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Abstract

D e s i g n  a n d  V a l i d a t i o n  o f  a D e v i c e  to M e a s u r e  t h e  C u t t i n g  

E d g e  P r o f i l e  o f  O s t e o t o m e s

By Eamonn Price B. Eng.

The cutting capacity o f a cutting instrument is normally defined as its sharpness, 

which defines the ability of the cutting edge to cut the target material. Many 

factors therefore affect the ability of a blade to cut, including the target material, 

the manufacturing process, and the cutting forces associated with cutting 

technique employed (Kalder S., 1997).

In this study o f techniques for measurement o f the cutting edge profile various 

methods were used to measure blade profiles and found that no one method of 

measurement was capable o f quantifying all the geometric parameters o f the 

cutting edge o f the blade.

SUB3 (Sharpness of Unserrated Blades for Biomaterials and Biocomposites) is 

a research project focusing on the specification o f sharpness measurement for 

surgical blades. A component o f the work o f the SUB3 

project is the design and build of a prototype device for blade profile 

measurement. This project contributes a device capable of measuring the 

profile and wedge angle of the cutting flanks of a surgical osteotome.

The aim o f this thesis is to investigate the measurement of sharpness with 

particular relevance to non-contact measurement of the geometric parameters 

of the surfaces of the cutting instrument.

All relevant current methods o f profile measurement were investigated to 

establish a suitable method for the measurement o f the geometric properties of 

a surgical osteotome using legacy technology, and also to establish if it could 

be developed using existing components o f measurement systems. If the 

technology does not exist it is proposed to design and build a working prototype 

non-contact profile measurement device capable of measuring the wedge angle 

o f a surgical osteotome.

XIV



List of Symbols, Abbreviations and Glossary

Symbols

R a Arithmetic mean of the absolute departures profile from the mean

line.

Z Depth of field.

w Beam spot size.

X Wavelength.

¡jm Micron

qm Nanometer

A Angstrom

a Rake angle

P Clearance angle

Abbreviations

CCD Charged Coupled Device.

CMM Co-ordinate Measurement Machine.

DFM Dynamic Force Microscope.

DAQ Card Data acquisition card.

LASER Light Amplification by the Stimulated Emission of Radiation.

PDS Product Design Specification.

PSD Position Sensitive Device.

XV



SEM Scanning Electron Microscope.

SUB3 Sharpness of Unserrated Blades for Biomaterials and
Biocomposites.

WLI White Light Interfometer.

P/T ratio Precision-tolerance ratio.

Glossary of Terms Related to Cutting and Measurement of Sharpness

Accuracy Ability to measure the true value correctly on average.

Blade Cutting instrument, used to cut target material.

Blunt Dulled edge/not suitable for purpose of cutting target

material.

Burr Rough edge left on blade edge after sharpening/cutting.

Chip Shaving of target material removed by the cutting process.

Chipping Action of removing target material by a pecking cutting
action.

Chopping To cut/split resulting from a blow from a cutting instrument.

Cut To open up target material.

Cut depth Depth to which the blade is inserted into the target material.

Cutting tip Geometry at cutting edge.

Diffused light Light which is diffused from a sample surface while it is

being scanned.

Blade flanks Sides of cutting blade, forming the wedge angle.

Osteotome Surgical cutting instrument used for the cutting of bone.

XVI



Precision

Sharpening

Spot size

Target material

Wedge angle 

flanks.

Wire edge

A measure of the inherent variability in the measuremenfs.

Procedure for reproducing or repairing the cutting edge of 

the cutting instrument.

The diameter of the spot from the light source used in the 

measurement head.

Material to be cut.

Included angle of blade, measured between the cutting

Burred edge formed by the sharpening process or by blade 

wear.

XVII



Chapter 1

1.1 A history of blades
Blades have been used since stone-age man first learned how to use flint to 

produce cutting instruments and date back some 2 million years, however 

recognisable blades were made out of stone from five hundred thousand years 

ago (500,000-10,000 B.C.)

Four to seven thousand years ago (5000-2000 B.C.), stone blades were being 

polished and were fitted with crude handles, which were made of wood or 

animal hides to protect the users hand (Figurel.1).

Figure 1.1 Blade fitted with bone handle (www.agrusseH.com/.../ glossary/c html)

Metal blade knives were first made from copper and subsequently bronze in the 

years 3000-700 B.C., and they have had many features that are still retained 

today. After the Bronze Age it was discovered that an iron blade had a much 

sharper and long-lasting edge, and iron knives were widely made from about 

1000 years before the birth of Christ. The Romans in particular developed many 

different types of knife to suit a wide number of uses (including ritual animal 

sacrifices and knives for cutting hair). Knives were considered to be very 

important possessions and people had personal eating knives which they 

carried with them. It was not unusual for people to be buried with their personal 

eating knives.

Throughout the ages many variations of cutting instruments were developed, 

the Japanese in particular were noted for the chokuto which is a broad, straight, 

and single edged blade.

The design of osteotomes dates back to the 17th or 18th century. These tools 

were copied from those used in the wood industry. Surgeon’s tools only 

included a few technical improvements compared with those commonly used for 

cutting other materials (Giraud et al., 1991) Blades were also developed for

l
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industry and for surgery and many of the early surgical instruments were simply 

copies of cutting instruments used for cutting metal or wood (Figure 1.2).

Figure 1. 2 A very early capital amputation saw from Jacobean England 1606-1621. 
(http://antiquescientificacom/articles%205.htm)

As cutting involves the interaction between the blade, and the target material it 

was historically the operator who decided the type of cutting tool to use, the 

cutting procedure, and when to replace or regrind the cutting tool. Increasingly it 

is becoming more important to standardise the sharpening interval and 

procedure for sharpening, particularly on reusable surgical cutting tools.

1.2 The cutting process
Cutting is a complex process involving the interaction between the cutting 

instrument normally a cutting tool or blade, the target material, the cutting 

environment, and the user or cutting system. It has been proposed in respect of 

metal cutting tooling that each of these parameters have an integrated role in 

the optimisation of the cutting process and on the role of appropriate tool 

selection in the efficacy of cutting (Kaldor S. and Venuvinod P.K., 1997). We 

use the term sharpness to define the capacity of the cutting instrument to cut 

the target material with a high level of efficiency. We use the term bluntness as 

an antonym to sharpness. To understand the need for inspection and control of 

cutting instruments some understanding must be gained on the cutting process. 

The most basic type of cutting is of an orthogonal nature. This type of cutting 

involves a tool with a plane cutting face, and a single straight cutting edge 

(Figure 1.3).

2
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Figure 1.3 Orthogonal cutting; the cutting tool has a plane cutting face and a single, straight
cutting edge (Oxley P.L.B ., 1989)

The geometry of the cutting edge is defined as the cutting width (w) (Figure 1.3) 

and by the two angles a and p (Figure 1.4). The angle a at the front of the 

cutting tool face is the rake angle, and may be positive (Figure 1.4a) or negative 

(Figure 1.4c).

The rake angle has a pronounced effect on the cutting process,causing an 

increase in cutting energy for many materials.(Merchant M E., 1944)

The angle p between the base of the cutting tool and the target material is 

known as the clearance angle, it is of less importance in the mechanics of chip 

formation, however it can influence the rate of wear of a cutting tool.

Positive Rake

Cutler
Velocity

Neutral Rake
Cutter

V elocity

Negative Rake

W orkpiece
Normal

(a)

Cutter
V y

W orkpiece
Normal

(c)

Figure 1.4 Cutting edge geometry (a) Positive rake angle, (b) Neutral rake angle, (c) Negative
rake angle
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1.3 Approaches to bone cutting
Surgical cutting may be divided into two broad categories, that of power cutting 

and of manual cutting.

1.3.1 Power cutting

Power cutting used in the surgical field, includes the use of, power drills, 

reciprocating saws, oscillating saws and reamers, Issues with power cutting 

include the generation of heat, cutting force and the use of coolant.

The inspection of these devices is not covered in this thesis.

1.3.2 Manual cutting

Manual cutting in the surgical field involves the use of, scalpels, scissors, 

chisels, gouges, hand reamers, osteotomes, as well as other such “hand” 

operated instruments.

This thesis will concentrate on the use and inspection of surgical osteotomes. 

Osteotomes are used in surgical procedures such as hip joint replacement, and 

procedures where bone removal is required, surgical osteotomes are used with 

an orthogonal or indentation cutting action (Figure 1.5). The osteotome is 

impacted with a mallet as illustrated in (Figure 1.6), or by hand when cutting 

softer bone.

Figure 1. 5 Osteotome cutting bone illustrating the orthogonal nature of the cutting process
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Damage may occur here due 
to impoct between cutting 
edge and hard bone

Surgical mallet used tor 
impacting the osteotome

osteotome

Figure 1.6 Osteotome in use, is struck with mallet, this may cause wear I chipping to the edge
of the blade

Factors which affect the ability of a surgical osteotome to cut, include the cutting 

procedure, the material type, and the blade geometry. It is common for the 

osteotome to become damaged during a surgical procedure, this can be 

blunting of the tip or in extreme cases chipping may occur to the tip of the 

osteotome. This chipping is to be avoided during a surgical procedure, as 

fragments of the tip may become imbedded in the open wound causing infection 

(Figure! .7).

Damage to cutting edge

Figure 1.7 Osteotome removed from service, showing signs o f chipping o f the blade tip. this 
particular osteotome should not have been used, hence the requirement for procedures for the 

inspection and maintaince of surgical cutting equipment
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Figura 1.8 Osteotome in use at Sligo General Hospital during a hip replacement operation 
Note the use of the surgical mallet to impact the osteotome.

The frequency of use of a chipped osteotome may be reduced by regular 
inspection of the cutting edge of the osteotome. Any deviation from the original 
tip profile of the osteotome should result in the osteotome being removed from 

service and resharpened.
It should also be noted that during the re-sharpening procedure the original 
shape of the tip should be preserved, to minimise the tendency to increase the 
wedge angle during the re-sharpening procedure creating a blunter wedge 
(Figure 1.9).

G fo u n d  p to f ie  sho w in g  O rig in o l p fo file  o f  l ip  o f

Figure 1.9 Variation in wedge angle caused by inappropriate re-grinding procedures
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It should be also be noted that the tip radius of the blade should be preserved 

during the re-sharpening process, as a reduction in the tip radius may cause 

premature wear and chipping of the blade edge

Figure 1.10 illustrates the problem of a wire edge associated with a blade 

having an inappropriate tip radius. A wire edge occurs when cutting edge folds 

over on itself, in extreme cases the wire edge may break away.

Figure 1.10 SEM image of wire edge on blade cutting edge
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Chapter 2.0

2.1 The cutting process
The cutting process involves the cutting device (a blade or other cutting 

instrument) and the target material which is to be cut.
It is widely accepted that the quality of cut made by cutting instruments is 

dependent on number of variables, such as the properties of the material being 

cut, the blade material type, cutting edge geometry, friction and the type and 

direction of cutting force applied required. This force will produce a slicing, 
paring, chopping or shearing action depending on the direction of the applied 

force.

2.2 Cutting sharpness
The cutting instrument geometry will vary depending on the type of cutting 

whether it is used for cutting metal, wood or tissue will dictate the type of 

geometry of the blade.

Wedge Angle 20°

Figure 2.1 Cutting edge parameters showing wedge angle and cutting edge radius (Reilly et

The cutting component of the instrument is normally defined in a blade or 

pointed feature consisting of at least two cutting surfaces forming an included 

wedge angle. The intersection of cutting surfaces creates a single line of

Cutting Edge 
Radius

al 2004a)
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intersection. This edge is not finitely sharp and the apex may be curved or 

filleted as shown in Figure 2.1 (Reilly et al., 2004a).

As indicated it is generally assumed that the cutting edge has a finite sharpness 

and that the edge is constructed of two intersecting flat planes formed by the 

grinding process. Manufactured sharpened edges generally produce a wedge 

angle not below 20° or above 90° as these are defined as limits of functionality 

for most cutting instruments used in slicing chipping and paring (Wehymer, 

1987). Flat planes resulting from the sharpening process and creating such a 

line or edge of intersection may be referred to as the cutting surfaces of the 

blade. It has being shown in the case of instruments such as scalpel blades, 

which are considered to have an extremely sharp cutting edge that the radius 

on this edge is submicron in size and so quality and geometry of surfaces and 

edges are limited by the sharpening process. Images retrieved from a specialist 

sharpening company illustrate the size of edge features on sharpened scalpel 

edges (Figure 2.2).

Figure 2. 2 Scalpel blade edge, field of view 20^m, annotated radii 0.21 -  0.31nm, source 
MDW Technologies (http://www mdwtech.com/imaging/images.html)
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2.3 Why measure sharpness?
When used for cutting of biological tissue, the characteristics of the blade and 

the condition of the cut surfaces may have long term consequences. For 

example, experiments carried out by (Izmailov et al., 1989) on 200 animals 

using 300 scalpels showed that incisions made with a scalpel of tip radius 0.8 

microns heal better than an incision made with a scalpel of tip radius of 12.5 

microns.

(Izmailov et al., 1989) showed that blunting of the cutting edge will occur during 

the normal use of cutting instruments therefore some method must be put in 

place to measure the sharpness of cutting instruments to ensure that the blade 

performs in an optimised condition or is re-sharpened as it loses its cutting 

edge.(Huebscher et al., 1989) states that a sharp scalpel is the first precondition 

of good postoperative wound healing.

2.3.1 Qualitative analysis of cutting sharpness

Most attempts to classify sharpness based on qualitative analysis of SEM 

micrographs provide limited geometrical analysis of the edge or its angular 

features, as quantitative analysis of the edge is difficult using this technique. 

Relevant research into the quality of periodontal curettes classifies the various 

types of cutting edges as, a fine edge, a burr edge or a dull edge is illustrated in 

(Figure 2.3).

C ufling Edge

Figure 2. 3 Classifications of cutting edges for periodontal curettes (a) fine edge, (b) wire
edge, (c) dulled edge (Balevi. 1996).

Lateral SuH*c*
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The type of burred edge formed by the sharpening process has also been 

described as a wire edge and has been illustrated by Scanning Electron 

Microscope (SEM) (Antonini, 1977; Smith, 1989). The edge is formed when the 

sharpening process utilised is unsuitable for complete burr removal at the 

cutting edge, or when the cutting surfaces are not polished by fine grinding, 

honing or polishing abrasives following primary formation. The wire edge may 

also result from excessive wear of a cutting edge that is incapable of 

withstanding use and has rolled over on a cutting surface, (Figure 2.4) 

(Antonini, 1977; Smith, 1989)

Figure 2.4 Wire edge formed after prolonged use of enamel hatchet blades (Antonini, 1977;
Smith, 1989)

Further SEM analysis of the cutting edge has illustrated other factors deemed 

relevant to the cutting ability of the instrument. These factors result from the 

sharpening process utilised and relate to the smoothness of either cutting 

surface (Vincent and Doting, 1989; Rossi, 1998). The features normally 

referred to are material treatment in manufacture (Wadsworth, 2000) and 

roughness of the cutting surfaces resulting in incomplete or poor definition of 

the cutting edge (Figure 2.5)

a b

Figure 2. 5 Surface quality resulting in poor cutting edge quality (Rossi, 1998)
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These studies which involved sharpness analysis of periodontal files, hatchets, 

and curettes have shown that the quality of the cutting edge prior to use has a 

significant affect on the durability of the cutting edge and on the quality of the 

cut surface on the target material (Smith, 1989; Vincent and Doting, 1989; 
Pasquini, 1995; Balevi, 1996; Rossi, 1998; Akura, 2001). These studies 

attempted a classification of sharpness based on observed characteristics of 
the cutting surfaces and cutting edges and the systems used to classify the 

sharpness are detailed in Table 2.1. It was also observed in these studies that 

instruments supplied as new or sharpened by manufacturers were not worthy of 

the highest sharpness grading and were in some instances deemed blunt and 

unsuitable for use in experimental tests.

Table 2.1 Qualitative systems for analysis and classification of cutting edge sharpness for periodontal
instruments

Researcher Instrument
Studied

Classification
System

Range of System

Smith et al Enamel Hatchets Observational No comparative system
and Hoes (Qualitative)

(1989)

Tal et al Periodontal curets Qualitative 1 (sharp) to 3 (severe attrition)

(1989)

Pasquini et al (1995) Periodontal files Qualitative 1 (dullest) to 5 (sharpest)

Rossi et al Periodontal curets Qualitative 0 (poor) to 2 (sharp)

(1998)
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2.4 Models of the cutting process
The term cutting sharpness is used to describe the capability of a cutting 

instrument to cut a particular type of material. Much research has been carried 

out in relation to the cutting of engineering materials, and the interaction 

between the cutting edge geometry and the cutting forces applied over a range 

of metals. Engineering models of cutting provide information on how the 

geometry of the cutting edge of the instrument has an effect on the measurable 

parameters of the process. Two such cutting models are applicable to the 

description of the mechanics of the cutting of bone using osteotomes. 

Orthogonal cutting describes a cutting process for a single pointed cutting 

instrument where the cutting edge of the instrument is aligned at right angles to 

the direction of the cutting motion and where the mechanics of the cutting 

process can be resolved by considering the cutting action as a two dimensional 

process (Figure 2.6).

Figure 2. 6 Model of orthogonal cutting showing system of balanced cutting forces
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Indentation cutting describes a process where the cutting instrument cuts by 

perpendicular penetration into the work piece and where the wedge angle of the 

cutting instrument is positioned to be symmetrical about the line of the cutting 

force (Figure 2.7).

Figure 2. 7 Hills model of indentation cutting showing slip line fields

2.4.1 Aspects of the Bone Cutting Process

There are a number of key features of the bone cutting process that have 

merited comment in the literature (Giraud et al 1991). In order of the 

occurrence of the event in the cutting process these are:

(a) Deformation during initiation of the cutting process

(b) Plasticity of the bone during machining

(c) Chip formation at the tool material interface

(d) Cutting force measurement as a factor of cutting criteria

2.4.2 Orthogonal cutting of bone

The concept of orthogonal cutting has potential applications to drilling, milling, 

chopping, chipping, and reaming of bone. It is necessary to state at the outset 

that bone is considered to be a brittle material, and moreover micro structurally 

and mechanically anisotropic and also liable to failure by brittle facture through
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crack propagation. This means that the application of cutting models developed 

for ductile metals may have limited application to an analysis of bone cutting.

2.4.3 Chip formation

The orthogonal cutting of bone involves the initial indentation of the bone by the 

tool, the formation of a chip by the movement of the tool in the material, and the 

fracture of the chip by the continuous cutting process. During the first stage a 

bone material subjected to indentation cutting parallel to the osteon direction 

can undergo recoverable plastic deformation due to the behaviour of 

mucopolysaccharides (proteoglycans) (Jacobs et al., 1974). It is known that 

proteoglycans can alter the collagen fibril structure and the rate of 

mineralisation in bone (Martin et al., 1998). During the second stage of cutting 

it was originally proposed that a continuous bone chip is formed across a shear 

plane that extends from the uncut surface of the bone to the original top surface 

of the bone material. This chip was thought to slide along the rake face of the 

cutting tool in a manner similar to continuous chip formation in metal cutting 

(Jacobs et al., 1974) but subsequent studies show that this observation was 

incorrect and that the chip formation involves a series of discrete fracture 

processes ahead of the cutting tool tip (Wiggins and Malkin, 1978).

2.4.4 Orthogonal cutting forces

Previous studies of orthogonal cutting have identified two key forces, the cutting 

force (force in the direction of cutting) and the thrust force (force perpendicular 

to the direction of cutting) that may be experimentally measured during the 

cutting operation (Merchant, 1944) as indicators of the tool geometry material 

interaction. In studies on bovine bone it has been shown that increasing the 

depth of cut increases the cutting forces while increasing the rake angle from a 

negative rake to a high positive rake can significantly decrease the cutting force 

measured in all cutting directions (Jacobs et al., 1974; Wiggins and Malkin, 

1978). These relationships have also been similarly determined for human 

bone (Itoh et al., 1983). Wiggins & Malkin (1978) demonstrated that the first of 

these relationships is not linear and also that the decrease in cutting forces with 

increase in rake angle was more pronounced at larger depths of cut whereas 

Jacobs et al. (1974) had earlier proposed a linear relationship between
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increasing depth of cut and increasing forces. Jacobs et al (1974) had not 

however considered depths of cut above 48jim in their studies. During 

orthogonal cutting of bone the cutting force is always higher than the thrust 

force and is greatest when cutting in a transverse direction and least when 

cutting in a parallel direction relative to the longitudinal axis of the bone (Itoh et 

al., 1983; Pal and Bhadra, 1986; Wiggins and Malkin, 1978). This is due to the 

anisotropy of bone and the fact that the preferred direction for crack propagation 

is parallel to the osteon direction. Wiggins & Malkin (1978) also determined that 

there is a decrease in specific cutting energy with increase in rake angle for 

cutting of both human and bovine bone in all cutting directions relative to the 

osteon direction. Brittle materials subjected to an indentation load undergo a 

two stage process of fracture involving penetration of the material during which 

the material underneath the indenter becomes compacted in a core which is 

separated from a volume of elastic material by an intermediate zone. During the 

first loading phase the core expands outwards creating a median vent crack 

underneath the indenter tip. Further loading of the material in the second phase 

results in opening and propagation of the crack leading to material fracture 

(Figure 2.8) (Lawn, 1975; Lawn, 1977). This model of crack initiation and 

propagation has been shown to apply to the cutting of bone (Reilly and Taylor 

2003).

Figure 2.8 Expanding core and median crack during indentation of brittle matenals (Lawn,
1975;)

F Indenter
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2.5 Methods used to measure blade geometry (Quantitative 
analysis of blade sharpness)

As has been described in Section 2.3 it may be seen that many factors affect 

the ability of a blade to cut a particular material. These include the blade 

material type, the target material type, friction and the blade geometry.

If the blade material, target material and friction remain constant then it is 

possible to get an indication of the sharpness of a blade by measuring the 

geometric profile of the blade.
Various methods of measuring the profile of a cutting instrument have been 

proposed in research literature, these can be divided into two broad categories 

that of contact measurement and non-contact measurement.

2.5.1 Contact measurement

Contact measurement is one of the most established methods of profile 

measurement, methods include stylus form tracers, CMM’s (Co-ordinate 

Measurement Machines), A non-destructive method for measuring the edge 

radius of the blade is described by Arcona (1996).The method involves creating 

an impression of the blade edge using a replica material in this case a vinyl 

polysiloxane impression material manufactured by 3M Corporation. When the 

mould is cured it is sectioned and viewed under a microscope. To test the 

effectiveness of this method a blade was sectioned and measured in a scanning 

electron microscope, the comparison was made by using a template to measure 

the void left in the plastic mould and comparing this to a best fit circle on the 

scanning electron microscope image, the measurement of 1.7pm measured by 

the mould compared favourably with the 1.6|jm measured with the scanning 

electron microscope. Some drawbacks of this method include the subjective 

nature of the measurement of the void in the plastic mould. Also the need to 

produce a mould of the blade edge results in a slow measurement process. 

Budinski (1997) describes a method in which soft solder (50% Pb, 50% Sn) is 

impacted on the blade edge; this indented solder is subsequently sectioned with 

a microtome and viewed under an optical microscope. This method has 

limitations primarily due to the contact nature of the test which may damage the 

blade edge, also it is only possible to view one cross section of the blade at a 

time.
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A contact profilometer used to measure the tip radius of a metal cutting tool 

insert is described by Barry (1993) this technique describes the jig set-up to 

allow for the limited travel of the stylus profilometer used.

Shortfalls of this method include the range of the vertical stylus travel; this limits 

the profiles which can be measured to 30-40|jm.

2.5.2 Non-Contact measurement

Non-contact measurement may be carried out by various methods including: 

white light interferometry, confocal microscopy, laser profilometry, dynamic 

force, microscopy scanning electron microscopy.

A goniometric laser model developed by CATRA (Cutlery and Allied Trades 

Association) is used to provide a non-contact analysis of blade sharpness. This 

device although limited to measurement of the wedge angle can, with training 

allow the operator to determine the grind finish and direction of grind.

A similar device was designed by the author with a view to automating the 

process, however it was limited in its applications for this particular project 

(Chapter 4).

Brosse et al (1996) describes a method in which a 10mW linearly polarised He- 

Ne Laser is used to measure the surface roughness of metal specimen 

samples, some limitations of this are restrictions in the depth of surface 

roughness which can be measured. The maximum surface roughness which 

could be measured in this experiment is 550nm.

Shetty (1982) devised a technique for inspecting surgical scalpels, the system 

uses laser diffraction as shown in Figure 2.9.
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Coflimating lens

Figure 2.9 Schematic arrangements for obtaining fourier transformation (reflection) of side
face of blade. (Shetty 1982)

This system uses a 1 mW helium-neon laser, a spatial pin hole assembly, a 

collimating lens, a Fourier transforming lens, and a detector system. This 

arrangement only gives detail on the surface finish of the blade. Shetty (1982) 

indicates that the number of “blips" displayed on a graph gives an impression of 

the surface finish of the blade.

He carried out further experiments to measure the angle of a scalpel using the 

arrangement outlined in (Figure 2.10).

The scalpel is oriented along the laser beam as shown, the angle is calculated 

from the diffraction pattern generated, this technique only gives the tip angle but 

gives no indication of the wedge angle.

Collimating lens Founer transforming lens

Figure 2.10 Blade angle measurement (Shetty 1982)
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Bing Li (2003) describes a technique in which a series of ten triangular 

displacement lasers are used to measure the surface of a rear view mirror for 

an automobile vehicle. He describes this system as a multi light-knife measuring 

system. The lasers were fastened on an adjustable device, which could be set 

to give an equal distance between the bordering beams, ensuring the beams 

are synchronously parallel. The multi light-knife was produced by one long 

cylinder lens to ensure the uniformity of the multi light-knife.

In the measuring system, the distance between the camera and the object is 

300mm, the width is 100mm, and the depth is 200mm. The resolution of the 

CCD camera and the Image Frame Grabber is 800x600 pixels.

A novel contact/non-contact hybrid measurement system as described by 

Shengfeng (2001) bridges the gap between contact and non-contact systems, 

although scanning in the non-contact mode is limited to a range of 500pm to 

1mm and this may have implications for measurement of macro and micro 

geometric features of the cutting instrument.

2.6 Patent searches
One objective of this research involves the design and build of a non-contact 

blade measurement system. In order to determine if such a device exists a 

patent search was carried out first by the author and then a more 

comprehensive search carried out by Tomkins & Co., patents specialists. The 

results of both searches are presented. Patent (Graff, 1993) describes an 

apparatus for measuring the cutting sharpness of a knife; this apparatus 

measures the blade area presented at the tip of the blade (tip radius).The 

apparatus consists of an electrical capacitance probe having an active sensor 

area, changes in the cutting edge area (tip radius) are measured by changes in 

capacitance between the cutting edge and the sensor area in successive 

measurements. The sensor probe includes a central capacitance sensor 

lamination having an elongated active sensor area. The capacitance between 

the sensor area and the cutting edge is measured and this determines the 

sharpness of the blade. This method does not take into consideration the 

wedge angle of the blade which has been shown to affect the cutting process in 

studies carried out by researchers in the SUB3group (Duffy 2003).
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Other capacitive measurement techniques are reported in Patent (Pigage et al, 
2005) which involves the measurement of the radial trueness of the position of 

cutter blades retained in an indexer of a gear cutting machine. The capacitance 

of the air gap between the probe and the face or edge of the cutter blade is 

used to determine the radial trueness of the blade position in the indexer. This 

device does not measure the actual sharpness of the tool cutting edge. In the 

Patent (Thompson Robert A., 1986) a capacitive sensor is used to measure the 

distance between the tool face and the freshly cut surface of the material being 

cut. Any wear of the tool face gives a reduction in the measured distance from 

the tool face to the material surface.

2.7 Concluding remarks
Research to date has mainly concentrated on the measurement of surface 

roughness using contact and non-contact techniques. Profile measurement 

research is limited to contact measurement using various forms of stylus 

profilometers. Research literature pertaining to the non-contact measurement of 

all the geometric parameters of a cutting blade is limited.

As stated previously in the introduction the aim of this research is to produce a 

device to measure all the geometric parameters of a surgical cutting instrument. 

The geometric parameters are then compared with research data which is built 
up on the cutting process by the larger research group. The ability of the blade 

to cut a particular material can then be determined from its geometric 

properties, if all other cutting parameters (such as friction, blade material, target 
material and cutting speed) remain constant.
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Chapter 3.0 Current state of the art

3.1 Current state of the art in surface profilometry
This chapter will focus on the current state of the art of profile measurement 

systems. Research was conducted into the ability of off-the-shelf profile 

measurement systems, to measure the profile of a blade. In order to get an 

accurate representation of the ability of the various methods it was decided to 

use custom made sample blades in the evaluation of the various technologies 

(Figure.3.1).

Cutting edge rodius

Figure 3.1 Sample blades used in all the studies of the vanous technologies

The blades used in the evaluation process had varying cutting edge radii from 

7pm to 300 pm. The included wedge angle was varied from 15° to 60° .Blades 

were manufactured from cobalt high speed steel, and were ground to the 

required angles using form grinding techniques. Blades with largest cutting 

edge radii were manufactured using wire erosion to a surface finish Ra of 

4.32pm (measured with a Newview 5000 surface profiler). Each method of 

profile measurement was evaluated for its ability to measure the cutting edge 

radius and the gross wedge angle of the blade.
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3.2 Contact measurement:

3.2.1 CATRA sharpness tester

A contact sharpness measurement device (Figure 3.2) designed at Sheffield 

Hallum University in conjunction with CATRA (Cutlery & Allied Trades Research 

Association, 2003)

Technology B ackground

This method uses impregnated paper to test the sharpness of cutlery. The 

method of test involves the lowering of the test material (synthetic paper) onto 

the blade. The blade is oscillated back and forth underneath the paper and the 

depth of paper cut is recorded. The sum of the depth of the first three cuts gives 

the cutting index for that particular blade. This device is used to determine the 

sharpness index of a particular blade. Thus this is a comparative test, it does 

not give the actual profile details of the blade. The main disadvantage of this 

particular method is the destructive effect of the process on the blade

Figure 3. 2 Blade being tested on CA TRA blade sharpness tester

Test Setup

A number of evaluation tests were carried out on the site at CATRA It was not 

possible to use the sample blades on this particular test, because, the clamping 

device could not accommodate the sample blades. Blades were supplied by
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CATRA to carry out the evaluation tests. The test carried out involved the 

comparison of two different profiles of blades, the first blade tested was a 

stainless steel domestic knife (Figure 3.3).

Figure 3.3 Schematic operation of CATRA blade sharpness tester

Results

Results of the sharpness and longevity tests using blades supplied by CATRA 

are shown in Figure 3.4.

Figure 3 .4 Results of tests on CATRA sharpness tester, vertical axis shows the depth of
penetration of the card on each stroke
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The test result shown in Figure 3.4 shows the wear behaviour of a typical blade, 

as the blade is oscillated under the impregnated paper. The first pass gave a 

cutting depth of 31.3mm. (Results sheet in Appendix A), the second pass gave 

a cutting depth of 26.1mm and the third pass gave a cutting depth of 21.7mm 

The sum of the first three passes gives the cutting index which in this case was 

79.1mm The limit for this type of blade is 50mm so this blade would have 

passed this test.

The CATRA sharpness tester also gives the longevity of the blade which is 

cumulative depth the blade cuts into the impregnated paper over the preset 

number of cycles (in this case 60 cycles) the total depth in this test was 

256.2mm The longevity limit for this blade is 150mm so this blade would pass 

this test.
CATRA also supply a device to measure the sharpness of razors, scalpel 

blades and surgical needles. (Figure 3.5)

The test utilises the constant cut depth method in which the blade is pushed 

perpendicularly into the test media without oscillation or longitudinal movement. 

The cutting force is recorded as a measure of the sharpness, which means the 

lower the force the sharper the blade. The test media is 8 mm square silicon 

rubber, which is bent around a 20 mm former and the cut is made into the outer 

periphery of this bend. This causes the rubber to open up as the blade 

penetrates, reducing the frictional contact between the flanks of the blade and 

the rubber and so confining contact to the tip of the blade edge only.
As the blade contacts the rubber and penetration of the blade occurs into the 

rubber the force increases to a maximum at which stage cutting starts to take 

place. The cutting force then falls to lower level. It is the maximum penetration 

force which is used as the sharpness value. Sample scalpel blades were tested 

in this device.
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Figure 3.5 CATRA sharpness tester, force based test.

As with the previous test method the results are a comparative value. This 

device is designed for a production environment and it is not capable of blade 

profile measurement.

3.2.2 Co-ordinate m easurem ent m achine  

Technology Background

The co-ordinate machine tested was the MAXIM CNC ultra high-speed Co­

ordinate measuring machine. The machine uses a Renishaw R1 probe with a 

1mm. ruby ball stylus. In general CMM’s are universal devices for geometrical 

quality inspection of workpieces in manufacturing. However generally CMMs 

are very large, expensive and very slow because of the point-by-point mode by 

which they capture data, they require a specially trained operator and 

continuous environmental control.

Test Setup

The sample blades were placed in a vertical orientation relative to the scanning 

probe.

Results

Results from the machine gave the wedge angle of the blade and the tip radius, 

the smallest tip radius that could be measured was 0.028mm, however the
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blade edge diameter which can be measured is limited by the diameter of the 

stylus.

3.3 Non-contact measurement:

3.3.1 Shadow Graph 

Technology Background

The shadow graph evaluated was the Starrett HD400.The measurement scales 

have a 0.001mm resolution and angular measurements have a 1 minute of arc 

resolution.

Figure 3.6 Starrett HD400 shadowgraph

Test Setup

The sample blades were placed on the machine bed, no clamping was 

necessary blue tack was used to limit the blade vibration during machine use. 

Results

Interpretation of blade geometry feature involves subjective evaluation of the 

images of the blade profile projected on the shadow graph screen. Accurate
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and consistent evaluation of the geometric features are affected by darity of 

resolution and skill of operator thus this process could result in operator error.

3.3.2 Vision systems 

Technology background
Visions systems that were evaluated included the Mitutoyo Quick vision ELF, 

the “Venture” vision inspection system by Aberlink, the Starrett “Vicon 

3020202", and the OV2 Optical-video conversion adaptor from Starrett.

Test Setup

No special jig was required to damp the blades in position during the scan. 

Results
All of these systems gave high quality results, however the machines were 

special purpose and could not be easily adapted to suit our purposes.
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Figure 3.6(a) Image generated from vision systems

3.3.3 Confocal m icroscope 

Technology background

The confocal microscope evaluated in the study was the Nanofocus CF2001 the 

confocal point sensor uses a point light source and detector pinhole to
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discriminate depth. The laser beam emitted from the point light source is 

focused on a specimen through an objective lens that moves rapidly up and 

down. A detection signal is only generated when the maximum amount of 

possible light goes through the pinhole. A precise height measurement of the 

illuminated point is achieved by continuously scanning along the Z axis.

Test Setup
The sample blades were set-up in a vertical direction on the anti-vibration table 

as shown in Figure 3.7, and held in position with blue tack.

Figure 3.7 Blade set-up for scanning with confocal microscope

All the sample blades were scanned using this system with similar results, 

Different surface finishes were also tested, a disadvantage of this system was 

that it was found that angles of more than 20° from the horizontal (Figure 3.9) 

were not capable of being picked up by the measuring head. This is primarily 

due the light delivery and receiver being incorporated in the same source
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(Figure 3.8) meaning that some light is not received from the sample blade, this 

is caused by the angle of inclination of the blade flanks.

Light source

Diffused tight

Figure 3.8 Depth of field is reduced due to the diffused light The Maximum angle form 

horizontal that is possible to measure is approximately 20° from the horizontal

Results

For the applications of this project the confocal microscope proved unsuccessful 

because of the problems associated with scattered light. This is illustrated in 

Figure 3.9. These problems with the confocal microscope prevented a complete 

image of the blade being generated it can be clearly seen that data is generated 

on the tip of the blade however no data is generated on the flanks of the blade. 

It was a requirement of the system that data be collected on the flank angles.
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NanoFocus AG
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Figure 3.9 Image generated by confocal microscope It can be seen that the flanks of the blade
are not detected due to the diffused light.
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3.3.4 Autofocus laser measurement 

Technology background
The laser autofocus system evaluated was the AF2000 by NanoFocus, in this 

system concentrated light is focused from a laser diode onto the surface of the 

sample.
Similar problems encountered with this system as indicated previously with the 

angle of the blade causing diffused light, meaning that conclusive 

measurements of total blade profile could not be obtained.
Test Setup

To overcome the problem of scattered light the blade was turned on its side and 

scanned one side at a time as shown in Figure 3.10.

The first problem occurring with this procedure is due to the accurate alignment 

of the blade during scanning. A solution was to use an adjustable jig system 

(Figure 3.11) this arrangement allowed the blade to be scanned with the blade 

flanks horizontal in order to obtain the best possible image of the blade.

Light source

Figure 3.10 Blade scanned on side to reduce the effects of light scatter.

Blade flank horizontal

^  Sample blade

Figure 3.11 Jig fixture used for setting blade flank in horizontal direction
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Results

A scanned image of the blade on its side is shown in (Figure 3.12) the detail in 

this image is of a high resolution however a second problem with this 

technology is highlighted in that no information is gathered on the tip radius of 

the blade.

0 . 0 0 0

Figure 3.12 Blade scanned on side using NanoFocus confocol laser scanner.
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The third issue associated with laser light technology is the problem of the spot 

size of the laser light; the lasers examined in this study have a minimum 

diameter of one micron (Figure 3.13). A general ratio for obtaining enough data 

to determine the profile of a blade is 10 to I.This means that the smallest 

diameter that this technology can measure is approximately seven to ten 

microns.

In our tests in was just possible to measure a blade of tip width 7pm. however 

this was the smallest width in which enough data could be obtained to give an 

accurate representation of the blade tip.

Figure 3.13 The Limitations of spot size are illustrated, a minimum of a ten to one ratio is 
required in order to obtain enough data points to determine the tip radius
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3.3.5 Scanning electron m icroscope 

Technology background
The Scanning Electron Microscope creates magnified images of surfaces by 

using electrons instead of light waves (Figure 3.14) Scanning electron 

microscopy operates by bombarding the blade with a beam of electrons and 

then collecting the slow moving secondary electrons that the specimen emits. 

These are collected, amplified, and displayed on a cathode ray tube, the 

electron beam and the cathode ray tube scan synchronously so that an image 

of the surface of the blade is formed.

Figure 3.14 Scanning Electron Microscope at Institute of Technology Sligo

After the air is pumped out of the column, an electron gun (at the top of the 

column) emits a beam of high energy electrons. This beam travels downward 

through a series of magnetic lenses designed to focus the electrons to a very 

fine spot.
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Near the bottom, a set of scanning coils moves the focused beam back and 

forth across the specimen, row by row. As the electron beam hits each spot on 

the sample, secondary electrons are knocked loose from its surface. A detector 

counts these electrons and sends the signals to an amplifier. The final image is 

built up from the number of electrons emitted from each spot on the sample. 

Test Setup
The scanning electron microscope used in the evaluations is a Topcon SM 600 

based at the Institute of Technology Sligo. The sample blades were set-up as 

shown in Figure 3.15.The blades were scanned in both the side position and the 

vertical position. However the chamber size limits the size of sample that can be 

scanned.

Figure 3.15 Blade set-up in Scanning Electron Microscope

Results

Results from the SEM are high definition, with all the details of the blade being 

presented. The image shown in Figure 3.16 shows the tip radius of a sample 

blade as well as the blade flanks.
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Figure 3.16 Image generated by Scanning Electron Microscope

Figure 3.17 Image of top of blade using Scanning Electron Microscope

Figure 3.17 illustrates the detail on the top of a blade, showing a broken wire 
edge caused by the sharpening process.



3.3.6 Dynamic force m icroscope 

Technology background

The dynamic force microscope evaluated was the BT01000 easyScan DFM. 

Marketed by Winsor Scientific UK. (Figure 3.18)

Figure 3.18 Dynamic Force Microscope (DFM)

The operation of the DFM is based upon a cantilever which is vibrated by 

means of a pizo at 160kHz. The 10r|m.stylus tip is vibrated a distance of 10r)m 

above the surface to be scanned. Movement of the cantilever is detected by 

means of a laser. (Figure 3.19)

l-aser light 
Detector v

Sample Hlade

Figure 3.19 Operation of Dynamic Force microscope

Test Setup

The dynamic force was evaluated using the sample blades, however it was 

found that setting up the equipment was difficult even for a trained technician.
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To scan the tip radius of the blade, the blades were orientated in a vertical 

direction, (Figure 3.20). It proved extremely difficult to place the 10nm stylus tip 

over the blade edge, even with the use of a microscope.

Attempts at scanning the blade tip edge radius resulted in breaking the stylus tip 

on many occasions during the tests.

Figure 3.20 (a) Sample blade in vertical direction being scanned with Dynamic Force 
Microscope (b) detail of scanning blade with 10nm stylus tip, illustrating difficulty in alignment of

stylus tip and blade edge.

Results

Results on the flanks of the blade were of a high resolution as shown 

(Figure 3.21). It was found that no details could be obtained on the tip radius of 

the blade.

Figure 3.21 Image of scalpel generated by Dynamic Force Microscope.

39



3.4 Conclusions
Throughout the evaluations it became clear that no single technology was 

capable of measuring all the geometric parameters of a blade, this is illustrated 

by the diagram (Figure 3.22). The measurement technologies varied from 

coordinate measurement machines to dynamic force microscopes.

Each technology had its own strengths and weakness, devices with a high 

resolution lacked the depth of field to give any detail on the flanks of the blade, 

while those with low resolution could measure blade flanks but could not collect 

detail near the blade tip.

Blade

qm-A0

pm-nm

mm-pm

Portion o f Made which 
can be scanncd

Technology used Resolution o f technology

Figure 3.22 Comparisons of various measurement technologies, showing the ability of various 
devices to measure the geometric parameters of a blade
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Table 3.1 shows a summary of the operating specifications, test results and key 

observations on all technologies reviewed. From this study and the literature 

review it was concluded that scope existed for development of a prototype 

device for simultaneous measurement of blade geometry of both sides of the 

cutting blade and in the region of the cutting edge.
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Table 3.1 Summary of operating specifications
Technology System specifications

Vendor/
M anufacturer

Ease of set up Resolution 
flat surface

Accuracy Range (z) vibration proof 
table required

Scan on both 
sides

Could software 
be modified?

Spot
Size

2D/
3D

White Ughi fnterometry
Zygo New View 5000 I OX Requires damp 200X /. 18mm. Yes Yes N/A 2D

Zygo New View 5000 50X Requires clamp I000X 0.64mm. Yes Yes N/A 2D

Zygo New View 100 Requires damp 0.1 rjm 100pm. Yes No 3D

Veeco Wyko NT! 100 Requires damp O.OIrjm. Imm Yes No Yes 3D

Confocal Microscopy
Nanofocus ft scan C F 2001 Requires clamp 0. If/m I mm No 1.5pm 3D

Contact Profilometer
Mitutoyo Formtracer CS3000 Requires damp 0.08pm. ipm/Smm 5. Omm. No Yes N/A 2D

Mitutoyo Formtracer CS3000 Requires damp 0.008pm. 0.5 mm No Yes N/A 2D

Mitutoyo Form tracer CS3000 Requires clamp 0.0008pm. 0.05mm No Yes N/A 2D

Optical Profile projector
Aberlink Axiom B89 No special jig N/A N/A No Yes Export into excel N/A 2D

Starrett HD 400 No special jig N/A N/A No Yes N/A N/A 2D

OÜP Smariscope Flash Requires damp 0.5pm N/A No Yes Yes N/A 2D

Dynamic Force Microscope
Winsor Scientific Easy scan DFM. No special jig  0.027rjm. 10pm. No No SMP software N/A 3D

Laser Profitometer
OGP Cobra No special jig 0 .125pm 300pm. No Yes Export into excel N/A 3D

OGP Cobra No special jig 1. Opm. 2. Omm. No Export into excel N/A 3D

OGP Cobra No special jig 4. Opm. 8. Omm. No Export into excel N/A 3D

Scantron Prosean 2000/laser No special jig 0.1pm 2.8mm. No No Export into excel 30pm 3D

Chromatic white light
Scantron Prosean 2000 Requires damp 0.01 pm. 0.3 mm. No No Export into excel 4pm. 3D
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Chapter 4.0 Design of measurement device

4.1 The Design Process
This chapter deals with the design of a prototype measurement device to 

measure blade profiles. In order to design this prototype standard design 

processes were used as outlined in (Figure 4.1).

Define problem

Measurement device 
required to measure 

the geometric 
properties of a surgical 

blade

Gather Information

Vendors 
Trade shows 

Lit.Review 
Books 

Patents

Concept Generation

Brainstorming 
Morphological analysis 
Objective tree analysis 

Functional analysis

Evaluation of Concepts

Selection of concept 
decision matrices

Conceptual Design

\ r

Product Architecture

Arrangement of 
physical elements to 

carry out the required 
procedure for 

measurement function

Configuration Design

Preliminary selection of 
materials

Parametric Design

The design of the 
prototype is evaluated 
using various methods 

including R and R 
studies

Detail Design

Detail drawings and 
specifications

Embodiment Design

Figure 4.1 The design process outlining the stages during the design of the prototype
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4.2 Phase I Conceptual Design

4.2.1 Design Brief

The design brief was to design and prototype a method of measuring the profile 

of a straight edged surgical cutting blade called an osteotome. The device 

should be capable of measuring the blade in a non-contact manner. The blade 

chosen for this research was a surgical osteotome, this instrument was chosen 

because it is a reusable surgical instrument, these instruments are periodically 

taken out of service and re-sharpened.

In parallel with the design of this measurement device other research is on­

going within the SUB3 group on the characterisation of the cutting process and 

relationship between the blades edge parameters, the type of material being cut 

and the cutting process. This research data will be used to determine the 

optimum blade geometry required to cut a particular material, and ongoing work 

focus on the effect of blade wedge angle.
This extends the design brief to use the gathered geometric data on the blade 

and compare this to the research data. This comparison will determine if a 

blade has been re-sharpened to the optimum angle to cut a particular material. 

The proposed measurement device will scan a surgical cutting instrument 

(osteotome) determine the wedge angle and display this information in a 

manner that can be understood by an operator, and subsequently used in 

conjunction with experimental results to calculate blade cutting efficiency.

4.2.2. Information Gathering

In order to assemble information on the current state of the art technology that 
is used for profile measurement, it was decided to visit various manufactures 

and vendors of measurement devices. This has been described in detail in 

Chapters 2 and 3. This research was coupled with a review of research 

literature to provide a basis for devising the design brief (Figure 4.2).
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Figure 4.2 Methods used to gather information

4.2.3 Objective Tree Analysis

In the objective tree analysis the objectives of the measurement device are laid 

out (Figure 4.3). This determines what the device is required to do, it does not 
state how these operations are to be performed. The main objective of the 

measurement device is to measure a blade wedge angle in a non-contact 
manner and return the measured angle.
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Figure 4.3 Objective tree analysis

4.2.4 Functional Analysis

As a method to further define the design brief a functional analysis was used to 

determine the required functionality of the device. This determines how the 

device will perform the required functions (Figure 4.4).
In this case the functions required of the measurement device were well 

defined, it is required to:
o Scan the blade in one operation, 
o Scan both sides of the blade, 
o Measure the wedge angle of the blade, 
o Display the angle following the test.
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Blade scanned by 
measurement head

Calculation of 
blade angle

Data transferred to 
computer

Figure 4.4 Functional analysis showing the outline functions required of the measurement 
device

The aim of the overall research project requires that the calculated blade’s 

wedge angle is compared to research data gathered by on-going investigations 

by the SUB3 research group. This comparison should determine if the blade is 

suitable for a particular cutting application, the measurement instrument output 

would display a pass/fail output. (Figure 4.5), however in its current form the 

prototype will present a wedge angle to be used in conjunction with ongoing 

research work external to this specific project conducted by the author.

Blade placed in 
measurement device

Display results 
pass or fail

Blade scanned by 
measurement head

Figure 4.5 Functional analysis showing final functions required of the measurement device
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This functional analysis (Figure 4.5) shows the required functionality of the 

measurement device, the device is required to clamp or hold the blade as it is 

scanned, by moving the blade under the sensor or the sensor over the blade. 

The data gathered is analysed and the wedge angle of the blade calculated.

4.2.5 Product Design Specification

The product design specification is a document which outlines the specifications 

required of the product, in this case the PDS stems from the literature review, 

patent searches and competition analysis, this PDS was used as the reference 

for the design process (Figure 4.6).
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Table 4.1 Product Design Specification

Safety Must meet all relevant safety standards

Performance Must perform its basic function of measuring a surgical 

blade in a non-contact manner

Quality Must meet all relevant quality standards

Ergonomics Easy to use, user friendly blade restraint system 

Ease of set up

Testing At each stage of development the measurement device 

tests are carried out to ensure that the design meets 

requirements, tests include machine evaluation, 

measurement head evaluation tests and gauge R and R 

tests.

Environment The measurement device is designed to operate indoors

Materials Materials selection must be appropriate to function

Patents Device should be uninhibited by existing patents

Aesthetics The device is a prototype, aesthetics is not a major factor

Size Unit to be portable, either desktop, or provided with rolling 

castors
Installation Unit must be portable as its location may vary

Weight N/A

Time scale Development under 3 years

Life in service N/A this is a first stage prototype.
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4.3 Phase II Concept generatiqn
Concept generation for the measurement device looked at various aspects of 

profile measurement. The brief stated a device for the non-contact 

measurement of a cutting blade.

4.3.1 Concept (a)

The first concept was to use an existing profilometer and rotate the blade using 

a specially designed jig (Figure 4.7) the blade is scanned on one side, the 

location pin is raised and the blade is rotated 180 degrees, the location pin is 

inserted and the other side of the blade is scanned (Figure 4.8).

Figure 4.7 Device designed to rotate blade 180 degrees to allow a scan on both sides of the
blade
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(a) Blade fixed one side is jp) Blade is rotated (c) Blade fixed second side
scanned scannina off is scanned

Figure 4.8 Sequence of operation of the blade clamp device used to scan both sides of the
blade

4.3.2 Concept (b)

A goniometer was designed and built this system measures the wedge angle of 

a blade by splitting the incidental laser beam with the wedge angle of the blade 

(Figure 4.9).

Light dependent resistor

Figure 4.9 Goniometer concept showing the laser light source and position of the light
dependent resistors
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The laser light hits the tip of the blade and is diffused by the flanks of the blade, 

the light is detected by means of the light dependent resistors this gives an 

indication of the wedge angle of the sample blade. This particular Gonometer 

was designed based on the Gonometer supplied by CATRA, extra features 

included the automatic angle detection features.

4.3.3 Concept (c)

In this concept two laser displacement sensors are used to measure the blade 

flanks simultaneously. The laser heads are diametrically placed to measure 

both the top and bottom of the blade as it is passed between the laser heads. 

(Figure 4.10)

Figure 4.10 Concept of device to scan both sides of a blade simultaneously

4.4 Evaluation of Concepts
The various concepts that were devised to measure the profile of the blade 

were evaluated using appropriate selected factors from the PDS and a weighted 

objective method. Concepts were rated on a scale of 0-5 on how they satisfied 

the various factors. The scale gives a value of 0 if the feature is not suitable to a

Direction ot travel of 
osteotome

1
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value of 5 for a feature which is suitable for the application. A weighting factor 

was applied subsequent to the analysis.

Table 4.2 W eighted analysis matrix for m easurem ent device

Objective Weight
factor

Rating Weight factor X Rating
Concept
(a)

Concept
(b)

Concept
(c)

Concept
(a)

Concept
(b)

Concept 
(c) ...

Scan both 
sides of blade 
without 
resetting

6 0 5 5 0 30 30

Non-contact 
scanning - 
method

5 5 5 5 25 25 25

Ease of set up 3 3 3 5 9 9 15

Portable 2 4 4 3 8 8 Ó

Resolution of 
scan

4 5 2 4 20 8 16

Speed of 
operation

1 3 4 4 3 4 4

Total 65 84 96

From the results of the weighted analysis (Table 4.2) Concept C scored the 

highest, and this concept was taken to the detail design stage. The weight 

factor was determined by the various requirements of the measurement device 

as agreed by members of the SUB3 group. The rating applied to each concept 

was based on a judgement of the ability of the various concepts to perform the 

various tasks.
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4.4.1 Morphological analysis

A morphological analysis was used to determine the best combination of 

features to develop a device to measure a blade.
Table 4.3 M orpholog ica l Chart

Feature Solutions

Measurement head Interferometer Stylus Laser confocal

Blade Clamp magnetic Screw clamp Spring Loaded 
clamp

Solenoid
clamp

XY Slide D.C. motor 
with servo 
control

Servo motor Stepper motor Manual slide

Software for control 
and data  analysis

C++ Visual basic Java LabView

From the morphological chart it was possible to identify the combination of 

features best suited to construct the measurement device.
All components for functions of the measurement system were evaluated based 

on pass/fail criteria with the exception of cost which was used on the basis of 

providing a cost effective solution. These evaluations are presented in the 

ensuing tables.
It was decided to use a triangulation displacement laser, as opposed to tactile 

profilers, as measurement with laser profilometers is a non-contact method and 

for that reason non-destructive. For clarity of reading the chosen solution is 

highlighted in bold in each table

Table 4.4 Component selection fo r m easurem ent head

Feature Interferometer Stylus Laser confocal

Cost V V

Resolution V V V V

Contact non-contact V V V
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Table 4.5 Component selection for blade clamp

Feature Magnetic Screw clamp Spring loaded 
clamp

Solenoid
clamp

Cost V V

Ease of use yl V V V

Clamping ability V V

Simplicity o f design V

The blade will be clamped using a thumbscrew clamp this solution was felt to be 

the most straightforward and practical.

Table 4.6 Component selection for XY slide drive

Feature D.C. motor Dc motor with 
servo control

Stepper motor Manual slide

Cost V

Resolution V v H V

Feedback control V V

Interface with 
Labview software

v H V

The blade will be traversed under the lasers using a motorised XY slide, motion 

is provided by a DC motor with servo control. This option was chosen because 

of the feedback control provided with the servo system, the ability of the system 

to integrate with the Labview data acquisition software and the resolution 

associated with a servo system. The manual slide unit would not provide 

feedback control, the stepper motor unit would require a separate feedback 

control system.

55



4.5 Component selection
From the morphological analysis the specifications for the components required 

for the measurement device were established, the selection criteria for each of 

the components was as shown in (Table 4.7)

Table 4.7 Specifications for the components for the measurement system

Measurement head 

(Laser)

Capable of measurement to micron resolution, can integrate 

with the slide system. Range of greater than 3mm to 

accom m odate the measurement of a surgical osteotome

XY Slide Capable of moving the osteotome in an XY raster to facilitate 

a com plete scan of the blade. Must have a travel range of 10- 

20mm to allow for a full scan of the flanks of a surgical blade. 

Resolution of movement must be micron resolution.

Blade clamp Capable of restraining the blade for scanning, Simple to 

operate, robust, consistent clamping force

Software The software must be capable  of being used in conjunction 

with a data acquisition system, must be capable of integrating 

the slide units and measurement head, must be able to 

analyse the resulting data and display a result of the scan.

4.5.1 Lasers

Following the result of the research carried out on the state of the art 

measurement devices, it was decided to use triangulation laser technology. 
Laser triangulation comprises of several different technologies, namely 

Scattering Laser Triangulation and Reflective Laser Triangulation. There are 

two light position detecting technologies used by laser triangulation sensors, 

PSD (position sensitive device) and CCD (charged coupled device).The light 
reflected by a target passes through the receiver lens used to focus the light on 

the PSD or CCD.

The position sensitive detector uses the light quality distribution over the entire 

beam spot on the PSD to determine the beam spot centre and identifies this as 

the target position. If the distribution of light is affected by the surface finish of 

the target material, this causes variations in the measured values (Figure 4.11).
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True peak value

Figure 4.11 PSD the entire beam spot is used to determine the beam spot centre, the quality 
of the surface finish affects the distribution of light

The CCD detects the light intensity distribution for each pixel and identifies this 

as the target position. This means that the CCD will give highly accurate 

displacement values regardless of the quality of the beam spot, therefore the 

surface finish of the target material has less effect on the variability of the laser 

head measurements, this was considered of importance in selecting the type of 

laser head, as the surface finish of the scanned blades may vary (Figure 4.12).

Peak value

Figure 4.12 CCD detects the peak value of the distnbution of the beam spot for each pixel, 
allows for variations in surface finish of target material
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Figure 4.13 Principle of operation of laser triangulation (Charge Coupled Device)

The possible arrangement for a laser scanning head relative to a blade is as 

shown in (Figure 4.14). The emitter and receiver are located at different 

positions. Scattering laser sensors shine the laser light directly down onto the 

surface. When the light impacts the surface it scatters in many directions. As 

long as some of this light shines into the detector it will form an image. This 

allows the laser sensor to measure surfaces which diffuse light in different 

directions.

Figure 4.14 Arrangement of laser triangulation head relative to blade
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The laser heads are controlled by the Keyence LK-2001 laser controller unit 

(Figure 4.15), this gives an analogue output of +/-5volts. When measurement is 

outside the range then +12 volts is output.

Figure 4.15 Keyence LK-31 laser head controller

The output from the LK-2001 is fed to a 68-pin shielded connector block (SCB- 

68), (Figure 4.16) with the connection configuration in the differential mode, 

then the data is transferred to a Dell Latitude D800 Pentium 1.6 GHz laptop 

computer through a Nl PCI-6036E multifunction 200ks/s 16 bit I/O data 

acquisition card supplied by National Instruments.

» A

Figure 4.16 68-pin shielded connector block supplied by National Instruments
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Figure 4.17 Data flow from laser heads to laptop
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4.5.2. XY Slides

As the laser technology selected for the scanning device is a point source, it is 

a requirement to move the blade relative to the lasers or the lasers relative to 

the blade. Through research into the state of the art measurement devices 

(Chapter 3) it was found that the best option was to move the blade relative to 

lasers, In order to move the blade, it was required to use a slide device. The 

options were to build a slide device or purchase an off the shelf unit.

It was decided to purchase a slide unit to achieve the resolution and precision 

required for the positioning of the blade in the measurement system.

The design constraints for the slide were:

Travel range: 

Resolution of slide: 
Size of slide: 

Operation:

Drive software:

10-20 mm.

Micron range.

Compact (less than 150mm X150mm). 

Electrical.

Software must integrate with laser heads, 

control positioning and provide feedback.

Vendors were short listed based on the above criteria, vendors evaluated 

included I.A.I. Industrieroboter GmbH, Automation (automation and motion 

control products), Tusk, Rodriguez (UK) Ltd, Newmark Systems inc, Physik 

Instrumente GmbH.

The vendors finally selected to supply the micro-slides were Physik Instrumente 

GmbH supplied through the vendors (Lambda Photometries Ltd. UK.). They 

fitted all the selection criteria, as well as providing support for integration of the 

slides with the laser heads and controlling software. The slides had an envelope 

of just 62mm X 70mm which allowed scope for the design of the prototype 

measurement instrument.

Evaluations were carried at the vendor’s premises to ensure that the slides 

suited the requirements. The slides were then tested in house to ensure that the 

slides would integrate with the laser scanning heads. The slide model finally 

selected are the PI.M-111DG high resolution motorized translation stages.
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Travel range is 15mm, which is adequate for the type of blade being tested in 

the experiments. The resolution of the slides is 0.05pm with a unidirectional 

repeatability of 0.1 pm. the velocity is up to 2.0 mm/sec (Figure 4.18)

Figure 4.18 Slide unit M-111.1DG. Travel range 15mm. resolution 0.05pm supplied by Physik 
Instrumente (Image courtesy of Physik Instrumente GmbH).

To provide for future scanning over the entire blade it was necessary to produce 

a XY raster of the blade surface, the micro-slides selected were configured in a 

“piggy back" arrangement to give a XY slide configuration as shown in (Figure 

4-19).The design of the slide units allows multiple slides to be easily mounted 

one on top of the other.
Top sSde gives Y direction

Figure 4.19 XY slide configured from two PI. M-111 high resolution motorized translation
stages
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To ensure that the slide units were set up properly it was necessary to align 

them using a dial gauge (Figure 4.20). The alignment procedure used a 

calibrated square block (Browne and Sharpe) the block was set parallel to the 

lower slide using the dial gauge on “Front” face, then the top slide was set 

perpendicular to the lower slide using “Side" face of the block

Figure 4.20 Aligning the slides using dial gauge

The clamp unit was set up using a parallel which was adjusted using a dial 

gauge to ensure that the clamp runs parallel to the direction of the slide

Figure 4.21 Aligning the clamp unit using dial gauge
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4.5.3 Control of XY Slides

Control of the slide units is achieved using the Mecury II DC-Motor Controller 

(Supplied by Lambda Photometries Ltd. UK.). This controller provides PID 

servo-control of position, velocity, and acceleration.

The mercury controller comes with its own built-in commands and features, 

however it was decided to use independent software which would control both 

the slide units and the laser heads simultaneously. Each slide unit requires a 

controller (Figure 4.22) and up to 16 controllers can be connected to one RS- 

232 port in a daisy chain.

Figure 4.22 Mercury II C-862 single-axis DC-motor controller

4.5.4 Blade clamp design

To restrain the blade during scanning it was required to hold the blade in a 

manner which was easy to operate and would not damage the blade. The 

design constraints for the damp were that it must be fixed to the XY slide and 

must not interfere with the scanning process. The blade damp device was 

custom designed and built to suit the type of blade being scanned (Figure 4.23) 

and (Figure 4.24).

Clamping knob

Blade

Figure 4.23 Design for blade clamping unit
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(a) Inserting blade into clamp (b) Tighten clamp screw to retain blade

Figure 4.24 Operation of ctamp unit

The blade clamping device was fixed directly to the XY slide. The unit was 

designed so that it could be easily removed to allow a different clamping system 

to be installed, a separate clamping system might be required to clamp oversize 

blades (Figure 4.25).

Figure 4.25 Clamp unit fitted to XY slide

4.5.5. Software Design.

To integrate the various components of the measurement device it was decided 

to use Labview Software Version 7.1. This is an object based programming 

language, developed by National Instruments. LabView programs are also 

known as virtual instruments, because their appearance and operation imitate 

actual physical instruments using a set of tools for analysing and displaying
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data. LabView virtual instruments contain three components, the front panel, the 

block diagram, and the icon and connector pane. In LabView a user interface or 

front panel is built and this contains the control buttons, dials and LED’s. After 

the user panel is built the code is added to the block diagram to control the front 

panel objects.

LabView software was chosen because of its ability to handle data acquisition, 

which would allow the integration of the laser heads and the XY slide units. 

Labview also allows flexibility to modify the program to allow for future 

developments to the measurement device.

4.5.6 Program Design -  Laser testing

At each stage of the development the various components were tested to 

ensure that they performed as designed. The lasers were tested to ensure that 

they were capable of measuring to the resolution required. Initial tests on the 

lasers involved the lasers being set up in a jig.

Data acquisition

Output display

.1 1 J

|50] m

•o

Figure 4.26 Labview program to run one laser head to validate the operation of the laser
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To test the laser heads a Labview program was written as shown in the 

schematic (Figure 4.26) this program takes in the raw data from the lasers 

through a data acquisition virtual instrument (VI), this data is fed to zero offset 

compensator and then to a span multiplier the output is sent to an output 

display. This zero and span compensator allows for calibration of the laser 

heads through the software.
This program evaluated was written to test the ability of the laser heads to 

measure a stepheight. Slip gauges were used in the initial tests, (serial 

No. 16724, traceability No. 48412 NAMAS).

Zero sets the datum; in the case of the measurement device the datum would 

be set on the centre line of the blade (Figure 4.27).

Zero dafum

Figure 4.27 Zero datum for blade 

Span relates to the linearity of the measurement over the range of the 

measurement (Figure 4.28).

Span

X

Figure 4.28 Span setting for blade 

Calibration was carried out to test the operation of the laser head. The 

procedure for the test was to set a parallel in the blade clamping device (Figure 

4.29) the Keyence LK -  2001 laser head controller was powered up and 

allowed to settle for 30 mins as specified by Keyence. A parallel was set up in
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the blade clamp this gives the zero setting. A 3mm slip gauge1 was placed on 

the parallel to set the span. The initial reading of 0.29mm was adjusted to give a 

reading of 0.00 then a reading of the span (with the 3mm slip gauge in place) 

was taken. This gave a reading of 2.81mm, the span was set to 3.00mm then 

the zero was checked again the results are as shown in (Table 4.8). This

Table 4.8 Calibration of laser head

Test 1 Test 2 Test 3 Test 4 Check

Zero Reading 0.29 0.04 0.01 0.03 0.00

Adjustment 0.00 0.00 0.00 0.00 N/A

Span Reading 2.81 2.94 2.99 3.00 3.00

Adjustment 3.00 3.00 3.00 N/A N/A

procedure was repeated until a null variation between the required and 

measured values was achieved

Figure 4.29 Using slip gauges to calibrate laser heads

1 Slip gauges traceability No 48412
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Table 4.9 Results of scans on slip gauges

Gauge block Reading Deviation

0.5 0.5 0

1.0 1.0 0

1.5 1.49 .01

2.0 1.98 .02

2.5 2.49 .01

3.0 2.98 .02

After the calibration of the laser head a series of tests were carried out using 

slip gauges, the gauges used were 0.5mm, 1.5mm,2.0mm,2.5mm,3.0mm the 

results were as shown in (Table 4.9).

Some variation in the measurements were evident at the larger end of the span, 

therefore it was necessary to re-calibrate the laser head. The calibration scans 

of the slip gauges were repeated again this time the results were more 

consistent (Table 4.10).

Table 4.10 Results of second series of tests using slip gauge

Gauge block Reading Deviation

0.5 0.5 0
1.0 1.0 0
1.5 1.5 0
2.0 2.0 0
2.5 2.5 0
3.0 3.0 0
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4.5.7 Program Design -  Slide and laser interoperability

The next stage was to move the slide relative to the laser, the parallel was also 

used for this test. The program was designed as outlined in (Figure 4.30). The 

reader should refer to Figure 4.47 for schematic of device layout and 

component notation.

Figure 4.30 Outline of program to scan blade using one laser
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Microsoft Excel was used to carry out the calculations on the wedge angle of 

the blade. The data points were exported from Labiew to a text file, this data 

was then read into Excel to analyze the data (Figure 4.31) using a macro. A 

basic trigonometric formula was used to calculate the wedge angle, by taking 

two scanned points on the blade, at distinct positions.

----------------------------------------------- 3 -

.................................

O b

> -15 -1 -0.5 i 0 5  1 15  2 2 5  3  3 5  4 4 5  5 5 5  1

Figure 4.31 Data as displayed in excel

Figure 4.32 Calculation of wedge angle

The calculation of the wedge angle consists of picking two actual data points 

(Figure 4.32) along the wedge angle and the values of X and Z are calculated 

and from this the value for a is found.

Figure 4.33 outlines the program for scanning operation using two laser heads.
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Figure 4.33 Outline of program to scan blade using two lasers



The acquired data points were exported to Microsoft Excel as in the original 

program however this time a scan was obtained on both sides of the blade the 

data as displayed in Excel (Figure 4.34) shows the complete profile of the 

blade. The formula was modified to take into account the full profile of the blade, 

it may be observed that data points are collected by the device at fixed intervals 

which affects the resolution of the scan on the blade radius.
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Figure 4.34 Graph of data points scanned into excel

Each side of the blade wedge angle was calculated separately and the angles 

then added to obtain the total wedge angle, this procedure was used to allow for 
any variations in the symmetry of the blade.

The total wedge angle 0 was calculated by the sum of ai + c<2 (Figure 4.35) 

Tests were carried out to ensure that the calculation was capable of determining 

the wedge angle as described in a later section. To test the operation of the 

program the lasers and XY slides were assembled, components were clamped
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in a temporary jig, as the final arrangement of the components was not 

determined at this time.

Figure 4.35 Calculation of wedge angle of blade
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4.6 Phase III Detail Instrument Build
The product design specification was crossed-checked to ensure that the detail 

design met with the original P.D.S. requirements. The layout of the components 

was determined to allow the measurement instrument to perform the task 

required.

4.6.1 Component configuration

This section of the design process, deals with the configuration of the design of 

the measurement device, the component layout requires the lasers to be 

positioned to acquire a scan of the blade on both sides simultaneously. The 

blade must be positioned between the laser heads to scan the blade.

(Figure 4.36)

Figure 4.36 Proposed layout of Laser heads relative to blade clamp device 

Support frame selection

The support frame was constructed from aluminium profile, this decision was 

taken to allow modifications to the overall frame structure before a final decision 

was made on layout and dimensions of the measurement instrument. 

Components were positioned to give the optimum layout for the measurement 

device (Figure 4.37). This format allowed for the adjustment of the laser heads
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to give the correct standoff distance between the lasers and the blade being 

measured.

To ensure an accurate scan the laser heads must be aligned to each other, a 

procedure was devised to ensure that the laser heads were aligned correctly. A 

calibration plate was used (Figure 4.38). The calibration, uses a plate with a 

series of precision holes of varying in diameter from 2mm to 0.5mm the 

procedure is as follows: A piece of paper is placed under the calibration plate as 

shown in the top laser (Zi) is powered up, the calibration plate is adjusted to 

give a clear image on the paper. Then the top laser is switched off and the 

lower laser (Z2) is powered up the piece of paper is placed over the calibration 

plate the laser head is adjusted to give a clear image, this procedure is 

repeated for the smaller holes.
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Figure 4.38 Aligning laser head 

Figure 4.39 shows the result of laser misalignment, the laser light is diffused as 

it impacts on the sides of the hole indicating that the laser head is out of line.

Figure 4.39 Effect of laser head misalignment
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Then the device was examined for design robustness. To establish the 

performance of the measurement device, various tests were carried out, this 

included evaluation of the laser head orientation leading to the;

(1) Laser head orientation modification as outlined in (Section 4.4.1) detail 

design.
(2) Blade clamping device modification (Section 5.3) this modification was the 

direct result of the repeatability and reproducibility study carried out and detailed 

in the results Section 5.0.

4.7 Instrument Testing
This section outlines the stages in the detail testing of the prototype non-contact 

measurement device. This section will also describe modifications carried out 

as the result of tests carried out on the device.

4.7.1 Laser interference study

Initial tests of the machine revealed problems with diffused light interference 

from the laser heads. Initial arrangement of the measuring device is 

demonstrated in (Figure 4.40). In this arrangement it was found that laser light 

diffused from one laser as the blade finished its scan and was picked up by the 

second laser, causing interference. (Figure 4.41).

Figure 4.40 As blade flanks are scanned no interference is experienced by the lower laser
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Figure 4.41 As blade is scanned some diffused from the top laser is picked up by the lower
laser

Figure 4.42 Measurement errors as a result of diffused light from laser

79



The result of the problem caused by the orientation of the laser heads is 

illustrated in Figure 4.42, the interference caused is apparent as the laser light 
passes over the tip of the blade. To reduce this interference the laser orientation 

was changed, it was established that an arrangement with the lasers aligned at 

90° gave the best results. The receivers on both lasers in this arrangement are 

in different positions, therefore the diffused light from one laser will not be 

picked up by the receiving sensor on the other laser (Figure 4.43).

Figure 4.43 Laser head reorientation changed to eliminate the problem associated with laser
light scatter.

Results of the scans of the same sample blade which were carried out after the 

modifications to the laser head orientation are outlined Section 5.6.

4.8 User interface
The front panel was designed to allow for easy user interface, As stated in the 

product design specification the measurement device must be user friendly, 
therefore the front panel should reflect this by being simple and easy to read, it 
is not a requirement to display the actual profile of the blade, the wedge angle 

of the blade should be displayed following the test. To achieve this, the front 

panel only provides this measured result (Figure 4.44).

Laser heads orientated at 90 
degrees to each other
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Figure 4.44 User interface screen

It should be noted that the wedge angle calculated at the time of writing is for 

display purposes only, completed data were not available from within the larger 

project group to determine the optimum cutting wedge angle for cutting various 

types of bone. However Figure 4.45 shows the typical result from ongoing 

experiments by other researchers to measure the effect of blade wedge angle 

and tip radius on the cutting forces using high density polyurethane foam. The 

charts clearly show that the force increases with wedge angle, and illustrate that 

when wedge angle is known, the cutting efficiency of a blade for a defined 

material can be determined, and can be done in conjunction with the wedge 

angle generated by this chart
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Figure 4.45 Maximum force/wedge angle for HDRPF 40PCF

The experimental result shown in Figure 4.46 was conducted to evaluate the 

effect of the wedge angle on cutting force using HDRPF 40PCF. The 

experiment was conducted at a range of cutting speeds. For each experimental 

cutting speed there was an increase in the cutting force with increase in wedge 

angle.
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Figure 4.46 Maximum force/cutting edge radius for HDRPF of varying densities
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Figure 4.46 illustrates the effect of edge rounding on the cutting force. All tests 

were carried out on HDRPF 40PCF with a test blade having an internal wedge 

angle of 20degree test speeds ranged from 5mm/min to 250mm/min.

4.9 Final layout of components
The configuration of the measurement instrument with consideration for the 

orientation of the laser heads is shown in Figure 4.47

Osteotome

Support frame

XY side

Upper laser head 
Zl

Lower laser head
12

Figure 4.47 Layout of components 
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Chapter 5.0 Instrument Testing
To ensure that the measurement instrument performed as designed a series of 

tests were carried out;

1) To test the performance of the measurement instrument an instrument 

evaluation study was carried out

2) To test the operation of the measurement instrument with regard to 

human interoperability a Repeatability and Reproducibility study was 

carried out.

5.1 Instrument Evaluation Study
Repeatability reflects the inherent precision of the measurement device. This 

study was carried out to evaluate the consistency of the measurements which 

the prototype measurement device was capable of achieving. In this study one 

blade was used (Sample blade number 3). The blade remains in the holder 

throughout the test, 50 data points on each side of the blade were sampled (50 

X 2) with the test being repeated 20 times. Only one operator is used. The 

results of this test are as shown in (Table 5.1).

Procedure

In this study the blade is inserted into the holder, the program is executed which 

scans the blade between the laser heads, each measurement interval was 

69pm and at each interval a reading from the lasers was taken, this information 

was fed into an array which was exported into Excel and analysed and the 

wedge angle of the blade calculated, the results of the 20 scans were plotted to 

a graph of wedge angle versus scan number (Figure 5.1).

)
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Figure 5.1 Results of Instrument evaluation study

Table 5.1 table of results for Machine evaluation study 

Scan No. Angle in Degrees
0 19.907
1 19.907
2 19.892
3 19.926 Average = 19.899
4 19.858
5 19.912 Max = 19.941
6 19.872
7 19.941 Min = 19.838
8 19.941
9 19.848 Range = 0.103
10 19.917
11 19.882
12 19.927
13 19.926
14 19.862
15 19.917
16 19.907
17 19.897
18 19.897
19 19.838
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5.2 Gauge R and R Study
The purpose of this study was to determine the affect of human interoperability 

on the operating performance of the measurement instrument. This study 

determines the precision of the measurement not the accuracy, (accuracy of the 

instrument is determined in Section 5.7)

Figure 5.2 illustrates the concept of precision and accuracy.

Figure 5 .2 Concepts of precision and accuracy, (a) The gauge is accurate and precise, (b) 
The gauge is accurate but not precise, (c) The gauge is not accurate but is precise, (c) The

gauge is neither accurate nor precise.

The study carried out consisted of three operators each performing a scanning 

operation on the blade. The test set-up procedure sheet (Appendix B) was 

followed. Each operator had to insert the blade into the holder tighten the blade 

retaining clamp and perform the scan. The operator was then instructed to fully 

remove the blade from the holder and re-insert the blade tightening the clamp 

again, this procedure was repeated 20 times for each operator. The scan of the 

blade consisted of the blade being moved between the laser heads in 

increments of 69pm, at each incremental position a reading was obtained from 

both laser heads. This information was fed into an array and exported to Excel
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as a text file, a formula was used to extract the wedge angle as described in 

(Chapter 4.5.3.3.)
The results for each of the 20 scans for each operator were compared to give a 

max, min, average and range of the scans. (Table 5.1) it was observed that the 

range of the measurements from each operator had increased from that range 

which was observed for the machine evaluation study.
The range of the twenty measurements taken in the machine evaluation study 

was 0.103 degrees (Table 5.1). The range in the gauge R and R study varied 

from 0.7 degrees to 1.18 degrees (Table 5.2) this variation could be attributed to 

(a) the repeatability of the measurement device, (b) the effect of the human 

interface on the consistency of the measurements. Factors affecting the 

repeatability of the measurement instrument include the rigidity of the 

instrument frame, the step size of the scan movement, the speed of the scan, 

the acceleration of the slide units, settling of the instrument after clamping of 

blade. Factors affecting the reproducibility of the scans (human interface) 

include setting the blade up in the blade clamping device and the amount of 

force applied to the thumbscrew on the blade clamping device. The results from 

the R and R gauge study are presented in Table 5.2.
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Table 5.2 Summary of results for R and R study

Operator 1
19.898 deg 
19.557 deg 
19.714 deg 
20.109 deg 
19.886 deg 
19.830 deg
19.624 deg 
19.770 deg 
19.903 deg 
19.785 deg 
19.936 deg 
19.987 deg 
19.847 deg 
19.837 deg 
20.696 deg 
20.031 deg 
19.920 deg
19.624 deg 
19.511 deg 
19.798 deg 
19.863 deg

Average 19.863 deg
Max 20.696 deg
Min 19.511 deg
Range 1.184 deg

Operator 2 Operator 3
20.075 deg 20.234 deg
19.988 deg 19.910 deg
19.881 deg 19.936 deg
20.106 deg 19.926 deg
19.988 deg 20.198 deg
19.794 deg 20.172 deg
19.625 deg 19.977 deg
19.788 deg 19.655 deg
20.028 deg 19.685 deg
19.767 deg 20.351 deg
20.213 deg 19.870 deg
20.106 deg 19.773 deg
20.065 deg 20.110 deg
20.510 deg 19.972 deg
20.070 deg 19.823 deg
19.865 deg 19.818 deg
20.014 deg 20.019 deg
19.968 deg 20.008 deg
20.029 deg 19.891 deg
20.029 deg 19.983 deg
19.995 deg 19.966 deg
19.995 deg 19.966 deg
20.510 deg 20.351 deg
19.625 deg 19.655 deg
0.885 deg 0.696 deg

In R and R studies two components of measurement error are investigated that 

of repeatability (the inherent precision of the measurement instrument) and

reproducibility (the variability which may be due to different operators)
2 _  2 _  2 , 2 
measuremert error gouge repeatability reproducibility

The above formula shows that the gauge variability is the sum of the variance 

due to the measurement instrument plus the variability due to the operator. 
Gauge reproducibility is the variability that arises because of differences among 

the three operators

x max = max( x , , x 2 x 3) Average of operator values

=19.995

imin =min(x,,*2* 3)
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x =19.863ttun

= * m a x  - * m m

_^L
repodvcibility

In this case a value o f 1.693 w useJ for d because R- is 
the range o f a sample size o f three. (three operators)

In this case =19.995 xmin =19.863 R- =0.132

0.132
^reproducibility j

^"reproducibility ~ 0.0779 («>/, )

Gauge repeatability is obtained from the average of the three average ranges. 

Since in this experiment one blade was measured twenty times by each of the 

three operators, it was required to obtain the moving range of each of the scans 

from this was calculated the average moving range.(Table 5.3)
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Table 5. 3 Results of calculation of moving range for R and R study

Operator 1 Operator 2 Operator 3
Scan Angle Moving Range Scan Angle Moving Range Scan Angle Moving Range

1 = 19.898 21 = 20.075 0.278 41 = 20234 0.204
2 = 19.557 0.341 22 = 19.988 0.087 42 = 19.910 0.324
3 = 19.714 0.157 23 = 19.881 0.108 43 = 19.936 0.026
4 = 20.109 0.395 24 = 20.106 0.225 44 = 19.926 0.009
5= 19.886 0.223 25 = 19.988 0.118 45 = 20.198 0.271
6 = 19.830 0.055 26= 19.794 0.194 46 = 20.172 0.026
7 - 19.624 0.206 27= 19.625 0.169 47= 19.977 0.195
8 = 19.770 0.146 28= 19.788 0.163 48= 19.655 0.323
9 = 19.903 0.133 29= 20.028 0.240 49= 19.685 0.030
10 = 19.785 0.118 30= 19.767 0.261 50= 20.351 0.666
11 = 19.936 0.151 31= 20.213 0.446 51 = 19.870 0.481
12= 19.987 0.051 32= 20.106 0.107 52= 19.773 0.097
13 = 19.847 0.140 33= 20.065 0.041 53= 20.110 0.338
14 = 19.837 0.011 34= 20.510 0.445 54= 19.972 0.138
15 = 20.696 0.859 35= 20.070 0.440 55= 19.823 0.150
16 = 20.031 0.665 36= 19.865 0.205 56= 19.818 0.005
17 = 19.920 0.111 37= 20.014 0.149 57= 20.019 0.201
18 = 19.624 0.296 38= 19.968 0.046 58= 20.008 0.011
19 = 19.511 0.112 39= 20.029 0.061 59= 19.891 0.117
20 = 19.798 0.286 40= 20.029 0.000 60= 19.983 0.092

X, =19.863 MRX =0.235 x2 =19.995 MR2 =0.199 x3 =19.966 MR3 =0.195
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The calculation o f gauge repeatability as obtained from the average o f the three average 
ranges are

R = j(0.235 + 0.199 + 0.195)

R =  0.209

_R_
^repeatability “  ,

2

repeatability = (WO'C = d  = 1 128 f ° r SamPle size ° f  tWO)

& repeatability 1 { s o l 2 )

Both components o f the measurement error are calculated (so/,) and (sol2) these are used 
to calculate <rgmge

a 2 * 2 a 2
®  gauge ~  ®  repeatability ®  reproducibility

â* = 0.1852 + 0.078'

gauge =  ° * 2

as T total tolerance

Total Tolerance -  = = 12degrees (so/3 )
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From the results of the R and R study (sob) a value of 12 degrees was 

calculated, this was the specification limit of the measurement instrument this 

indicates the blade may be measured with a tolerance band of 6 degrees. This 

tolerance band includes the variation in the measurement instrument and the 

human interface, as it was observed that some variation occurred between the 

three operators, it was felt that this variation may be caused by the setting up of 

the blade in the clamp (Figure 5.1). Since total variation was much larger than 

that incurred in machine evaluation study. To reduce this variation a new 

system of blade clamping was designed (Section 5.3 clamp modification 

design).

5.3 Clamp Modification Design
In order to accurately and consistently scan the blade a modified clamp was 

designed, this design uses a spring loaded pin to clamp the blade (Figure 5.4) 

This modification resulted from the repeatability and reproducibility study carried 

out. This repeatability and reproducibility study illustrated that some variation 

occurred between operators. To eliminate some of this variability, the human

Clamping force 
applied by twisting 
knob

Sample Blade

Figure 5. 3 Original design for blade clamping unit
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factor was reduced. This was achieved by using a spring loaded clamp in place 

of the screw clamp. To insert the blade the spring loaded clamp is lifted, the 

blade is inserted and the plunger is released, this arrangement ensures that the 

same pressure is applied each time the blade is clamped.

Spring loaded plunger

Direction of spring

Figure 5 .4 Modified blade holder

To test the operation of the modified blade clamp a second gauge R and R 

study was carried out, in this study the same three operators were used the 

same sample blade was used and the same scanning program was used 

Procedure 2 R and R study (Appendix B) A new set of results are presented in 

Table 5.4
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Table 5.4 Summary of results for R and R study (2)

Average
Max
Min
Range

Operator 1 
19.345 deg 
18.825 deg 
18.834 deg
18.852 deg
18.770 deg 
18.806 deg
18.852 deg 
18.798 deg 
19.062 deg
19.663 deg 
19.080 deg 
19.154 deg 
19.572 deg 
19.472 deg 
19.490 deg 
19.454 deg 
19.518 deg 
19.536 deg 
19.636 deg 
19.384 deg 
19.205 deg
19.663 deg
18.770 deg 
0.893 deg

Operator 2 
19.135 deg 
19.418 deg 
19.427 deg 
19.309 deg 
19.344 deg
18.852 deg
19.336 deg 
19.035 deg 
19.545 deg 
19.171 deg 
19.272 deg 
19.299 deg 
19.454 deg 
19.254 deg 
19.327 deg 
19.208 deg 
19.226 deg 
19.710 deg 
19.611 deg
19.783 deg
19.336 deg
19.783 deg
18.852 deg 
0.931 deg

Operator 3 
19.591 deg 
19.637 deg 
19.746 deg
19.691 deg 
19.774 deg
19.436 deg
19.755 deg
19.692 deg 
19.409 deg
19.756 deg 
19.372 deg 
19.354 deg 
19.336 deg 
19.391 deg 
19.263 deg
19.436 deg
19.108 deg 
19.646 deg
19.783 deg 
19.345 deg 
19.526 deg
19.783 deg
19.108 deg 
0.675 deg

Results for the gauge R and R study were recalculated using formula and 

procedures previously described.



= max(x„x2 *3) 

i  =19.526max

*mi„ = mini *„* 2, *3)

_  ^  * 
repoducibility

In this case a value o f  1.693 is used for d because R- is 
the range o f a sample size o f three.

In this case x^  =19.526 x ^  = 19.205 R- = 0.321

0.321
^reproducibility 1i.oyi

Vrtproduchm = 0.1896 (so/,)
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The calculation o f gauge repeatability as obtained from the average o f the three average 
ranges are

R=^(fi fRl +MR1 +MR3)

R = j  (0.174 + 0.227 + 0.205)

R = 0.202

_ R _
^repeatability »

2

0 202
v-reptatomiy = (note -d = \.\2% for sample size o f  two)

a rmamm,y =0-179 (sol2)

Both components o f the measurement error are calculated {sol, ) and (sol2) these are used 
to calculate a gauge

*2 _ 2_1 , *2 
gauge repeatability reproducibility

< r^ e =0.1792 +0.18962

< W = 0 -2 6

a s^ /T =-----^a,0,al-----
/ 1 total tolerance

Total Tolerance = ̂ ~ L = =15.6 degrees (sol3)
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From the results of the second gauge R and R study the repeatability value 

decreased from 0.185 to 0.179 however the reproducibility increased from 

0.0779 to 0.1896. This indicates that the operators still have an influence on the 

scanning operation. The total deviation therefore increased from 12 degrees to 

15.6 degrees. This suggests that the clamp modification is not the only factor 

affecting measured results.
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Figure 5.5 Reproducibility and Repeatability study

Table 5.5 shows the variation in the three operators it illustrated that a pattern 

has developed, operator 1 returned values with a wide scatter, operator 2 

returned values concentrated at the mid to low end while operator 3 returned 

values at the high end. From these results it was decided to analyse the 

scanning program (Section 5.4 program modification)

5.4 Program Modification Design
The scanning program used in the gauge R and R studies collects 50 X 2 data 

points, however the calculation of the wedge angle only considers four data 

points to perform its calculation. (Figure 5.5)
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Figure 5. 6 Original calculation of wedge angle of blade

It was concluded that this type of calculation method could introduce errors if all 

measured data points were not considered each time (Figure 5.6).

Enor in calculation ol 
wedge angle

Figure 5. 7 Effect of using just four data points to calculate the wedge angle of blade
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To overcome this problem a linear regression formula is used, this method 

calculates the best fit straight line for a set of data points (Figure 5.7). 

n Y X Z - I X ^ Z

» E a- '-C e» ’

c ~ Z -  mX 

Where
m = Slope coefficient 
c = Intercept value 
n = Number o f data po int s
x = Horizontal axis values in this case the horizontal travel o f the slide 
X  -  Average o f X  values 
Z  = vertical readings from the lasers 
Z -  Average o f Z readings

Measured data points

Figure 5.8 Schematic of point parameters for regression caiculation.

To test the effectiveness of the regression formula a second instrument 

evaluation study was carried out, this study consisted of twenty scans, the 

results of the scans are shown in Figure 5.8 a moving average line is displayed 

to show the variation of the measured values.
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Instrument Evaluation Study (Without regression formula)

Scon number
Figure 5. 9 Instrument evaluation study without regression formula

The same scans were calculated using the regression formula, the results are

shown Figure 5.9 it was observed that the spread of the measured angles was

reduced when using the regression formula.
Instrument Evaluation Study (using regression formula)
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Figure 5.10 Instrument evaluation study with regression formula
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Both set of results are shown Figure 5.10 this clearly illustrates the differences 

in the results of both methods of calculation of the wedge angle, the first 

difference is the spread of the values which is greatly reduced from a range of 

0.441 degrees for the results without the regression formula to a range of 0.06 

degrees for the results using the regression formula. Also illustrated is the 

difference in average measured value the average for the measured angle 

without the regression formula is 20.003 degrees while the average for the 

measured angle using the regression formula is 20.18 degrees. As shown in the 

results section (Table 5.5) the value 20.18 degrees as measured using the 

regression formula compares favourably with the other methods of profile 

measurement.

Instrument Evaluation Study (com panion of formula)
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Figure 5.11 Comparison of results using regression formula V’s without regression formula

5.5 Results single side scans
In this section the results are outlined. As described in the materials and 

methods section each component of the measurement device was tested at 

each stage of development.
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Each laser was tested individually to determine the resolution of the scan. To 

achieve this, first laser number one (top laser) was used, the laser was 

calibrated to set the zero and span (as described in Section 4). The number of 

data scan points used was 50 per scan. First results from the lasers gave a 

single side of the blade profile, (Figure 5.11), (Figure.5.12) and (Figure.5.13).

It may be seen that surface roughness appears on the wedge angle of the 

blade, this is due to the graphics of the Labview software, higher resolution 

scans are obtained by using Microsoft Excel graphs. The three sample blades 

used in the tests were, 500|jm, 300pm and 100pm tip radius respectively with an 

included wedge angle of 20 degrees the results are presented in Figures 5.11 to 

5.13. It may be seen that the data generated on the tip radius of the blade is 

adequate for display of tip geometry.

1-

Figure 5.13 Single side of blade, tip radius 300pm

Figure 5 .1 4  Single side of blade, tip radius 100pm
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5.6 Results double side scans
In these scans both lasers Zi and Z2 were used, the lasers were calibrated and

aligned previous to the scans as outlined in Chapter 4.

Figure 5.15 Double scan of sample blade radius 500pm.

Figure 5.16 Double scan of sample blade radius 300pm.

Figure 5 .17  Double scan of sample blade radius 100pm.
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Figure 5.18 Results of scans on sample blades (a) 500pm radius blade (b) 300pm radius
blade (c) 100pm radius blade

It may be seen that details on both the wedge angle and the tip radius are 

obtained from these scans (Figure 5.17). In order to analyze the results of the 

scans Excel software was used as described in Chapter 4.

5.7 Verification of Results
To gauge the effectiveness of the measurement instrument a comparison study 

was carried out between the measurement instrument and standard profile 

measuring equipment. The gauge R and R study carried out previously verifies 

the precision of the instrument (Section 5.2). The following tests were designed 

to test the accuracy of the measurement instrument. The standard 

measurement instrument used was a Nikon Eclipse Metallurgical Microscope 

(ME600) using a JVC TK-C1381 video camera, the data analysis was carried 

out using Omnimet Enterprise Software version 4.50 B021 

To ensure that no bias occurred the standard measurements were carried out 

independent of the author, the operator carrying out the verification 

measurements was not made aware of the results from the prototype 

measurement instrument, until all measurements were made.

Table 5.5 Verification of Results for prototype measurement Instrument

Blade wedge Angle Prototype Standard Measurement Deviation

(Nominal) (MediScan) (Nikon ME600) (Degrees)

20 Degrees 20.18 Degrees 20.47 Degrees 0.29 Degrees

104



From the results in Table 5.5 it may be seen that a good agreement exists 

between the wedge angle obtained from the prototype measurement instrument 
and the standard measurement device, some deviation will occur due to errors 

in the measurement instrument and due to the setting up of the blade in both 

the measurement devices, it is concluded that this deviation in measurement of 

the wedge angle is small. In studies carried out by (Duffy, 2003) it is shown that 

small differences of the magnitude of those recorded in wedge angle do not 

adversely affect the cutting performance of a blade when cutting solid rigid 

polyurethane foam.

5.8 Measurement of osteotome
During the testing and evaluation of the prototype measurement instrument 

sample blades were used to ensure consistency of comparisons. To ensure that 

the measurement instrument was capable of measurement of an osteotome 

scans were performed on a new osteotome. The blade used was a Bolton 

Surgical 12mm osteotome (Ref No 14/1453/4). The osteotome was set up in the 

measurement instrument as shown Figure 5.18

Figure 5.19 12mm osteotome set up for scanning
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Figure 
5.20 

Results 
of scan 

on 
12mm 

osteotom
e

12mm Osteotome

X Axis (mm)



Figure 5.19 shows the result of the scan on the 12mm osteotome, this image is 

generated from Microsoft Excel and shows that the measurement instrument 
can also give the profile of an osteotome as well as its wedge angle osteotome 

is a curved profile rather than a simple wedge angle.
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Chapter 6.0 Conclusions
6.1 Main conclusions and proposals for further work
In this thesis the author has investigated the various methods of profile 

measurement,
o From the literature review (Chapter 2) it is possible to conclude that no 

system exists for measurement of blade sharpness that provides the 

potential for relating the blade profile to a range of cutting materials. The 

system device prototyped by the author may be used in conjunction with 

appropriate cutting force curves for any material to provide a 

measurement of blade sharpness as shown by the data currently 

available from the larger project group (Chapter 4). 

o The increment chosen for interval point measurement affects the 

resolution of the data on curved surfaces. Where the curved surface is 

small such as the radii on the blade cutting edge, this may likely lead to 

measurement error due to inadequate data on the profile. This can be 

controlled by variation in the interval step increment. The author 
proposes that in future work control of the step increment for the 

commencement of the scan be done on the basis of slope of the surface 

curvature or by definition of a small step increment in the first part of the 

scan in the region of the edge radius, 

o From analysis of the operation of the device it is concluded that a variety 

of factors affect the ability of the device to measure the blade wedge 

angle in a reproducible and repeatable manner. These include the 

interaction of the operator with the device and the functionality of the 

device in terms of its scanning process and the evaluation of results, 
o The author concluded from the preliminary testing and Gauge R & R 

tests that the device measurements are affected by the laser orientation, 

retention of the blade during scanning and the methodology for 

evaluation of the blade wedge angle. Modifications to these resulted in 

some minor improvements to the results recorded in Chapter 5. 

o The author further concludes that other factors not considered for 

modifications such as device vibration, settling time for the device after
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blade clamping, and consistent location and positioning as distinct to 

clamping of the blade may likely also affect results. The author proposes 

that these issues should be considered for evaluation in future work 

related to the device, 
o The piggy back arrangement of the positioning slides permits positioning 

of the blade for scanning, or for scanning of a blade in a series of 

positions. The author proposes that in future work, consideration could 

be given to using this functionality for the development of a 3D geometry 

of the blade surface for detailed blade geometry evaluation, 

o Scanning of the surgical osteotome shows that the device is capable of 
the evaluation of ground curved flanks known to exist on new 

osteotomes as supplied by the manufacturer. On resharpening it is 

common for the operator to grind these flanks as surfaces creating the 

wedge angle discussed, and the device is capable of accommodating 

both blade flanks.
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Appendix A1

Set up for machine evaluation study



Machine Evaluation Set-up:

Calibration performed

Laser 1 Laser 2
Zero setZero set: ..............................

Span set: .............................  Span set: .........

Standards used: Slip Gauges Case Serial No: 16724, 

Traceability N o.. .48412 NAMAS....................

Parameters

Scan Length:...................................... 3A5mm

Scan Time : .........................................22.37 seconds

Number of Steps: .............................. 50

Runs

Number of runs performed:..............20 runs performed per Operator

Number of runs performed:..............1 Operator used in study

Blade used

Sample Blade used: ......................  Sample Blade no. 3.

Signed
Date...



\

Appendix A2

Set up for R and R study

t.



Repeatability and Reproducibility study 

Instructions for operators

1) Insert blade into holder.

2) Tighten clamp.

3) Press “Acquire button” on screen.

4) Remove blade from holder.

5) Place blade on area indicated.

6) Insert blade again and repeat process, 20 times.

Place blade here after each scan



Reproducibility Test Set-up:

Calibration performed

Laser 1 Laser 2
Zero set: ......................... Zero set:

Span set: ......................... Span set: ....

Standards used: Slip Gauges Case Serial No: 16724, 

Traceability No...48412 NAMAS........................

Parameters

Scan Length:................................ 3.45mm

Scan Time: ..................................  22.37 seconds

Number of Steps: .... .................... 50

Runs

Number of runs performed:............ 20 runs performed per Operator

Number of runs performed:............ 3 Operators used in study

Blade used

Sample Blade used: ................... Sample Blade no. 3.

Signed
Date...



Appendix A3

Results for CATRA sharpness test



CATRA Sharpness Test Report to ISO 8442.5
Report number

Date
Time
Blade description 
Edge angle

Edge Type 
Test Number

Test Speed mm/s
Test distance mm
Test load N
Test card available
mm
Blade offset mm 
Test cycles 
Test cycles completed 
Test by machine

Cycle number

1
2

3
4

5
6

7
8

9
10 
11 

12

13
14
15
16
17
18
19
20 

21 
22

23
24
25
26
27
28

21 st May 2003
11:49:06

Thick blade

Plain edge blades Type 
A

Sharpness 1CP mm
Life TCC 
mm

knife tested 79.1 256.2
ISO limit mm 50 150
ISO Pass/fail pass pass
CATRA
comment Average Average

DUMMY.dat
0

50
40
50

47
0

60
60

Cutlery Research Association. [012]

card cut mm Accumulative
card cut

31.3 31.3
26.1 57.4
21,7 79.1
19.4 98.5
17.1 115.6
16.4 132
13.9 145.9
12.9 158.8
11.4 170.2
8.8 179
7.9 186.9
7.7 194.6
6.6 201.2
5.4 206.6
4.4 211
3.3 214.3
2.7 217
2.5 219.5
2.2 221.7
2.1 223.8
2 225.8

1.7 227.5
1.4 228.9
1.2 230.1
1.3 231.4
1.3 232.7
1.3 234
1.4 235.4



29 1.3 236.7
30 1.1 237.8

31 1.1 238.9
32 1 239.9

33 0.9 240.8
34 1 241.8
35 0.9 242.7
36 0.8 243.5
37 0.8 244.3
38 0.7 245
39 0.7 245.7
40 0.6 246.3
41 0.6 246.9
42 0.7 247.6
43 0.6 248.2
44 0.6 248.8
45 0.7 249.5
46 0.6 250.1
47 0.5 250.6
48 0.5 251.1
49 0.5 251.6
50 0.5 252.1
51 0.3 252.4
52 0.5 252.9
53 0.4 253.3
54 0.4 253.7
55 0.4 254.1
56 0.4 254.5
57 0.3 254.8
58 0.4 255.2
59 0.5 255.7
60 0.5 256.2



Appendix B

Calibration sheets



CERTIFICATE OF CALIBRATION

ISSUED BY TESA REFERENCE STANDARDS DIVISION
DATE OF ISSUE : 2 nd October 1 9 9 7  SERIAL NUMBER : 4 8 5 4 5

T ESn n s n
fX H fiC H C e  S T A N D A R D S  D IV IS IO N

Brown & Sharpe Lid 
P recision Measuring In stru m en t
B radgate S tree t,
L eicester LE4 OAW 
England.
T el: IN T L  + 4 4  (0) 116 262 9012 
Fax: IN T L  + 44  (0) 116 251 4762 
e-m ail: tesa@ brow nandsharpe.co .uk

CALIBRATION 
No. 0001

PAGE 1 OF 2 PAGES

APPROVED SIGNATORIES

D. BARLOW 
T. CREIGHTON 
M. SINGH

Customer: J.E.D. Metrology, Ireland.
As Agents of: Sligo Regional Technical College, Ireland.

Order No: 9133

Description:

Serial No:

Report:

Date of 
Calibration:

A set comprising 14 angle gauges manufactured by TESA-RSD.

941

These gauges have been examined at 20°C and the measured sizes found to 
be within the requirement of the N.P.L. Specification of Accuracy 
MOY/SCMI/18 Issue 5.

The measured deviation from nominal angles are given on page 2.

2nd October 1997

Th« uncertainties arc  for a confidence probability of not less than 95%
Signature

This certificate is issued in accordance with the conditions of accreditation granted by the National Measurement Accreditation Service, 
which has assessed the measurement capability of the laboratory and its traceability to recognised national standards and to the units of 
measurement realised at the corresponding national standards laboratory. Copyright of this certificate is owned jointly by the Crown and the 
issuing laboratory and may not be reproduced other than in full except with the prior written approval of the Head of NAMAS and the 
issuing laboratory.

mailto:tesa@brownandsharpe.co.uk


CERTIFICATE OF CALIBRATION

ISSU ED  BY TESA  R E FE R EN C E  STANDARDS DIVISION 
N AM AS A C C R E D IT E D  CALIBRATION LABORATORY No. 0001

DATE O F  ISSUE

2nd October 1997

SE R IA L  NU M BER
48545

P Â G É  o f 2  p a g e s

A set of 14 combination angle gauges. 

ANGLE GAUGES

Nominal Angie 
Degrees

41

27

9

3 . ;

1

Measured error 
seconds of arc

-0.7

-0 .1.

+0.2

+ 0.2 .

+0.3

. Case No. 941

Nominal Angle 
Minutes

27 

9 

3 

1 :

0.5 

0.3 

0.1

0.05

Measured error 
seconds of arc

-0.4

- 0.6

-0.3

-0.9

-0.7

+ 1.1 ,

+0.3

- 0.8

Uncertainty of Mëasurement + 2 seconds of arc.

Signature

The uncertainties are for a confidence probability of not less than 95%
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JESE brawn & sharpe
TESA CH-1020 Renens

ATTESTATION DE CONFORMITE 
ÜBEREINSTIMMUNGSA TTEST 
CONFORMITY SPECIFICATION

Cham p de m esurage Messspanne Field o f m easurem ent Mes 0,2 m m .008 in
Valeur de l'éche lon Skalenteilungswert Scale interval Skw 0,002 m m ’ 100 pin
E rreur d 'ind ica tion Abweichungspanne Span o f e rror fe 2 pm 100 pin
Erreur d 'ind ica tion  locale Abweichungspanne in 

der Teilmessspanne
Local span o f e rro r Î 1 pm 40 pin

Erreur d 'ind ica tion  totale Gesamtabweichungsspanne Total span o f e rro r fge& 3,5 pm 160 pin
Hystérésis Messwertumkehrspanne Hysteresis band fu 1,5 pm 60 pin
Fidélité W iederholbarkeit Repeatability L 1 pm 40 pin

Direction Assurance de la Qualité

18.10009 18.20011 18.18018
18.10010 18.20012 18.18019 
18.10013 18.20015 
18.10304 18.20304 
18.11001

Comparateurs à levier 
Fühlhebelmessgerâte 

Dial test indicators

10  skw

E x e m p le  
B e isp ie l  
E x a m p le  
D IN  2270

. 'ì  j is i is?.fc ¡>a> 'if t , •'.'vV-àbr.:; v j u ZL-.
354.80017-03



Appendix C

Mechanical drawings
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REV | DESCRIPTION | DATE | APPROVED

NAME DATE
SOUQ EDGE

EDS-PLM SO LUTION
DRAWN o e / s io i
CHEEKED
ENG APPR

TRLE
Gio n o m e te r

MGR APPR

UNLESS OTHERWISE SPECIFIED 
DIMENSIONS ARE IN MILLIMETERS 

ANGLES *X X  
2  PL i K X X  3 a  iX X X X

SIZE BW6 XQ REV
A2

f  1L f  NAME; Hi i I  sr e i i

S EA LE | WEIGHT; | K i r i l l





REVISION HISTORY

DESCRIPTION | DATE | APPROVED

NAME DATE
SOLID ED5E

EOS-PLM SOLUTIONS
DRAWN O i'lii .'iS
CHECKED
ENGAPPR

i n ii
S p ac e r

M&RAPPR

UNLESS OTHERWISE SPECIFIED 
DIMENSIONS ARE IN MILLIMETERS 

ANGIES i X X ‘
2  f t  iX JO ( 3 PI tX X X X

SiZE UWL NO K V
A2

TILE N A M L SlifiCfc-iifi

SCALE- | WEIGHT: | SHEET ’  OF \



CXI

 REVISION HISTORY_____________ -___________

R E v T  DESCRIPTION 1 QATE I APPROVED

NAME GATE
SOLID EDGE

EDS-PLM s o l u t ic n s
DRAWN e p ' « CS/1i;C5
CHECKED
EN6 APPR TiTLt

Sample b la d eMGR APPR

(M E S S  D T H D M S t  SPiCIFIED 
DIMENSIONS ARE IN MILLIMETERS 

A NH.ES i)O C  
2 PI i m  3 P I iJOCXX

SIZ£ IM.N0 KV 
A2

n i l  NAMi.: ?.tec!R.il?l

SCALE; | W EIGHT | SHtT i 1 Cf 1
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REVISION HISTORY

DESCRIPTION □ATI

Calibration Plate in steps of 0.5mm I 2Sy09/(X

DETAIL A

UNLESS OTHERWISE SPECIFIED 
DIMENSIONS ARE IN MILLIMETERS 

ANGLES t X r  
2 PL i X X X  3 PL U C X XX

SOLID EDGE
EOS-PLM SOLUTIONSwr

CaUbration Rate

iaw&N0
A2

FiLE NAMl- [atibrstier= oar: Pj srg-s .c-1 
SCALE- I WEIGHT: [ SHOT ■ ( f  ‘
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REVISION HISTORY

" r Ë T I  DESCRIPTION I ~QÂTË I APPROVED

NAME DATE
SDUD EDGE

EDS-PLM SOLUTIONS
DRAWN ¿n ri-: e 0 2 A /0 3
CHECKED
E Æ A P P R m u

Bose P la t e  lorigionol clomp)
MGRAPPR

UNLESS OTHERWISE SPECIFIED 
DIMENSIONS ARE IN MILLIMETERS 

ANGLES i X X *
2 PL 3 P I ™

SIZE: DWG HQ RfV 
A2

Cl£C3%

SCALE | WEIGHT: | SHEET 1 O f 1





REV | DESCRIPTION | D A T I | APPROVED

NAME OATE
SOLID EDGE
EDS-PLM SOLUTIONS

DRAWN s tr ic t C2/l5iK>
CHECKED
ENG APPR

TiTLE
Top P la te  (origionat ctampl

M GRAPPR

UNLESS OTHERWISE SPECIFIED 
DIMENSIONS ARE IN MILLIMETERS 

ANGIES ± X r  
2 PL i X X X  3 PL iXJCXX

St2E awo NO R£V 
A2

fil£ 's *M L - iaa p ia ti  o ii e c i o i i  SiiSderxRt

\n rn ? i
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REV I QESCRIPT10N | DATE | APPROÆD

NAME DATE
SOLID EDGE

EDS-PLM SOLUTIONS
DRAWN ?triii? 08/S/OS
CHEEKEO
ENG tf>PR V ilii

Bose P la te  (modified)
MGR APPR

UNLESS OTHERWISE SPECIFIED 
DIMENSIONS ARE IN MILLIMETERS 

ANGLES D O T  
2 PL i m  3 PL iX JC O i

SIZE OWE KO REV
A2

F ll i fiV'E. Hasi?l23 dM uttft

SCALE: I WEIGHT: | "HE.f.T 1 f r  1
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_________REVISION HISTORY

DESCRIPTION | DATE | APPROVED

NAME GATE
SOLID EDGE

EOS-PLM SOLUTIONS
DRAWN OS/ft/OS
CHECKED
ENG APPR

Tim f 
Spacer p late

MGR APPR

UNLESS OTHERWISE SPECIFIED 
DIMENSIONS ARE IN MILLIMETERS 

ANGLES i X T  
2 PL ?X.XX 3 PL iX JO O t

SI2E UWLNQ Rfy 
A2

r i l l  NAME- S;Kre~ p W e  far Winr.s.rji!

SCALE | WEIGHT: | S H f l i  1 OF 1





■ Support frame for 
measurement instrument


