L~

The Application of Intelligent Software Agents in Network Fault

Diagnosis

Colm Davey BSc

A dissertation submitted for the degree of Master of Science in
Computer Science

School of Business and Humanities
Institute of Technology
Sligo

Supervisor: Padraig Ryan

Submitted to the National Council for Educational Awards, August 2000

Declaration

I declare that the work described in this dissertation is, except where
otherwise stated, entirely my own work and has not been submitted
as an exercise for a degree at this or any other college.

ES)(V\ SON?VJ

Colm Davey

August 2000

. Abstract

The Application of Intelligent Software Agents in Network Fault Diagnosis
Author: Colm Davey

With the advent of existing and future networking, the task of network fauit
monitoring and in particular that of fault diagnosis is. becoming quite complex.

Agents can be used to help in this domain. A software agent is a piece of
software that is autonomous, goal-oriented and temporally continuous. Agents can be
built on different architectures including reactive and deliberative. Agents can
communicate with each other using languages such as FIPA’s ACL or KQML.

Most network management applications currently use SNMP. SNMP 1s
reliable but has a low degree of flexibilitv and is centralised. It was designed for less
complex types of networks than those that currently exist. When comparing
traditional network management applications with an agent-based applications, one
needs to consider utilisation as well as fault diagnosis. Network utilisation 1s
concerned with how a network is being used. and how much and what type of traffic
is travelling through network segments.

When designing an agent-based network management system, it must be fast
enough to react quickly to changes in the network. It should also minimise the amount
of mnteraction that is needed with the network manager.

Acknowledgements
First and foremost thanks to my s;Jpervisor, Padraig Ryan, for support provided
throughout the duration of the Masters. Thanks to Terry Young anci Dermot Finan for
providing me with teaching hours in the college. Thanks also to Paul Hannah of 3com
for software provided which greatly helped in the testing of the agent application.
Thanks are also due to Mike McGrath of LAN Communications for sponsorship and

also to family and friends.

Contents

Chapter 1 Introduction

1.1 Aim of the Thesis

Chapter 2 Background Research

2.1 Software Agents Background

2.1.1 A Software Agent Definition

2.1.2 Agent Architectures

2.1.3 Current State of the Art of Software Agents
2.2 Network Management Systems

2.2.1 Ethemet Networks

2.2.2 SNMP

2.2.3 RMON

2.2.4 Challenges for Network Management Systems

Chapter 3 Developing the Application
3.1 Deciding on an Agent Architecture
3.1.1 The Network Used
3.1.2 Mobile Agents
3.1.3 The Agent Architecture Used
3.2 The Agent Communication Language
3.2.1 FIPA ACL and KQML
3.3 Storing the Agents Knowledge

3.3.1 Case Based Reasoning

10

11

13
13
13
17
20
23
23
27
29

31

33

33
33
35
36
40
40
42

43

3.3.2 Rule Based Reasoning

3.3.3 Choice Made

Chapter 4 Implementing the System

4.1 System Configuration
4.1.1 Installing the Software
4.1.2 Determining a PC’s Monitoring Ability
4.1.3 Detecting Other Task Agents in the Segment
4.1.4 Recording Other Task Agents
4.1.5 Recording Other Segments
4.1.6 Detecting the Interface Agent
4.2 Setting Up the Rule Base
4.2.1 Rules Used
4.2.2 Explanation Facility for Rules
4.3 Agent Communication
4.3.1 Advertising an Agent’s Abtlity
4.3.2 Querying Another Agent
4.3.3 Getting Another Agent to Perform a Task
4.3.4 Sending an Urgent Message to the Interface Agent
4.4 Determining Svstem Changes Needed
4.4.1 Changing the Monitoring Task Agent

4.4.2 Determining an Agents Ability

44

44

46

46
46
47
48
51
52
53
54
54
57
57
58
59
59
61
62
62

63

Chapter 5 Comparison With an SNMP Application

5.1 SNMPc
5.1.1 Initial Installation
5.1.2 Detecting that a Node has Gone Down
5.1.3 Detecting that a Segment has Gone Down
5.1.4 Detecting Network Utilisation
5.1.4.1 Network Traffic
5.1.4.1.1 Segment Comparison
5.1.4.1.2 Segment Overload
5.1.5 Collisions
5.1.6 Dropped Frames
5.1.7 Sending Corrupt Frames onto the Segment
5.1.7.1 Testing with Frame Type A
5.1.7.2 Testing with Frame Type B
5.1.8 Traffic Generated by the Network Management Systems
5.1.8.1 SNMPc

5.1.8.2 The Agent-based Software
Chapter 6 Conclusion
6.1 Future Research

References

Appendices

65

65
68
70
71
75
76
77
80
82
83
86
87 |
89
90
90

92

94

97

99

104

Figures and Tables

Table 2.1. Agent Classifications
Fig. 2.1. Franklin and Graesser’s Agent Taxonomy

Fig. 2.2. Nwana’s Primary Attribute Dimension

Fig. 2.3. Ferguson’s TouringMachines Agent Control Architecture

Table 2.2. Standard MIB-I groups

Fig. 2.4. RMON

Table 2.3. RMON MIB

Fig. 3.1. Test network used

Fig. 3.2. Mobile Agent

Fig. 3.3. RETSINA Distributed System Architecture

Fig. 3.4. Agent-based Network Management Architecture
Table 3.1 Application Stack

Table 3.2. Main KQML Performatives

Table 4.1 CPUMark

Fig. 4.1. Sending advertisement frame

Fig 5.1. Routing Table settings can be adjusted

Fig 5.2. Port status can be changed

Fig 5.3. HubView

Fig 5.4. Agent-based view of a segment

Fig 5.5. SNMPc view of a network segment

Fig 5.6. SNMPc list view of a segment

Fig 5.7. The Agent-based system displaying a failed segment

Fig 5.8. SNMPc segment before being brought down

14

15

17

28

30

30

34

35

37

38

40

41

48

51

66

67

67

68

69

70

73

74

Fig 5.9, Alarm generated after segment went down

Fig 5.10.
Fig 5.11.

Fig 5.12.

Fig 5.13.

Fig 5.14.
Fig 5.15.

Fig 5.16.

Fig 5.17.

Fig 5.18.
Fig 5.19.
Fig 5.20.
Fig 5.21.
Fig 5.22.
Fig 5.23.
Fig 5.24.
Fig 5.25.

Fig 5.26.

SNMPc display after segment went down
Overall traffic over 1 week on Segment A
Overall traffic over 1 week on Segment B
Segment A traffic over 1 dav

Segment B traffic over 1 day

Breakdown of segment A traffic over 1 week
Breakdown of segment B traffic over 1 week
Segment A being overloaded

Segment'B being utilised normally

Traffic and frame lengths with a user logged on
Number of frames dropped on the same PC
Traffic and frame lengths without a user logged on
Number of frames dropped on the same PC
Sending a corrupt frame onto the segment
SNMPc displayving corrupt frames

Traffic details with and without SNMPc running

Traffic details with and without the agent software running

74
75
77
78
78
78
79
80
81 -
81
84
85
85
85
87
89
91

92

Chapter 1

Introduction

In today’s information age, computers are prevalent in almost all aspects of
society from entertainment to work to school and an infinite number of other personal
interests. Over the last few vears it has become more and more useful to have a
computer attached to some form of network. For most home users this will be the
Internet via the users Internet Service Provider (ISP). For people at work, this may be
as simple as a basic office network consisting of just two PC’s or it may be as
complicated as a corporation with multiple wide area networks across continents with
a different network for different job functions such as purchasing, sales and IT
support. It is now even possible to “wear” a computer and form a network by simply
touching someone else [36]. The emerging Wireless Access Protocol (WAP)
technology also means that mobile phone users can now Join the network revolution.

Although most users know they are connected to some form of network, they
have no idea how the network works, only that it does. When it stops working it
usually takes a skilled professional to solve the problem. This may be via a phone call
or it may involve somebody needing to travel to the other side of the world. Network
management usually requires full time. highly skilled professionals. As networks
become larger and more complicated. the number of network technicians increases, as
does the overall cost of managing the network. Even though network theory is well
understood, it can be very time consuming to detect and solve network problems:
serious network problems can cost companies huge amounts of money in lost time.

Existing network management applications are usuallv based on protocols developed

10

years ago (circa the 1970’s) when networks were much smaller and less complicated.
They were never designed to handle the vast array of networks that currently exist nor
can they cope well with the new “global” aspect of networking technology, where

networks are expected to be accessible 24 hours a day from anywhere in the world.

1.1 Aim of the Thesis

The aim of this thesis is to examine the use of software agents in helping
diagnose and possibly solve network préblems, with as little user interaction as
possible. Software agents are still very much in their infancy but have shown much
promise due to their autonomy, potential to communicate with other agents and ability
to cater for distributed environments. It will be examined on a standard Ethernet LAN
whether these agents have any promise for network management and fault diagnosis
and also how they compare with existing network managemént applications.

¢ Chapter 2 gives an introduction to what software agents are and also gives

a number of accepted definitions. It also provides information on the
current state of the art of software agents before discussing network
management svstems and their challenges.

¢ Chapter 3 discusses how the agent management application was

developed and the architecture that was used. It also probes inter agent
communication and how to best store an agents knowledge.

e Chapter 4 is concemed with how the agent software was set up on the test

network, problems that were encountered and how thev were solved. It

11

N

also discusses how the different agents interacted and decided among
themselves how to best monitor the network.

Chapter 5 compares the agent software with SNMPc, a popular network
management application that relies on the SNMP protocol.

Chapter 6 discusses the conclusions that were reached based on tests that

were carried out. It also details possible future areas of research.

12

Chapter 2

Background Research

2.1 Software Agents Background

The concept of a software agent has been around for a long time in the
Artificial Intelligence (AI) community. The concept of software agents began before
the inception of Distributed Artificial Intelligence (DAI) in the mid to late 1970’s.
Kay points out that
“The idea of an agent originated with John McCarthy in the mid 1950°s, and the term
was coined by Oliver G. Selfridge a few vears later... They had in view a system that,
when given a goal, could carry out the details of the appropnate computer operations
and could ask for and receive advice, offered in human terms, when it was stuck. An

agent would be a ‘Soft Robot™ living and doing its business within the computer’s
world™. [1]

2.1.1 A Software Agent Definition

Similar to the question “What is Intelligence”, which has dogged the Al
community for years, there is no completely accepted definition for what a software
agent actually is. This has not been helped by the fact the when the term ‘software
‘agent’ became more fashionable around 1994, many organisations jumped on the
bandwagon by simply renaming existing software components as software agents.
Franklin and Graesser [2] seem to have come up with a definition of software agents
that is acceptable to most people. They mention a number of different agent
definitions from a number of different people and organisations before coming up

with their own definition that “An autonomous agent is a system situated within and

13

part of an environment that senses that environment and acts on it, over time, in

pursuit of its own agenda and so as to effect what it senses in the future.” Because,

they point out, a thermostat satisfies the above definition they list some other

properties that help further classify agents as follows:

Property Other Names
Reactive Sensing and acting
Autonomous

Goal-oriented Pro-active

Temporally Continuous

Communicative Is socially able
Learning Adaptive
Mobile

Flexible

Character

Meaning

Responds in a timely fashion to
changes in the environment

Exercises control over its own actions
Does not simply act in response to the
environment

[s a continually running process
Communicates with other agents
Changes its behaviour based on previous
experience

Able to transport itself

Actions are not scripted

Believable “personality” and emotional

state

Table 2.1. Agent Classifications

14

They then point out that every agent should satisfy the first four properties. The other
properties will determine the specific type of agent. They then specify a basic

classification of agents as follows:

Autonomous Agents

Biological Computational Agents
Agents Robotic Agents
Software Agents
Al Agents
Task-specific Agents
Entertainment Agents Viruses

Fig. 2.1. Franklin and Graesser’s Agent Taxonomy

Other authors have come up with similar definitions and characters that agents should
have. Sycara et al [3] describe the following:

e Taskable. Agents can take direction from humans and other agents

o Network-centric. Agents should be distributed and self organising

e Semi-autonomous. Not under direct human control all the time

o Persistent. Capabie of long periods of unattended operation

15

e Trustworthy. An agent should serve users’ needs in a reliable way

¢ Anticipatory. An agent should anticipate user information needs through task,
role and situational models

o Active. An agent should initiate problem solving activities

e Collaborative. An agent should collaborate with humans and with other
agents

e Able to deal with heterogeneity. Both of other agents and information
sources

» -Adaptive. To changing user needs, and task environment

" For Wooldridge [4], an agent should have the characteristics of autonomy,
reactivity, pro-activeness and social ability.
Nwana [5] designed a topology of agents that classified agents according to:
o Mobilﬁy
¢ Deliberative or Reactive
e Exhibition of primary attributes which were autonomy, cooperation and
learning
e Roles, as information or intermet
« Hybrid philosophies, which combine two or more approaches in a single
agent
¢ Secondary attributes, such as benevolence, versatility and emotional

qualities |

16

Collaborative Learning Agents

Cooperate

Smart Agents

Autonomous

Interface Agents

Collaborative Agents

Fig. 2.2. Nwana’s Primary Attribute Dimension

2.1.2 Agent Architectures

There are three main architectures used when building software agents.

A Deliberative Architecture [25] has a symbolic model 6f the agent’s environment,
usually represented in some limited subset of first-order predicate logic. There would
also be a symbolic specification of the actions available to the agent and a planning
algorithm which specifies how the agent can act in order to achieve a goal.
Deliberative Architectures involve the solving of two important problems:

e The transduction problem. This involves translating the real world into

an accurate svmbolic description, in time for that description to be

useful.

17

¢ The representation/reasoning problem. This involves symbolically
representing information about complex real-world entities and

processes.

Neither of these problems has been anywhere near solved even though there has been
a large mount of research into them [24].
The agent’s environment can be characterised as a set of environment states [6]

S={s1,s2,..}
At any given instant, the environment is assumed to be in one of these states. The
actions of an agent can be represented by the set

A=f{a a,. .}
Thus the agent can be viewed as the function -

Action : S* — A
which maps sequences of environment states to actions. This basicallv means that the
action that an agent decides to perform depends on its historv. The main problem with
a deliberative architecture is that is that thev do not scale to realistic scenarios i.e. the
real world. Algonthms were based on calculartive rationality [7). Al£hough calculative
rationality will result in the best deéision possible, that decision may not be made in
time to be of any real use because of the possible size of the search space. This
problem led many researchers to reactive architectures. Examples of deliberative
agent systems are STRIPS [26] and HOMER [27].
A Reactive Architecture will enable an agent to decide what to do without

reference to its history. They simply respond to changes in their environment and their
behaviour can be represented by

Action: S — A

Proponents of reactive architectures believe that inteiligent behaviour is directly
linked to the environment that an agent is located in. One of the most famous reactive
architectures was Brooks’ subsumption architecture [8]. Brooks pointed out that
current deliberative architectures originated from research into mobile robots that
used the sense-model-plan-act (SMPA) architecture. The SMPA framework involved
simplifying a model of the real world and allowing robots to be designed in specific
environments. There was an assumption. that once robots could work effectiveb.r in the
simplified world, a more dynamic environment could be tackled. This never
happened. Brooks also pointed out what he believed were three key elements of
organising intelligence:
e Most of what people do in their day-to-day lives does not involve problem
solving, but routine activity in a relativelv benign, but dynamic, world.
e An observer can legitimately talk about an agent’s beliefs and goals, even
though the agent need not manipulate symbolic data at run time.
o In order to really test intelligence it is important to build complete agents that

operate in dynamic environments using real sensors.

Agre [28] also noted that most evervday activity is routine and he demonstrated his
ideas with the PENGI svstem, which was a simulated computer game using a reactive
architecture.

A Hybrid Architecture is basicallv a mix between a deliberative architecture and a
purely reactive architecture. Using this architecture, there may be two or more
subsystems (deliberative and reactive), with the reactive subsystem having precedence

over the deliberative subsystem so as to be able to deal quickly with changes in the

19

environment. A variation of the reactive architecture is the layered architecture [9].

Higher layers will deal with information in increasing levels of abstraction.

Modelling Layer (M)

Sensors Action Effectors

Planning Layer (P)

Reactive Layer (R)

Control Framework

Fig. 2.3. Ferguson’s TouringMachines Agent Control Architecture

In the above example, the reactive laver will generate potential courses of action in
response to events that may happen too quickly for other lavers to deal with. The
planning laver will construct plans and select actions in order to achieve goals. The
modelling laver will contain symbolic representations of the cognitive state of other
entities in the agent’s environment. These models can be used in order to resolve goal

conflicts.

2.1.3 Current State of the Art of Software Agents

Although software agents have been promising much over the past few years
there has not been a huge amount delivered. UK consultancy firm Ovum [10]

predicted that the software agents industry would be worth US$3.5 billion by 2000.

20

Although there currently are no concrete figures available, judging by the lack of
commercially available agent applications it is unlikely that the industry is’worth
anywhere near that figure. The OASIS system which Rao and Georgeff [11] had
stated was one of the first to tackle a wide and complex real-world application, was
being field tested at Sydney airport but has since been dropped due to legacy and
political problems. The OASIS system used the BDI (Belief, Desire, Intention) model
and was designed to help in air traffic control. It consisted of an agent for each
incoming aeroplane; a sequencer agent that would determine which plane landed
when, a wind modeller agent that dealt with wind issues, an overall coordinator agent
and a trajectory checker agent. The primary objective of the system was to land all
aircraft safely and in optimal sequence. Wooldridge [12] has pointed out that although
the theoretical and experimental foundations of agent-based systems are relatively
well understood, not much effort has been spent on practical agent svstems
development. There are a number of common errors that people and organisations
seem to make when developing agent svstems including:

e People believe that agents are a “silver bullet” (similar to Al) that will allow
them to create applications with human-like understanding and acting. This is
well beyond the state of the art. Nwana and Ndumu [13] argue that Maes’s
{37] seminal paper on agents for reducing work and information overload
presumed that the intelligent tutoring problem had been solved but they point
out that in retrospect this is not the case. They also argue that the; nearest thing
most people see that resembles a personal agent, Microsoft's ® Paper Clip,

can be more annoving than useful.

21

e Agents get too heavily linked to Al. Too much time can be spent focusing on
the agent framework part of the application and Al techniques to build that
framework. Etzioni believes that using his “useful first” strategy would be
better [14].

s Many resez;rchers seem to spend time developing their own architecture or
agent development language in the belief that that is the only way to develop
their own application. Because not enough time is then spent developing the
actual application, the project may flounder. Many applications may not even
need a formal agent architecture and can be developed just as well in standard

programming languages.

Jennings [15] points out that there is no data yet to show that agent-based computing
is better than standard applications on a standard set of software metrics. It is
generally accepted that the idea of an agent revolution has been replaced by an agent
evolution. Although a lot of work has been carried out on agent communication [16],
[17] there a choice between Knowledge Query and Manipulation Language (KQML)
and the Foundation for Intelligent Phvsical Agents (FIPA) Agent Communication
Language (ACL) and neither is perfect. For the moment, KQML exists in more
applications but different KQML implementations cannot interoperate, which was one
of the dreams of distributed software agent developeré. Some researchers have
discussed agent honesty and negotiation between agents but this becomes quickly
irrelevant in many cases if agents belonging to different organisations cannot
communicate properly. However, it should be noted that the foundations of Agent

Communication Languages (ACL’s) are quite strong.

22

2.2 Network Management Systems

2.2.1 Ethernet Networks

Ethernet is the most popular LAN technology and was developed in the 1970°s
by Xerox Palo Alto Research Centre (PARC). It is based on Carrier Sense, Multiple
Accesses with Collision Detect (CMSA/CD) and it supports transmission rates of
10Mbs, 100Mbs or Gigabit. In theory, any frame sent by any station on an Ethernet

“network will reach and can be read by all other stations but this is not the case if the
LAN is split into segments. Segmentation is the process of separating certain portions
of network traffic, either for performance, security, or reliability reasons. A segment
will only receive broadcast frames and frames destined for a particular device on that
segment. If segmentation is done via a hub, all devices on that hub will be able to see
all traffic that passes through the segment. If segmentation is done via a switch, the
device attached to the switch will only be able to see traffic destined for itself and
broadcast traffic. A hub is a device which will retransmit frames recetved on all
outgoing ports, regardless of the destination of the frame. A switch will check all
incoming frames and will only transmit the frame via the port on which the device
resides. When a network adapter has a frame to transmit it checks if the line is idle
(Carrier Sense). If it is then the adapter sends out the frame immediately. If the line is
busy it waits until the line is idle and then transmits the frame. In a standard Ethernet
network, once an adapter has sent a frame it must wait at least 51 us before it can send
out another frame. This gives other adapters the chance to send frames. Ethemet is a

L-persistant protocol due to the fact that an adapter with a frame to send transmits

23

with probability 1 whenever a busy line goes idle. Due to the fact that no one adapter
has control of the network, two or more adapters may send a frame at exactly the
same time. This causes a collision of the frames that usually results in Jabber. Jabber
is where two or more frames collide resulting in a larger frame that contains no
meaningful data. Because Ethernet supports Collision Detect, the adapters will be able
to detect that their frames are colliding. Once an adapter detects a collision and stops
transmitting, it waits a certain amount of time before trying to transmit again. It will
continue to do this, each time doubling the amount of time it waits, until the frame has
been successfully transmitted. This is called exponential backoff.

A standard IEEE 802.3 frame consists of the following:

Preamble, 7 Bvtes

o Start of Frame Delimiter, 1 Bvte
¢ Destination Address, 6 Bvtes

e Source Address, 6 Bvtes

e Length of Data, 2 Bvtes

e Data, Between 46 and 1500 Bvtes

e Frame Check Sequence, 4 Bytes

An Ethemet II frame consists of the fellowing:
e Preamble, 7 Bytes
e Start of Frame Delimiter, 1 Byte
¢ Destination Address, 6 Bvtes
e Source Address, 6 Bytes

e Type, 2 Bytes

24

¢ Data, Between 46 and 1500 Bytes

¢ Frame Check Sequence, 4 Bytes

After the Network Interface Card’s (NIC) drivers have removed the preamble, start of
frame delimiter and the frame check sequence field, it can be determined that an
Ethernet frame must be of a size between 60 and 1514 bytes in length. |
Although the length field usually refers to the length of the data field, if this value
exceeds 0SDC Hex (1500 Decimal) it indicates that the field is a type field and the
frame is an Ethernet II frame. This can then be used to indicate the higher-level

protocol contained in the data field. The following are common examples of Ethernet

type field assignments:

0800 IP

0806 Address Resolution Protocol
8137 - 8138 Netware [IPX/SPX

814C SNMP

The source and destination address refer to the Media Access Co‘ntro] (MAC) address
as opposed to an IP address. Each network card comes with its own MAC address as a
hexadecimal address in the format XX:XX:XX:XX:XX:XX

The first three bytes refer to the manufacturer of the card and the last three -b,wes refer
to the Network card ID. No two network cards can have the same ID. Below are some

network card manufacturers along with their unique ID’s:

25

00-10-5A

00-10-FE

00-10-78B

00-00-09

00-00-1B

00-C0-4F

3COM CORPORATION
DIGITAL EQUIPMENT CORP.
CISCO SYSTEMS, INC.
XEROX CORPORATION
NOVELL INC.

DELL COMPUTER CORPORATION

Link control information is held using the IEEE 802.2 standard in the data field of the

IEEE 802.3 frame. The controt information is carried in a Logical Link Control (LLC}

Protocol Data Unit (PDU) as follows:

e Destination Services Access Point (DSAP)

e - Source Service Accesé Point (SSAP)

e Control

e Information

The DSAP and SSAP fields are enclosed in the first two bytes of the data field and are

normally used to indicate Service Access Points (SAP). SAP’s act much like a

mailbox and provide a mechanism for exchanging information between the Logical

Link Control (LLC) laver and the MAC and network layvers. The DSAP and SSAP

fieids should always match and examples are as follows:

00

06

AA

EO

FO

Null SAP

IP

SNAP

Novell Netware

IBM NetBIOS

26

The control field contains information conceming the type and class of service being

used for transporting LLC data.

2,2.2 SNMP

The most widely used network management approach is based on the Simple
Network Management Protocol (SNMP) [18], which comes from the Intemet
Engineering Task Force (IEFT). Another less popular approach is the one suggested
by the International Standards Organisation (ISO), which is based on the Common
Management Information Protocol (CMIP) [19]. Both of these approaches involve a
low degree of flexibility and are centralised. They can generate a lot of congestion
around the management station which has to deal with almost the entire
computational burden and it has been proven that they lack scalability [20]. Both
approaches are quite similar in that a management station (usually operated by the
network manager) will interact with SNMP agents running on network nodes. The
SNMP software can operate on workstations but will usually operate on brnidges,
routers and switches. It allows the management station to access information about
the device thev reside on and will store its information in a Management Information
Base (MIB), or in the case of the ISO approach, a Management Information Tree
(MIT). Both SNMP and CMIP adapt a Client Server approach, with the management
station acting as the client. The client interacts with the SNMP software through a
management protocol that specifies the packet format for a set of basic operattons.
The management station gets small pieces of information from the agents as required
and all of the processing is done at the management station. A standard MIB-I

consists of the following groups [21]

27

Group Description

System Provides vendor identification and the time since the
management portion of the system was last reinitialised.

Interfaces Provides single or multiple network interfaces that can be

Local or remote

Address Translation Provides a translation between the network address and the

Table physical address

Internet Control Provides a count of ICMP messages and errors

Message Protocol

(CMP)

Transmission Control Provides information concerning TCP connections,
Protocol (TCP) transmissions, and retransmissions

User Datagram Provides a count of UDP datagrams transmitted, received

Protocol (UDP) and undelivered

Exterior Gateway Provides a count of interrouter communications, such as EGP
Protocol (EGP) locally generated messages and information from EGP

Neighbours

Internet Protocol (IP) Provides count of IP packets and errors

SNMP

Table 2.2, Standard MIB-1 groups

has a core set of five Protocol Data Units (PDU’s). These are:

GetRequest: This retrieves a single value from an agent’s MIB.
GetNextRequest: This is used to walk through the agent’s MIB table.
GetResponse: This is what an agent responds to with either of the above two
commands.

SetRequest: This allows a manager to alter an agent’s MIB.

Trap: This command allows an agent to inform a manager about something

which requires their attention.

28

SNMPv1 had some limitations, the main one being the fact that it lacked adequate
security. It is possible to alter MIB’s and also interfere with network devices. Routing
tables can be altered and this limited the use of SNMPv1 in many cases to non-critical
networks. SNMPv1 also laéked proper message authenticity and encryption. SNMPv2
was an improvement over SNMP and it included added security features to avoid
unauthorised use of MIB'’s and added encryption to prevent uﬁauthorised

changes to devices such as the routing tables of switches. SNMPv3 added security
levels which could be adjusted depending on the user. It also ensured robust message
integrity, authentication and encryption. SNMP is quite easy to implement because its
design is so simple. It is also in very wide use today with almost all major network
vendors supporting it in their devices. However, it was never designed to deal with the
complexity of today’s networks and the information it provides is very basic. Also,
even though it provides a huge amount of information in the MIB’s, for most network
managers only a small amount of this information is of any use. Therefore network
professionals often spend a large amount of time searching for and filtering

information.
2.2.3 RMON

Remote Monitoring (RMON) is a logical evolution of SNMP and can allow
the management of network segments anvwhere in the world. Its operations are based
on software or firmware operating in managed devices or managed stand-alone

hardware probes. Each managed device responds to network management station

requests, which are transported via the SNMP protocol.

29

Management Station

SNMP Protocol

Fig. 2.4. RMON

RMON probes and devices will send statistics and alarms to a network management
station upon request, or may generate a trap command. RMON can be considered a
more traffic-oriented approach [22] than SNMP and CMIP because it directly inspects
packets, instead of the status of individual devices. It therefore makes the network

management approach mode decentralised. An RMON MIB consists of the following

groups:

Group Description

Statistics Contains statistics measured by the RMON probe for each
monitored interface

History Records statistical samples from a network for a selected time

interval

30

Alarm Retrieves statistical samples on a periodic basis from variables
stored in a managed device, and compares their values to
predefined thresholds. If the threshold has been exceeded, an

alarm is generated.

Host Contains statistics associated with each host discovered on a
network.
HostTopN A group used to prepare reports that describe the hosts that had

the largest traffic or error counts over an interval of time.

Matrix Stores statistics of traffic and errors between sets of two
addresses.

Filter Permits packets to be matched based on a fiiter equation.

Packet Capture Permuts packets to be captured after they flow through a
channel.

Event Controls the generation and notification of events from the

managed device.

Table 2.3. RMON MIB
2.2.4 Challenges for Network Management Systems

Davidson, Hardwicke and Cox [253] have identified three key challenges for
current network management systems:
. Length& development life cvcles. Many systems comprise of a small number
of large software components that have long and expensive life cvcles
associated with them. The level of investment in each component results in a

resistance to discarding it.

31

* Too much human involvement. Network management still requires skilled and
expensive human operators who may not be able to cope with increasing
complexity and dynamism of networks and services

¢ Architectures that do not scale. Centralised systems do not scale well.

Conclusion

It is obvious from the above that although agents are a relative young
technology they offer many advantages that should be beneficial to the area of
nefwork management. Although there is no completely accepted definition, this
should not present a problem as the fundamentals of agent technology and
architecture are well understood. It is also clear that current network management
approaches offer problems that the very nature of agents may be able to solve. These
include the inherent distributive nature of software agents and also the fact that with
proper temporal continuity and goal-oriented behaviour, they should reduce the need

for expensive human interaction.

32

Chapter 3

Developing the Application

In order to develop an agent application a number of factors need to be taken
into account. Although the application was developed for a relatively small network,
it would be advantageous for the agent archjtécture to be able to deal with larger
networks if required. The architecture would need to be flexible enough to handle
immediate problems quickly without compromising overall system goals. A method
of storing the agent’s knowledge needs to be considered, as well as agent

communication.
3.1 Deciding on an Agent Architecture
3.1.1 The network used
The network that the application was developed and tested on is a fast

Ethernet 100 Mb/s computer network. There are approximately 400 PC’s on the

network with between 1 and 32 PC’s on each segment.

33

Technology

Administration

e

Buiiding
. ‘1’4“ AN f@‘\ t@ﬁﬂ-" ‘@\ l{‘.':
3 N\ -t e . -
@
. et The internet
- = Switch 1000 -, CB 7000 3
Business innovation "—%ﬁ-ﬁ 155 Mbfs ATM 2+ 2 Mbis
Center ~7 7~ Backbone /
l CB 2500 /Clsco 360

: 1+ M Building

Fig. 3.1; Test network used

The network comprises of a 155 Mb/s ATM backbone and various switching
equipment, all of which supports SNMP. The computer labs consist of either 16 or 32
PC’s in a segment. A link from a switch connects to a hub with either 16 or 32 ports
and each of these ports connects to a PC. Each segment has access to 'a bandwidth of
IOMb so obviously the smaller the number of devices on a segment, the more
bandwidth a device will have. Although the switching devices support SNMP, they do
not have the ability to have third party software installed on them, therefore it is not

' possible to place software agents on tﬁe switches and manage the network in that way.
This is the case with most current switching hardware. The hubs in use on the network

do not support SNMP so there is no way to directly talk to them. There are also

34

segments consisting of between 1 and 5 d.evices. These are linked to a hub or directly
to a switch and are used by administration siaﬁ‘. These segments are not regarded as
important as computer lab segments when determining network utilisation. It is then
obvious that the software agents need to be placed on the individual PC’s. This ied to

a question of whether or not to use mobile agents.
3.1.2 Mobile Agents

A mobile software agent is basically the same as a standard software agent
except for the fact that it can travel from one hardware device to another when
required. These devices would usually be PC’s and some switching devices. When a
mobile agent is executing on a given network node it is able to migrate autonomously

to a different node and then continue executing seamlessly as shown below [22].

Companent to be
evaluated

F

X State of the
component

Fig. 3.2. Mobile Agent

However, there are very few switches that currently support mobile agents, which
mean the agents would be required to run on a PC. Each PC that needs to be

accessible by a mobile agent would require software running in memory in order for

35

the agent to be abie to install itself and run on that PC. A specialised Mobile Code
Language (MCL) would also be beneﬁcia] such as Telescript [29] or Agent Tcl [30]
as these would make it easier for the agent and its state to move from one PC to
another. At the time of writing there are no commercial applications using mobile
agents and stlzana & Ndumu [13] have gone as far as to say that

“mobile agents are a clearly still a solution with no clear problem”.

The mobile agents offered no advantages over the architecture chosen, especially
because of the limited size of the test network, but had the disadvantages of longer
development time and less eﬁdence of reliability. It was for these reasons that they

were not used.
3.1.3 The Agent Architecture Used

Because of the nature of Ethernet networks, a number of assumptions could be
made when deciding on the agent architecture:

s The agents would need to be able to react quickly to changes or problems in
the network. This tvpe of problem lends itself to a reactive architecture.

* Most problems that can occur with Ethernet networks are already known. This
means that the ability for a software agent to learn would not be essential. A
given set of rules could specifv how an agent should react for a given set of
circumstances.

» To fully monztor a network, packets from each segment should be monitored.
This means that a packet monitoring utility (packet monitor) should be active

on one PC per segment, but no more. However, the system should be able to

36

cater for the fact that a different PC on a given segment may need to take over
monitoring duties.

¢ There should be an agent responsible for communicating with the network
manager and then informing other agents of necessary details. The other

agents should not need any human interaction in order to perform their duties.

For the above reasons it was decided to use three distinct agents, based on the
work of Sycara et al. They came up with the idea of Information Agents, Task

Agents and Interface Agents as follows for their RETSINA system:

| uEmR 1 | | USER 2 i i USER h i
Eﬂhw.m“““.“: oo R i | Pl S L T O |
Specifications ' - ' *

Interface Agent | Interface Agent 2 Interface Agent k

3 Task
Task il Salutfon

TaskAgent | Confce

laskAgent j

Fig. 3.3. RETSINA Distributed System Architecture

37

In the above example the Interface Agents are used to communicate with the end
users’ in order to achieve the users’ goals. They are the only agents to deal with
users and they will provide other agents with the mfomqion necessary to help
achieve their goals. The job of the Task Agent is to formulate plans based on the
users’” goals and to communicate with other agents as necessary in order to
exchange information and solve problems. The job of the Information Agent is to
provide access to a heterogeneous collection of information sources. The

architecture was adjusted to suit the network management paradigm as follows:

Network
Manager

Rules / Issues /
Queries Results

Interface
Agent

Rules / Queries /
Rwu‘]m/' \

Segment 2

Information
/ Issues

Fig. 3.4. Agent-based Network Management Architecture

38

The agents specified would have the following roles:

The Interface Agent would be used to communicate with the network
manager. There will be only one Interface Agent in the system. Its job is to
report the status of the network to the manager when requested and also to
report any serious problems and suggested solitions. It will communicate with
the Task Agents but not with the Information Agents. It will pass on any new
information to the Task Agents and also receive relevant segment information
from them. This agent has overall control of the system and final say on any
actions to be taken.

The Task Agents will be located on each PC in the network. Their job is to
negotiate among themselves until one Task Agent is in charge of managing
each segment. They can communicate with each other and also with the
Information Agent directly below them (i.e. on their PC). They will monitor
the details being provided by the Information Agent and act appropriately.
They will also monitor each other to ensure that if a Task Agent is no longer
able to monitor its segment, another Task Agent can take over. Their main
function is to recognise problems in the network and either solve those
problems directly, with inter-agent communication, or by informing the
Interface Agent. | «

The job of the Information Agent is to simply monitor each Ethemet frame
passing through its segment. It will record appropriate details about its
network segment and if needed can communicate with its immediate Task
Agent. However, it cannot make decisions on its own and is based on a purely

reactive architecture. It simply reacts to the information presented to it. An

39

Information Agent will also be located on every PC but only one Information
Agent will be running on a segment at any one time. These agents will also
have the ability to send out raw Ethernet packets to test network conditions,
when requested to do so by the Task Agent.

The Information Agent runs over NDIS as illustrated by the following stack:

Information Agent

NDIS

Network Card Driver

Network Card

Table 3.1 Application Stack
3.2 The Agent Communication Language
3.2.1 FIPA ACL and KQML

In order for the agents to communicate with each other, a protocol must be
used so that the agents have the ability to understand each other There were
essentially two choices, KQML or FIPA ACL. There are many similarities between
KQML and FIPA. They are both high-level, message-orientated communication
languages for information exchange independent of content syntax. They are also
independent of any transport mechanism (e. g. TCP/IP, SMTP etc.). There are three
layers in a message to be sent. The content laver bears the actual message in the
program’s own representation language. This can be any language, e.g. Prolog, Lisp
etc. The communication layer describes the low-level communication parameters such
as the identity of the sender and the recipient. The message laver consists of the

message that one application would like to transmit to another. In KQML a

40

performative will be provided which specifies the type of the message i.e. an
assertion, a query or some other performative. The KQML list of performatives is not
a closed one and can be added to as needed. Performatives are called Communicative
Acts (CA) in FIPA. The syntax of both agent communication languages (ACL’s) is
similar to Lisp. The initial element is the performative or CA, foliowed by the

arguments as follows [31]:

(ask-if :sender A receiver B :language VB

-ontology NetMan :content “Segment Load” :reply-with “load™)

Below is a list of some of the main KQML reserved performatives for sender S and

recipient R.

Name Meaning
Achieve S wants R to make something of their environment
Advertise S is particularly suited to processing a performative
Ask-about S wants all relevant sentences in R’s VKB*
Ask-all S wants all of R’s answers to a question
Ask-if S wants to know if the sentence is in R’s VKB
Ask-one S wants one of R’s answers to a question
Broadcast S wants R to send a performative over all connections
Error S considers R’s sentence to be mat-formed
Forward S wants R to route a performative
Insert S asks R to add content to its VKB
Recommend-one S wants the name of an agent who can respond to a performative
Reply Communicates an expected reply
Tell The sentence is S's VKB s
Untell The sentence in not in $°s VKB

Table 3.2. Main KQML Performatives
*VKB = Virtual Knowledge Base

41

FIPA’s ACL also uses semantic language (SL), which is a quantified, multimodal
logic with modal operators for beliefs, desires, uncertain beliefs and intentions. It is
used to represent propositions, objects and actions. A detailed discussion is not
needed here but it is mentioned as it is the main difference between FIPA ACL and
KQML. It should be noted that both languages are still very much in their infancy.
Although there is a lot of research into each, at the time of writing there are no
commercial applications using FIPA ACL. KQML is used in some commercial
applications [31], {32] and thus “real world” feedback has been obtained. However,
there are still ;‘10 two applications developed by different organisations whose agents
are able to communicate properly using KQML. ACL’s‘have also been largely
ignored by most of the Internet communty. It was decided to use KQML for the
network management application because of its popularity and also its relative ease of
use. Some new performatives needed to be created which will be discussed in detail in

the next chapter.
3.3 Storing the Agents Knowledge

It was not envisaged that the agents would need a lot of learning ability as
most of what they would need to know can be determined before they are designed,
1.e. network problems and their possible solutions. There were two possible
approaches to storing the agents’ knowledge. Case Based Reasoning and Ruile Based

Reasoning,

42

3.3.1 Case Based Reasoning

Case Based Reasoning (CBR) is a form of problem solving where new problems
are addressed by retrieving stored records or prior problem episodes and adapting
their solutions to fit new situations. In most systems the case adaptation process is
guided by fixed case adaptation rules [33]. There are 4 main processes in the CBR
cycle [34]:

¢ Retrieve the most similar case or cases

¢ Reuse the information and knowledge in that case to solve the problem

¢ Revise the proposed solution

Retain the parts of this experience likelv to be useful for future problem
solving

Cases are usually stored in “problem, Solution” pairs although this structure may
vary. CBR supports incremental learning as a new solution is retained each time a
problem has been solved. Advantages that CBR offer include that fact that extensive
domain knowledge is not required and also solutions can be found very quickly if a
similar previous case exists. However, there is no way to explain why a particular
solution was reached. This is because the solution matched a previous case. Also,
large cases can suffer from efficiency problems due to the number of cases that may

need to be retrieved and compared.

43

3.3.2 Rule Based Reasoning

A Rule Based System (RBS) consists of a knowledge base of rules. These will

usually be represented as

If <Condition> Then <Conclusion>
statemenis. In order to use Rule Based Reasoning (RBR) an expert knowledge of the
domain is required and it can be quite easy to convert this knowledge into rules. There
are two ways of searching using RBR. In one case, facts are known and a conclusion
is required. In this case forward chaining is used. In the second case, a conclusion 1s
known but needs to be verified. In this case backward chaining is used.

With RBR, the link between rules is weak and so rules can easily be added or
deleted without damaging the overall system. Also, it offers very good performance in
a limited domain. An entire rule base can be searched very quickly and explanation
facilities can be included because the rules are based on human expertise.
Disadvantages include the fact that knowledge obtained is very task dependant and
may not be adaptable to a slightly different task. The rules are not able to adapt and if

information is missing the RBS will not be able to fire its rules.

3.3.3 Choice Made

It was decided to use a RBR approach for the network management application
for the following reasons:
¢ The author already has an expert knowledge of Ethernet networks and so it

will be reasonably straightforward to convert this knowledge into rules

44

o FEthemet Local Area Networks (LAN’s) are a limited domain whose potential
problems are well known

o The speed of RBS’s will suit the reactive architecture of the Information
Agents

e It will be possible to provide explanations which will be of great use to the
network manager

¢ It will be easy to add new rules or adjust existing ones to suit the network (1.e.

two people may disagree on what an overloaded segment is)

Conclusion

The above provides a very good basis for developing the agent management
svstem. The system should be fast enough to react to immediate problems but also
because of the rule base, the system will be able to cater for expanding and changing
goals when required. Although new KQML performatives will be required, this

should not add to the overall complexity of the system.

Chapter 4

Implementing The System

Because of the segmented nature of most of today’s networks, it is very
important that the Task Agents can determine a way to discover which devices are on
which segments. It is also important that due to the reactive nature of the Information
Agents, they should be running on PC’s which have the processing power to deal with

a large number of frames per second, while dropping as few as possible.
4.1 System Configuration
4.1.1 Installing the Software

The Interface Agent only needed to be placed on a PC that was going to be
used by the network manager. A copy of the Task Agent needed to be placed on every
PC and it was set up so that as soon as the PC was switched on, the Task Agent would
begin runniné in the background. There was no user interface provided with the Task
Agent so the user would be oblivious to its existence. A copy of the Information
Agent also needs to be on every PC on the network. However, the Task Agenton a
particular PC will decide when the Information Agent needs to be run and the Task
Agent also has the ability to close down the Information Agent located on its PC.
Therefore the Information Agent will not run automatically when the PC is switched

on.

46

4.1.2 Determining a PC’s Monitoring Ability

Because of the reactive nature of the Information Agent, it is important that
any PC’s that are monitoring Ethernet frames drop as few frames as possible to allow
for accurate monitoring of the system. The Information Agent must be able to read
every Ethemet frame on the segment, record appropriate details and inform the Task
Agent of problems when necessary. It maintains a buffer of 10 frames but if this
buffer fills, frames would start to get dropped before they were processed. The main
consideration a Task Agent needed to take into consideration when determining the
Information Agents ability to monitor frames was the PC’s processor speed. The
general idea being the faster a PC’s processor 1s, the less likely the information agent
is to drop frames. However, many of the PC’s have software running in memory from
system start-up that would use up processor cycles. Also, the PC’s frame monitoring
ability would be reduced by a large amount if a user were logged on to the PC
because of the number of applications the user may be running. Therefore when the
Task Agent starts up it will use CPUMark ©, which is provided by PC Magazine
Labs. This utility calculates the processors ability, taking into consideration existing
memory and also any software running in the background. It is an industry recognised
benchmarking standard that is not limited to any one brand of processor.

The higher the rating provided, the better the PC’s processing ability. Below is a table
illustrating the results obtained when testing on the most common PC’s in the

network.

47

Processor Memory Applications Running CPUMark Result
450MHz PIII 96MB No 33.9
450MHz PIiI 96MB Yes 334
366MHz PII 128MB No 325
366MHz PII 128MB Yes 322
300MHz PII 32MB Yes 23.1

Table 4.1 CPUMark

Examples of applications running would include a virus scanner and various network
admunistration utilities. Howeve_r, as mentioned before, when a student is logged on
and using the PC, the amount of available processor cycles can vary dramatically. It
was therefore decided the place a large burden on any PC that had a user logged on. A
figure of 5 was subtracted from the CPUMark figure to give the PC’s overall
monitoring ability. In the example of a 366MHz P1I processor with normal
background applications running, the adjusted figure would be 27.2. It should be
noted that in most daily situations almost all lab segments on the network had at least

one PC where no user was logged on.

4.1.3 Detecting Other Task Agents in the Segment

In order to determine which Information Agent in a segment is going to be the
monitoring one, the Task Agents within a segment need to know about each other and
also their monitoring ability. Because the structure of Ethemnet is flat a PC will not
know which segment it is on nor will it know what other PC’s are on its segment.

Knowing a PC’s IP address will not provide any solution to this problem although

48

they could be grouped into segments. Therefore, when a Task Agent wishes to send
its monitoring ability to other Task Agents on its segment, it needs to send out an
Ethernet frame with the appropriate details enclosed. The only details it needs to
include are its monitoring ability and its [P address.”

This leads to the problem of how to ensure that every PC on a Task Agents segment
will receive the Task Agents frame without any other Task Agent on 2 different
segment picking the frame up. This is essential to ensure that all segments are known
and no two Information Agents will be monitoring any one segment.

It should be noted that although a Task Agent can initiate the sending of a frame and
the data to be enclosed, it is the Information Agent that actually creates the frame and
sends it out via the network card’s drivers. Also, when a frame is received the
Information Agent must read it and extract relevant details for the Task Agent. The
first idea was to send an Ethernet frame out with the source and destination address
both set to the MAC address of the PC that was sending the frame. The idea was that
the frame would get sent out along its own segment but not to any other segment
because the destination PC would exist on the current segment. This would allow all
the PC’s on the current segment to read the frame and they would thus know that the
frame came from their segment. Because of the fact that Information Agents on each
segment would be monitoring perhaps thousands of frames per minute, a way was
needed to indicate to the Information Agent that another Information Agent had
created the frame, and that it was not just some random Ethernet frame. It was
decided to use the DSAP field and the SSAP field to indicate that the frame had
originated from a Task Agent, and had been sent by an Information Agent.

It was decided to set the SSAP field to 08 Hex and the DSAP field to 09 Hex in order

to indicate that the frame had been created by the network management system.

49

Although there are only 256 possibilities for an SSAP field, because the fields will

- contain different values there will be no possibility of the agent management software
mistaking a random frame for one which was created by the agent management
system. Other frames will almost always contain identical values in the SSAP and
DSAP fields.

When the frame was sent out with the source and destination MAC address being set
1o the MAC address of the current PC, it was noted that none of the other PC’s on the
segment received this frame even though the NIC dnivers indicated that it had in fact
sent the frame. It was then discovered the NIC drivers would not send a frame out on
the network if the destination address on the frame were the same as the NIC MAC
address. They will simply indicate that the frame has been sent. Making up an
arbitrary MAC address would also not work because of the fact that the frame might
traverse other segments on the network and this would allow other Information
Agents on different segments of the network to read the frame, and mistakenly believe
that it came from a PC on their own segment. If this problem could not be solved it
would mean that the Task Agents would not be able to determine who is on their
segment and who is on different segments. The solution found was to use a frame -
with a destination address that was guaranteed to be invalid. This would mean that the
frame would traverse the current segment but would not reach any other segments. It
was decided to use the address 00:00:00:00:00:00 as it was easy to recognise and no
ot\her NIC uses this address. Once the frame reaches a switch it will be deleted, as no

device on a network will ever contain a MAC address like the above.

50

Switch deletes
frame

00:00:00:00:00:00 00:00:00:00:00:00

Fig. 4.1. Sending advertisement frame

4.1.4 Recording Other Task Agents

When an Information Agent is told by its\Task Agent to send out the PC’s frame
monitoring ability it will create the frame as follows:

e The destination address will be set to 00:00:00:00:00:00 as mentioned
previously

e The source address will be set to the PC’s MAC address e.g.
00:80:C8:84:D2:F2

e The DSAP will be set to 09 and the SSAP field will be set to 08. This will use
up the first two bytes of the data field |

o The length field will be set to 46 as the data field does not need to be any
larger but cannot be any smaller

e The next two bytes of the data field will contain the PC’s monitoring ability as

determined by CPUMark

51

* The rest of the data will contain the IP address of the sending Task Agent and
a pad of zeros, in order to fill 46 bytes.

When an Information Agent receives a frame it will check if the DSAP and SSAP
fields contain 09 and 08 respectively. If they do the Information Agent will know that
it has received a frame from another Task Agent on it's segmeﬁt. It will then extract
the IP address of that Task Agent, along with its monitoring ability. It will then pass
these up to the Task Agent via KQML. The Task Agent will then compare its own
ability against the ability of the received frame. It will record the details of the other
Task Agent in the Segments table of its Task Agents database. This table is used to
keep arecord of all the Task Agents on the current segment. If its own ability is better
it will send a message to the other Task Agent specifying its ability. The other agent
will also maintain a Segments table and will record the details. If the other Task
Agent has a better ability then the local Task Agent will know that it cannot monitor
the segment and so if its Information Agent is running it will stop it. It wilt obviously
record the other Task Agents details in its segments table. When a Task Agent has
sent its ability out it will wait for 10 seconds. After this time if it has the best ability it
will start up its Information Agent so that it can monitor the segment.l Whenever a
new Task Agent starts up on the segment the process is repeated so that the most

qualified Task Agent will be the one that is monitoring the network at any given time.
4.1.5 Recording Other Segments

Once a Task Agent is in charge of its own segment, it needs to inform Task
Agents on other segments that it exists. Again, it will send out an Ethemet frame with

its IP address but this time the destination address will be set to FF:FF.FF:FF:FF:FF,

52

as this is a network broadcast address: When an Ethemet frame is sent with this
address, every PC on the network will receive the frame. Again, the DSAP and SSAP
portions of the frame will be set to 09 and 08 but because the frame has been set to a
broadcast address, the Task Agent recetving the frame will know that it has come
from another segment. Only Task Agents that have their Information Agents
monitoring the network will receive the frame. Whenever one Task Agent takes over
from another in network monitoring duties, it will inform the other segment Task

Agents of the PC it is replacing so that they are kept up to date.
4.1.6 Detecting the Interface Agent

The Interface Agent can be run on any PC and does not need to be in memory
all of the time, only when the network manager requires interaction with it. Therefore,
the Task Agents need to know how to contact it and vice versa. This is because the
Task Agents will inform the Interface Agents of any problems and solutions and the
Interface Agents will also inform the Task Agents of new rules or solutions to existing
problems. Therefore, when the lnterface Agent starts up it will send out an Ethemnet
packet with a destination address of FF-FF FF :FF:FF:FF. This will then be detected
by all of the Information Agents that are monttoring the network. They will be able to
detect the fact that it is from the Interface Agent because the DSAP field will be set to
07 and the SSAP field will be set to 08. The data field will also include the IP address
of the Interface Agent so that the Task Agents can contact the Interface Agent
- directly. The rest of the data field will be padde& with zeros, up 1o its length of 46
bytes. The Task Agents that are monitoring segments will then reply with their own

[P address. The can also inform the Interface Agent of who is on their segment when

53

requested and this will allow the network manager to see exactly how the network

segments are set up.

4.2 Setting Up the Rule Base

4.2.1 Rules Used

As mentioned previously, it was decided to use RBR to deal with how the
system handles problems. The network manager when using the Interface Agent
specifies any changes to the existing rules. The Interface Agent then passes these
changes on to the Task Agents that are monitoring their segments. The more specific
the rules, the easier they are to maintain and change. One of the rules dealt with
segment usage. It specified that if a segment was being 30% or more utilised (3
Mb/sec) then the network manager should be informed. A less used segment could
then be suggested to place some of the PC’s on if required. The rule was stored as

follows:

If

Average segment usage > 30%

Inform network manager

Again, the network manager could change the 30% figure to anything required. 30%
load is given as the standard figure for which Ethemnet networks will perform
efficiently [35]. If the network manager wished to be informed if the segment usage

was greater than 60% then the rule would be stored as follows:

Average segment usage > 60%

Inform network manager

Another rule concerned what to do if a network segment went down. Obviously this is
an extremely serious problem so the network manager would be informed
immediately and also e-mailed, in case the Interface Agent was not running. The rule

was stored as follows:

If

Network segment down

Urgent inform network manager

The term “Urgent inform network manager™ also relates to another rule. Again this
helped the system more flexible because the network manager would then be able to

choose how to be informed. The rules was stored as follows:

Urgent inform network manager

e-mail network manager AND

display on management station

55

The above rule specified that a message should be displayed on the network
management station and the network manager should be e-mailed in the case of an
urgent message. Another example might be to send a message to the network
manager’s mobile phone or beeper.

A further rule related to this specified that if the Interface Agent could not
communicate with any Task Agent from a particular segment, then the segment was
down. An explanation of how Task Agents discover that the monitoring Task Agent
;o_n their segment has gone down is discussed later. Another rule was used to
determine when a PC was determined to be sending corrupt data. If the number of
corrupt frames sent in a period of 5 minutes was greater than ten then it was
determined as corrupt. Again, the number of corrupt frames or the duration could be

changed. The rule was specified as follows:

If
Number of corrupt frames > 10 AND
Duration > 5

Then
Corrupt application

A rule associated with this rule is to determine what to do when thus happens. The rule

specifies that the PC in question should be rebooted:

If

Corrupt application

Reboot PC

56

Some of the rules used are listed in appendix A.
4.2.2 Explanation Facility for Rules

Because of the fact the RBR was used for storing the rules, it was possible to
also store the explanation for those rules. These allow the network manager to fully
understand why the system has come to a particular conclusion. The explanations for
the rules were stored in a separate table with an associated rule number. For example,
the above rule-relating to segment overload would be stored as follows (assuming the
rule number is 2):

2 The average segment usage (from 9am to 9:30pm)} is greater than 30% of the
maximum bandwidth of 10Mb/sec. This may increase network inefficiency
due to excessive collisions, so it is recommended to move some of the PC’s

onto another less utilised segment.

If more than one rule was fired in order to reach a conclusion then the appropnate
number of explanations would be available when requested. The explanations for the

rules are listed in appendix B.
4.3 Agent Communication

As mentioned previously, all agent communication takes place via KQML.
The messages were designed to be short and fairly infrequent so as not to add too
much to the overall network load. However, new performatives were added to cater

for specific messages relating to the network management software.

4.3.1 Advertising an Agent’s Ability

When a Task Agent advertises its ability, it simply sends out an Ethernet
frame so no KQML is involved. However, if an agent knows the location of all other
agents on its segment and its ability has changed (perhaps a user has logged on or off)
it will send a message to ali other Task Agents on the segments specifying its new
ability. To do this it will use the predefined KQML “Advertise” performative as

follows:

(advertise :sender A :recetver B : language VB

-ontology NetMan :content “Ability (24.3)”)

The above basically translates to

“sender A is sending a message to sender B. The message is that A’s ability 1s now
24.3. The language being used by A is Visual Basic and the ontology is NetMan™.

As no “Reply” performative was included in the message when receiver B get the
message it will not reply to sender A. A and B refer to actual IP addresses such that A
might be 193.1.116.253 and B might be 193.1.118.234. The ontology refers to the
language in which the performatives were defined. NetMan is one that was created
specifically for this system using some existing performatives and some which were
created specifically for the agent system. This means that although another system
would be able to break up the KQML message into its appropnate parts (i.e. the
sender, the receiver etc.) it would not understand what “Ability 24.3” means unless it
understood the performatives from the ontology NetMan. As mentioned previously
this is one of the problems if inter-agent communication where different agents have

been designed by different developers.

58

4.3.2 Querying Another Agent

When an agent wants to query another agent it must specify that it wishes to
receive a reply. It can do this by using the “ask-if” performative. One example of this
is where the Interface Agent wishes to determine the segment load from a particular

Task Agent. The format would be as follows:

(ask-if :sender A :receiver B :language VB

-ontology NetMan :content “Segment Load” :reply-with “load™)

The format is quite similar to the previous example except that sender A expects
receiver B to reply with the label “load”. This label will allow the Interface Agent to
determine what the response from the sender is in relation to. When the Task Agent

replies, it would reply with something like the following:

(tell :sender B :receiver A :language VB

:ontology NetMan :content “30™ :in-reply-to “load™)

As can bee seen from the above the Task Agent is informing the Interface Agent the

segment is under an average 30% load.
4.3.3 Getting Another Agent To Perform A Task

Another situation occurs when one agent wants another to perform a specific
task. An example of this would be where the Task Agent on a particular PC wants the
Information Agent on that same PC to stop monitoring the network segment. In this

case the “tell” performative can be used as follows:

59

(téll 'sender A receiver B :language VB

.ontology NetMan :content “end”)

The receiver (in the above case the Information Agent) will understand the content
“end” to mean that it should stop monitoring. However, the receiver will not know the
reason for ending. One way to solve this problem would be to create a new
performative called “end” and then allow the content to give the reason for the

performative. The following KQML message would then be sent:

(end :sender A receiver B :language VB

-ontology NetMan :content “better(32.4)")

In the above example the Information Agent would know that it had to stop
monitoring the segment and the reason was that a better Task Agent on another PC
had developed an abilitv of 32.4 which was better that the ability of the PC which the
Information Agent was on. It was decided to use this new performative to allow for
more intelligence in the svstem and also because of the fact that it is the job of the
Information Agent to record as much information as possible.

The same situation arises when changing the value of a rule in the rule base. The
“tell” performative could be used but it was decided to use a new performative cailed
“rule” to spécify a change in the ruié. The content of the message could then specifv

the rule to change as follows:

60

(rule :sender A receiver B :language VB

:ontology NetMan :content “change(13,25)” :reply-with “changed”)

The above message tells the receiver to change the condition for firing rule 13 (this
rule happens to be the rule for determining when a segment is overloaded and had
been set to 30%) from 30% to 25%. The sender also requests that the receiver respond
to confirm the rule has been changed. This is véry important to ensure that all Task
Agents have up to date rule bases and that none are out of date. The receiver (Task
Agent) could then respond to the sender (usually the Interface Agent) with the

following to confirm thé change:

(tell :sender B :receiver A :language VB

-ontology NetMan :content “25™ :in-reply-to “changed™)

This will confirm that the change has taken place.

4.3.4 Sending an Urgent Message to the Interface Agent

When the Task Agent needs to send an urgent message to the Interface Agent

it can use the “urgent” performative as follows:

(urgent :sender A receiver B :language VB
-ontology NetMan :content “All Task Agents down™ :reply-with

i&urgellt‘)ﬂ)

The above message informs the Interface Agent that all of the other Task Agents on

the sender’s segment appear to have gone down. Again, because of the importance of

61

this message the sender expects an acknowledgement from the receiver. The

‘acknowledgement would be as follows:

(tell :sender B :receiver A -language VB

‘ontology NetMan :content “received” :in-reply-to “urgent™)

The main agent messages are listed in appendix C.
4.4 Determining System Changes Needed
4.4.1 Changing the Monitoring Task Agent

It has previously been discussed how when the system starts up the Task
Agents will decide who among them is best able to monitor the segment with their
Information Agent. However, changes in the networking environment can take place
and need to be ca‘tered for. If a new Task Agent starts up or detects a change in its
monitoring ability (a user has-logged on or off) then that Task Agent will inform afl of
the other Task Agents on its segment of its ability. These Task Agents will record the
details and if the new Task Agent now has the best ability the previously best Task
Agent will tell its Information Agent to stop monitoring the network and the new Task
Agent will take over. There is also the possibility that a Task Agent that is responsible
for monitoring a segment has gone down. This may be due to a system crash or
because a user has switched off the PC. In either case the Task Agent will not have
time to inform the other Task Agents about what has happened. This problem is
solved by the fact that in any segment the monitoring Task Agent will send an “alive”

message to the other Task Agents on the segment every 2 minutes as follows:

62

(tell :sender A :receiver B :language VB

:ontology NetMan :content “alive™)

If 2 minutes have passed and the other Task Agents have not heard from the Task
Agent, the next best Task Agent will try to contact it. If there is still no reply the next
best Task Agent will inform its Information Agent to begin monitoring the network
and the other Task Agents will be informed. The monitoring Task Agént will then
begin sending “alive” messages to the other Task Agents on its segment every 2

minutes.

4.4.2 Determining an Agents Ability

If a user either logs on or off a PC, the Task Agent will again run CPUMark to
determine its ability. If its ability has changed its new ability will be broadcast as
previously mentioned. Other than that. every week a Task Agent will use CPUMark
to determune its ability. This caters for the fact that new software may be installed or

removed, or new applications may be set up to run in memory all of the time.

63

Conclusion

The system as implemented now represents a very efficient way to monitor the
network. KQML provides a flexible mechanism for agent communication and the rule
base can also be changed at the network manager’s discretion. Although there is a
certain amount of work in setting up the agent software on every PC, once the

software is installed it will only need to be configured via the Interface Agent.

Bes

Chapter §

Comparison With an SNMP Application

In order to truly test the ability of the agent management software it is required
to compare it with an existing, popular, fully functional network management system
based on a popular protocol. A proper test should consist of instigating standard
network problems and seeing how both applications perform. Network utilisation also
needs to be considered as most networks are built based on the projected network

traffic that will be passing through various segments.

5.1 SNMPc

SNMPc is a network management tool provided by Castle Rock Computing.
There have been a number of different versions of the product over the vears and
overall approximately 60,000 copies of the application have been sold, making it one
of the more popular network management applications based on SNMP available
today. The version used for companson will be the Workgroup edition of SNMPc.
This application is designed for small to medium sized networks of up to 1000
devices and is designed to be used bv one person. Some of the marn features of this

software are:

o Runs under Windows 98 & NT
o Full MIB access

« Email/Pager Event Notification
o Advanced Event Actions

¢ Network Discovery with filters

65

« Real Time Tabular/Graphical Displays
« Device Specific Applications

« Printed Reports

The main interface screen shows discovered segments on the network and all of the
devices in each segment can also be displayed. SNMPc uses SNMP to communicate
with switches and hubs and any other devices that support SNMP. The application
allows full access to MIB’s and can display packet and traffic statistics for any SNMP
device. The application also allows a user to generate traps for conditions that require
attention, for instance a port on a switch that stops transmitting and receiving data.
Any devices that support it can also have settings on that device changed from
SNMPc. Examples might include changing the status of a link or changing a devices

routing table.

Menic | Mot fetncd | Metict | Newiop

1 x K E 19311121

1 3 3 3 19317125

1 3 3 3 19311135

1 3 3 3 19311145 |

1 1 1 1 19311155 |

1 3 3 K 19317165 |

1 1] 5 1931.1175

i 1 < 3 19311185
i:11190 | 24 1 3 3 3 15317195 n
Ll —— »

Fig 5.1. Routing Table settings can be adjusted

66

CoreBuilder 2500,

148608000

Radeis
02227ct4

08 00

CoreBuilder 2500,

Q

CoreBuildes 2500,

100000000

080002227cfH

7| CoreBuilder 2500,

ethemet-csmacd

10000000

080002227cfB

CoreBuilder 2500,

ethernet-csmacd

10000000

080002227cH

CoreBuilder 2500,

ethemet-csmacd

10000000

080002227c (B

CoreBuilder 2500,

ethemet-csmacd

10000000

080002 227c(9

- H] CoreBuilder 2500,

athemet-csmacd

10000000

080002227cta

CoreBuilder 2500,

ethemet-csmacd

10000000

08000222 7ctb

ComRuidar 2500
A 7 5

& ¥ B

ob.remacd

1annnnnn

NA DN N2 22 7r ke

Fig 5.2. Port status can be changed

There 1s also a utility called HubView that allows a user to be given an exact
graphical representation of a hub or a switch. This allows a user to view the type of
ports on the device and also which ports are being used. Full statistical data can also

be received from any port selected.

Fig 5.3. HubView

67

5.1.1 Initial Installation

-

As specified previously, the Agent-based network management software needs

to be installed on every PC on the network in order to be able to determine which

s

PC’s are on which segments. After it is installed it can configure itself as needed and

the network manager only ever needs to interact with the Interface Agent, which can

be based on any station.

R R o e
=-NodesionSegme

st [

= ' Librargh7

= .
A Tong-Partridge

‘I’IIIJI

o =

i } James-Brennan

ik | Grerrre,

§ g 1
2| B poma.on

e

Fig 5.4. Agent-based view of a segment
SNMPc only needs to be installed on a single PC. Once it is started for the first time,

it immediately begins talking to all switches and routers on the network in order to

build up a picture of the network. It requires no user interaction to do this and takes

68

only two or three minutes. It will then list all of the segments on the network and by
selecting a particular segment the user can see what devices are contained in that
segment. However, a problem can occur if complete automatic discovery is tumed on.
It will then try and connect to the complete network, which in the case of the network
being tested meant the Higher Education Network (HEANet), which covers a number
of colleges throughout Ireland. This can then set off intrusion detection alarms when
SNMPc tries to poll some of these devices as the devices detect the poll as an attempt
to gain unauthorised access to the network. Simply switching off complete automatic
discovery can easily get around this problem. The user also has the option of setting
the discovery agent so that only certain segments of the network (specified by IP

filters) will be discovered.

Fig 5.5. SNMPc view of a network segment

69

As can be seen from the above figures, some of the devices are currently not
contactable and so have been displayed as offline. SNMPc can detect every device on
the network, including printers. The agent management software can only contact

devices which have the Task Agent installed on them.

H-f7 1931115
{:3 @ 193.1.116
P © A1001-08
.- O ADMIT
i & ADMI2
= & B2019-04
" & C2016-01
;& @ Catherine-Higgins
f i @ ColmDavey2
i & CSM1
¢ D2018-01
- - © Deirdre-Collery
;- & Geny-McMorrow-&
' & James-Briennan
- @ Joe-Bye
- @ Joe-Delaney
i @ John-Cawley
i~ Q LIB-002
i & LB-CD4
- & Library02
i @ Libra-CD-stacl
~ & LibrayN7
" & library-printer

% %ﬁ%%ﬁﬁ% 0

'Bx‘?’ﬁ

4

Fig 5.6. SNMPc list view of a segment

5.1.2 Detecting that a node has gone down

SNMPc can only “talk” to SNMP devices and so in order to detect PC’s it

simply sends them a ping every two minutes (this is adjustable). If it does not receive

a reply, the node will be displayed in red on the user interface and a message will be

displayed specifying the computer name of the computer that is no longer contactable.

70

With the agent management software, the monitoring Task Agent on each segment
will send an “alive” message to all other Task Agents on its segment every two
minutes (adjustable). The other 'i’ask Agents will then respond with an “alive”
message of their own. If a particular Task Agent does not respond it will be recorded
as having gone down but the network manager will not be informed unless the
information is specifically requested. This is simply due to the fact that PC’s will

| often get switched off during the course of the day. If the Task Agent that is
monitoring the segment goes down, this is a more serious problem. The other Task
Agents will detect this due to the fact that they do not receive an “alive” message and
the Task Agent with the next best ability will take over. The Interface Agent will be
informed but again the network manager will not be informed unless the information

is specifically requested.
S.1.3 Detecting that a segment has gone down

With the agent-based software, the Interface Agent will be able to inform the
network manager within a couple of minutes if a segment has gone down. It will
display a message on the station and also e-mail the network manager. The Interface
Agent will receive an “alive” message every minute by each Task Agent that is
monitoring each segment of the network.' If it does not receive the message after a
minute has passed it will know that either the Task Agent has gone down or the
segment has gone dqwn. If the Task Agent has gone down on a particular segment,
the other Task Agents on that segment will detect the problem as discussed
previously. The next best Task Agent will then begin monitoring the segment and will

inform the Interface Agent. The Interface Agent will thus know that the segment is

71

ok. If the Interface Agent receives no reply from any Task Agent on that segment
after three minutes it will know that either the segment is no longer able to
communicate with the rest of the network, or all of the PC’s on that segment have
been switched off. In reality, it is very unlikely all of the PC’s on a large segment
would be switched off so the Interface Agent knows that there is a problem with the
segment. This most likely means that either a hub is not working or a connection from
a switch to a hub has gone down. Either way the network manager will need to
physically check the hub and/or switch in question in case it is a hub problem, a
switch problem or a cabling probiem. The Interface Agent on segments with just 1 PC
will suggest no action unless the device has been down for more than 1 week. Another
possibility is that the segment on which the Interface Agent resides is no longer able
to communicate with the rest of the network. If this is the case, the Interface Agent
will detect the fact that it cannot communicate with any Task Agents other than ones
on its own segment and so it will realise that the problem lies on its own segment and

it will inform the network manager accordingly.

72

Nodes on SegmentA

Network Manager -

e ConpMcMoroww - [FTmRe—
D2016-01 T
- Catherine-Higgns '. : , e '

Fig 5.7. The Agent-based system displaying a failed segment

Because SNMPc can communicate directly with the switches on the network but not
the hubs, it will be able to find out if there is a problem on the switch. If the link on a
switch has gone down, the switch will record this fact and SNMPe will be able to
display which link has gone down and generate an alarm if one has been specified. If
a hub has gone down SNMPc will have no way to directly detect that there is a
problem so the network manager will have to physically check the device. The same
applies if a link on a hub has gone down. SNMPc can set alarms for switch problems
(i.e. if the status of a switch changes) and this would consist of a message being
displayed on the user interface and also an e-mail being sent to the managers e-mail

address,

73

Fig 5.8. SNMPc segment before being brought down

s|Britical |B&/B1/2008 (B9:48:28 [Test Se Deuice Down

Fig 5.9. Alarm generated after segment went down

74

= N0t Subnel

(R
®)

L i B

Fig 5.10. SNMPc display after segment went down

5.1.4 Detecting Network Utilisation

The chances of network failures in switches and hubs are very small, as are the
chances of corrupt packets making it on to the network. One of the main uses of
network management software is in showing network utilisation. Network managers
typically want to know how much traffic their network segments are dealing with, if
any are being overloaded and also what type of network traffic is traversing the
network segments. These reports are also only of any real use if they can be generated
over time, i.e. a number of days or even weeks. The agent management software is
able to determine a number of facts about a segment over a given period of time and

is also able to make suggestions based on the rules that have been provided to it.

75

5.1.4.1 Network Traffic

Network Traffic monitoring is concerned with how much traffic a segment is
dealing with per second over a give period of time. All segments on the network are
10Mb/sec. This obviously means that if the traffic on a segment is approaching this
figure over a sustained period, the likelihood of frame collisions increases
dramatically. This in turn means that frames have to be sent again which increases the
overall traffic on the segment and on the network, and the network will appear to be
siower. The agent management software records the traffic traversing each segment
over a continuous period. The Interface Agent will then allow the network manager to
see the traffic over a given number of hours, days or‘ even weeks if requested. It also
should be noted that as with most networks, the traffic during the day is higher than at
night. Therefore, only traffic between 09:00 and 21:30 was specified as being a day in
the rule base, although a full day can be displayed if required by changing the rule
base via the Interface Agent. The agent management software will generate an alarm
for the network manager if the traffic on one segment is much higher than another that
has been linked to it. By linked it 1s meant that during system set-up, the network
manager has specified that a number of segments have been set up similarly and
therefore shouid display the same kind of utilisation over any given period. This
information is stored in the rule base. In the case of the test network, this applied to
different labs, i.e. labs used for software development consisted of 32 PC’s in each
segment and so should be utilised quite heavily. Labs used for secretanal studies only
had 16 PC’s per segment and so should not be as heavily utilised. PC’s belonging to
administration staff only has between 1 and 5 PC’s per segment and so could not be

considered the same as the lab segments. If two similar segments are showing

76

different traffic loads over a continuogs period then the Task Agent in question will
inform the Interface Agent, which will inform the network manager with a proposed
solution based on the rules that were being fired. Another situation arises when a
segment is under heavy use over a sustained period. The definition of heavy use and a

sustained period are both stored in the rule base.
5.1.4.1.1 Segment Comparison

To test similar segments against each other, the Task Agents were left to
monitor two segments continuously over a period of one week, during normal college
term. The segments were assigned the names of Segment A and Segment B. The rule
base was adjusted so that a sustained period was set to one week and that a noticeable
difference between segment traffic was set to 15%. At the end of the period, it was
noted that Segment A had an average load of 30.808 KB/Sec and Segment B had an

average load of 12.1 KB/Sec over the given period.

KB Sec

Fig 5.11. Overall traffic over 1 week on Segment A

77

KB Sec

Fig 5.12. Overall traffic over 1 week on Segment B

KB Sec

120 1

Fig 5.13. Segment A traffic over 1 day

KB Sec

Fig 5.14. Segment B traffic over 1 day

78

When the type of traffic was analysed, it was determined the IP traffic was
considerably more prevalent in Segment A than in Segment B. The Interface Agent
therefore suggested to the network manager that some of the PC’s in Segment A be

swapped with some of the PC’s in segment B, in order to even out the traffic.

\ B31%

IP

ARP
OIPX/SPX
O Ethemet

064% \ ' /5%

00%

Fig 5.15. Breakdown of segment A traffic over 1 week

79

IP

ARP
OIPX/SPX
0O Ethemet

Fig 5.16. Breakdown of segment B traffic over 1 week

While SNMPc is able to show the amount of traffic generated over a given period it
was not able to determine that the two segment$ were connected and was unable to

suggest a solution to the test problem generated, as it did not see a problem occurring.

5,1.4.1.2 Segment Overload

Another test situation was set up to deal with segment overload. In this case, a
continuous period was defined as one day and overload was determined to be 30%
utilisation. Again two segments were used, Segment A which was going to be
overloaded, and Segment B which was not. Over the period of the day, software was
placed on a number of PC’s on segment A that would continuously download files

from an FTP server on a different segment. After the time period had passed Segment

80

had an average load of 31.56% of total available bandwidth and Segment B had an

average load of 1.205% of total bandwidth.

KB Sec

Fig 5.17. Segment A being overloaded

KB Sec

Fig 5.18. Segment B being utilised normally

The Interface Agent informed the network manager and again suggested that some of
the PC’s in question (only the ones that were downloading heavy amounts of data) be
placed on Segment B. It did this because the first rule to be fired was that if the traffic
on a segment was greater than 30% of the bandwidth, the segment could be

considered overloaded. This can happen during normal events that include lunch hour,

81

when most people in the labs are surfing the Internet, and also on the top of every
hour when students log into the server. However, the network manager will not be
informed until an appropriate period has passed. In this case the continuous period
had been set to one day. SNMPc is able to generate an alarm if traffic exceeds
specified limits but it will not take into account peak times (e.g. lunch hour).
Therefore, a large number of alarms mav be generated in a single day, many of which

are not relevant.
5.1.5 Collisions

The agent-based management system has no way to detect collisions on a link.
The NIC’s dnivers will detect a collision and will prevent more frames from going o‘ut
on the link until the link is clear again. However, the drivers will not tell any higher-
level applications, includingy NDIS which is what the Information Agents’ frame
monttor uses. In order to solve this problem, it would have been necessary to develop
anew set of drivers for the NIC’s being used on the network. This is itself would be
very difficult as it would involve getting the hardware specifications from the card’s
manufacturer but because of the large number of different NIC’s on the network, it
was deemed beyond the scope of the research to be carried out. The switches on the
network however can detect collisions and these are recorded in the appropriate MIB
entry. SNMPc shows the number of errors that have been received on a given segment

or port but it does not specifv which were the results of collisions.

82

5.1.6 Dropped Frames

Obviously monitoring a network is better when the number of frames that are
dropped by the monitoring utility is as low as possible. A dropped frame can be
thought of as one that the monitoring utility does not have time to process because the
number of frames arriving at a given time is so large the monitors buffer fills before
the packets can analysed. Dropped frames will most likely reach their appropriate
application without any problem but if the agent-based management software cannot
read them then they are considered as being dropped. To consider the number of
frames that can be dropped let us first consider the number of frames that can pass
through a link in 1 second.

An individual Ethernet frame can be between 72 and 1526 bytes in length. Therefore
the frame rate varies considerably with frame size, the smaller the average frame size
the more frames per second can pass through a link.
Ethernet operations require a dead time of 9.6 s between transmissions of two
frames. We will only consider 10Mbit Ethemet. Because 10 nﬁuion bits can traverse
an Ethernet link in ! second, the bit time is 100 nanoseconds. Taking only 72 byte
frames the maximum number of frames that can pass through a link is
9.6 us + 72 bytes * 8 bits/bvte * 100 ns/bits

< A single frame can pass in 67.2 * 10°s or

= 14,880 frames can pass through in one second
A two PC segment that had no other traffic other than one PC sending frames that
were 72 bytes in length was then used to test the number of frames that would be

dropped. The other PC had the agent management software. A burst of 100,000

83

frames was sent out on the segﬁlent, At the end of the test, the receiving PC had been
unable to process 160 frames out of the 100,000 sent which represented a drop rate of
.16%. This is quite a small drop rate however the tesﬁng conditions were not very
comparable with normal PC use over a multiple PC segment on the network. The next
test was carried out on 2 PC’s in one segment. One of the PC’s had no user logged on;
one of the PC’s had 2 user logged on performing normal computing operations. The
monitoring software ran for a period of 4 hours during normal lab use. At the end of
the 4 hours the average drop rate for users logged on was 0.0022% of frames received

while the average drop rate for users logged on was .0085%.

350 4.
300 4+
250
200

—e—Frames Per
Second

-
(423
o

—3— Frame Length
100

Frame Length

(%2
oo
]

S D S O oD
K b1 SR Y 1+ N i)
NN N NS

Time

Fig 5.19. Traffic and frame lengths with a user logged on

84

Frames Dropped

c & 8 8 &
..__‘

/ Y S \

Time

1100 11:30 12200 1230 13:00 13:30 1400 14:30

Fig 5.20. Number of frames dropped on the same PC

Frame Length

RYTTLLE

—a—Frames Per Second
—a&— Frame Length

'\!'&) \l{? '{é) {;? Nﬁ'@ {ﬁ@ Nﬁ'@ '\h{?

LY

Time

Fig 5.21. Traffic and frame lengths without a user logged on

Frames Dropped

o N & O D o
. =y

N

Time

11:00 11:30 1200 1230 13:00 13:30 14:00 14:30

Fig 5.22. Number of frames dropped on the same PC

85

This indicates that the problem of dropped frames is not serious enough to seriously
corrupt long-term results such as segment usage and details of corrupt frames.
SNMPc¢ does not have this problem as the devices that support SNMP have the ability

to process all of the frames that they receive.
5.1.7 Sending corrupt frames onto the segment

The final test to be carried out concerned sending a burst of corrupt frames
onto a segment to see how both network management applications would react. The
test was set up by having a piece of software send out a burst of 50 corrupt frames
over a period of one second. There were two types of corrupt frames considered. The
first type of corrupt frame is where the frame is physically corrupt. This can be
obtained by sending a frame‘ that is too large, too smal! or sending a frame where the
result of the Frame Check Sequence (FCS) field is incorrect.

Sending this type of frame requires special software which was obtained from 3com.
Normally, a NIC’s drivers will not allow such a frame to be sent out but if the drivers
become corrupt it is possible for corrupt data to be sent out on the link. It should also
be noted that these type of frames will only traverse one segment, once they reach a
port or hub they will either be deleted, or in the case of jabber (a frame which is larger
-than 1576 bvtes), they will be cut down to .the maximum size and sent on to the
Vappropriaxe destination. The second tvpe of corrupt frame is one in which the frame
size 1s correct, as 1s the FCS field, but the frame contains invalid data. An example of
invalid data would be a length field that was zero. These frames will traverse the
appropnate number of segments until thev reach their destination, where they will be

most likely rejected by the host application that required the frame. The first type of

86

frame shall be considered Frame Type A and the second type of frame shall be

considered Frame Type B.

5.1.7.1 Testing with Frame Type A

While using the network management application, a burst of 50 frames was

transmitted on a 32 PC segment of the network. The frames had correct data but the

FCS field was changed to contain an invalid value.

(TA)
Corrupt T »
(Reboot) %
FCS Error Error: (FCS). MAC = T
Test ' H KR XOC KR
(IA)
(Link) FCS Error
<%

Fig 5.23. Sending a corrupt frame onto the segment

TA = Task Agent. IA = Information Agent

87

The Task Agent that was monitoring the segment received a “corrupt” message from
the Information Agent every time a corrupt frame was recetved. This message
contained the soﬁrce and destination address of the frame and also the problem with
the frame. The Task Agent then recorded the frames details and checked if a corrupt
frame from the ‘same destination address had arrived recently, within 5 minutes. The
rule base had been set up so that if 10 corrupt frames were received from the same
source address over a period of 5 minutes, the PC’s NIC would be considered corrupt.
After 10 frames were received, the Task Agent would check if the frame had arrived
from a local PC. It would simply do this by checking the list of MAC address on its
6wn segment. As mentioned previously, it should be guaranteed that the frame 1s
local, as it will be deleted once it had reaches a switch or hub. The Task Agent will
then contact the Task Agent on the PC that sent the frame with a “corrupt” message.
The Task Agent that receives the message will then reboot the PC in question to see if
the problem can be solved. The network manager will not be informed but can request
the information. If after the PC reboots, the problem still exists, the network manager
will be informed as there is nothing else that the network management software can
do.

With SNMPc, when the S\;VitCh received Frame Tvpe A, it deleted the frame and
added 1 to its number of corrupt frames received. It did not, however, take note of
where the frame came from nor did it detect the fact that multiple corrupt frames had

come from a particular PC.

88 i

["] REC1 X 3-WIBWpGroup. O [T est_Segment)

Fig 5.24. SNMPc displaying corrupt frames

5.1.7.2 Testing With Frame Type B

A PC was set up in a standard 32 PC segment that would send out a burst of
50 packets with a length field of zero. The results for the agent-based network
management application were the same as with the previous test. The Information
Agent passed a “corrupt” message onto the Task Agent. Again, after the appropriate
number of corrupt frames had arrived from a particular PC, the Task Agent checked
the source MAC address and determined that the frame was on its own segment. It
again sent a message to that Task Agent so that the PC in question was rebooted.
However, because switches will not delete these frames, they are able to traverse
multiple segments. This meant that other Information Agents on other segments (in

the test case one other segment) would be able to detect the frame as being corrupt.

89

The other Task Agent will check the MAC address against its own list of MAC
addresses and because the frame has originated on another segment it will not be able
to find it. It will therefore send a “find™ message to al! other monitoring Task Agents
on the system to see if any of them know the source MAC address. Each Task Agent
will then check the MAC address against its own list of MAC addresses and the one
that finds a match will return with a “found” message. If no Task Agent is able to
focate the source address it will be determined that the frame must have originated on
another network. In this case the network manager will be informed.

As SNMP devices do not analyse frames to check their actual content and there was
not a problem with either the frame size or FCS field, SNMPc will never detect these

types of frames and so no action will be taken.
5.1.8 Traffic Generated by the Network Management Systems

Because of the nature of both the agent-based and SNMP based network
management systems, both systems are going to add to the overall traffic on the
network. This is because thev need to communicate with devices across the network
in order to properly monitor the network. Traffic generated will only become a
pro.blem if it is putting the network under undue pressure, e.g. overloading a segment

or creating too many collistons.
5.1.8.1 SNMPc¢

To test SNMPc, a segment was monitored for two hours during a period in

which there were no users on a segment. The result of the test showed that the traffic

90

traversing the segment was only 263 bytes per second. SNMPc was then started up

and left to monitor the network in its standard set-up. This means that SNMPc would

simply poll the devices every so often and was not generating any reports. After two

hours it was noted that the traffic on the network had increased to 1,010 Bytes/sec.

This was not a large increase and would be very unlikely to cause problems on a

standard segment, even on a busy day. Finally, SNMPc was set-up to constantly

monitor a port on a router. This meant that the software had to receive packet details

from the router every 10 seconds and record the types of packets that were arriving at

the router. This increased the traffic to 1,610 Bytes/sec, which meant that overall

traffic had increased by approximately 1.4 KB/sec. This would not cause any

problems for the test network even during busy periods.

o LS

Time

T T+ T+ T* T+ T+ T+ T+ T4
15 30 45 60 75 80 105 120

—&— Standard Metwork Traffic

—&— SNMPc Running
MNormally

SNMPc Monitoring a Port

Fig 5.25. Traffic details with and without SNMP¢ running

91

5.1.8.2 The Agent-based Software

The agent-based software was tested using the same conditions on the same
segment. After the first two hours the segment had a load of 284 bytes per second.
The agent-based software was then started on the ségment. Although the Task Agents
on the segment initially send a few messages to each other, this stops after a couple of
minutes and they resort to sending their standard “alive” messages. The agent
software was left monitoring the network for two hours and after this period the traffic
on the segment increased to just 312 bytes per second. It was therefore concluded that
neither of the two applications would cause any problems with regard to traffic on the
network. Although SNMPc generates more traffic, the station it would be located on
in the test network would be an administration station; therefore very few PC’s would

be on that particular segment thus freeing up more bandwidth for SNMPc.

© 350 -

§ 300

2 250 —e— Standard Network
:) 200 Traffic

a 150 —&— Agent Management
H 100 Software

5

m

[34)
(o Ran)

i

T T+ T+ T+ T+ T+ T+ T+ T+
15 30 45 60 75 90 105 120

Time

Fig 5.26. Traffic details with and without the agent software running

92

Conclusion

The above has been a thorough evaluation of both network management
applications based on common errors that can occur in LAN’s. Two of the more
surprising results that were discovered were the fact the neither application adds to
overall network traffic by any large degree and also the network itself is utilised very
lightly, therefore probiems that occur are rare. The fact that very few frames are being
dropped by the ageni-based application is also a bonus. However, in a switched
environment where every PC was attached to the port of a switch there would be
problems with thé agent based management system. An Information Agent would
need to be active on each device and this would add quite a lot of extra traffic. Also,
the system would slow down every PC on the network and a PC would need to have
the Information and Task Agent active all of the time, regardless of the PC’s
processing power. It should be noted that very few networks currently operate in a

totally switched environment.

93

Chapter 6

Conclusions

Now that a complete examination has been carried of the agent-based network
management system, a number of conclusions can be drawn.
An excellent knowledge has been obtained on agent architectures and the one chosen
(based on RETSINA) was very beneficial to the agent-based network management
system. The Information Agent had a near 100% frame-processing rate and was able
to read the complete contents of a frame because of its reactive architecture, but was
also able to pass on relevant information in whatever format was required by the Task
Agent. It would be very straightforward to change the Information Agent to extract
different types of information, without changing the other agents. For instance, the
Information Agent could be used solely as a protocol analyser. The main drawback of
the Information Agent was the fact that it visibly slowed down the performance of
slower PC’s (circa 300MHz) on the network. However, as specified previously, only

one Information Agent needs to be active on a segment at any given time.

The Task Agents were able to abstract away from the physical details of frames
because of the work carried out by the Information Agents. This allowed them to
concentrate on achieving goals and solving problems where necessary. They were
more in tune with the type of details a network manger would expect and because of
their ability to communicate via KQML, they were able to obtain a éomplete view of
the network and also solve problems collectively. They also required very little

processing time in order to carrv out their duties. The traffic generated by the Task

94

Agents was minimal and a further benefit was the fact that the traffic was distributed
fairly evenly throughout the network, so that no one station or segment was put under
undue pressure. Another major benefit of the Task Agents was their use of Rule Bases
to detect and solve problems. This allowed fo; total flexibility on the part of the
network manager. It was proven to be very easy to adjust rules and new rules could
also be added without much difficulty. This helps reduce the amount of knowledge
needed to successfully manage a network which in tum reduces the amount of

expertise required by a network technician.

The greatest benefit of the agent-based network management system is in the
intelligent pre-processing of data. Before any data is presented to the network
manager, it is first put into a format which is of the most use to the manager. Each of
the three agents in the agent architecture abstracts away from the onginal basic
Ethernet frames, so that by the time the data is presented by the Interface Agent, it is
in a useful format. The exact format is flexible as it can be controlled by entries in the
Rule Base. A useful format may be as simple as a diagram showing daily traffic or it
may mean that data is not presented at all to the network manager. For instance, when
the agent-based management software detects corrupt frames being sent from a PC,
the PC is rebooted. If this solves the problem then the network manager will not be
informed as this is specified by an entry in the Rule Base. SNMPc on the other hand,
will simply record and display all corrupt frames when requested. In an information
age with virtually exponential growth in the World Wide Web one of the biggest
challenges people face is managing the amount of information they are presented

with, without sacrificing large amounts of time.

95

Another point worth noting is the simple fact that the better designed a network is, the
less likely errors are to occur. As was previously mentioned, the test network used
was under utilised. This avoided many of the problems (speed, segment over-
utilisation), which many networks suffer from. However, there are obviously cost and

time issues involved when setting up the “perfect network”.

The ability of the agent-based management system to actually solve problems without
human interaction is one that may be the greatest benefit to network management in
the long run. Although‘it was only able to solve a limitgd number of problems with no
user interaction, this has huge implications for network maintenance costs and
network up-times. Software is nearly always going to be faster than human interaction
and the distributed nature of agents’, along with their ability to communicate, means
that the potential is there to solve global problems. This further reduces the amount of
information required by a network technician in order to successfully manage a

computer network.

However, it should be noted that SNMP has been used and is a proven technology for
larger, more heavily utilised LAN’s. The same cannot be said for the agent-based
management system. Also, because the software is placed on individuai PC’s, when
an Information Agent is active on a PC, it is fighting for resources with other
applications on the PC. It has been shown that the number of frames dropped by the
Information Agent during normal PC use was very small. However, as previously
stated the network was not being heavily utilised and was well segmented. Also, when
the Information Agent was active, it did visibly affect the PC’s performance.

Obviously this was worse with slower PC’s. There is also the possibility that

96

(accidentally or on purpose) a user will stop an agent from running on a PC. This
problem will potentially increase witﬁ the advent of Gigabit Ethernet, although one
can safely assume that processor speeds will continue to increase. Leading on from
that, although the test network used was well segmented with not more thaﬁ 32PC’s
on a segment, this will not always be the case. If the segment size is very large then
faster processors will be needed to allow the Information Agent to monitor all frames.
However, there is also a problem with the agent-based software if the segment size is
too small. As has been stated previously for the best utilisation of the agent-based
network management system, each segment should haye one Information Agent
active. Obviously the smaller the segment size, the more [nformation Agents are

needed and this increases the total processing cost of the system.
6.1 Future Research

Although the agent based software shows much promise, it may be better
placed on switches and routing devices. This would allow the agents complete access
to MIB’s, which already exist and have been proven to be useful, and it would also
mean that there should not be the problem of dropped frames and PCs’ being slowed
down. A further benefit would be the direct interaction between the agents and the
devices in order to detect and solve problems. It would also be worth researching the
possibility of integrating the Information Agent more closely with the NIC’s drivers
on a PC. This would mean the agent would be closer to the kernel and should allow
for faster processing of frames. Further research could also include researching
whether it would be possible to have the agents communicate with network hardware

providers. This would offer great benefits as if a problem was detected on a device,

97

the device manufacturer might be able to provide assistance via its own agents.
Obviously, performatives would need to be agreed, as would an agent communication
language. A lot of research is currently being carried out into mobile agents for
network fault diagnosis and this solution may well provide the long-term key.. Agents
would only reside where they are needed and they could be specific to particular
hardware, thus providing a huge range of expertise. This would also greatly suit the
increase in the ability to control network devices remotely and the ever-increasing

size and complexity of today’s networks.
In the general computing sense it seems certain that software agents are here to stay

and it is most likely that agent technology will have a positive impact on network

management in the mid to long term.

98

References

'[i] Kay A. Computer Software. Scientific American vol. 3, pp 53 - 59, 1984

[2] Franklin S. & Graesser A. Is it an agent or just 2 program?: A taxonomy for

Autonomous Agents, 1996
[3] Sycara et al. Distributed Intelligent Agents. IEEE Expert, 1596

[4] Wooldridge M. Agenté and Software Engineering. In A[*IA Notizie Xi vol 3, pp

31-37, 1998

{S] Nwana A. S. Software Agents: An Overview. Knowledge Engineering Review, pp

205-244, 1996

[6] Weiss G. Multiagent Systems: A modern approach to Distributed Artificial

Intelligence, 1999

[7] Russell S. & Subramanian D. Provably bounded-optimal agents. Journal of Al

Research, vol. 2 pp. 575-609, 1995

{8] Brooks A.R. Intelligence without representation, Computers and Thought, [JCAI,

1991

99

[9] Ferguson [A. TouringMachines: Autonomous Agents with Attitudes. IEEE

Computer, vol. 5 pp 25, 1992

[10] Wooldridge M. & Jennings N. R. Intelligent Agents: Theory and Practice.

Knowledge Engineering Review, 1994

[11] Rao A.S. & Georgeff M.P. BDI Agents: from theory to practice, Proc. 1"
International Conference on Multi-Agent Systems, San Francisco, California, pp. 213-

319, 1995

[12] Wooldridge M. & Jennings N.R. Pitfalls of Agent-Oriented Development.
Agents "98: Proceedings of the Second Intemnational Conference on Autonomous

Agents, ACM Press, 1998
[13]) Nwana H.S. & Ndumu D.T. A Perspective on Software Agents Research, 1999

[14] Etzioni O. Moving up the information food chain: Deploving softbots on the
World Wide Web. In Proceedings of the Thirteenth National Conference on Artificial

Intelligence (AAAL-96), 1996

[15] Jennings N.R. Agent-Based Computing: Promise and Periis. Proc. 16th Int. Joint

Conf. on Artificial Intelligence (1JC AI-99), Stockholm. Sweden, 1999

[16] Labrou Y. et al. Agent Communication Languages: The Current Landscape.

IEEE March/April, 1999

100

[17] Finan T. et al. Draft Specification of the KQML Agent-Communication

Language. DARPA Knowledge Initiative External Interfaces Working Group, 1993

[18] Case J. D., Fedor M., Schoffstall M. L. & Davin C. Simple Network

Management Protocol. RFC 1157, 1990

[19] OSL ISO 9595 Information Technology, Open System Interconnection, Common

Management Information Protocot Specification, 1991

[20] Yemini Y. The OSI Network Management Model. [EEE Communications

Magazine, pp 20 - 29, 1993

[21] Held G. Ethernet Networks: From 10 Base-T to Gigabit. Wiley publishing, 1998
[22] Baldi M., Sitvano G. & Picco G.P. Exploiting Code Mobility in Decentralized
and Flexible Network Management, First Intenational Workshop on Mobile Agents

97 (MA '97), Berlin, Germany, Apr. 1997

[23] Davison R.G., Hardwicke J.J., & Cox M.D.J. Applying the agent paradigm to

network management. BT Technology Journal, Vol. 16 No. 3, 1998

[24] Guha R V. & Lenat, D.B. Enabling Agents to Work Together. Communications

of the ACM, 37(7):127 - 142, 1994

101

[25] Genesereth, M.R. & Nilsson. N. Logical Foundations of Artificial Intelligence pp

325 - 327. Morgan Kaufmann Publishers, 1987

[26] Fikes, R.E. & Nilsson, N. STRIPS: A new approach to the application of theorem

proving and problem solving. Artificial Intefligence, 5(2):189 - 208, 1971

[27] Vere, S. & Bickmore, T. A basic agent. Computational Intelligence, vol 6 pp 41

- 60, 1990

[28] Agre, P. & Chapman, D. PENGI: An implementation of a theory of activity. In
Proceedings of the sixth national conference on Artificial Intelligence, pp 268 - 272,

1987
[29] J.E. White. Mobile Agents. Software Agents. MIT Press, 1996

[30] R.S. Grey. Agent Tcl: A transportable agent svstem. In Proceedings of the CIKM

’95 workshop on Intelligent Information Agents, 1995
{31] Nordine M. & Unruth A. Facilitating Open Communications in Agent Systems:
The Infosleuth Infrastructure. Proceeding from the fourth International Workshop on

Agent Theones, Architectures and Languages, 1997

[32] Bradshaw J.M. Kaos: Toward and Industrial-Strength Open Agent Architecture.

Software Agents, 1997

102

[33] Leake D.B. Combining Rules and Cases to Learn Case Adaption. Proceedings of

the Seventeenth Annual Conference of the Cognitive Science Society, 1995
[34] Aamodt A. & Plaza E. Case-Based Reasconing: Foundational Issues,
Methodological Variations, and System Approaches. Artificial Intelligence

Communications, Vol. 7, No. 1, 1995

[35] Peterson L.L & Davie B.S. Computer Networks: A Systems Approach. pp 121 -

127, Morgan Kaufmann, 1996

[36] Picard R W. & Healye J. Affective wearables. Personal Technologies, 1(4):231 —

240, 1997

[37) Maes P. Agents the Reduce Work and Information Overload. Communications of

the ACM, 37(7), pp 31 - 40, 1994

103

Appendices

Appendix A. Some Rules Used in Agent-based Network Management System

/
e

1)

2)

3)

4)

If

Average segment usage > 30%

Inform Network Manager

If

Inform network manager

Display on management station

If

Urgent inform network manager

E-mail network manager AND

Display on management station

If

Network segment down

Urgent inform network manager

5)

6)

7

8)

If

Number of corrupt frames > 10 AND

Duration> 5

Corrupt Application

Corrupt Application

| Reboot PC

If

Then

Duration passed >= 168 hours

Check ability

If

User logged on

Ability = ability - 5

9)

10)

11)

12)

13)

Single PC segment down >= 168 hours

Inform network manager

If

Then

Standard day

Record time between 09:00 AND 21:30

Segment = 1 OR segment = 3 OR segment = 4

Consider similar

If

Segment = 2 OR segment = 6 Then

Consider similar

Segment = 35 OR segment = 7 OR segment = 8 OR segment = 9

Consider similar

14)

15)

16)

17)

Similar segments with different utilisation

Determine PC’s causing problem AND

Inform network manager

If
Time elapsed >= 168 hours
Then
Sustained period
If
Utilisation > 30%
Then
Heavy use
If
Traffic difference > 15% AND
Consider similar AND
Sustained period
Then

Similar segments with different utilisation

18)

19)

20)

If

NOT Single PC segment AND

No Task Agent communicating

Then
Segment down
If
NOT Single PC segment AND
Main Task Agent communicating AND
Task Agent not communicating
Then
Node down
If
Node down
Then
Record

Appendix B. Explanation Facility for Rules Used

1)

2)

3)

4)

3)

6)

7)

The average segment usage is greater than 30 percent of the segment

-

bandwidth.

When informing the network manager, the appropriate message will be

displayed on the network management station where the interface agent

resides.

When the network manager needs to be informed of an urgent message, the
message will be displayed by the interface agent and also e-mailed to the

network manager.

Because a segment of more than one PC has gone down, the network manager

is being informed urgently.

During a period of 5 minutes, more than 10 corrupt frames were detected from

a single PC. An application is corrupt.

Because a corrupt application has been detected on a PC, the PC has been

rebooted.

A PC is rechecking its ability to monitor its segment as at least a week has

passed since 1t last performed the check.

8) A useris logged onto a PC so 5 has been subtracted from its monitoring

ability.

9) The network manéger 1s being informed, as a PC on the network has not

responded for a week or more.

10) On a standard day, the network will be monitored between 09:00 and 21:30 as

no users will be on the network outside these periods.

11) Because segments 1, 3 and 4 have the same number of PC’s and are used for
the same type of applications, thev are being considered as similar and should

not show too much of a difference in utilisation.

12) Because segments 2 and 6 have the same number of PC’s and are used for the
same type of applications, thev are being considered as similar and should not

show too ‘much of a difference in utilisation.

13) Because segments 3, 7, 8 and 9 have the same number of PC’s and are used
for the same type of applications, they are being considered as similar and
should not show too much of a difference in utilisation.

14) Because similar segments have displayed different utilisation the svstem is
suggesting that some PC’s be moved from the heavily utilised segment to a

less utilised segment(s).

15) A sustained period is considered to be one week or greater.

16) Heavy use is considered to be utilisation greater than 30%.

17) Segment changes are suggested as a number of segments that are considered

similar have a traffic difference of greater than 15% over a sustained period.

18) Because no task agents have communicated with the interface and there is

more than one task agent on the segment, the segment must have a problem.

19) A node has gone down on a segment. Any node that goes down will be
recorded but the network manager will not be informed by default as the PC

may simply have been switched off.

20)If a node has gone down, then record the details.

Appendix C. Some Inter-Agent KQML Messages

1) (advertise : sender A :receiver B :language VB
-ontology NetMan :content “Ability (24.3)”)

Sender A is advertising its new ability of 24.3

2) (ask-if :sender A :receiver B :language VB
-ontology NetMan :content “Segment Load™ :reply-with “load™)
Agent A is asking agent B what the load on B’s segment is. B is expected to reply

with “load™.

3) (tell :sender B :receiver A language VB
-ontology NetMan :content “28” :in-replv-to “load™)

Agent B tells Agent A that its segment is under 28% load.

4) (tell :sender A :receiver B :language VB
:ontology NetMan :content “end™)

Agent A wants agent B to stop monitoring the network segment

5) (end :sender A :receiver B language VB
-ontology NetMan :content “better(32.4)™")
This was used to replace message 4. Agent A tells Agent B to stop monitoring the

network as Agent A has a better ability of 32.4

6) (rule :sender A :receiver B :language VB
:ontology NetMan :content “change(16,25)” :reply-with “changed”)
Agent A tells Agent B that the condition for firing rule 16 should be changed to 25.

Rule 16 determines what is defined as heavy use on a segment.

7) (tell :sender B :receiver A :language VB
.ontology NetMan :content “25” :in-reply-to “changed™)

Agent B replies to Agent A

8) (rule :sender A :receiver B :language VB
‘ontology NetMan :content “change(3,AND notify managers pager)” :reply-
with “changed”)

Agent A tells Agent B that rule 3 should be changed so that in the event of an urgent

need to inform the network manager. he should also be notified by pager.

9) (rule :sender A :receiver B :language VB
‘ontology NetMan :content “change(12,0R segment = 14)” :reply-with
“changed™)

Agent A tells Agent B that another segment has been added to the group.

10) (urgent :sender A :receiver B :language VB
-ontology NetMan :content “All Task Agents down” :reply-with ‘ilrgent”)

Agent A sends an urgent message to agent B.

11) (tell :sender B :receiver A :language VB
:ontology NetMan :content “recetved” :in-reply-to “urgent”)

Agent B replies to A’s message.

12) (tell :sender A :receiver B :language VB
.ontology NetMan :content “alive” :reply-with “alive™)

Agent A is sending an alive message to agent B

13) (tell :sender B :receiver A :language VB
-ontology NetMan :content “alive” :in-reply-to “alive™)

Agent B sends an alive message of its own

14) (error :sender A :receiver B :language VB
.ontology NetMan :content “00:8¢:2f:3a:aa:9¢, 00:4a:0c:fc:00:2a, length™)
Agent A tells Agent B that a frame has been received with an invalid length field. The

source and destination MAC addresses are also included.

15) (error :sender A :receiver B :language VB
:ontology NetMan :content “00:8c:2f:3a:aa:9¢c, 00:4a:0c:fc:00:2a, jabber™)
Agent A tells Agent B that a frame has been received that is too long. The source and

destination MAC addresses are also included.

16) (find :sender A ‘receiver B language VB
:ontology NetMan :content “00:8¢:2f:3a:aa:9¢™)

Agent A queries if Agent B knows the IP address of the enclosed MAC address.

17) (found :sender B :receiver A :language VB
:ontology NetMan :content “193.222.222 222”)

Agent B replies with the IP address.

