Customer Id Company Details

Imagine Imagine Broadband

Smart Smart Telecom

Resister New Customer
Update Existing Customer
Delete Customer
Products

Display All Products
Register NewProduct
Update Existing Pitiduet
Delete Product
Invoices

Display All Inreices
Create Newbttoice
Delete Invokes

Pile Upload
Logout

Privacy StatementJSecurity Statement

X

12) Client Site: Customer Details
BilhnQ4P>'nr
9e

Mmngntt Internet Explore!

m ‘'»N Pawites look bet

* ko “ ? SMrch Favwte

0 o
Ad*ess]gj Wp5:/Mywb*n<HrfitxQmy

b illin rent. com

1.9 . .
oniiny itiilitty setvite ptovtaer

Horne Semees

ClientData

Display Client Details
Update Client Details
Customers Company Name:
Display All Customers
Register New Gustarner Street Address:
Update Existing Customer
Delete Customer
Products

Display All Products Post Code:
Register NewProduct
Update Existing Produci

Delete Product

Email:
Phone Number:

Invoices

Display All Invoices Back |
Create New liwoice

1 Delete Invoices

1 Tile Upload
Logout

1 Privacy Statement| Security Statement

Done

v Administrarian

Administration

zZi ¢J05

N

Support About Us

B4R Customer Information

Contact Prefile

Jane Bloggs enabled

Joe Bloggs enabled

© 2005 Billuig-iRenl Allnghts ieserred

I 1 1 1 IS I'sjLocalrtrjn*

-1fflx|

Support About Ui

B4R company details

Imagine Broadband
BallybriL

Galway

lieland

Gl

jbloggs@hotniail com

091 742378

© m&ingmenl Allnghts reserved .

I 1 1 [g"giocaiMrénet

13)

1 NiuAnll Iftirmrl EKiiforr
O0e g* Hew Flyortes loefe
08a* »Q - ¢ ¢l $ y- S**h Favorte 0 *

Ad*«s |#i https;/imw.bAnpfetrt. CFfil/

billing~rent.com

onHue O lititi* ttfvtce »raumer

Itomi* Smicru

Client Data

Display Cluni Details
Update Client Details
('Hftomnn

Displaj All Castomers
Register New Citsismer
lydate Etisting Customer
Delete Costoraci

1 (Hici4

Displaj All Pi'odvtls
Register New Product
Update Existing Produci
Delete Pr&dirt
Inae»

Display All Invoices
Create New Invoice
Delete bn«ices

Rie Upload

Logout

Pnvacy SlAlemeiU | Secuhtjf Statement
j#jDooe

14)

1 iuilinKjiwnr - Miawofl Internet Ixplotdr

fte EA EM Fffforte* jpds be'p
Qtek « |y] ~ _~’Se«h ravortes -
AW+ IhipsrtfmawifinQadHkcon

b illingreiit.com

'ittiN U X(&fifi(',o ntm vtiftrf

r Mon 1 w Sirvirnt
Client Dm*

DUpUj Cifriti Draih

I** * CUriMDcuU»

Ciinonwrs

Display All Customers

Register New Customer

Company Name;

Client Site: Update Customer Details - Select Customer to update

*19} *1
n »

jj £3 G0 U™ *

T Adintii«(ration T Siippnrt Midiii 1Js

Enter user name of B4R customer to be updated

Customer Id: | Imeae

| Submit"!

© 2005 Billing4Rent AU ngfcds reserved
i f 3

* [local r*r<o*<

Client Site: Update Customer Details

JE iii

zi, ks lite”

A Nrfminj(trattali 7 Suonom Aimill 11» 1

Enter newB4R customer details

Custemei Id;

|ImagneBici3dband *

Street Address:

Lodate Existing Customer
Delete Customer
Pioducts
Display All Products
Register New Product
Update Existing Product
Delete Produrt Email:
" Invoices

Posi Code:

|lieland

lgi

|pjtogg;@irjloidd com ~ *

Phone Number: 74237 *
L Display All Invoices e Number e
! Create New lwoice ContactFiis | Name: [icTE! .
Delete Invoices
File Upload Contact Surname: jBtaggs *
Logout .
Profile: |&nabfed »1*
*Required Field
Submil 1

1 Pnvacy Statement| Security Statement

}Dov

© 200j BiUing4Recl Allngbls reserved

[\ [14 jiczitMe

15) Client Site: Delete Customers

J Ninotoll HItCAIK'l tM plojrj

Oe Erfit Jffew Favorites loots tifet

0 - X'l i Myjs“h Wtk €)

Affcfrnss] https: //Www.bfc04Em.Ccm/

billing ent.com

online inHint* seruive ptoviUcr

Home Semrps Administi arimi Support

Select customers to be deleted

Custamer Id Company Contaci

! Imagine Imagine Bit)aliaiti Jans Bloggs

Sm.iit Smart Telecom JoeBloggs

| Submit 1

¢iDerm

16) Client Site: Delete Customers Confirmation

~Billing4Pi*ot *1Ktovnfl Internet fwpJom
9e SBN Favorites bdp

Qm‘ »:('J-"V

Afes | https:/Avww.b#ngdrent.comy/

loot

S«*

Faete ff)

billing ‘'rent.com

oulUtg U iiny setvice proviter

Home Services w v Adminiitrarion » Supporr

Client Data
Display Client Details

Delete Imagine, from B4R... Aie you sure?
Update Client Details YES I NO |
Customers
Display All Customers
| Register New Customer
Update Existing Customer
Delete Customer
Pioducts
Display AD Products
Register New Prudurl
Update Existing Product
Delete Product
Invoices
Display All Invokes
Create New Invoice
Delete Inwires
File Upload
Logout

| PnvacySUIlement 13 ecurily Statement

Done

Profile

enabled

enabled

r

A

About lis

Delete
iE
r

is

About Us

f

la

JA)E]
|>

3 3@ Uks”

1

Localrtrsnet

-iai*j
1*

2¢ito ~ *

©ncos Billing4Reni All nghls reserved | Zi

https://www.bfco4rent.com/
https://www.b%23ng4rent.com/

17) Client Site: Confirmation of Deleted Customers

eilliiiijjr'r>nl Murusolf Ini ernnt txjjlijré»

Bte 6* Oew rAYprt« Ipob telp
Qb«* - Q gy gx

1i https://sww.UlhgLrent.coin/

/ - Ssm)i FwM Cl %

billing ~ ren t.com
online ititiift» tr/m i provider

r Hijmh sunices AiJmmiitratiun
ClientData
Display Client Details
Update Client Details
Customers
Display All Customers
Register New Customer
Update Existing Customer
Delete Customer
Products
Disylay All Products
Register NewProduct
Update Existing Product
Delete Product
Invoices
Display All bwoices
Create Newbimice
Delete bn'sices
File Upload
Logout

Pnvacy Statement | Security Statement

Dor«

18) Client Site: Display All Products

Efe ftk jlev# Fftwrites locfe p*

y. Se»rh Farrcriu» .

Q m 06 10 a s

finird« 13 https:/ww.hftigirent:.com/

billing”~rent.com
va liliti totitlQm M&fVit-'fin r9vitim

Home Services Administi arioit
ClientData Product liifomiatioit
Display Client Details
Update Client Details Product ID Name
Customers GhamU Galway Broadbaodl
Display All Customers GbancU Galway Bmadbud2
Register New Customer |

Gband3 Galway Broadband”

Update Existing Customer 1
Delete Customer
Products

Dtsjlaj All Products
Register New Product
Update Existing Piiduct
Delete Product
Invoicei

Obpb) All Intuire*
Cm tf iS«r IAmIfz
Oflffeb rtm
Elle Upload
Logout

J Pnvacy Statement|Security Statement

B4R customer ClearBlu, deleted from B4R!

Sisj*i
I> -
43 Lrfcs **
Siijipnit About 11*
© 2005 Billing"Rent All rights j eseired. Zi
I !'8"H localHraiei
1

Support

Unit Charge
999
149
199

d {30» urs-*

About I's i

Enabled
true
tint

tnji

© 2005 Billing4Rent All rights reserved] Z1

https://sww.%c3%9clhg1rent.co%c3%adn/
https://ww,hftigirent:.com/

19)

13it»Hino «Pclit

molt Ini«nel iwpltircr

Qle e&* ytow Fayotes look trt»

0» k =m

c1i] [£] 2i>|/m SMn* &

Address \ https://vAmb*ng4rent.comj

41 Done

20) Client Site: Update

Client Site: Product Details

b illin g - corri
online titiiimw stfV ite pruyjiier

Home Servic

ClientData
Display Client Details
Update Client Details
Customers
Display All Customers

I Register New Customer
Update Existing Customer
Delete Customer
Products
Display All Products

Register New Product

Update Exi:

ng Product
Delete Produrt
Invoices

Display All lav¥ices
Create New Invoice
Delete Invoices

File Upload

Logout

1 Pnvacy Statement] Security Siatement

| iJlliltingiRenf Mjrinioft Internet Enpiflfft

oe 8% pi

O 6*' U

Favorites look tlefe

AN

"L m

A#((Sj https://ww.bing4rent.comi

biiling”~rent
uniifu; mtttiafi 1atvit e fit9VHier

€es

Favorites

com

Home Semees

ClientData

Display Client Details |
Update Client Details
Customers

Display AU Castomers
Register New Customer
Update Erisdng Customer (
Delete Customer
Products

Display All Produc is
Register New Produci
Update Existing Produci
Delete Product I
Invoices

Display All Invoices

Create New Invoice

Delete Invoices
Hie Upload
Logout

Privacy Statement| Security Statement

N 50
Y Vimimw.ninn Support AboutUs___j
B4R Product Details
Produrt Name: Galway Aroadband!
Description: 1MB fiio&dband for Galway
Invoice String: IMBGband
Tai%: 1000%
Gli* Code: 3000
Back 1
© 2005 BiUing4Renl All lights reserved
Product- Select Product to update
*
dH »

Administration Support About lls

Select the B4R product to be updated:

tjI'Ha? Diiurfca'dl «1 |

G Blona |

Submil 1

© 20C5 BillijogdRefit Allnghts reserved

TI 2 * Ittt

uUte"

ja jii

U*5 e

https://vAmb*ng4rent.comj
https://ww.bing4rent.comi

21)

1+J villingdRent Miciosolt Internet Explorei

(fia Eft Jlew Favorites loote £faip

<J>Ba* + O 1*1 & Sa* th

Atferesj 11 1W.iiK:/www bilr»gafefitx m ;

Client Data

Dtsplay Client Details
Update Client Details
Customers

Display All Customers
Register Hew Customer
Update Existing Customer
Delete Customer
Products

Display All Products
Register NewProducl
Update Existing Product
Delete Product
I

Display All Invoices

Create New Invoice

Delete Invoices
Fill* Upload
Logout

IMvilyfiltifiifnt (Security St&tement

)ikT M

22)

1 'JfliMuiglkeni «Mir rusoft Internet fxplottr

Ote EGK yfew Fayortes lods fiedp
0 A £ " 1
Ge*'l ma ® fi' s"* Faate €3
Ajkfctss 1f j https://vA t*>flafcnUcnV
billing' rent.com
1 untine liiitiuu service jjtoytia
Home Servirps
Client Data

Display Client Details
Update Client Details P
Customers

Display All Customers
Register New Cmstumer
Update Existing Customer
Delete Customer
Products

Display AHPinducts
Register New Product
Update Existing Product
Delete Product

Invoices

Display All Invskxs
Create Newbwoice
Delete Invoices

File Upload

Logout

Privacy Statement|Security Statement

fdDra

PavQftes € >

ingEreilt com

Client Site: Update Product Details

ilice provider

roductID

Gbandl

Gband2

GbancR

Client Site: Delete Products

Adininish atiou

Enterupdated Product details

© 2005 BiUmg4Rent AHAjytit# reserved

iGbyo'l
Description: ITM 5 W t7
Innoirc .
Lo fIMiOtorrf
String:
PrE—.
Unit Charge: (|5['
Tax ||nff
Gli. Code: I_E
Pt«Ble: Ir.1d.]
* Requaed Field
(I
J * e

Admiiiisnation Support
Select a Productto Delete
Name Unit Charge Enabled
Galway Broadbandl 999 live
Galway Broadbandi 1459 true
Galway Broadband” 1999 hue

a

About Us

Delete

tociJttra«®

_*110Ggq

© 2005 Biliing4Rent All ngjats reserved

o

1

*J toca) rtf& ti

J .

LHs **

https://v%5e,t*%3efl4fcnUcnV

23)

1 Htlhmj Mtuntolt Int.rr Oft f KpUirrr
1cfc Jfew Ffttrta Joels Hdp
Qua. 'O *o»l 1 Surd! FmortM 0 * v
Ad*es5 j dj Nnps;//wwi*,b*fVittrt.(cnV
billing rent.€eom

anime Utilina savite y/ovuler

Client Data

Adhindrdin

Client Site: Display invoices - Select Customer

~Jfls o

Enter the ID ofthe B4R Customer Livoices you wish to display:

Display Client Details
Update Client Details
Customers
Display All C«stamen
Register New Customer
Update Existing Customer
Delete Customer
Products
Display All Products
Register New Product
Update Edstbig Product
Delete Product
Invoices
Display All Invokes
Citate New Invoice
Delete Invoices
File Upload
Logout

Pnvacy StatemerU| Secunty Stateinent
ig] Dune

24)

1 ‘Iniaintt Intfiiift fnplatM
Oe §A Sew Fgyortes lods o6dp

Q °* ®6 ®1 o« ft AS‘,d FTMe o

AiJ*oh [c lttt™r/irw lifr>o4rent.corajl

billing“Snent corn
onhm; IMIitiis$ s g<vice ptuvitiaf
u
r Huiup Survirto
Client Data
Display Client Details
Update Client Details Customerid Invoke Number
Customers . Imagine INYUOOUO!
m |

Register Nev Customer
Lodate Existing Customer
Delete Customer
Display All Prodarts
I Register New Produci
Update Edstin* Product
Delete Product
Livoices
Display All Imvices
Create New Invoice
Delete btroiees
Fde Upload
Logout

Privacy Statement| Secuiity Statement

Customer Iti

) Imagine

|Smat

Submit |

Client Site: Display invoice Summary

Cca]

Invoice Date

Q3-Apr-06

© 2005 Billing4Renl All rights reserve d

l'i giocaiintani

biroice Total PO Numher

49470 PO123"5

© 2005 Billing4Renl AU ngfrts reserved

o1 la

Local Intranet

Iris»

wi

z]

25) Client Site: Services

W B 3 raast mh v
o [T ui S "

Fovoritns JC*1

26)

AHilluiU'IRciil - * liciowin IMernrt Fitpfwin

Mew Favorites look befc

i2i L = Ss*d’

E* aft

Fewws

Agjfrtss 1&

Aduon ot
oiHiut; $4H itov 14?vu-a ftrevicter

r Huim* n So>\ici-< A
Client Data
Display Client Details
Update Client Details
Customers
Display All Customils
Register New C'nstome»
Update Existing Customer
Delete Customer
Products
Display All Products
| Register New Product
lodate Existing Produci
Delete Product
&IViit«i
Display All IHV*fces
Croate New Invoice
Delete [m”ices
Ftfp Upload
Logout

1 Pnvacy 5l6teine.nl | Securit.y Stolement
I'd Dong

Client Site: Generate invoice -

la @ »j1

Select Customer

jifiJiD
Z21L.0M
zil jGo Unta D
A Admiiciw»(iinn ~ Support n AlimU 1U
Generate Livoice: Select Cuslomer
CuslomeriD 1lmacme *1
Subimi 1
© 2005 BiUing4Rent All lights reserved z\
t fIT fcl.-

27) Client Site: New invoice - Enter Details

Favorita* loot tfefc I»

osy Search Favortas G* v
Address ! 3 Bfco Lks >

Nng-“nerit com
onfine (tfWtiH tmeéyive previt/ar

ClientData Enter new Invoice details
Display Client Details

Update ClientDetails limice 1D: [
Customers
Display All Customers Customer ID: F—

Register New Customer

Update Existing Customer

Delete Customer Purchase Order: |P0234
Products Product: 1Gaiway Biwdbandl *1»
Display All Products

Register NewFndust Quantity: hd v <0
Update Existing Product

Delete Product RequitedFiild
Invoices

Display All berakes
Create New bwoice Cancel Invoice |
Delete Imuices

Fib Upload

Logout

Privacy Statement| Security Statement © 2005 Billing4Renl Allrights reserved il

#D 111 1A

28) Client Site: New invoice - Add Products to invoice

| BfiillnujineiH Mifio»f*(i intrm rt <»plrwrr -i«?3 *J
Be OM Fayortas look [
O '*1- * 2 i s" ‘h FMoxe & .rl
Address i2: IM » -

b illin g ~ ien t.

com
ouiinn HHitin aifOftie prov/der

tJaunl Data Enter new Invoice details
Olsftti CUmi Riudi

174«» CUriti Dttallft liwkr 1D:

CtiitoKiri»

Display All Customsi-s Customer ID: Ifiwl

Register New Cmtomtr
Update Existing Castomr.r

Delete Customer Purrkase Older: *
*
Productr Product: Jfid#fipINKRm*fl ¢ |1
Display All Pnidvch
Register New Product Quantity: | * «8

Update Existing Product

N I
Delete Product Required Field

Invoices

Display All limiees Product ID Prxxiur1 Name Description Quantity Cost

Create New litreice

Delete Invokes Gbandl Broadband| 1MB Broadband forGalway 10

111» Upload

Logout
Subtotal: 9990
Tax; 9.99
Total: 10989

Generate Invoice | Cancel Invoice
Privacy Statement] Security Statement © 2005 EiUmg4F.ent Alllights i«served

.tone

29)

e & fov Rgis lok bet

Qo . Vj mM il Ay 5r+

[l ()
asees (NPTl QD

billinj /nent com
antine ¢ttfi/tttd j ».vice Btov/iier
limili* S‘ﬁﬂr\/«
Client Data

Display Client Details
Update ClientDetails
Customers
Display All Customers

Update Existing Customer
Delete Customer
Ptuiflicis

Display All Products
Register New Product
Update Easting Product
Delete Product
invoices

Display All Invoices
Create NewlInroice
Delete Invoices

Fill» Upload
j Logout

1 PnYacySUlemenl.| Secunty Statement
ISDOfIB

30) Client Site: Delete invoice

| JfliBmolPrnl Muifttnfl fiitcrrik fKploiri

Fie gft tfiew Fftvertw Took Hdp

Qtot TU ' 141 Ay *rx
Ad*WS5 [

Farate <9

https://wm,b®ng4rent.com/

billing ~rerit

e.vive tnovnlar

j ClientData
Display Client Details
lpiate Client Details Customer id
Customers Imagine

Display AD Castomers
Register New Customer
Update Existing Customer
Delete Customer
Products

Display All Products
Register New Produr!
Update Existing Product
Delete Product
JjftVotei»*

Display AHbiroires
Create New Invoice
Delete htwices

lile Upload
Logout

20

*

liwoice Numher

INVDO00001

Client Site: Delete invoice - Select Customer

Adummidion

Cualomer [d | Imagne”

1 Submit 1

Selectinvoices to be deleted

InrokeDate

05-Ap»-06

Syt

Delete Invoice: Select Customer

4@ s

Aot

© 2005 Bilkig4Renl AU ugjits reserved Zi

|a na local Hranet

-1ffU i
LI
lc
*| JujGr LM® n
49470 C

"¢ J local Wrawt

https://wm,b%c2%aeng4rent.com/

31)

1 3jliilim ijtH fiit

Bte &3%

o =

A#ess 1 ;

32)

1 Anillirig-iPr-"nt

£'¢ 6*

fawrtw i0A tyy

i il 0 1yf-1sm.d’ F<*Wo»W

bi

nNg “~Srent com

Home \ Serviros v

Client Data

Display Client Details

V fiur Client Details
Customers

Display All Cvstomers |
Register New Cnstaater
Update Existing Customer
Delete Customer 1
Products

Display All PrDdwts
Register New Product
Update Existing Product
Delete Product

Invoices

Display All Inwices
Create New bwoice

Delete Im«Ices

File Upload

Logout

Pnvacy Statement| Secunty Statement

Mirtnsolt Intrrnol Explorer

Slew Fgvertos loob 6dp

¢l ! ~ApSHKh Favorites

Ad*ess 1 | hWpK//w?iJrrienfcccoil

V ToM i protect your security, Internet Explorer has restricted this File Fromshowing active content that couki access you computer. Clckhera Foroptions.,.

Dons

b illlng ~rerrt. COrm

unitnt I'ilium service timvitict

Hume Serviros

Client Data
Display CUentDetails
Update Client Details

Customers

Atiminittrnrion Support

Specify your company logo

Browse... |

Submit |

Client Site: File Upload - Specify location of Company Logo

Miifuwjll Internet Explorer

Ahonl 1/i 1

© 2005 BrlHngIRent All nghls reserved |

Client Site: File Upload - Display Uploaded Logo

AibniiiisfjHiioM Slip-on

. NewTelecom

J (¢3Go Unte **
X

*

About Us

C:VMasters'vBilling4Rent\Source CodeVTSSG B4R Source CodeY Version 0.2

Display All Customers
Register Hew Customer
Update Existing Customer
Delete Customer
Products

Display AH Products
Register New Product
Update Existing Produci j
Delete Predict

Invoices

Display All Invoices
Create Nrw Invoice
Delete Invoices

Fde Upload

Logout

Uogos\newtelecom.gifuploaded to B4R!

-179-

1J Mlwatlntrorief

33) Administrative Interface: Login

J b [MAthiiinrodiolr Mifwuill IMnnrt F*ptnrrr

0Oe S§fc lvew Favorites Ipob (jafc

Qsbck -y j mA [g1 V. y So»* Favorte ff)

0

34)

ioo»dlc MICTO#oft Internet Inpioici

Sb &U So#w Favorito look t

hd(. V\] ° “1 (/1 ° ﬁ(h Favcrles ~Jo! |
tefrtan JE j Ktps:/Awc.tjaf 4niri.CDniffidinn
biH Ing'Tnent c¢com
oMint: Ultjsu svrv/ce nrovM a

« AiadiiilntkalWw ai
O Hob
* UserAleimlstniiee
O Display AllUsers
O Register Nrvf User
O Update Existing User
O Delete Users
* FUel*load
o File Upload
- W
O Acdi: Virw All
o Error: View All
O Security: View All
O Admin Audi!: Virw AU
O Admin Error; Virw All
O Andii; Delete Single
o Error: Delete Single
o Security: Delete Single
O Admin Audit: Delete Single
o Admin Error: Delete Single
O Audit: Delete All
o Error: Delete All
o Seeoirty: Delete All
O Admin Audit: Delete All
O Admin Error; Delete All
» Statistics
O B4R Database Properties
O B4RTafelespace Properties
O B4R Tafcle Shes
O Launch JAMon
* Lcginl
O Logout

Pavficy Statement. | Stcuniy Statement

- 180-

Administrative Interface: Home Page

I ff1 3

SIWCTICX I ofliuni 1

© 2C05 Biiiing4Rent Alinghts reserved

Logout n

£J<So

1*

links 1

36)

35) Administrative Interface: Display All Users

-SCf

Oe |A tlev* Fgvorites Tools lieip
Back - \

=, Search Favor*:«

Address | https:/ivwM.b*ngdrent.com/admin

billing”rent.com
ifittfif bigh'ntf :

Home Usei \ilmtn fliput Admin Statistic*
B4R User Information
Nu r lknnt Rak
KemwlhKin«* iirane user teil
SabrinaMcNadijr ameneety adam trrt

Puvacy i;'Ulsineul | Secuniy Sli'.einmi

Administrative Interface: Register New User

~kM It Akinin Convole Mietutoli Internet Ixpkvet

Oe

Q Bak -

&fc tfew Fgvortos look |idp

12 Search Favorites 1 .

Ajjdrws 11 1https://ww b@ng4rgnt.com/acliTEi

cJOooa

biIIing"’\rent.fC;OinA

Home ! T*spi Arimi» Client Ailmm Stathiic»

Enter newB4R user details

Subii |

JLijc

Pnfifa
enabled

enabled

ia 2005 BiliuigdRe.nl All tighls reserved

2 ‘'eHucalINiffwl

dtlsc

Local intranet

-181 »1

1 m»

li*s »

Liis :

https://vwM.b*ng4rent.com/admin
https://ww.b%c2%aeng4r8nt,com/acliT%c3%89i

37) Administrative Interface: Update User Details —Select User to update

Se E.* Slew Favorites loots Help
A e i1 1/ 1Sevdi Favoftes G f) \

(i.j 14tp*:/*w». Wngd«!rt.c«iVAjiBin

billing rent.com
unit/ta tutilay $arvieti fuvi/JuUcf

Enteruser name of B4R userto be updated

Privacy Stai «tieni | Secunly Statement <Q2005 BiUmglRenl Allngiils isseived

How

I 1 ("8 9% toed intranet

38) Administrative Interface: Update User Details

iJOif* Adulili Console « MKroMIH Urteroet bipiorer

Oe EA ytew Favortes lods Hefc

QRack m " i1 iel il 1/ ' Scarti Favortes

AHSI It 7y MIMaifictiin

billing rent, com

unhub iulimy si:njve jitoviiict

Home User AdFniii Client Admin Statistics
Update B4RUser details
Slim»

2] Done

cjfla life ;

39) Administrative Interface: Select User to Delete

Ea pH jgw Favoriic Joefe listo

QIW i - «l j¢] S«nti Favont«
L]
billing _~rent.
stmtt
Hmiip User Admin Cliifitt Admin S'lamrirs 1 l.ogapr
Selectusers to lie deleted

Hum Um iw Ralt Crepatiti PniTh Dckie
KsfmithKin oit timone U»H t*rt taiblcd fi?
SabiwiMcHrtty (roufe-ly adi&in im* [y

i I
Privacy Statement) Security Statement © 2005 Btfling4Renl AUrights fesetved

faro 3 Lo

40) Administrative Interface: Delete Users Confirmation

unsold M+*crotoli Internet tnplorcf

p? it Gew Fiywtef ipdi £5p

0® * » *i2 , ~pSéath Faots Q\ £
AjifeiS £ Ivttpii/ZwA bAniAverittiCen/odiiifi *3
o com
w /e &iiittou s#fvii*
("sot Admin Client Admin Statistics 1.oggri' logout
Delete kkirrane, smcneely, fromB4R... Are yon sure?
Vtfclrwl
Privacy Statement | Security Statement © 2005 BilKng4Renl Alllimits «served.

-183-

41) Administrative Interface: Display All Clients

JIHH Admllitoruulii Mirrotoft litienici iMplufCr

-1flx|
9e HEfc Jowf Favorites lools t*dp ~ T fr
JRxSi» j - x] 'Se»nch Favorit« 4°' v
Ad*ess [QU »j i3 ® Ry

billing™~nent.i
Home I ser Admin Citent Atbtiiu Statistics
B4R ClientInformation

Nu* Unwwum Cir»jDrtiUi Raie Cnfailial Pnflk

NtcofoKatne nka«na \ wrimtn tAft HMbbd

EvelynLynch «lynch Nerfcl admin tact 1 tnihled

Privacy Slalemeot | Seeuilly SI eir’tji £'2005 BilEng4Renl AUiighls festrved
42) Administrative Interface: Display Client Details
3 FuR Artntin fonsnir - Mfcrowft Internet fKpltua -191*1
gte §* iiew Favortes lools (isfc 1*]
Back * «NJ) ¢ I*] 1jjj 1 j " Search Favorites *

Ad*es5 17j J oo Urte ”

billing® rent.CcOrm,_
st ttritifitiet
Hoiup I'sei Ailmin Client Admin Statistics

B4R client company details

CufajKtae: HP

Street Attrai: BiRybnt
Gahray
Ireland

PwtCefa: Gl

EmO: Dk9tae@hotmad.com

PlraPMer: 091772378

Piivioy Stale-menl|Sequily Statement 0 2(05 Billing4Rent AU liglUs leserred

3 v Localintranet

mailto:Dk9tae@hotmad.com

43)

+illi IR Adnnri Innvo(r ‘WroiOfT fntfrinri rxplrw*»

Administrative Interface

: Register New Client

Enter new B4R chient details

3g |tfc Sbw F8yorres Xooe tNp
Q Back » *o2 j Search * Favorites
Ajfcros jc]
tOIIIIng"t’\nt. com
Privacy Siat&insnt| Stcunly Slatti
<l Done

44) Administrative Interface

iodi ti*p

x| 12j

Se®th Favor*» =

p-

billing”™tent-co

ClictMt Admin !

x)

J2035PillisigdReni AUnghts reserved

:V_J Locai Wranet

: Update Client - Select Client to be Updated

in

S'iattitjr g 1

Enter user name of B4R client to be updated

Pjistiicy Sl-il ciiiciiL 1Seciyity Siilczrenl

Inkeana ~ |

L.OUUFT

J£| giji Go

L oquui

i>2003 E'iibiigiRetii Alln?Jils reseived

a v UXlriw «

¢Jljo

JHELIISI
T

Lrts

VN)

TR

45) Administrative Interface: Update Client Details

3 d4R Ailminfiirniiilr - Mkftivol» tnlitrnrt fhpktfrr A ox g
Ote EA Jflew Favoritess loot tMp & T
j)B«k - XN L2 Vi ‘Search Favorites Syp e]
Aifress j vj¢3a u*s "
- N
billing~"rent. com
ItoiUi* Usei Admin Cltifttt Aibuin 1 Logout

Update B4R client details

Privacy Statement j Security SlateiMWI © 2007 Billiilg4Rejil_All rights j «served

#0m 3 *JUicdintrrlc

46) Administrative Interface: Delete Clients
ammali» ini m —

pB EA Jflew Favorites Tods Help

/Back - _\ 2] jji» Search Favwfces " c]

] . on 7
Address j , https:/|w w .bangirent.com/adii 3 63 >

billing~nent.i

U*#r Admin 1 Client Admin Stllistii- % Logaei

Selectclients to be deleted

N » Damme CmAtmy Bab —_—) = Pnffle Dehto
Nicola Keane Tiiaivrk HP admn test enabled P?
EvelynLynch olynch Martel oAnin j Uiit enabled
Pnvscy Slaleinent|Security Statement ©2035 Billing-IRenl AllngjiLs reserved

£j f*j Localirtranet

- 186-

47) Administrative Interface: Delete Clients Confirmed

3 bill Adnuu Unitole Mknnoft Internet fcwpkifer

Efe yw» Fflvtrtes loob oefc
QBack - - el $ ~NJawdi FavortM [
l]j, Wipi://»nilbio~rertewfi/od TA ""3 gjGo

billing”rent.som

unHue ifUliHu service orwider

Hm Uwr Adit» Client Admin Statistics

Delete nkeane, elynch, fromB4R... Are you sure?

Y551 NI

Puvacy Statement| Seciiniy Statement 32005 Billing4Rent All rights reserved

[ﬁD]\N IB" %J Localmone*

48) Administrative Interface: Statistics - Database Properties

i JtUR Admin Console « Microsoft Internei Explorer

Oe get yow Favorites loob
Qua*’ Q ' 1 $ I/->*m* Faos0 N #
Aies| ¢ HpsANHfigert coedii "y e

B4R Database Properties

Pnmy Statement| SecuntySUUiriiiiit © 2005 BilBng4Renl Allnghti reserved

IB" Intrtfe*

P op!

i»!

Urte”

https://wWH.tftig4rent.com/adiiii

49) Administrative Interface: Statistics - Tablespace Properties

3 R« Adroirt Cooiolc Microsoft Internet £*plorri

Ole pit Yyew Favorites lods Help
Bade * _J - V] >jjj (1~ ‘'Search . Favorites " *]

'
*655 f > https://iww.bihg4rent.com/adTwi I jG O

taillingérent.com

Home I’ser Admin Client Admin Stanttic

B4R Tablespace Properties

ThYasito BR
TemeDe HINB

0p9IMB
TitfafFe BING
HTTASTeM 4B

Pnvscy Sial smetti| Secunty SLatement 02005 Bilhiig4Reril. Allrights ieserved.

||O]e { ~ Locd ttranet

50) Administrative Interface: Statistics - Table Sizes

1]Ju IR Admin Console - Microsoft Tnt«trodl Explorer

Ffe |A ytew Favorites look Help 19
CBak m | Search Favorites
A8 lgj HisAwrglertaovichin 0Go

billing~/rent.com

B4R Tables Sizes

B4RUeer Kisab« ofRows mTftbl*:3
B4RCBemt Number ofRom in I*b5e, 2
B4RCwtaer Numb« ofRowbid Table: 2
B4RPi*tet Nuabit ofRow* mT»bU:7
B4RIm in Brader Numb« ofRotrjinTabl*: 2
B4RMaDetaOf Number ofRows m Table: 4
B4REn«rukK Number ofRotrs in Table: 2
MRAailUg Number ofRowsinTtbls: 189
BiRSecvriliLag Number ofRow* in Table: 5
B4RAdah Err*rLag Number ofRows in Table: 2
B4RAtariiAiih Lag Number ofRotrs m Table: 139
Puvacy StaieusenL] Secunty Sblet7wr.it © 2115Bdluig4Renl A Irights iessrved
Done a Local Intranet

- 188-

JFEX)

1tf

™.

LUlIxl

IUnks “

https://iww.bihg4rent.com/adTwi
https://ww.bing4rent.com/adniin

51)

Administrative Interface: Billing4dRent Performance Monitor

1J BftMonitor JAMonAdnunPagt e Mtaofoit Internet Explorer Jil*|
fle EA Mavw Fayotes Jods Hdp 1W\
Q Bak* j ' PI VI [B Favorites ° .. L
Adfess httpsi/Zwwy.bing'Yert.comadmVIAMXAMmIjsp iJ0 e U*s”
billing*/rent
Performance Monitor
Refiedi | fleti | Erable | Diseble | F%{Hﬁd
IMSH fiwad tts Hs téssi A ta ladactm Piinav (11Quh. nates.
B> i® 8> && &FFH tei*
at.

JS' .MtWmejsp 110 10 010 0 O 1 060406153037 05040615303/ M 04> 1)

j JSP. dertCustomcrOetafejsp] 110 10 0 10j10 0 1 0604*615:31:17 06XHAG1&3L:t7 17101072
JSP.cierfDteffc Clenttsp 19 0 00 O 0 1 0604*615:31:09 06040615 3L CB 1f1(1w2)

jJST‘*. tferfDispt"Customefsjsp i2 5 so 2 10 40 0 1 06*4061531:15 060406153110 iliodRR)
JSP.cfertHomejs)) 1 0 » 00 0 O 1 0604*615:31:00 0604*61531:06 1* (1w

jiSP.cfentlosBijsp 110 10: 0 10 10 0 1 060406113057 0604061530:57 1/10(10/1)

1 @ 30 0 30 D 0 1 0604061531:13 UBI0A61S3L:)3
JSP. cfientUpdateChentlsp 110 10 010 10 o 1 «04*6153111 06*4*61531:11 1/10(1012)

' SQL.SELECT 'fromfHRCUSIOMERwhHea m iC 21s 302 0 a 0 106*4*61S31 15 0604*61S3118 10(1* 0)
SQL.SELECT 'fro n BARCUSTOMERwhereCUSTOKHD 1 20 mi” O~a| 20 0 1 0604*61531:17 0604061531:17 100(100
SQL. SELECTfrom BARCLENTwhere CUM D 2 0 00 0 O 0 1 0600061531« £04061531:11 20(100)
SQL.UpdateB ifide * 140 40 0 40~n\ oi 1 06*4*61531:13 0604*61531:13
SenM. ChentChecOLoggedn 1 0 o 0 0 O 0 1 06*40615:31:13 0604061531:13 10(100)

SaiHe(.OienlChechPriiiagetwction 31 3 40 4 010 0 1 06*4*61531:06 06*4061531:16 ito1ii6 fli)
Sa*t.ciaiCus(omaDetafis 130 3D 0300 30 0 1 EJCA061531:16 0604061531.17
SeuM.clen(Dispt$£lien! t 3 3 03 3« 0 1,06*4061531:09 06*4*61531.09
o AVECIOV ww W A 4 4»niN (f.h..C KIUM.M4.14 t
4 ». loa/ Hine
52) Administrative Interface: Filter Logger Dropdowns
13BiR Adoim Convole Mirrosoli Inlerrvel Fxplorit jlidxj
rte £A fm Favorites loots tjdp \ ir
QRack * J - V] ~ *j 1/ ‘'Search > Favorites ~p>
Anlress | httpsi/Zwww.btng'Irert.comJadTTin J 0Go U*s »

billing”rent, com

| J m m
Home | ®Ber Adiiiiii Client Adniin
1 Date Logged: |AJl
etynch
nkeene 1

siid (tit]
jJ Stabs: |A| » 1 setFilter

H

- 189-

53)

Administrative Interface: Display Logger

vi¢dgo

iod rifar’s>

13 Ardiwii torneilo M umuft loltrru?! fxplwri
He E* Oew F8yor*es lods (dp
'J Badt »] *1 jij y Search Favorites
Afifress £ j
billing~nent.COM
Client Atbrnn 1 Statistin
UserID: (AU 3 Date Logged: [all 3 Status: |All _~J Sei Filter
B4RauditLog
User ID Date Sfata Haida Logger Uncage
ricettile 05-Apr-06,1*51-55PM 5 BARGi™d- Authenticate BARCKenl [nkeene]
nkesne 05-Apr-06, 145135PM 5 Rdbm*CfientLognModule Va&dalionof lagm deteilf forBARCIiuQl [nksenfi]
nkeanc 05-Apr”, 1451J5PM 5 RdbmsGieolLoginModule Tryingto connect lo dttobase..
nkeene Q5-Apr-06,14)1-56PM 5 RdhmsClienlLogmModiilB - Connectedto daUbuel
. . SELECT *FROMBA4RCUENT where clifintiiHokEanel
niasue 05-Apr-06,1*51:56PM 5 RobraaCenrtLogpnViodule end enabled m'true
nkaane Q5-Apf-06,145L56PM 5 RdbnaCHenlLogjnModule SQL i electcoaplete
riceans 05-Apr-06.14J1.56PM 5 RdbewCiienlLoginModule Pasiwwdi# do NOT metchl
nkesne 05-Apr-06,14J156 PM 5 RabntfCHeflILoginMQdule - VaEdation oflogin detail« forBARCHenl [nkeene] failed
niceme 05-Apr-06,14J156 PM 5 RdhaaClienlLognModule Abort
nkeane 05-Apr-06,145156 FM 5 RdbmsCiexdLoginModule - Logout
oktftne 05-Apr-06,14JM6 PM 5 RdhmClinfrtl.ogjnModule Connectedto dalabasel
Dittane 05-Apr-06,145200PM 5 RdbntfCEentLogbMoiiule Paiflword» notch!
~ P . UPDATEBARCLIENT cetlwt togin time-
nkesne UB-Ar-06t 1412D6PM 5 RdbniClienlLoginModule 4 1~ 11169081 vhere CUENTH)- kM
nkesne 05-Apr-06,14i32U6PM 5 RdhmsCHenlLoginModule SQLupdate complete
nkeanc 065-Apr-06,145206PM 5 RdbrttsCKenlLopniviodule Ylidation oflogin detail) forB4RCHen [nkeene]
succeeded
Pages; 12315678910 [Nextl
Pnvagy Steteinen! | Security StaUmeiit © 2C0j Bulitg”Riiil, AUtigjits itservcil.
Dore 5
54) Administrative Interface: Delete Single - Select User to be Deleted

C£E§mﬁﬂm%w ijgsa
Hah

Bks j- (4 2

AtisBWHIVHOBITI6N

Unks

1021

b illing~rent.

Submitthe ID ofthe Userto be deleted from the B4RauditLog:

DnriD: efmgit »1

civs

4 >j [mAh

6 200." BiUiiigJReJil AU iighi-J |

Dorn

-190-

55) Administrative Interface: Delete Single Confirmation

304« Admin Console Mlcrowift Intrrncl tniplor«*

Efc &A ie* Fffrtrt« lock feefr

Qm X| 2, » Swreh FavaHt» ~

AgjiJross [§] httpt://kWrt.b*r fert,comi*diT(n

billing~refit. ¢o

m

mattue tttutaOvicc prmitiliet

Delete all entries from the Logger forn

Privacy Sutment | Security SLaletnwit

<

56) Administrative Interface:
5 tu» Addim Coniole Mitro»oil Internet fx|itun-i
00 £* 8w FiWtCi iogif tidp

Q TO T[]l O ~ Favnrt« mJpi
A$1»5 3 2)it(»:/IVxtiKA:S4i3jHt/adriivdreFrcini«|}of de

(ilynch

Arcyou sure?

YES I WO I

© 2005 BiUing4Rent All rights reserved

Delete Single Confirmed

L w* l=d LJ

billing”~rent -wom
online aiftttte *aivl£* B fmvn(ut

Hotno I.'sprAdniin

Client Admin

Staristirs

Details foruser (elynch) successfully deleted from B4RauditLogl

Privacy Statement| Security Statement

<o

' -Locairtrarwt

fl Go

© 2005 BilHng4Renl Allrights reserved

2 b Tloci*rirewt

a JAE*)

Ifrta M

57) Administrative Interface: Delete All Confirmation

| /N Htt Ainive Joofcitlr MAfovort liitciniTt fxplorr*
e Bt i Facs jpth tdo

* 42, Swhom P

58) Administrative Interface: Delete All Confirmed

1" Jliiti Arffom «nntftir - Mirrewnlt (M rinet »M|Uwri
&t ¥»w F<jvor*« 100h &*>

1"s60v * mj 2 y *SMUidI

Addw».j c"i httpij/jViIAW.Wfc rent.cafiVltiwy

dam

' Fffiont« $5°'

1}

JsJatl

I fr 1

-1 xlI

337

i0jGo

Ur*s M

1)

2)

3)

4)

5)

Appendix 3- B4R Prototype CD-ROM

The B4R Prototype CD-ROM also contains all B4R Prototype source code.

Install the following pre-requisite software (the remainder of the installation
process assumes the successful installation ofall of the below):

(a) JAV A Runtime Environment

(b) Apache (Jakarta) Tomcat Web Server

(© Oracle 9i

Create a directory called b4r wunder the <DRTVE>/jakarta-tomcat-
5.5.9\webapps directory {e.g. C:\jakarta-tomcat-5.5.9\webapps\b4r)

Copy the contents of the B4R-Prototype directory on the below CD to the
newly created b4r directory on the hard disk.

Copy the following files from the B4R-Supporting Files directory to the
directory specified:
(@) keystore - copy to the home directory ofthe currently logged in user
(b) catalina.policy copy to the “C:\jakarta-tomcat-5.5.9\conf’ directory

From the “C:\jakarta-tomcat-5.5-9\webapps\b4r\B4R Scripts” directory, run the
included SQL scripts in the following order:

(a) B4R.sql

(b) Create Procedure.sql

(c) Create DBMSJOB .sql

Startthe TOMCAT web server using the following command:

- 193 -

7) (This step assumes the successful completion of Step 5). Use a Web Browser to
view the B4R Prototype Client Site, by using the following address:
http://<hostname>/b4r/b4rHome.isp. and the below login details:

(@) B4R Client Site

Username: nkeane
Password: R3s3arch!

(b) B4R Administrative Interface

Username: kkirrane
Password: R3s3arch!

-194-

http://%3chostname%3e/b4r/b4rHome.i

