SCHOOL OF ENGINEERING
INSTITUTE OF TECHNOLOGY, SLIGO

An Investigation of the Use of Vision Systems for the
Robotic Control of Automated Vehicles

Research Student

Sean Mullery BEng.

Submitted for the Degree of Master of Engineering

Research Supervisor

Fergal Henry B.E. MENg Sc.

Submitted to the Institute of Technology, Sligo, September 2007

ABSTRACT

An Investigation of the Use of Vision Systems for Robotic Control of Automated Vehicles
by
Sean Mullery BEng.

Humans’ usage of the motor vehicle for transport and freight is ever increasing. It seems that the risks and
level of accident rates associated with these traffic systems can only be lessened by increasingly complex
systems, which aid the human driver with the task or take some of the task out of the human driver’s
control. However, any semi or fully autonomous vehicle must conform to the type of roads currently in
existence. Those roads are designed to suit a human sensory system, mainly the vision sense. Therefore, it
would seem that computer vision type systems would be the largest contributor to autonomous vehicles in
the short to medium term future. This work investigates how vision systems have already been used in one
type of autonomous vehicle task, namely “lane detection and following”. It also implements algorithms
that will accomplish this task from road image capture, through detection of lane markings to trajectory
planning and steering controls required to traverse the planned trajectory. Each part of this overall
algorithm is based on existing algorithms that are discussed in the literature review section. These
algorithms are however, implemented or used in novel ways in this project. Then based on the results from
running each section of this algorithm recommendations are made regarding the current usefulness of these
methods and how each could be expanded upon and improved to be used as a viable solution in the future.
Also given the dangers of testing new algorithms on the open highway, this work investigates the design of
a model test system that could be used to test algorithms in a safe and compact controlled environment.
Some small parts of this model test system are implemented in this work.

Declaration

| declare that | am the sole author ofthis thesis and that all the work presented in it, unless
otherwise referenced, is my own. | also declare that this work has not been submitted, in

whole orin part, to any other university or college for any degree or qualification.

Sean Mullery 1 Fergal Henry (Supervisor)

September 2007

Acknowledgements.

Sincere thanks to Fergal Henry my supervisor for his guidance and support throughout the
project.

Thanks also to Jim Rogers, who formerly supervised the project before moving on from his
position at I.T. Sligo.

Thanks to the following members of staffat I.T. Sligo who lent there expertise and
knowledge at crucial points during the project: Sean Dalton, Gordan Muir, Liam Winters,
lan Craig, Leo Creedon, Simeon Gillan, Stephen Reid, Frank Carter, Brendan McCormack
andJohn Hession.

Finally thank you to my family for their support throughout the project.

Abbreviations

CMU

DARPA

DMA

FOE

I

MIT

MLR

PPI
PROMETHEUS

PVS
Ralph
RPM
RS232
RTOS
SCCB
TFTP
UBM
VaMoRs
VaMP

Carnegie Mellon University

Defence Advanced Research Projects Agency

Direct Memory Access.

Field Of Expansion

Serial communications standard between integrated circuits
Massachusetts Institute of Technology

Multitype lane Marker Recognition

Parallel Peripheral Interface

PROgram for a European Traffic with the Highest Efficiency and
Unprecedented Safety

Personal Vehicle System

Rapidly adapting lateral position handler

Raised Pavement Markers

Serial communications standard

Real Time Operating System

Serial Camera Control Bus

Thin File Transfer Protocol

University Munich (universitat der Bundeswehr Miinchen
Versuchsfahr fur autonome Mobilitat un Rechnersehen
Versuchsfahrzeug fur autonome Mobilitat PKW

1

2

Table of contents

INTRODUGCTION oottt ettt e et st et e et e et e et e ebeeeteeebeeabeeabeanbesaseanbesssesatesaeesasensessasanteessesneeeneens 1

LITERATURE REVIEW ...ttt ettt ettt ettt e et e e et e e be e e eba e e e eteeebaeesabaeenbeeesaeeeannaean 6
2.1 (O 1V 2=y VA 1Y OO S RS TP OURRR
2.2 Timeline....ccoevenne...

2.3 Types of Control
2.4 Types of Detection

2.5 PN e TN o o Y2 o F=T PSPPSR
251 Methods 0TLANE DEtECION ... 10
2.5.2 INVerse Perspective MaPPiNg. ...ttt sttt e et e et st nens
2.5.3 Lane Trajectory Planning and Steering algorithms .

2.6 Conclusions of the Literature REVIEW ...ttt
PROJECT IMPLEMENTATION AND DEVELOPMENT ..ottt 37

3.1 Lol o oo Yo LU Lo o To ¥ o OSSPSR

3.2 Towards the development of aModel Sy Stem ...
3.21 The MO VENICIE ..o
3.2.2 Processing and Controller Board....

3.2.3 Softwarefor the TArget BOATIU.cooi ettt et
3.24 The Camera MOGUIE ...ttt
3.2.5 Integration ofDevelopment SyStem........cccccevereuenne

3.2.6 Implementation on the STAMP DOAIU. ... s

3.3 Implementing the Inverse Perspective Algorithm

3.4 Implementing the Lane Detection Algorithm....................

35 Lane Marking Recognition........ccccccoiiiiiiiciicc e
3.5.1 Calculating a Valuefor each 0fthe AttribULES.......coiiiiiet e
3.5.2 Grouping Pixels together @S ODJECES.....ccoiiiiiiiice e
3.5.3 Criteriafor determining lane markersfrom other 0DJectS......c.cooeiiiiieinie i, 59
3.5.4 Sorting Lane markers into Right and Left LANesS....ccccccccee oot 60

3.5.5 Determining a set oftarget points tofollow
3.6 Path Trajectory and Steering Algorithm

3.6.1 INtroduCtion. ..o
3.6.2 USINg CUDIC CUNVE METNOM. ...t
3.6.3 USING @ B-SPliNe MEthOU. ..o
RE S U LT S ittt a et h At h R AR ARt h R st sttt 72
4.1 o o Yo LU T Y o TSRS
4.2 Inverse Perspective Mapping ReSUTTS.....cccci it
421 A Straight PieCe 0TROAA WAY.....coiieiiieieeeee ettt e
4.2.2 CaliBDIATION. ..o
4.2.3 Using the Results to Measure DiStanCes.........ccccoceveireiencrinnenn
4.2.4 Roadway section with S Bend Ahead..............
425 Roadway section halfway through S Bend....
4.3 Detecting Lane MarKiNgS. et et e ae et e eseesreesntesteesneeareesreenes
4.3.1 Finding all Objects in the Scene..............
4.3.2 Criteriafor Determining Lane Markersfrom Other ObjJectS.......ocooviiiiiiiiiiiiiceee e 92
4.3.3 Sorting Lane Markers into Right and Left LANes .o 92
4.3.4 Finding the Lane Markers on Roadway section with S-bend ahead..........cc.cocooeiiiniinninnne 96
4.3.5 Finding the Lane Markers on Roadway section halfway through S-bend ahead...................... 98
4.3.6 Determining a Set of Target Points tofollow........c.ccccvciiiiiiiicnee. 101

4.3.7 Curve Following the Tarﬁet POINES ... 101
4.3.8 Vehicle Speed vs Algorithm Speed ... 102
4.4 Path Trajectory and Steering AIGOrithM.. ... 105
BAT CUDIC CUIVE TBSES. ... 105
442 Effect of Wheelbase on Stering AnGIE ... 107
B 1T N 109
ST B B 1 O U 1 1] 10 N TSR 115
5.1 Test bed MOdEl VENICHE ..o s
5.1.1 Mechanical iSSUES.............occcorrrn.
5.1.2 Electronics and Software issues
5.2 InversePerspective Mapping................
5.2.1 Processing and Memor;{ OVEINEATS.......oo e 116
5.2.2 Usmg the results ofthe Tnverse Perspective Mappingfor Measurement...............c...coo.e 117
D23 CAlIBTALION. oo 118
53 Lane Recognition ATGOriTNm it ne 118
53.1 Lane Marker Objects W|th Insuff|C|ent INFOIMALION. ..o 118
5.3.2 Priority Based Marker RECOGNILION SYSLEM ... 119
6 (OO VL O I] 10 120
A S Y 1 =Y I LGN T N 122
7.1 (RN H=) - LT 1 T T T T T TP 122
LT N o o o NV N K O i SRR 8-1
8 1 Appendix A- Wiring Diagram and Pin Explanation. ..o 8-1
Appendix B - Blackfin peripheral supportinformation.......ccccoieiienieiieenieesie e see e see s 8-3
8 21 DMA Su%port ... 8-3
8.22 Parallel Peripheral Interface ... 8-3
8 2.3 TIMBES oo eeeeeesssese e se s 8-5
Appendix C- Contents of the Enclosed CD......ccocviiiiiiciicin et 8-6
83 1 The Cprogramme 8-6
8.3.2 The Java Programmes..........omococeccescesoe 8-

Vi

List of Figures

Figure 1. Search zones at initial STAIT-UP ..o ettt eb et
Figure 2. Vertical and Horizontal integration....
Figure 3. Scan lines e, .
Figure 4. Extracting the outline 0f WHite TiNe ..o
Figure 5. Short slraight-iiNe road SECLION......ccii it
Figure 6. Perspective effect, (a) shows 36 equal sectors of a captured image, (b) shows the varying areas
in the real world scene that go to making up each of thoSe SeCtors.......ccocoveiiiciiiencieie e 28
Figure 7. Co-ordinate space of the real world scene in plan VIEW ... 29
FIQUIE 8. THE Y ANGI0 ettt ettt bt b et et e b et et e e es e et e e et et eneeaeenenn 30
Figure 9. The 6 angle and the h (height) variable..........cocoooiiii s
Figure 10. ANQUIAT GPEITUIE 8 ..eouiiiiiieiieiieietee ettt b et b et b bbb st b e et b e b e e b et e bt b e s e abe st ebeseeneas
Figure 11. The L AN 0 VATADIES.....overeeeeeesceeeeeeeeeee e eeee e eeeee et
Figure 12. Co-ordinate system for Target Point Following AlGOrithm ...
Figure 13. The NIKKO MOGEl VENICIE. ...t bbb
Figure 14. The Blackfin BF533 STAMP DOAI........ccoiiiiiiiiieicree e
Figure 15. Block Diagram of the Blackfin Processor.........ccccovvcoinnicriniiiniennns
Figure 16. Testimage showing perspective effectand wide-angle distortion
Figure 17. Lens off centre With IMage SENSOTttt eenas
Figure 18. The set-up of the system with camera module mounted on Sine Table and connected to
STAMP DOAI ..t et E e bt e et r Rt E e
Figure 19. Near Neighbour piXels.......ccooioiiicinninienccee
Figure 20. The two Near Neighbours that will be checked
Figure 21. Bottom comer PiXel......cccoiiiiiiiniiineceee

Figure 22. The remainder of the pixels on the bottom row
FIQUIE 23, Al 0RO PIXEIS .ottt b et bt bbb et sb e ettt b

Figure 24. Wheel base /, steering angle @ and RAGIUS Rc.ccoevruerureereeeieeie s ieetesassssse e essee s
Figure 25. Long straight section of road. Perspective effect is clearly visible...........ccoviiiniiiiiins 73
Figure 26. Corrected image after Inverse Perspective Algorithm has been applied..........cccooviiinncnne 74
Figure 27. Effect of changing y value, in this case a value 0f-0.06 rads is USEd.........cccovrerenvcinrnienenns 75
Figure 28. Effect of varying the d variable, (a) uses a value of +10, (b) uses a value 0f-10 and (c) uses a
AL L= o e OSSR 76
Figure 29. Effect of | variable, (a) uses a value of 0, (b) uses a value of-40 and (c)
USES @ VAIUE OF 40 iR 77
Figure 30. The effect of h variable, (a) uses value of 35, (b) uses value of 10 and (c)
USES @ VAIUB OF 70 ettt b bbb bbbt b e e h e s e et b e e e n e e b e e bt b e e b e e ene e 78
Figure 31. Effect of the a variable, (a) uses a value of 0.28 rads and (b) uses a value of 0.32 rads 79
Figure 32. Effect of 0 variable, (a) uses a value of 0.3 rads and (b) uses a value of 0.39 rads
Figure 33. Close up of lane markings in the vertical direction, grid is at 1 pixel resolution..........c.c.ccccoeeee.
Figure 34. Close up of lane markings in the horizontal direction, grid is at 1 pixel resolution
Figure 35. Captured image of roadway section With S-DeNd........cccoviiiriiiiinici s
Figure 36. S-bend section of roadway after Inverse Perspective Algorithm applied........cccooooiiiiiininnn
Figure 37. Roadway section halfway through S-bend, (a) shows captured imageand (b) shows image after
Inverse Perspective Algorithm has been applied........cccoovieiiici e 85
Figure 38. Threshold operation on straight road image, (a) shows image before thresholding and (b)
shows image after thresholding...........cocoovveiii e

Figure 39. Close up of lane makers in straight road image
Figure 40. Relationship between objects 33, 39 and 41 in straight road image
Figure 41. Threshold operation on Roadway with S-bend ahead, (a) shows image before threshold
operation and (b) shows image after threshold Operation...........cooeieiiiiiciiiicc e 89
Figure 42. Close up of lane marker 0DJECTS IN CUMVE.....ciiiiiiiii e e 90
Figure 43. Threshold operation on Roadway image halfway through S-bend. (a) shows image before
threshold operation and () shows image after threshold operation. ... 91

Figure 44. Finding the first lane markers on left and right sides of the lane...........ccccocoeoiiiniiiie e, 93
Figure 45. Finding all the Left lane markers in the straight road image, (a) shows all the lanemarkers

identified in the Left lane and (b) shows a close up of objects 29 and 31........ccccccoiiiiiiiiiiiiicincneee 94
Figure 46. Finding all the Right lane makers in the straight road image (a) shows all the lanemarkers

identified in the Right lane and (b) shows a close up of objects 33, 39 and 41.......cccccoeiiiiieinencicnenn 95
Figure 47. Roadway with S-bend ahead, after Threshold Operation................. 96
Figure 48. All the detected Left and Right lane markers found in the image of roadway with S-

bend ahead........cccoovevinviiiiiiiee 97
Figure 49. All the detected Left and Right markers in imageof roadway halfway through S-bend.............. 99

Figure 50. The trajectory curve calculated for the three roadway sections, (a) is the straight section of
roadway, (b) is the section with S-bend ahead and (c) is the section halfway through theS-bend 102
Figure 51. Curve for Example 1, (xi, y0 is (16, 5) and O[is 0.8 rads,vis 0.01.......cccooirriirinneirinieene 105
Figure 52. Curve for Example 2, (X|, y0 is (12, 8) and 0] is 1.3 rads,vis 0.01.....cccccciriiiiinniiienr e 106
Figure 53. Curve for Example 3, (xi, y0 is (12, 8) and 0! is 1.3rads,vis 2
Figure 54. Steering angle using wheelbase value of 2
Figure 55. Steering angle using wheelbase value of 5

Figure 56. B-spline using points (0,0) (1,1) (2,4) (3,4)(5,4) (7,4) (9,2) (11, -2) (12, -1) (14, -2)............. 110
Figure 57. B-spline using points (0,0) (1,0) (2,1) (3,2)(5,4) (7.4) (9,2) (11, -2) (12, -1) (14, -2)...cceeu..... 112
Figure 58. B-spline using points (0,0) (1,0) (2,0) (3,1)(5.,4) (7.4) (9,2) (11, -2) (12, -1) (14, -2)...cceeun.. 113

viii

List of Tables

Table 1. All the objects found in the straight section 0f roadWay........cccceieieiiriieinee e
Table 2. All of the objects found in the roadway section with s-bend ahead
Table 3. All the objects found in road-way image halfway through s-bend.......

Table4. ListofLeftlane markers in straight section 0f roadwaycccceeeeiiiinieiii i
Table5. List of Right lane markers in straight section 0f roadway.........cccooeviiiiiiiiiiiies e
Table 6. Listof Left lane markers in section of roadway with s-bend ahead...........cccoceovvveinnccinncien,
Table7. List of Right lane markers in section of roadway with s-bend ahead............cccooooiiniiniiinen
Table 8. List of Left lane markers in section ofroadway halfway through s-bend........

Table 9. ListofRightlane markers in section of roadway halfway through s-bend
Table 10. Frame rates Vs Vehicle speed

1 Introduction

Humans’usage of the motor vehicle for transport and freight is ever increasing. It seems
that the risks and level of accident rates associated with these traffic systems can only be
lessened by increasingly complex systems, which aid the human driver with the task or take
some of the task out of the human driver’s control, However, any semi or fully autonomous
vehicle must conform to the type ofroads currently in existence. Those roads are designed
to suit a human sensory system, mainly the vision sense. Therefore, it would seem that
computer vision type systems would be the largest contributor to autonomous vehicles in
the short to medium term future. The basic aim of this study is to investigate the use of
vision systems for use in the robotic control of automated vehicles. This is splitinto several
main sections. Firstly, a literature review has been carried out to explore the progression of
the use ofvision systems in automotive control applications over the last few decades.
Secondly, since vision systems have widely varying applications in this area, one particular
application, Lane Detection and Following, is considered in depth as regards development of
such a system, from image acquisition to control decisions. This entails the following:
e Capture of aroadway image.
 Detection and categorisation of lane markings within the image.
« Determination of a path that the vehicle should follow in order to traverse the lane
captured in the image.
e Controls needed to enable the vehicle to follow this path, i.e. steering angle and forward
motion required.
Thirdly, given the expense and impracticality of testing real vehicles on real life
lanes/roadways, investigation of a possible physical model system, which could be used to

test and compare future algorithms in a safe and controlled environment is investigated.

The main body ofwork in this project concerns the implementation and testing of lane
detection algorithms. The literature review looks at many different algorithms developed in
the past by other researchers. These algorithms may be complete systems for Lane
Detection or may concentrate on some small subsection of the Lane Detection and

Following problem. This work then picks individual subsection algorithms and implements

them. These individual implementations are then integrated to achieve an overall algorithm
for Lane Detection and Following.

As stated in the bullet points above this work must first implement a system, which captures
the roadway image. 'This is achieved by using a camera module connected to a DSP board
and the development of software to capture the image data from the camera and store it
within the DSP board memory. This data is stored in such a way that it can be analysed by
the algorithms that form the next steps of the Lane Detection and Following algorithm. The
next sections ofthe Lane Detection and Following problem are implemented on a PC
therefore, necessitating the retrieval of the image data from the DSP board memory and
transferring it to the PC on which the rest of the algorithms will be implemented. This
means firstly that the image must be in an appropriate file format (Windows Bitmap format
is chosen) and that the software implemented on the DSP board must assemble the image
data captured from the camera into this format. A Linux work station can be used to
communicate with the DSP board and via this the image file can be retrieved. From here it
is then transferred to aWindows PC where the rest of the algorithm is implemented.

The next algorithm, which must be carried out, is the detection and categorisation of lane
markings within the image. 'This is carried out on the bitmap image of the roadway and is
implemented using the C Programming language. The algorithms are based on some of the
algorithms researched in the Literature Review. However, the papers describing these
algorithms do not describe the in depth low level implementation of these algorithms and so
much of the implementation in this work is novel. Also the algorithm on which the lane
detection and categorisation is based works on images as they would be captured from a
camera. In this work the image first undergoes an Inverse Perspective Mapping to change
the image into a resemblance of a “Birds Eye” view of the road ahead and so must
implement a novel algorithm for Lane Detection and Categorisation for this new type of
image.

The next algorithm to be carried out is the determination ofa curve that follows the lane.
This will be implemented in the C programming language. Again the methods for carrying
out this are based on algorithms researched in the Literature Review. However, the exact
implementation is a novel approach. The algorithm entails grouping lane markings into

lanes and determining from these a set of target points up the centre of the lane, which it

would be desirable for the vehicle to hit. Next a curve is generated to either hit or come
close to hitting each of these points. It is this curve that the vehicle is expected to follow.
Once the curve mentioned above is known, the next algorithm developed is one which will
inform the vehicle’s control system what movements to make in order for a vehicle of
automobile type to traverse the curve. This algorithm is carried out in the Java programming
language in order to test anumber of different curves and vehicle attributes. The Java
programming language has particularly good graphics capability and this enables the results
of the algorithm tests to be viewed visually.

The investigation of a physical model system centres on the need for a safe, cost-effective
system that can be fitted into a relatively small amount of space. This system is not actually
implemented in this work though small parts of it are tested. A simple algorithm is
developed in which the wheels of a model vehicle react to a straight black piece of cardboard
being moved in front of a white background. Also sections ofa model roadway are built in
order to test the Lane Detection and Following algorithms. An image is captured of pieces
of model roadway by the camera module and this image is then passed up through the

system to the PC where the rest of the algorithms operate on the image.

The key achievements of this research follow:

Images are successfully captured by the camera module and transferred into the memory of
the DSP board.

The DSP board is successfully configured to communicate with a Host Linux workstation.
This allows for the DSP board to be controlled and files to be sent and received from the
Linux workstation to the DSP board.

Software is created for the DSP board that successfully analyses the image data to determine
the location of a black piece of cardboard against a white background. This software also
successfully sends appropriate control signals to a servo motor attached to the wheels of the
model vehicle, which resulted in the wheels of the vehicle turning to follow the movements
of the piece of black cardboard.

An Inverse Perspective Mapping algorithm is successfully implemented resulting in the
original image of the road being transformed into a birds eye view of the road. Some
important issues with the results of this algorithm are discovered and are included in the

section on results. These are also discussed in the discussion section.

An algorithm to detect and categorise Lane Markers is successfully implemented and tested
on sections of model roadway. An algorithm to group Lane Markers into lanes is also
successfully implemented and tested on sections of model roadway. While the results of
these tests are positive the test setis quite small and some suggestions are made in the
discussion and conclusion sections regarding improvements that could be made to the
algorithm to ensure better robustness for a wider range of images resulting from different
roadways.

An algorithm to determine a set of target points up the centre of the lane is successfully
implemented. Due to the results of the previous algorithm the number of these points is
dependent on the number of Lane Markers, which are successfully detected, to make up
each lane. The results from this are used to determine the possible speed of vehicle versus
the number ofimages processed per second. This could later be used to determine what
speed a vehicle would be permitted to do given the processing time required for the
algorithm to run.

An algorithm to generate a curve, which hit or came close to hitting each of the target points
generated in the previous algorithm, was successfully implemented. These algorithms took
two forms. In one form, the Java programming language was used and arbitrary points were
chosen. Curves were generated to hit or come close to hitting these target points. Two
types of curve were tested here, namely a cubic curve and a b-spline curve. The second form
of this algorithm used C-programming and involved the output bitmap from the previous
algorithm where target points were determined by the Lane Detection algorithm. The curves
in this case, once calculated, were superimposed on the bit map image. This then showed
the birds eye view of the roadway with the vehicle’s calculated trajectory along this roadway.
Finally an algorithm to calculate the steering and forward motion movements of the vehicle
in order for the vehicle to maintain position along the trajectory calculated was successfully
implemented. This algorithm was demonstrated using the Java programming language and
using the previous curve generator algorithm as its input, as well as specific variables related
to the vehicle such as wheelbase. This enabled the tester to visually witness the forward and

steering movements required for the vehicle to follow the curve.

The layout of this Thesis follows:

Chapter 1 Introduction: is an introduction to the research work undertaken in this project.

Chapter 2 Literature Review: is a review of literature related to this subject. In this chapter
various algorithms developed by others in this field are introduced and briefly explained.

Some of these algorithms are in fact used in the implementation of this work.

Chapter 3 Project Implementation and Development: gives an in depth explanation of how
the projectis executed. This includes development & implementation of algorithms as well
as any hardware systems, which had to be designed or configured in order to execute the

project.

Chapter 4 Results: lays out the results obtained when executing the project. This is split into
many sections, each applicable to a different part of projecti.e. different algorithms. In

appropriate places in this chapter, key/significant results are noted for later discussion.

Chapter 5 Discussion: is an in-depth discussion of the results obtained from executing the
project’s algorithms. Advantages and disadvantages of the individual algorithms are noted

here.

Chapter 6 Conclusions: draws conclusions based on the work carried out and also makes
recommendations about future work in this area, both towards improving the algorithms

implemented in this work and towards new algorithms that could be carried out in this area.

Chapter 7 Bibliography: outlines the sources used in researching this project.

Chapter 8 is the Appendices where various ancillary resources, which the reader may find

useful, are stored.

An important Note to the reader follows:

Many different algorithms are investigated and incorporated into the development of this
project. Due to the fact that each of these algorithms was developed independently of the
other algorithms use the same variable designations to represent different variables. The
reader should be mindful that particular variables referred to in any given section might only

be applicable to that section of the document.

2 Literature Review

2.1 Overview

O f all the systems with which people have to deal every day, road traffic systems are the
most complex and the most dangerous. World-wide, an estimated 1.2 million people are
killed in road crashes each year and as many as 50 million are injured. Projections indicate
that these figures will increase by about 65% over the next 20 years unless there is new
commitment to prevention [1].

There is also a summary of a number of studies contained in [1] which suggest that driver
fatigue caused by many factors including monotonous roads contributes significandy to high
accident rates. With human error being such a prevalent cause ofroad traffic accidents, it
seems the only way to reduce accidents is to use technology to increase the human driver’s
awareness of hazards or to remove control from the human driver all together.

The current state of the art in autonomous vehicles at the time of wridng of this Thesis lies
with those institutes and organisations taking partin the DARPA Urban Challenge, which is
due to run in November 2007. This challenge asks an autonomous vehicle to negotiate city
streets, merge with traffic, and avoid collisions with other vehicles. Operating at this level
requires large financial budgets and a large array of sensors. For example the team from
MIT have avehicle which contains three rooftop lasers which scan the road 75 times per
second and can detect objects at 50 yards to within a quarter of an inch. It also has three
lasers on the front bumper to detect stationary obstacles. Above the windshield and on the
hood are three radar sensors that can spot objects up to halfa mile away, and video cameras
in many locations around the vehicle to help pick out painted road lines and identify other
vehicles by colour. Analysing and making decisions based on information from this amount
of sensors needs a very large amount of computing power. In the case of the MIT vehicle it
contains a supercomputer containing 40 separate one-gigahertz processors. This computer
requires 4 kilowatts of power [2],

This thesis is only concerned with those systems that rely on computer vision through video
camera sensors. It explores some of the systems that have already been implemented in the
move towards autonomous vehicles and vehicles, which aid the driver in the advance
recognition of hazards. The main focus is on systems, which keep the car in the appropriate

lane autonomously or warn the human driver of lane departure.

2.2 Timeline
1970’s:

An Intelligent Vehicle System was developed in the mid 1970’s in Japan employing machine

vision for obstacle detection [3].

1986:
The PROMETHEUS (PROgraM for a European Traffic with the Highest Efficiency and

Unprecedented Safety) project was initiated in 1986 [4].

1987:

The UBM (University Munich) test vehicle for autonomous mobility and computer vision
VaMoRs demonstrated the capability of fully autonomous longitudinal and lateral vehicle
guidance by computer vision on a free stretch of Autobahn over more than 20km at speeds
up to 96 km/h (engine power limited). This result led to computer vision guidance being

included in Prometheus and inductive lateral guidance by buried wires being dropped [5].

Late 80°s: In Japan Mechanical Social Systems Foundation supporting Nissan and Fujitsu

started a project called PVS ‘Personal Vehicle System’ [3].

1994:

The primary phase of PROMETHEUS concluded and was reported on in Paris in October
[4]. The Final Demonstration of PROMETHEUS took place on the Al near Paris in
October 1994. Thousands of kilometres have been driven in normal three- lane traffic
including convoy driving and transition into this mode from free-lane driving at speeds up to

130km/h [5],

1995
Robotics Institute of Carnegie Mellon University (CMU) had its test vehicle NavLab_5 run
from East Coast Washington DC to the West Coast USA Los Angeles. It was equipped with

a simple vision system for recognition of the horizontal curvature of the road and the lateral

position in the lane. Longitudinal control was done by a human driver while lateral control
was performed fully autonomously. 98% of the total distance of 2,850 miles could be driven

without human intervention in steer angle control [5][10].

VaMP of UBM demonstrated a fully autonomous long distance drive (both lateral and
longitudinal) on the Autobahn over more than 1600 km from Munich to Odense, Denmark.

About 95% of the distance could be driven without intervention of the safety driver [5].

1997:

An Italian group also did a long distance test drive called ‘Mille Miglia in Automético’.

1999:

Chris Kreucher and Sridhar Lakshmanan [8] implemented a frequency domain based lane
detection algorithm. It was applied to a varied set of images. The images were obtained
under a variety of lighting and environmental conditions, shadowing and lane occlusion(s),
solid and dashed lines, etc. When compared to an intensity gradient type algorithm it
seemed to indicate that it had some advantages. It seemed especially good atnot being

distracted by strong non-lane edges in far range.

2000:

Juan Pable Gonzéalez and Umit Ozguner [7] implemented a Histogram-based segmentation
algorithm on an Intel PI11-450 MHz with a Matrox Meteor acquisition board. It took 20-
25ms to process each frame. The system was tested for two scenarios: initially in a road
simulator and then in more than 60 minutes of recorded scenes of highways and major

roads.

2002:

Otsuka, Y.; Muramatsu, S.; Takenaga, H.; Kobayashi, Y.; Monj, T., [9] implemented a lane
recognition algorithm which was able to find lane markers regardless of their types such as
white lines, raised pavement markers and botts dots (Cat’s eyes). The system was tested with
botts dots that were installed on freeways in North America. The algorithm was tested in

experiments at three times (noon, evening and night). All were above 96% recognition rate

with Noon being 98.2%. Causes of recognition errors were mainly due to the change in lane
width on freeway-junctions. The changing of lanes by the host car and the shadow of
preceding cars also caused recognition errors. The algorithms were evaluated on a 500 MHz
Pentium PC and image sizes were 640x480 pixels. Average processing time varied between

59ms and 95 ms.

2.3 Types of Control

While there have been a number of experiments done with full automatic control
[4]1[3][5][10] none seem robust enough yet to use in a general purpose vehicle on the road. It
is also likely that even when autonomous vehicles do become robust enough that they
exceed the safety of the human driver, that it may take much longer to convince the public
of this. With this in mind, many of the systems in design and use, are warning systems and

driver aids.

2.4 Types of Detection

The use of vision systems in vehicles has splitinto many sections. The most useful so far is
the detection of lane markings. Given the various types of lane markers, many different
algorithms have been developed. Indeed algorithms will continue to be developed, with the
end aim being a system which can detect all types of lane markings and reliably inform the
control system ofthe position of the vehicle in the lane and also of the change in the lane in
the forward direction e.g. bends etc.

As well as lane detection, detection of other vehicles has been investigated with both single
and multiple camera solutions. This falls into the bracket of collision avoidance and adaptive
cruise control (ACC). Radar is often used in conjunction with vision for this sort of
application.

Other obstacles for recognition have also been looked at, e.g. pedestrians.

Reading of traffic signs has also been investigated. However, no cost effective system has so

far made it to market and it is likely to be an optional extra when it does.

2.5 Algorithms

2.5.1 Methods of Lane Detection:

Given the problem of the amount of processing that is required to process images one of the
greatest challenges has been to reliably detect a lane marking without doing exhaustive

processing on the image.

2.5.1.1 Edge based methods

One simple algorithm, which is presented in [6], is described below.

The image of the road scene is first obtained via a vehicle-mounted camera. The image is
then searched along a pre-determined number of rows placed vertically to the heading of the
vehicle. Each row is splitinto a right and left section. The right side is to search for the
right hand road lane boundary and correspondingly the left side of the row is to search for
the left road lane boundary. The crossing point of the search row and the lane boundary
becomes a sampled pointwhich is then recorded and used along with the other sampled
points to determine a correct course for the vehicle. In [6] it is assumed that the road is flat
allowing an easy mapping correspondence of the physical plane to the image plane. To
reduce detection time even further the entire search rows are not searched; rather a sub-zone
of each search row is searched. The appropriate positioning ofeach search row can be
predicted with the aid of the road edge detection in the previous control period (image).

If however, there is no previous road edge detection, such as is the case when the vehicle is
at initial start-up, then the search zone is centred on the midpoint between the centre of the
image horizontally and the edge of the image on each side, i.e. the centre of the left search
zone should be VA the image width in from the left hand side of the image and the centre of
the right search zone should be Vithe image width in from the right hand side of the image.

This is shown in Figure 1.

10

Figure 1. Search zones at initial start-up

Once the search zones are determined the lane boundary is found as discussed below.
The following second differential and smoothing filter is applied to the search zone. The
coefficients of this filter are.

1 1 -1 2 2 2 -1 -1 -1
Applying this filter leads to the edges at the road boundaries between lane markings and
roads being emphasised. After applying this operator the gradients at the zero crossing
points can be found, as can the maximum and minimum points. The two zero crossing
points should correspond to the edges of a lane. If the distance between these two points is
appropriate and its absolute value is large enough, then the two points are regarded as a road
lane edge and a sample point (midpoint of the segment connecting these points) is obtained.
If the above condition is not satisfied then the sample pointis not obtained.
Once all the sample points have been obtained the next job is to match up left and right
sample points with each other. Each left point and right point on a given search row are
matched and a point midway between the two is calculated. This results in a set of points
going down the centre ofthe lane. By fitting a cubic curve to these points down the centre

ofthe lane then a final path that the vehicle should take is obtained.

11

2.5.1.2 Histogram based methods

A method based on Histogram segmentation is given in [7]. A Description based on [7]
follows.

It is assumed that the only object present in the lower scan lines of the image is the road.
For most acceptable road conditions, the road variations in such a small section are small
enough to assume that the histogram of the first bands is going to be unimodal and in some
cases even close to Gaussian. At this point the mean value of the grey level distribution of
the road, as well as the maximum and minimum value of such a distribution are calculated.
Then values above the maximum are assumed to be lane markers and values below the
minimum are assumed to be objects (e.g. cars etc. based on the fact that the obstacles,
especially vehicles, produce shadows which are darker than the road).

As the algorithm progresses up the image, objects other than the road will appear and this
will change the distribution of the histogram. Bands are processed until the vanishing point
is passed, which is calculated from previous frames or from an initial guess e.g. half the
screen. At this point the only interestis in finding the lane markers. So each band is
thresholded with the maximum value of the road histogram. The resulting images are
merged to get a black and white image containing most of the lane markers and some other
objects in the scene. So the original image is segmented into three regions, namely Road,
Lane-Marker candidates and Obstacle candidates.

The number of floating point operations executed by the algorithm up to this pointis
approximately 6 FLOPS/pixel, where most edge detectors would require between 30 and
300 FLOPS/pixel to obtain a similar result.

The most relevant features of the lane candidates need to be extracted at this stage and
analysed at a higher level. Several characteristics believed to be relevant to filter out non-lane
marker objects are calculated.

A Least Squares fitis applied to a straight line of each object in the image (lane candidates).
From here, the estimated inclination, intersect and the correlation coefficient are calculated.
These are calculated from the following:

e The Average angle formed by each pointin the object is calculated as is

e The centroid of the object.

e The size of the object.

12

e The maximum width of the object is also calculated, as is the co-ordinate at which this
maximum is located.
At this point the classification of the objects must take place to determine if an objectis a

lane marker or not. This process is divided in two.

2.5.1.2.1 Unary Classification.
First a confidence measurement is defined for each object. High positive measurement

indicates a likely lane marker. Low positive measurement indicates the possibility of a lane

marker only if other evidence corroborates this e.g. position of other high measurement lane

markers or some other prior knowledge. Negative value measurement indicates non-lane

marker objects and these are rejected at this stage. This classification is done in

correspondence with the features extracted previously and some derived features such as:

e Maximum angle spanned by the object with respect to the co-ordinate of the vanishing
point and

 Weighted size of the object, which is equivalent to the size, weighted to the inverse of

the distance iny (vertical axis) to the vanishing point.

2.5.1.2.2 Relational Classification
Here relational information for groups of objects is analysed. In order to do this “lane

objects” are defined i.e. groups of objects that are likely to be on the same lane marker
structure (continuous or dashed line or other combination). Lane objects have the following
properties:

» Base angle: the angle at which the first object on the “lane object” was found.

e Last angle: the angle at which the last object was found.

e Size: while not specified in [7], this is assumed to be size in pixels.

 Weighted size: the sum of the sizes, weighted by a function of the status flag.

At each pointwhether or not an object belongs to one “lane object” based on confidence
measurement is evaluated. A large value of confidence indicates a highly likely lane marker.
Therefore, either they are grouped together (orientations similar) or a new “lane object” is
started based on the current object. A small value of confidence indicates that an object

could be part or not of a lane depending on its position.

13

2.5.1.3 Frequency Domain approach

A frequency domain approach for detecting lane markers in images acquired from a forward-
looking vehicle mounted camera is given in [8]. The method is based on a novel set of
frequency domain features that capture relevant information concerning the strength and
orientation of spatial edges. The frequency domain features are combined with a deformable
template that is determined previously, in order to detect the lane markers of interest. The
algorithm seems to detect lane markers remarkably well for a very large and varied collection

ofroadway images.

The method used in [8] can be outlined as follows:

An image is broken up into 8x8 pixel blocks. For each block, a frequency-domain-based
feature vector is computed. This feature vector reflects the amount of “diagonally dominant
edge energy” that is contained in that 8x8 block. The block feature vectors are then used in
combination with a deformable template shape model of the desired lane markers. This
combination is accomplished in a Bayesian setting, where the deformable template model
plays the role of a prior probability and the feature vectors are used to compute a likelihood
probability. The lane detection problem is reduced to finding the global maximum of a four-
dimensional posterior probability density function and an exhaustive search is employed to

find the global maximum.

2.5.1.3.1 Frequency Domain Features
An examination of roadway scenes obtained from a forward-looking vehicle-mounted

camera easily reveals that lane markers tend to have “Diagonally dominant” orientations in
the image plane due to the perspective transformation inherent in the ground plane imaging
process, whereas the extraneous edges have no such preferred orientations. [8] finds the
frequency domain to be a convenient method to discriminate between edges that are

diagonally dominant and those that are randomly oriented.

The salient points of the method are as follows:

The image is divided into 8x8 blocks and the DCT of these is taken

14

There are 12 of the DCT basis functions that are most important. These are most
important, as they tend to represent the diagonally dominant edges of lanes. For each
original image the corresponding feature image is obtained by summing the squares ofits 12

special DCT decompositions.

2.5.1.3.2 Deformable Template.
The algorithm presented in [8] uses a global shape model to predict the manner in which

lane markers appear in images. As is commonly done, itis also assumed that lane markers are

circular arcs on a flat ground plane.

2.5.1.4 Dealing with multiple types of lane markers.
In [9] the focus is on developing a system for recognition of multiple types of Lane Markers

using local Edge detection. [9] utilises the characteristic that lane markers converge to the
focus of expansion and the lane markers have edge points towards the focus of expansion.
The algorithm uses only the edge points whose direction is towards the focus of expansion.
Edge direction is computed by only near-neighbour elements rather than continuous line
segments in order to spot lane markers even if their shapes are not continuous lines. In case
of Raised Pavement Markers (RPMs), experimental results show that the average processing
time is under 100ms and recognition rate is over 96%. The MLR (Multitype Lane marker
Recognition) algorithm is robust for various noises such as from preceding vehicles,

shadows of trees, road signs, etc.

2.5.1.4.1 Outline ofapproach.
The edge-based algorithm is used because it is robust to changes in brightness. Therefore, it

detects the edge points of lane boundaries between lane markers and the road surface and

analyses the distribution of edge points in order to calculate the directions of lane markers.

2.5.1.4.2 Two problems to be solvedfor RPMs
Edge Point Detection: - RPMs are thin in comparison with white lines so they give a smaller

contrast when compared with white lines

15

Lane Marker Recognition: - Edge points of RPMs are discontinuous because the RPMs are

small circles or squares. It is difficult to analyse this because of discontinuity.

2.5.1.4.3 Edge Point Detection.
One goal for the MLR algorithm is that it can detect lane markers even if there is only a litde

difference in brightness of lane boundaries. To prevent lost lane markers, the threshold for

detecting edge points should be lowered.

2.5.1.4.4 Lane Marker Recognition.
To recognise lane markers, the distribution of edge points is analysed.

2.5.1.4.5 Implementation

2.5.1.45.1 Edge Detection
The algorithm extracts edges from the image and each edge point contains position and

angle. To calculate the angle of each edge point, the zero-crossing method is used. The zero
crossing method detects only the minimum necessary number of edge points to recognise
lane markers as the method detects only the area ofthe maximum difference in brightness.
Zero crossing can calculate information on edge points with sub-pixel accuracy. This is

advantageous when dealing with small round shapes like RPMs.

2.5.1.4.5.2 Noise Elimination.
Because edge points are detected under low threshold conditions, most edge points are

noise. The feature that lane markers are in the direction ofthe FOE (Field of Expansion) is
used in order to eliminate noise. In this process the edge points of the preceding vehicle are
eliminated because most edge points of the preceding vehicle are not towards the FOE,
because the direction ofthe edge points are on the horizon or vertical. The edge points of
other road noises are eliminated for the same reason. However, this assumption cannot be
applied to a curved road, because the directions of the lane markers change according to
their positions along the curve. Hence all distant edge points, which are close to the FOE,
are eliminated even if their angles correspond to the direction ofthe FOE. The lane marker
can be regarded as a straight line in the area near the host vehicle, so it is possible to detect

the lane markers regardless of road curvature.

16

2.5.1.45.3 Histogram Analysis.
W hen all the edges in the scene are captured a Histogram analysis of the angles of the edges

is performed. Peaks should occur at the angle of the road edges heading towards the FOE.

Furthermore the histogram exhibits a significant double peak structure, where the two peaks
are at about the left and right lane markers. Then lane width can also be referred to in order
to exclude noise peaks, such as neighbouring lane markers, preceding cars, slip-scars (skid

marks) etc. Furthermore a weightis given to each edge point

25.1.45.4 Lane Boundaries Detection.
If two lane markers are found, the algorithm implements a Hough Transform to detect the

lane boundaries by using edge points which have the same angle.

251455 FOE update.
The FOE position is updated as the intersection point of the two lane boundaries. The FOE

position is used for noise elimination.

2.5.1.5 Ralph Vision System

Ralph stands for (Rapidly adapting lateral position handler) and is a vision system developed
joindy by Carnegie Mellon University and AssistWare Technology Inc. Ralph decomposes
vehicle steering into three steps: sampling the image, determining the road curvature and

assessing the lateral offset of the vehicle relative to the lane centre [10].

2.5.1.5.1 Sampling the image.
Many parts of the image taken by the camera mounted next to the rear-view mirror are not

relevant to the driving task (e.g. parts depicting the sky or showing the vehicle dashboard).
Ralph eliminates these parts and only processes the portions of the scene inside a designated
trapezoid (the trapezoid suits the perspective effect of the road ahead). Although the upper
and lower boundaries of the trapezoid vary with vehicle velocity (moving further ahead of
the vehicle, toward the top of the image, as the vehicle increases speed) they are typically 20
to 70 meters ahead of the vehicle, respectively. The second and perhaps more important
aspect of the trapezoid’s shape is its horizontal extent. It is configured so that its width on
the ground plane is identical at each row of the image. The horizontal distance that each
row of the trapezoid encompasses, is approximately 7 meters, about twice the width of a

typical lane. The trapezoid is selectively sampled according to the strategy that changes it

17

from a trapezoidal perspective image to a rectangular birds-eye view. This sampling process

creates a low-resolution (30x32 pixels) image where important features such as lane markings
(which converge toward the top of the original image) appear parallel (birds eye view). This

image re-sampling is a simple geometric transformation and requires no explicit feature

detection.

2.5.1.5.2 Curvature calculation
Transforming the image of the road features into a bird's eye view is crucial to the curvature

calculation step of Ralph processing. To determine the curvature of the road ahead, Ralph
hypothesises a possible curvature, subtracts it from the parallelised low-resolution image and
tests to see how well the hypothesised curvature has “straightened” the lane markings in the
image. The hypothesis with the closest similarity to the actual image will cause the
straightest result.

How straight is the result? This is ascertained by vertically summing the columns of the
resulting transformed image to create a scan-line intensity profile. When the visible image
features are correctly straightened, sharp discontinuities between adjacent columns occur in
the image. In contrast, when the hypothesised curvature has shifted the image features too
much or too little, there are smooth transitions between adjacent columns of the scan-line
intensity profile. By summing the maximum absolute differences between intensities of
adjacent columns in the scan-line intensity profile, Ralph can quantify this property to
determine the curvature hypothesis that best straightens the image features.

An important attribute of this technique for determining road curvature is that it is entirely
independent of the particular features presentin the image. As long as visible features run
parallel to the road, this technique exploits them to determine road curvature. Those
features need not be at any particular position relative to the road and they need not have

distinct boundaries.

2.5.1.5.3 Lateral offset calculation
Next, Ralph determines the vehicle’s lateral position relative to the lane centre. It uses a

template matching approach on the scan-line intensity profile generated in the curvature
estimation step. The scan-line intensity profile is a one-dimensional representation of the

road’s appearance as seen from the vehicle’s current lateral position. By comparing this

18

current appearance with the appearance of a template created when the vehicle was centred

in the lane, Ralph can estimate the vehicle’s current lateral offset.

2.5.1.6 Multiple Cues method

A cue in this case is any item in aroad scene that could be used to detect the lane ahead. A
common characteristic of many lane detection and following systems is that they rely on only
one or two cues for lane detection, that are used regardless of how well they are performing.
They do not make any attempt to track the road as the conditions change from highly
structured highways to semi-structured lanes to unstructured off-road conditions.

In [11] a method which uses multiple cues is considered. It is based on a Distillation
Algorithm that attempts to dynamically allocate computational resources over a suite of cues
to robustly track the road in a variety of situations. The system also uses particle filtering,
which is a search method that represents the continuous posterior density with a set of
discrete particles, or hypothesis. These particles represent the target location and are moved
to positions of high probability to concentrate computational power in those areas of

interest.

2.5.1.6.1 Distillation Algorithm.
This algorithm is based on a suite of cues, which are calculated from image and state

information and combined to provide evidence strengthening or attenuating the beliefin
each hypothesis of the particle filter. Each cue’s usage is evaluated over time and those cues
that are performing best are distilled to a select set that can then be given the largest share of
the processing time. The other cues that are not performing as well are still processed but
are not given priority. These cues are not used for decision making as they are not processed
fast enough but their results are monitored to see what their contribution would be to the
overall tracking. Ifitis found that one of these cues over time has become more useful than
one of those that is being processed faster, then that cue will have its priority upped so that it
is given more processing power overall and is included in the tracking. In this way, as road

structures change, the type of tracking used changes to a more appropriate type.

19

25.1.6.1.1 Types of cues
Each cue is developed to work independendy from the others and is customised to perform

better in different situations. Individually they would perform unsatisfactorily, but combined
they produce a robust solution to lane tracking.

Two different classes of cues are used in the lane tracker, namely Image based cues and
State based cues.

Image based cues:

Lane Marker Cue: suited to detecting roads that have lane markings.

Road Edge Cue: suited to detecting roads with lane markings or defined edges.

Road Colour Cue: suited to any roads that have a different colour than their surroundings.
Non Road Colour Cue: suited to evaluating non-road regions in the road colour probability
map.

State based cues:

Road Width Cue: suitable in multi-lane roads where it is possible for the other cues to detect
two or more lanes as one.

Elastic Lane Cue: is used to move objects towards the lane that the vehicle is in. The need
for this cue arose when it was discovered that the lane tracking system often switched
between lanes when driving on a multilane highway. This cue was introduced to favour

particles that describe lanes that the vehicle was in.

2.5.1.6.2 Experimental results.
This method has proved very effective in its proficiency for target detection, the particle

filter moves seamlessly from detection to tracking without any additional computation
required for the detection phase. The lane tracker was tested in several different scenarios
including highway driving with light traffic, outer city driving with high curvature roads and
inner city driving with moderate levels of traffic. Cue fusion was found to dramatically
increase the robustness of the algorithm due to the variety of conditions the cues were suited
to. The initial set of cues were limited to the image based cues (Lane Marker, Road Edge,
Road Colour and Non-road Colour Cues), which contained no prior information except for
a transformation between a particle and its road model in the image space. Using the initial
cues the particle filter often converged to lane segments that the vehicle was not in or to the

whole road instead of a single lane. This was due to the lane markings and edges of the road

20

having stronger signals in the observations than the lane markings separating the lanes.
Adding the two heuristic state based cues (Road Width Cue and Elastic Lane Cue) to
strengthen hypotheses that contain the vehicle and have a road width close to the average

was found to be a satisfactory solution to this problem.

2.5.1.7 Lane recognition by detecting Reflection Posts.

On country roads in some countries (Germany in the case of [12]) reflection posts occur as
additional features, indicating the road course due to their close proximity to the road edge
and the ability to see them from a large distance. Since human drivers would use these as an
extra indicator for lane recognition it is advisable to also include them in vision/robotic
based systems to improve robustness of systems on country roads.

Reflection posts have accurately defined dimensions and appearances. The whole of the
reflection post, with its white and black faces is visible in daylight. However, only the small
reflectors are visible at night. In [12] the authors concentrate on the detection of reflection
posts in daylight.

Three different computer vision methods are investigated as to their capability to locate
reflection posts in grey-scale images. These are as follows:

A correlation based method using a matched filter.

An edge based method.

A method that searches for typical patterns of reflection posts in horizontally and vertically

integrated edge images.

2.5.1.7.1 Correlation Method
The first method (correlation) is a matched filter method, which correlates the captured

image with a matrix, which represents the white and black regions of a reflection post. This
method is based on the simple structure of the reflection posts. 2D correlation can be very
computationally intensive so to counter this the matrix is separated into a vertical and
horizontal search to reduce the computational complexity. A local peak in the result of this
operation represents a potential reflection post.

The advantages of this algorithm are that it is relatively fast in computation terms and is

suitable for detection of partly occluded objects. Disadvantages of this algorithm are that

21

light spots in the camera image also result in local peaks of the filter results and the filter
results blur around the exact position of the reflection posts resulting in disturbances in the
tracking process. Also because the size of objects in the image must be known in advance
for this method to work, itis of limited use. However, it is suggested that an iterative
application of the matched filter for searching diverse sizes of reflection posts is one solution

to make the method more usable.

2.5.1.7.2 Edge Extraction Method.
An edge extraction algorithm can also be applied to the reflection posts problem as the

bright reflection posts can be separated from the typically dark background. The first step in
this detection algorithm is to generate two lists of vectors, which represent the horizontal
upward and downward edges in the image. In the second step, groups of edges, that match
the characteristic parallel edges of reflection posts, are combined. This method allows the
calculation of the size and position of the detected reflection post in the image precisely. By
combining the vectors it is possible to detect reflection posts standing at any angle beside the
road. However, unlike the correlation algorithm above the recognition of partly occluded

reflection posts is difficult.

2.5.1.7.3 Verticaland Horizontal Integration Method
The third method is based on vertical and horizontal integration of image regions. In the

case of an ideal vertical reflection post the vertical integration ofthe edge image would result
in perfect straight-line peaks. However, in a situation where the reflection post is slightly
skewed the peaks would be blurred but still visible (see Figure 2). The reflection post can
be detected and horizontally located by searching the characteristic group of peaks in the
integral. The horizontal integral is then applied to a limited area of the image to determine
the vertical position of the reflection post in the image. Similar to reflection posts that are

notin correct upright position, partial occlusions decrease the peaks in the integrals.

22

Vertical
iIntegration

Horizontal
-Integration

Figure 2. Vertical and Horizontal integration

W ith this method it is difficult to detect reflection posts at larger distances. The method is
however, suitable for tracking die objects in the image sequences because these features can

be found again easily.

2.5.1.8 Lane recognition using Hough transform.
In [13] a system using a Hough transform to fit extracted numerical white line data to a

straight line for the lane boundary is used. The algorithm for the lane recognition includes
processes for the threshold setting, the white line extraction, the lane recognition and the

prediction of the lane boundary when the lane recognition fails.

2.5.1.8.1 Threshold setting.
First, nine scanning lines, with limited length are chosen for each side, left and right and the

maximum value of the brightness signal along each scanning line is detected. The length of
each scanning line is 80 pixels long and the centre of each line corresponds to the location of

the recognised lane for the previous image data (see Figure 3).

23

Figure 3. Scan lines

Next, the average value of those nine maximum values is calculated for each side and they
are called Plvar for the left and Prver for the right. The threshold value is calculated as a
weighted average of PI” or Prvarand the average brightness Pvarover the limited scanning
lines. This enables evaluation of the brightness of the white line relative to the average

brightness of the road surface.

2.5.1.8.2 Extraction ofoutline ofthe white tine.

The outline of the white line is determined by using the threshold value. Firsta
parallelogram shaped area, 80 pixels wide and its height corresponding to 150 scanning lines

across is cut for each side (see Figure 4).

24

The centre of the width corresponds to the recognised white line in the previous image
frame. The brightness data is then compared to the threshold value along each scanning line
from the inner end to the outer end. This is continued along each scanning line until the
first pixel that is brighter than the threshold is found or the compared pixel reaches the outer
end of the limited scanning line and then moves to the next scanning line. Finally the outline
of the white line is obtained as the location of 150 pixels for each side, 300 altogether at

most.

2.5.1.8.3 Straight-linefitting.
The numerical white line data is fitted to a straight line by using a Hough Transform. The

Hough transform is a projection of a pointin the x-y plane into a curve in the p —Q plane

as given in the following equation.

p =X-C0S6+Yyesin0 (1)

The characteristic of the transform is that any of the points on the same straight line in the
x-y plane are projected into the curves in p —Q plane, which cross each other at the same

point, the unique point. This point represents the straight line in the x-y plane and this is

used to recognise the white line in the x-y plane. Here the distribution of crossing points are

25

obtained instead of a unique point as the recognised numerical white line data are not exactly
on a straight line. Thus the densest pointis chosen as the unique point. Then the straight
line in the x-y plane can be determined. Disadvantages of this method are that it is time
consuming and noise also causes problems. However, these problems can be solved when
the calculated area in the p —6 plane is restricted to a minimum as follows. First the origin
of the co-ordinate system in the road image is set at the centre ofthe lower side of the image
with the x-axis along the horizontal and the y-axis along the vertical. In general an image of
a roadway will have the left line appearing in the left half of the image and the right line
appearing in the right side of the image. So the 0 domain for the left line can be limited to
[90°, 180°] and [0° 90°] for the right. The Hough transform is applied to only this small area
and the new unique pointis found quickly. This is possible if the sampling rate is high
enough to keep the change ofthe location of the unique pointin the limited rectangular area.
The algorithm is effective in reducing the processing time significantly and also avoids the

interference of data between the two lines on either side of the lane.

2.5.2 Inverse Perspective Mapping.

In using a camera to sense the roadway, a major issue that must be dealt with is the
perspective effect caused when mapping a 3D scene onto a 2D image. In

[10] [14][15] [16][17][18][19] this problem has been given a lot of consideration. Due to the
perspective effect, the road markings appear to vary their width and length according to their
distance from the camera.

The model roadway shown in Figure 5 is a straight piece of road with each ofthe road

markings being the same size and distance apart. The two sets of lane markers are parallel.

26

Figure 5. Short straight-line road section.

As can be seen from the sets of road markings that appear in this 2D representation of the
roadway, the right and left lane markers do not appear to be in parallel, rather they seem to
converge at some vanishing pointin the distance. The perspective effect associates different
meanings to different image pixels, depending on their position in the image [14]. A Pixelin
the lower part of the image represents a much smaller physical area than a pixel in the upper
part of the image. This can be seen in Figure 6.

Part (b) shows both a plan and side view of the camera and roadway. The camera in this
situation is at a downward angle of 30° and the angular aperture of the camera is 60°. From
the side view lines can be seen extending out from the camera at 10° intervals over the 60° of
the angular aperture. The distance each of these extends along the x-axis varies. The same
can be seen in the plan view. Again lines can be seen extending out from the camera at 10°
intervals over the 60° of the angular aperture.

Now looking at the boundary contained between the bottom 10° of the horizontal direction
compared with the boundary contained with the top 10° it can be seen that these two
boundaries contain vastly different areas of the 3D scene. However, each ofthese areas will
cover the same amount of pixels in the captured image. Three different sectors are shaded
outin the plan view of the 3D scene and can be seen to cover varying areas, but each of

these areas are shown again in part (a) of the diagram and are all of the same area.

27

Figure 6. Perspective effect, (a) shows 36 equal sectors of a captured image, (b) shows the varying
areas in the real world scene that go to making up each of those sectors.

This can make the detection oflane markings and the judgement of distances more complex
to ascertain. This inevitably leads to more processing power being required to make

decisions based on the image data.

2.5.2.1 Methods of counteracting Perspective effect.

One method for removing the perspective effectis put forward in [10] and is briefly
explained in section 2.5.1.5.1. [14][15][16][17][18] [19] also suggest a mechanism to remove
this perspective effect, with the result being a birds eye view (plan view) of the roadway.
Having the birds eye view means that each pixel represents the same portion of the road,
allowing homogeneous distribution of the information among all pixels. This should lead to
a less complex method of detecting lane markers and determining a target trajectory for the
autonomous vehicle to traverse. Less complexity may lead to less processing power being
required to implement the algorithm. If this is the case, then it must be considered whether
the simpler algorithm added to the processing required to perform the removal of the
perspective effect, is in total, less than the processing required by the more complex
algorithm for detection of lane markings and trajectory planing based on the original
captured image. This is suggested by [14], which states: “The removal of the perspective
effect allows to detect road markings through an extremely simple and fast morphological

processing that can be efficiently implemented on massively parallel SIMD architectures.”

28

The mathematical formula given by [14] to remove the perspective effect is as follows:

L hsin y(x, y,0)

tan d -{d-a) (a
_ y-
U(X,y,O) - 2a
n—1
taiD 1 y'o: .
V(X,y,0) = m V'Za ©)
n-1

The important parameters are as follows:
The co-ordinates of the real world scene are (X, y, z), the birds eye (plan view) will show the
road as a 2D (x,y) space where itis assumed that z = 0;

The x-axis is parallel to the heading of the vehicle. The y-axis is perpendicular to this.

-Y -axis

ol —+X-axis

+Y -axis

Figure 7. Co-ordinate space of the real world scene in plan view.

uand vare the axes of the captured image, which contains the perspective effect that must

be undone.

yis the angle between the optical axis of the camera and the heading of the vehicle.

29

-Y -axis

\y +X-axis

+Y -axis

Figure 8. The y angle.

9 is the angle between the horizontal, parallel to the (X, y) plane and the optical axis of the

camera.

Figure9. The 9 angle and the h (height) variable.

The larger this angle, the closer to the vehicle the camera will be able to view. This would be
advantageous for close quarter manoeuvring and sharp curves. However, this would lead to
less of the road ahead being visible, which may require the vehicle to move at slower speeds
as the control system will have much shorter space and therefore, shorter time to react to
changing circumstances.

his the height of the camera on the z-axis, with z=0 being the level of the (x, y) plane on

which the road is assumed to be. Itisimportantto note that the units of height are in pixels.

30

This is best explained with an example. If lane markings are 1 meter in length and the height
of the camera is 1.5 meters, then for example if h in the algorithm is set to 30 pixels each
lane marking should be 20 pixels long. Changing the hvalue to 60 would cause the lane
markings to appear to be 40 pixels long etc.

2a is the angular aperture of the camera.

Resolution of the camera is given as nx nwhere nis the number of pixels horizontally and
vertically on the image sensor.

d is the distance along the y-axis that the camera is placed. This is important for
determining where the vehicle is positioned in the lane between the lane markers. As with h
above, dis measured in pixels in the algorithm and should be set to match hin a ratio of the

real world situation.

31

Y -axis

=

Vehicle +X-axis

Figure 11. The |l and d variables.

l'is the point on the x-axis where the camera lens is positioned. If the camera is assumed to
be positioned at the origin (0,0), then both /and dwill be zero. As with hand dabove, |is

measured in pixels.

2.5.3 Lane Trajectory Planning and Steering algorithms
After determining where the lane markers and/ or the lane are positioned, the next action is

to determine how the vehicle should move in order to follow the lane. Assuming a two
dimensional flat plane for the vehicle to drive on, this will usually take the form of starting
with a number of target points which the vehicle should hit while moving from its current
position to final destination. In order to get the vehicle to hit these points a curve should
first be fitted to hit or come close to each of these points and the final task is to determine
how the vehicle can follow this curve. This entails taking into account the kinematics of
automobile type vehicles, in particular as the vehicle changes its position the steering angle
required to maintain the vehicle’s position along the curve that has been generated from the

target points.

2.5.3.1 Trajectory planing by cubic curve

In [6] such a target point following algorithm is described. The dynamics of a vehicle of

automobile type are described as follows:

X —vcos 0 W
y =vsin 9 (5)

32

Where (x, y) is the position of the vehicle, (is the heading of the vehicle, vis the speed of
the vehicle, QGs the steering angle and /is the wheelbase of the vehicle. The relations hold
when the vehicle drives without slip. Let (Xg, Y and 0Obe the current position and heading
respectively of the vehicle in the fixed reference frame, the X-Y system. Also let (Xt, Y,) be

the target point and 0, be the expected heading of the vehicle at the target point as shown in

Figure 12.

In the new co-ordinate system, the x-y system (see Figure 12), where the position of the
vehicle is the origin and its heading is zero, let (x,, y,) be the current target point and 0, be
the heading (assume that 9X~ +7T/2). The headings are assumed to be tangential angles of a

curve going through the origin and the targetpoint at these points. Then, a cubic curve that

goes through the two points, (0,0) and (xI3y,), is uniquely defined as follows:

y =axs+ bx2 A

W here

Then the steering control angle at the origin in the x-y system that leads the vehicle along the

cubic curve to hit the point (x,, y,), with the heading Olis given as follows:
« = tan-1(2zi>) (10)
W here /is the wheelbase of the vehicle. Wheelbase is the distance from the front axle to the

back axle of the vehicle.

2.5.3.2 Trajectory planning by template matching.

In [10] a method of trajectory planning via template matching is described. There is a brief

description provided in section 2.5.1.5.2.

2.6 Conclusions of the Literature Review.
From the literature review two things become apparent. Firstly the number of types of

objects within a road scene that can be used to determine the trajectory of the lane.

Secondly the varying methods that have been employed to analyse road scene images to
determine the whereabouts of these objects that will help determine the trajectory of the lane
ahead.

O f the objects that can be used to detect a lane in a roadway scene it would seem that lane
markings, which are usually white or yellow painted markings, are the most prevalent
throughout the world and therefore, deserve the most attention. While all roads have edges,
this is not necessarily the best determinant ofwhere the lane that applies to the vehicle is
going. The other objects such as RPMs and Reflection posts may be a good backup system
to increase the robustness of a more general system but would only be useful where these
objects are prevalent.

As mentioned above there are a large number of ways of analysing images of roadways.

Edge detection is popular but appears to be computationally intensive. The Histogram
method described in section 2.5.1.2 claims a much less computationally intensive method
than most edge detection methods. The frequency domain method in section 2.5.1.3 seems
quite a novel approach to the problem. Not much is said about its performance from a
processing standpoint but it is claimed to work well with a very large and varied collection of

roadway images. This seems to be the most important attribute for the systems described in

34

sections 2.5.1.4 and 2.5.1.6 where dealing with multiple types of lane markers is considered.
Clearly this would be computationally intensive but is likely to be the way any viable system
for use in a real world situation would need to be implemented. However, a system like this
may well have to wait for powerful enough hardware at a price acceptable to the market
before it becomes viable.

Finally the Hough transform method described in section 2.5.1.8 seems to adopt a similar
approach to the frequency domain method though the transforms are different. This is
however, likely to be as computationally intensive and this is suggested although it does

describe ways to minimise this.

This work requires the implementation of a system from road scene image capture to
determination of the controls for the vehicle to correctly traverse the road scene. For this
reason some of the algorithms from this literature review are entirely or pardally used to
implement this complete system.

In order to keep build complexity of the model road system low for this project only white
lane marking systems are considered and this rules out the systems mentioned previously
that used other types of objects, such as road edges, reflection posts or raised pavement
markers.

At some pointin every system the trajectory must be mapped to the real world plane that the
vehicle is traversing. The camera does not show this plane exactly but instead shows a
distorted view ofit due to the perspective effect. Given that at some point this mapping
must be carried outitwould seem a high priority to be implemented as part of the work of
this project. Many algorithms may well determine the few target points that define the
trajectory for the car to follow using the perspective distorted image and then map these few
to areal world plane thus requiring fewer operations. However, this may well result in
detection of lane markings and determination of target points becoming more difficult (both
in terms of complexity and processing power) than if the image was already displayed as a
birds eye view before the detection of lane markings commences.

From the point of view of this thesis the inverse perspective mapping is investigated
significantly as it is a sub-algorithm that can be very useful to the implementation and

development of future lane detection and following algorithms.

35

A number of methods for the actual detection of lane markings and determination of the
lane are outlined in the literature review and any of these would suffice for this work.
However, in order to add a certain amount of novelty to the system the algorithm that is
implemented for this part is based on that outlined in the histogram method from section
2.5.1.2. This is a somewhat novel approach as the ideas put forward in this algorithm are
based on the road scene image that has not had the perspective effect corrected. Also [7]
which describes this method doesn’t detail in depth the implementation details of how the
algorithm works and so in implementing this system some novel solutions are devised.

Once the lane markers that make up the lane have been determined, a set of target points for
the car to hit needs to be determined. In section 2.5.1.1 a relatively simple system for
carrying out this operation is described. However, this system is used along with edge
detection to determine the lane edges, whereas in this project the lane’s edges have already
been determined earlier. For this reason parts of that algorithm described in section 2.5.1.1
are used but modified to suit the information available from the previous sections
implemented in this work.

Once target points have been decided, a curve which links these points is calculated. In
section 2.5.3.1 a mathematical formula is outlined for a curve that a vehicle can follow,
which can join two points. Implementation and testing is carried out on this system and also
on one other type of curve not mentioned in the literature review, namely the b-spline curve.
Having achieved a curve for the vehicle to follow, the final task is to determine the control
signals to be given to the vehicle for it to traverse this curve. Section 2.5.3.1 outlines the
links between the curve and the steering angles and forward motion needed to traverse a

curve. This is the system implemented in this work for that purpose.

36

3 Project Implementation and Development.

3.1 Introduction.
This chapter describes the implementation and development that took place in this project.

This includes the ideas for devising a future complete model system and also those parts of
the model system that are implemented as part of this work. It also describes in-depth the
different sub algorithms that are implemented towards an overall system that would
encompass all necessary operations from image acquisition to the generation of appropriate
control signals for a future model vehicle.

The structure of the chapteris as follows:

A model system is proposed and described. Some small parts of the model system are
implemented and these are described.

The implementation of Inverse Perspective algorithm is described as is the set-up of the
system for testing it.

The implementation of the Lane Detection and Lane Marking Recognition algorithms are
described in detail. This deals with all operations between the output of the Inverse
Perspective algorithm to the determination of a set of target points that the vehicle should
follow.

The chapter ends with a description of the implementation of a Path Trajectory and Steering
Algorithm, which bridges the gap between obtaining target points for the vehicle to follow

and how the vehicle actually follows these target points.

3.2 Towards the development of a Model System

W hat is required is a physical model that could be used in the future for testing and
comparing various lane following algorithms as well as other vision controlled automated
vehicle algorithms. Itis required that this be small enough to allow testing inside a
laboratory setting. In order to keep costs low a standard offthe shelf 1:10 radio controlled
model car is used as the test vehicle. This means that all other items can be designed to be a

1/10 scale of their life-sized equivalents. The vehicle must be capable ofhousing a

37

computer board, stand-alone. This rules out the use ofa PC Desktop or Laptop, as both
would be too large and heavy for the task. While a system sending data from the carto a
host computer via radio link for analysis could be used, itwould cause unnecessary extra
development work and could be affected by RF interference.

The model must also be capable of housing a camera module. This camera is used to
capture the images of the road/lane and send the image data to the computer board inside
the model. The model vehicle must have a motor for the driving wheels and servo control

of the steering. The computer board must have some way of controlling both of these.

3.2.1 The Model Vehicle

The model vehicle used is a NIKK O radio controlled car approximately 1:10 scale model.
This approximation of scale is as a result of NIKK O using one size of chassis but different
body covers that relate to real life cars that vary in size. However, the bodywork cover is not
important to tire project and so a 1:10 scale will be assumed. The vehicle has front and rear
suspension, a differential gear system and a DC motor for the driving wheels that uses a 7.2-
volt battery pack to drive it. The steering control however, uses a system whereby the
steering, under direction from the remote control operator will turn fully left or right and
when not given an input will revert to a central position. This will be exchanged for a servo
motor system whose angle of rotation is determined by the width of a control pulse supplied

to it.

38

Figure 13. The NIKKO Model Vehicle.

3.2.2 Processing and Controller Board

Since the main board of the RC car is for the specific purpose of controlling the car via radio
controlled signals and not capable of analysing image data for control decisions, it is replaced
with a DSP board. Also the drive system for the driving wheels motor simply switches a
relay allowing direct connection from the battery source to the motor when the operator
moves that control on the RC controller. This means that the RC car moves at full speed all
the time until the operator takes their finger off the control. This means that there is no way
for this board to vary or control the speed of the drive motor. So the new board must have
a way of controlling the speed of this drive motor.

Digital Signal Processors are highly efficient at processing image data and therefore, the
perfect choice for this type of application. Cost and flexibility were the most significant
concerns when determining a DSP board to use for this project. With this in mind a low

cost board that has support from an open source Real Time Operating System was chosen.

3.2.2.1 BF533 Stamp Board.
'Phis is a low-cost development platform for the ADSP-BF533 Blackfin device. The STAMP

board is part of the Blackfin/uClinux open source project.

39

Figure 14. The Blackfin BF533 STAMP board.

An overview of some of the STAMP board’s features is given below:
« ADSP-BF533 Blackfin device with JTAG interface.
* 500MHz core clock.
e 133MHz system clock (SCLK).
e 64M x 16bit external SDRAM (128MBytes).
e 2M x 16bit external flash (4MBytes).
e 10/100 Mbps Ethernet Interface.
e UART interface with DB9 serial connector.
e 270-pin expansion interface.
e CPLD withJTAG interface allowing for custom configuration of the Ethernet

interface, external memory and programmable flags.
e Connectors to various Blackfin peripherals: PPI, SPI, SPORTO, SPORT1, IrDA, 12C

and Timers.

3.2.2.2 The Blackfin BF533 Processor
The following description of the Blackfin BF533 Processor is taken from [20]:

40

The ADSP-BF533 processor is an enhanced member of the Blackfin processor family that
offers significantly higher performance and lower power than previous Blackfin processors
while retaining their ease-of-use and code compatibility benefits. The BF533 processor is
completely pin compatible, differing only in its performance and on-chip memory, mitigating
many risks associated with new product development. The Blackfin processor core
architecture combines a dual MAC signal processing engine, an orthogonal RISC-like
microprocessor instruction set, flexible Single Instruction, Multiple Data (SIMD) capabilities
and multimedia features into a single instruction set architecture.

The BF533 peripherals include:

» Parallel Peripheral Interface (PPI).

e Serial Ports (SPORTS).

e Serial Peripheral Interface (SPI).

 General-purpose timers.

e Universal Asynchronous Receiver Transmitter (UART).

 Real-Time Clock (RTC).

e Watchdog timer.

e General-purpose 1/0 (programmable flags).

These peripherals are connected to the core via several high bandwidth buses as shown in

Figure 15.

41

All of the peripherals, except for general-purpose 1/0, Real-Time Clock and Timers, are
supported by a flexible DM A structure. There are also two separate memory DMA channels
dedicated to data transfers between the processor’s memory spaces, which include external
SDRAM and asynchronous memory. Multiple on-chip buses provide enough bandwidth to
keep the processor core running even when there is also activity on all of the on-chip and

external peripherals.

The important peripherals from the point of view of this project are the PPI, General-
Purpose timers, General-purpose 1/0. The Serial Port is also important for debugging and
monitoring the controlling of the target board from the Linux based host machine. As will
be detailed later in section 3.2.5.1 the PPI interface was used to interface to the Camera
Module. This incorporates 12C to read and write registers on the Camera Module and DMA
for transferring the picture data from the Camera Module to the Stamp board for processing.
General Purpose 1/0 (programmable flags) are used to take inputs from push button
switches on the board and output to status LEDs on the board. Some of the General
Purpose Timers have External pins and can be configured as timers or PWM (Pulse Width
Modulation) outputs. The steering control for the Model car uses a servomotor, which
moves to a given angular position based on a specific PWM signal being sent to it. Also the

drive motor for the model car will have its speed controlled by PWM.

A short description of these peripherals and DM A can be found in Appendix B.

3.2.3 Software for the Target Board.

Since any system for testing would need to be flexible and perhaps also ran several
algorithms at the same time, having a RTOS and development environment for the board is
advantageous. One of the main advantages of the Stamp BF533 board is that there is a port

ofthe uClinux free open source operating system available for it.

3.2.3.1 uClinux

The original uClinux was a derivative of Linux 2.0 kernel intended for microcontrollers

without Memory Management Units (MMUs). However, the Linux/Microcontroller Project

42

has grown both in brand recognition and coverage of processor architectures. Today’s
uClinux as an operating system includes Linux Kernel releases for 2.0, 2.4 and 2.6 as well as a
collection of user applications, libraries and tool chains. A port ofthe uClinux operating
system is available for the Blackfin processor. The uClinux distribution comes with a menu
configuration system that allows the developer to select the Blackfin BF533 stamp as the
target [21].

Embedded system software can be characterised by two extreme cases. One case is where
the software driving the system might be a totally customised application specific package,
with very narrow focus. Alternatively an application specific software package may he on top
ofan underlying, somewhat general purpose embedded OS, which provides various

capabilities for the application from its general tool set [22].

3.2.4 The Camera Module

A camera module is required to capture the image of the road scene. Since only grey scale
values are required a Black and White or Mono camera suits the application fine. However,
itwould be advantageous to have a digital output, as an analogue output would require extra
A /D converters.

The camera module chosen for the application was the M3188A 1/3” B/W Camera Module
with digital output.

General description and features taken from [23] follows:

The M3188 isa 1/3” B/W camera module with digital output. It uses OmniVisions CMOS
image sensor OV7110.

The digital video port supplies a continuous 8 bit-wide image data stream. All camera
function, such as exposure, gamma, gain, windowing, are programmable through 12C

interface.

Features:

307,200 pixels, VG A/CIF format.
e Small size: 40 x 28 mm.

¢ Lens: f= 6mm(Optional).

 Read out —progressive/ interlace.

43

« Data format —8 bitvideo data.

* 12C interface.

e Electronic exposure/Gain/Control.

« Image enhancement —brightness, contrast, gamma, sharpness, window, etc.
* Internal/external synchronisation scheme.

e« Frame exposure/ line exposure option.

» Single 5V operation.

« Low power consumption (< 300mW).

The camera module comes with a 32-pin output.

The pin out and short description of each pin are detailed in Appendix A.

3.2.5 Integration of Development System.

3.2.5.1 Connecting Camera Module to Stamp board.

Much work on drivers and applications had already been carried out for the Blackfin port of
uClinux by developers in the open source community and much of these were useful to carry
out this project.

Since the project involves connecting a camera module to the stamp board, one driver and
test application was particularly relevant, the ppi_driver. This driver can be used to capture

video Frames from the PPI port.

The interface to the camera sensor is shown in Appendix A.

This driver also has the following features:
 High speed data input from the PPI device via DMA.
e Configuration of the PPI device.
e Interrupts Transfer Complete and Error Detection.

* Fasync notification of Transfer Complete.

The PPI Input device has a number of configurable features; this driver uses the following:

* POL_S -invert Frame Sync 1 and Frame Sync 2.

44

e POL_C -invert Clock.

 PPI_DATA_LEN -portwidth.

* PPI_PACKING -Pack 2x8-bitwords into a single 16-bit output.

* CFG_GP_Input_3Syncs - Selects full (Hsync, Vsync and Frame) or single Frame

Sync.

e GP_Input_Mode - selects input mode.
The PPI Transfer can use a GP1O pin to start the transfer process [25],
This ppi_driver proved very useful in this project. Even though itwas written for another
camera module, it had a similar interface and worked in much the same way. The ppi_driver
that was already developed used the Micron MT9MO001 1.3 Mega pixel colour image sensor,
whereas this project used the Omni-vision OV7110 0.3 Mega pixel monochrome image
sensor.
Most of the pin connections shown in the interface diagram for the Micron camera module
had an equivalent connection pin on the Omni-vision camera module though under a
different name. The pin connections used to connect the Omni-vision camera module are
detailed in Appendix A.
Two major omissions from the interface diagram for the Micron camera module that were
required when connecting up the Omni-vision camera module are as follows.
1. Pull up resistors are required for 12C data and clock lines, namely SDA and SCL.

The formula for calculating the value of the pull up resistors is

Where R isthe required resistance in kQ.

dis the number of devices on the bus.
2. The pin PF3 requires a pull down resistor. When using RX mode with 3 external frame
syncs and only 2 syncs are needed, configure the PPI for three-frame-sync operation and

provide an external pull-down to GND for the PPI_FS3 pin [20].

The PPI driver did not need any modification to work with the Omni-vision camera module.

However, the application code that uses the driver did need modification. The uClinux port

45

included a test application for the PP I driver, which assumed the PPI port was connected to
aMicron MTOMO0O01 camera module. This test application needed some minor
modifications in order to operate the Omni-vision OV 7110. These were mainly in
configuration of the PPI port, the DM A and buffer set up and sending appropriate
commands to the camera module. The commands for the camera module are sent via 12C
link to the camera chip. Note that the camera module chip calls this bus SCCB rather than
12C. However, the 12C bus from the main board works perfectly with this bus system. The
correct register and setting must be determined based on information from [24],

The test application allowed for one or more frames ofvideo to be captured. It also stored

the latest image in a bitmap file whose name could be specified at the command line.

3.2.5.2 Running the Test Application.

In order to run the test application the application had to either be included in the overall
build image ofthe RTOS or compiled separately and then downloaded to the target after
bootup. The uClinux system has a user friendly configuration interface for including or
omitting functionality or applications from the RTOS image. Although in some cases it may
require direct modification of make-files or configuration files, which later in the process
generate make-files.

The stamp board has two communication links with the host PC, serial RS232 and Ethernet.
The RS232 can be used to download a RTOS image to the target butis very slow. Using
Ethernet, this can be achieved in less than 10 seconds, although this does depend on the size
ofthe image. The serial connection is mainly used for monitoring what is happening on the
target board. All standard output is sent from the target board to the host Linux PC via
RS232 and can then be displayed in a shell. A command line for the target board can also be
controlled from a shell on the host Linux PC and this information is sent via RS232. In
order for this communication to take place there must be a communication mechanism set
up on the Host such as Telnet or Kermit etc. In this project Kermit was used.

Once the RTOS has booted, either after download from the Host PC or from boot memory
on the board, the user is presented with a command prompt. From here the user can run
applications included in the compiled image or download files/applications from the Host

PC. Downloading requires that a file transfer protocol be set up on the target. A TFTP

46

application can be included in the configuration and so in the final image the TFTP
application will be present. This allows the download and upload of files and applications.
As mentioned earlier, the test application for the camera attached to the PPI port can specify
a bitmap file in which to store an acquired image. Since the interface to the targetis a text
only interface, this bitmap cannot be viewed. However, using TFTP tire bitmap can be
uploaded to the Host machine for viewing. This bitmap file can then be used for host based
testing ofimage processing algorithms.

While no major algorithm tests were carried out using the Stamp Board and camera, one
short algorithm was run in order to prove that a continuous stream of images could be
analysed and control outputs given, based on the current image frame.

The camera module was placed inside a white box. Then using a straight black piece of
cardboard, the black cardboard was waved back and fourth in front of the camera.

Each image frame analysed the image, by splitting the image into horizontal sections and
determining the darkest point along the horizontal. Then all darkest points relating to all of
the horizontal sections were averaged. This average was assumed to be the average position
of the black cardboard in the image scene. The position is then used in the determination of
an angle, based on the left side of the image being the largest negative angle and the right
side being the largest positive angle. The centre of the image is the angle zero.

This angle was then converted to an appropriate pulse width to turn a servo motor to that
angle. The servo was attached to the steering mechanism of the test vehicle. So when the
application was run, moving the black cardboard in front of the camera resulted in a
proportional change in the steering angle of the front wheels of the vehicle. A shortvideo

clip of this can be found on the CD, accompanying this Thesis, in the ‘Wideo” directory.

3.2.6 Implementation on the STAMP board.
The following is a list of the work implemented on the STAMP board:

Images are successfully captured by the camera module and transferred into the memory of
the DSP board. This entailed the hardware link up of the camera module to the STAMP

board as well as the software required to communicate between the two.

47

The DSP board is successfully configured to communicate with a Host Linux workstation.
This allows for the DSP board to be controlled and files to be sent and received from the
Linux workstation to the DSP board.

Software is created for the DSP board that successfully analyses the image data to determine
the location of a black piece of cardboard against a white background. This software also
successfully sends appropriate control signals to a servo motor attached to the wheels of the
model vehicle, which resulted in the wheels of the vehicle turning to follow the movements
of the piece of black cardboard.

As is outlined in the Discussion section of this Thesis some issues would need to be resolved
before the STAMP board could be used as a good system for implementing vision system
applications. To ease development and implementation of algorithms all algorithms, from

this point on in the Project, are implemented on IBM based PCs.

3.3 Implementing the Inverse Perspective Algorithm.

The original image captured by the camera was chosen to be 400 X 400 pixels.
The image captured by the camera is actually 640 X 480 butis cropped to 400 X 400.
The test image below (see Figure 16) shows a 640 X 480 image taken with the camera

module.

Figure 16. Test image showing perspective effect and wide-angle distortion.

48

Despite appearances each of the horizontal lines are straight but wide-angle distortion has
caused these to appear as arcs. The same distortion can be noted at the top of the image
where the white electrical conduit is arcing in the other direction. The other important thing
to note here though, is that the centre of this distortion does not appear to be in the centre
ofthe image butis instead to the right of centre. Another telltale sign of this is the darkened
edges on the left particularly at the bottom. This suggests that the lens is not centred over

the CMOS image sensor, as demonstrated in Figure 17.

This means that taking a 400 X 400 crop of the image in the exact centre of the image would
cause complications in the inverse perspective mapping as the algorithm assumes that the
centre of the image is on the optical axis i.e. the centre of the lens.

The inverse perspective mapping algorithm used in this project is based on

[14][15] [16] [17][18] [19] which are described in section 2.5.2.

From this point on, the image captured by the camera will be referred to as the captured
image and the remapped image that contains the result of the inverse perspective mapping
will be known as the remapped image. Each pixel in the remapped image must take a pixel
from the captured image or be left blank. The algorithm cycles through each pixel of the
remapped image and determines where this pixel would be taken from in the captured
image. Ifit finds that the pixel that this specifies is from outside the boundaries of the
captured image then this pixel is left blank. Blank will be assumed to be the colour black.
The set-up for this system used a sine table, (a heavy and cumbersome piece of equipment)
with the camera module mounted on it. The sine table was set up to give a 0 value of 20°.
The model roadway is made from fibreboard painted black and the lane markings are white

duct tape.

49

Figure 18. The set-up of the system with camera module mounted on Sine Table and connected to
STAMP board.

Under these circumstances the 0 angle could be guaranteed to within the tolerance of the
sine table but no other parameters could be guaranteed, such as height, /, d, y etc.
More information on the meaning of the variables used in this algorithm can be found in

section 2.5.2.1.

yis the angle between the optical axis of the camera and the heading of the vehicle. It is

intended in this project to have y =0. However, due to tolerances in mechanical set up it

may be found that itis not exactly zero and that this must be compensated for in software.

This will have to be calibrated through trial and error with a known target.

0 : this is the angle between the horizontal, parallel to the (x, y) plane and the optical axis of
the camera. The larger this angle, the closer to the vehicle the camera will be able to view.
This would be advantageous for close quarter manoeuvring and sharp curves. However, this
would lead to less of the road ahead being visible, which may require the vehicle to move at
slower speeds as the control system will have much shorter space and therefore, shorter time

to react to changing circumstances. A compromise will have to be found here.

50

his the height of the camera on the z-axis, with z=0 being the level of the (x, y) plane on
which the road is assumed to be. Important to note that the units of height are in pixels.
2a this is the angular aperture of the camera. A definite value for this for the camera
module used was difficult to find, but through fine tuning of a known target the value a =
0.30 rads (17.19°) was used.

Resolution of the camera is given as nun. nwas set at 400 pixels for this project. The
camera has an actual resolution of 640 X 480 but was cropped to 400 x 400.

d is the distance along the y-axis that the camera is placed. This is important for
determining where the vehicle is positioned in the lane between the lane markers. As with h
above, dis measured in pixels in the algorithm and should be set to match hin aratio of the
real world situation.

lis the point on the x-axis where the camera lens is positioned. If the camera is assumed to
be positioned at the origin (0,0), then both /and dwill be zero. As with hand dabove, /is

measured in pixels.

3.4 Implementing the Lane Detection Algorithm
It is useful to have only black and white pixels in the image in order to differentiate between

objects and the ordinary surface of the road. Therefore, a threshold operation is carried out
on the image and any pixel values above the threshold value are assumed to be white and
assigned the value 255 (brightest 8-bit value). If a pixel is found to be below the threshold it
is assumed to be black and changed to the value 0 (darkest 8-bit value). Determining the
appropriate threshold value can be achieved through trial and error and picking an
appropriate value for best results given the particular lighting of a scene. [7] also describes a
good method for determining an appropriate value for the threshold that is outlined in
section 2.5.1.2 of this document. After thresholding has been performed, all pixels in the
image will be either black or white. There are now no shades of grey in between.

However, each pixel is still stand-alone i.e. black or white. There is no relationship between
white pixels that could be said to make up lane markers or other objects. With this in mind
the first thing that must be achieved in this lane recognition algorithm is to group white
pixels together into objects. After that each of the objects found must be categorised into

possible lane marker objects and other non-lane marker objects.

51

Once all the possible lane marker objects have been determined, the lane marker objects
must be categorised into left and right lane markers. Once this is achieved, target points

along the centre of the lane can be determined and used in a point following algorithm.

3.5 Lane Marking Recognition.

This must be done in a methodical fashion following a set of rules to determine whether any
white pixel should constitute a new object or be part of a previous object. It may also occur
that at some point two objects meet and should become a single object. Before an algorithm
is designed for this, itis important to decide what attributes might be important to describe
any given object. For example, with a lane marker object itwould be advantageous to know
the direction the marker is pointed as this would indicate the direction of the lane at that
point etc.

Since objects will be built up pixel by pixel there must be a way of determining the overall
attributes of the object. This can be done either by way of dynamically recording all the
pixels belonging to a particular object, so that later these can be looked at together to
determine the attributes of the object, or by way of updating all the object’s attributes as
each pixel is added.

After consideration of the problem to be solved, it was determined that the important
attributes to be considered for each object are as follows:

SmallestX value.

Smallest Y value.

LargestX value.

LargestY value.

Si%e ofthe objectin Pixels.

In order to get an idea of the direction of the lane marking, a least squares fit to a straight
line is used. This means the following information will be required foreach object:

Sum ofall X values ofthepixels in the object.

Sum ofall Y values ofthepixels in the object.

Sum ofthe square ofall X values ofthepixels in the object.

Sum ofall X x Y values ofeach ofthepixels in the object.

52

The least-squares line uses the equation for a line given by

y:a+bx (12)

Where aand bare given as follows [26]

S»>S>¥9/:E’?» -

(14)

Where nis the number of co-ordinates being used to obtain the line. In the case of this
project nwill be the number of pixels in any given object. This is recorded as the size
attribute of the object. With this in mind each object has an aand battribute associated with
it

With lane markings tending to be in a vertical direction in the image, knowing an
approximate point at the near end and far end of the lane marker is advantageous. The
Smallest X and Largest X values are applicable here but corresponding Y values to go with
these are required. Note the Smallest and Largest Y values are not appropriate for this, as
those inform us more about width in the horizontal direction of the image. So NearendY
and FarendY attributes are also recorded for each lane object.

A centre co-ordinate for each object is also recorded, as this will be beneficial to best determine
the position of the lane marker.

To give each object an identity, each object must have a unique number associated with it.
Finally it cannot be known in advance how many objects will occur throughout the image
and how many lane markings will be linked as left and right lane markers. For this reason
linked lists are used to link up objects. Therefore, each object will have an attribute which
will link it with another objectso that they can be daisy-chained together.

So the C struct will look as follows:

struct object{
int number;
int smallestX;
int smallestY;
int biggestX;
int biggestyY;
int nearEndY;
int farEndyY;
int CX; /*centre X */

53

int CY; /*centre Y */
int size;

float sumY;

float sumX;

Ffloat sumX2;

float sumXY;

float a;

float b;

struct object* next;

3.5.1 Calculating a Value for each of the Attributes.

Rather than trying to calculate values for the entire object’s attributes after each has been
fully created, it was decided to do this as the scanning of the pixels for object generation was
in process.

As each new pixel is added to an object the following attributes of that object are updated:
Sum ofY.

Sum ofX.

Sum o/X2

SumofXxY.

Sie ofthe objectincreases by one.

The following variables are checked to see if the new pixel is a more appropriate value than
the currentvalue

SmallestX.

Smallest Y.

BiggestX .

Biggest Y.

Should it be determined that a new pixel results in two previously created objects being
joined then one ofthe objects will always take precedence and the other will be destroyed.
Before the otheris destroyed the following attributes will be added to the same attribute in
the surviving object:

Sum ofY.

Sum o/X.

Sum ofX2

Sum ofX xY.
Si%e ofobject.

And again before the object is destroyed, the following variables are checked to see if the
object due for demolition has more appropriate values than the surviving object.
SmallestX.

SmallestY.

BiggestX .

Biggest Y.

W hen the algorithm is finished scanning the image, it will be leftwith a number of objects,
which it now needs to categorise. The other attributes don’t need to be calculated until the

algorithm has determined that they are possible lane markers.

3.5.2 Grouping Pixels together as Objects.

Up to now it has been assumed that there is some way of determining whether a pixel should
belong to a given object or not. The process of how this is achieved is now discussed.

The algorithm cycles through each ofthe pixels in the image starting at the bottom left of
the image and going along the line of pixels horizontally until the right side of the image is
reached. Then the algorithm starts on the left pixel second from the bottom and again
moves from left to right. This continues until it reaches the top right of the image.

An objectin the context of this algorithm is defined as one or more white pixels that are

touching each other. Touching is defined as two pixels being near neighbours of each other.

As the algorithm looks at each new pixel it must first be ascertained whether itis black or
white. Ifitis white it must then be determined ifitis touching another white pixel, or if not,
to start a new object. Given the sequence in which the pixels are being scanned, it is
determined that it is only necessary to check the near neighbours to the left and below, as
being possible white pixels that might be touching. The near neighbours to the top and right
have not been scanned yet and will be dealt with when the scanning gets to that part of the

image.

Since the image is held in an array, care must be taken not to try to access elements outside
of the array. Therefore, special care must be taken with pixels on bottom and left edges, as
this is where the algorithm could test for a near neighbour that is outside the bounds of the

image. Hence the very first pixel, bottom left, must be dealt with as a special case as it has

56

no near neighbours below or to the left. All other pixels on the bottom row are treated as
another special case as they can only have near neighbours to the left, but not below.

From that point on the first pixel in each row is treated as a special case as it can only have
near neighbours below and not to the left.

There is also a special case when the end of a row is reached. This will be explained later.
Ifanew objectis to be created, first atemporary objectis created. As the algorithm moves
along the line, if it comes across more white pixels touching each other, they are added to
the temporary object. When a black pixel is finally met the temporary object is made into an
ordinary object and added to the list. This should also happen if the end of a line is reached.
Should it be found at any-point that a member pixel of the temporary object is a near
neighbour of an already established object, then the temporary object is assimilated by the
established object and the temporary object is zeroed and made ready for re-use. There is
only ever one temporary object at a time, so it can be re-used. The temporary object will

only ever have member pixels on one horizontal line (row of pixels).

3.5.2.1 Bottom Corner Pixel

X

Figure 21. Bottom corner Pixel
Is pixel white?

Yes W hite- Initialise the temporary object with information from this pixel.

No Black.- Ignore and move on.

3.5.2.2 Remainder of the pixels in the Bottom Row.

KSEK >
Figure 22. The remainder of the pixels on the bottom row.

57

Is pixel White?

Yes W hite.- Is near Neighbour to left White?

Yes W hite.- Update the temporary object with info from this pixel.

N o Black.- Initialise the temporary object with info from this pixel.

No Black- Is near Neighbour to left White?

Yes W hite- Copy info from temporary object into full object and add to list of

objects. Settemporary object back to default zeroed values.

No Black.- Ignore and move on.

3.5.2.3 Dealing with all other pixels.

Is pixel white?

Yes W hite- Is near neighbour below white?

Yes W hite.-

NoBlack-

Square below is part of established object, update this object with
info from this pixel.

If there is a near neighbour to the left, is it white?

Yes W hite- Check ifitis partofatemporary objectand ifitis,
assimilate the temporary objectinto the established object. If near
neighbour to left is also part of an established object, check that it is
not the same object this pixel is attached to, ifitisn’t then merge the
object that the near neighbour to the left is part of to the object the
current pixel is part of.

No Black- Ignore and move on.

If there is a near neighbour to the left, is it white?

Yes W hite.- Check ifitis part of atemp object and ifit is, add this

58

current pixel to it. Ifit’s an established object also add this
current pixel to it.
N o Black.-This current white pixel has no white pixel near
neighbour below or to the left, so initialise temporary object.
No Black- If there is a near neighbour to the left check ifit’s white?
Yes White.- Isitatemporary object?
Yes temporaryobject- Copy info from temporary
object into full object and add to list of objects. Set

temporary object back to default zeroed values.

No notatemporaryobject- do nothing.

No Black- ignore and move on.

Finally after each row has finished the following must be performed in case there is a
temporary objectright up to the end of the row that has not been closed off and made into
an ordinary object yet.

Check size of temporary object, is it non zero?

Yesnon zero- Copy info from temporary object into full object and add to list of

objects. Settemporary object back to default zeroed values.

After this algorithm is run there should be alist of objects for the image, which include all

the white pixels in the image.

3.5.3 Criteria for determining lane markers from other objects.

Once all the objects are inserted in a linked list, the first operation to be carried out is to
remove any objects that are definitely not lane markers. These would include any objects
that have very few pixels (for example less than 8) and those that have far too many pixels
(for example more than 200). This eliminates many objects from the list, which will speed

up searching at later stages.

59

3.5.4 Sorting Lane markers into Right and Left Lanes

3.5.4.1 Finding first lane markers in Left and Right lanes

In order to build up the set of lane markers, it is first necessary to find the first lane marker
objects on each side of the lane. Once this is done then knowledge gained about these first
lane markers can be used to more accurately determine where the other lane markers are. Of
course incorrect identification of the first lane markers will lead to problems and errors in
identification of further lane markers.

While not investigated as part of this algorithm, information from previous image frames
could be used to help correctly determine the first lane markers. So in order to find the first
lane markers the algorithm must be given criteria to determine which, of all the objects still
available, is one of the first two lane markers. The following strategy was decided upon to
find the first lane markers.

Search through all the objects and find the object that has the smallest SmallestX value but
that also has a size larger than some pre-determined value (for example 30 pixels). The
reason for picking a size value is not that the lane marker must be larger than this size, but
often the first lane marker may be mostly cut off by what is not visible by the camera. This
means that the object chosen may have too few pixels to get accurate information
concerning it, such as slope. Since finding all other lane markers will rely on the details of
these first lane markers it is important that the details be as accurate and complete as
possible and so should be above a certain number of pixels in size. The first lane markers
are also used to determine the current heading and position of the vehicle and so itis more
important to get accurate information from these lane markers than from any others. Once
this object has been identified, it should be determined whether the lane marker is on the
right or the left of the lane. This is achieved simply by checking in which half, right or left,
the lane object lies. Once this is determined, the algorithm will try to find the first lane
marker on the other side. This is found by searching through the list of objects for an object
that has a centre Y value of between 80 and 120 pixels away. These limits are based on the
measured number of pixels separating the lane markers in images (approx. 90 pixels see
section 4.2.3.2). Objects outside of this range are assumed not to be the lowest lane marker
on the other side of the road. As in the last case the lane marker is expected to be above a

certain size (e.g. 30 pixels) for the same reasons as given before. Because more than one

60

object may fall into these aforementioned criteria the object that is ciosest to the bottom of
the image is chosen from all those that fit the criteria.
At this point, the algorithm has now determined the right and left lane markers recorded in

the image that are closest to the camera.

3.5.4.2 Sorting the remainder of the lane markers into Right and Left
lanes
Since the two objects above have now been assigned as the first lane markers in the left and

right sides of the lane, they are each put at the head of their own object list, known as the left
lane list and right lane list. Since they are now in lists of their own they are removed from
the original overall list, which means they will not need to be checked in any further
searches.

The next task for the algorithm is to determine all of the lane markers in the left side of the
lane. This entails cycling through the list continuously until all left lane markers are found.
On each cycle through the listthe most appropriate lane marker candidate will be picked and
then removed from the main list and a new search will begin. The algorithm will know when
to stop looking for new left lane markers when a cycle through the main list reveals no
appropriate candidates that meet the criteria. After the first cycle through the main list the
left lane marker closest to the first one should be chosen as the most appropriate candidate.
On the next cycle, the next lane marker on the left should be chosen and so on. Due to the
fact that there are expected to be many lane markers on each side, the criteria must be
chosen in such a way that only one ofthese be identified on each cycle. Therefore, a priority
system is used which assigns points to each object that meets particular criteria. Some criteria
are considered higher priority than others and so at the end it is expected that one object will
have acquired more points than all other objects and as such is deemed to be the most
appropriate object on that pass through the algorithm. The criteria chosen and points
awarded are given as follows:

Note: lasiObjectis the previous chosen objectto be added to the lane list. This is the most
important lane marker object towards finding the next lane marker.

searchObjectis the object currendy being tested for appropriateness to be added to the list of

lane markers.

61

Criterion 1: Is the searchObject's smallestX bigger than the lastObjects biggestX value?
Awarded 8 points. This is weighted the highest; objects not meeting this couldn’t possibly
be the next lane marker.

Criterion 2: Is the searchObject's centreY less than 40 pixels from the centreY of the
lastObjects centreY? Awarded 4 points. This is based on the measured value of approx. 90
pixels for the width of the lane (see section 4.2.3.2). If the lane marker is more than 40 pixels
along the Y-axis away it is highly unlikely to be the next lane marker. Itis notimpossible
thatitis in the same lane, as a curve could cause the lane markers on one side to progress
towards the other side of the image, but it is unlikely that the centre value of two consecutive
lane markers would have centreY values this far apart.

Criterion 3: Is the distance from the far end of the lastObject to the near end of the
searchObject less than 50 pixels? Awarded 2 points. It would be expected that most
contiguous markers would be in this range and so one found in this range should be given a
higher priority over the others.

Criterion 4: Calculate the slope between the far end ofthe last object to the near end of the
search object and determine if this slope is less than 0.3 rads different from the slope of the
last object. Points awarded 1. This 0.3 rads was picked as an arbitrary value, though if the
maximum curvature of a given road system is known it could be calculated what the
maximum difference in slope between two lane markings would be. In the straight-line road
itis expected that all lane markers including those on the other side of the lane could meet
this criterion and therefore, itis given a low number of points.

The different points awarded make it easy to pick one lane marker out of all the possibilities
because the object that meets the most criteria in the list will be chosen on any given search.
If a search reveals no lane marker that meets all the criteria then the searching stops.

After each new marker is identified as being the most appropriate lane marker found in that
search, that lane marker is removed from the main list and added to the end of the left lane
list. In this way, new searches do not need to check these again and the left lane listis now
in the order starting with the marker closest to the camera and progressing to the marker
furthest away from the camera.

Next the right hand side of the lane is looked at. Already the algorithm has the first lane

marker on the right hand side. The main list now only contains right hand lane markers and

62

non lane markers. All left-hand lane markers should have been removed by now. This
means less objects overall to search, which entails less processing time.
The search for right lane markers takes the same form as that shown for the left lane

markers above.

3.5.5 Determining a set of target points to follow.
Given an image that is 800 pixels in height (along X-axis), an arbitrary figure of 50 pixels was

chosen for calculation of each point vertically on the image. Therefore, the target points
should each have an X value thatis a multiple of 50 pixels. The y value must then be
calculated for each of these 50 pixel lines. Each of these lines should intersect with the line
of the left lane and the line of the right lane. However, the line may intersect with left or
right at a point where a lane marking is absent. If this is the case the algorithm must
interpolate between the lane markers above and below the point of intersection in order to
determine an accurate point of intersection of the overall lane way. In facta similar scheme
must be determined when the 50-pixel lines intersect with a lane marker. While the lane
marker is considered a single object, only certain physical attributes are recorded about it.
The aand bvalues allow a mathematical equation for a straight line through the lane marker
to be determined. If an equation for each 50-pixel line could also be determined, then
through mathematical manipulation, the point of intersection could be determined.
However, since there is a chance that itwon’t intersect a lane marker, a general system for
finding the point of intersection between the 50-pixel line and the lane edge is used.

Each lane marker has three known points i.e. Near end, far end and centre. These all have
both X and Y values associated with them. Taking the left lane edge for each 50-pixel line,
the algorithm cycles through each lane marker object and determines the closest known
point below and above the 50-pixel line. Then it determines the point of intersection
between the 50-pixel line and a line joining the two determined points. This then gives a set
of points, which should follow the left edge of the lane. The same is then performed for the
right lane edge and results in a set of points, which should follow the right lane edge.

Once this is complete then the centre point between each pair of corresponding left and

right points is determined. This results in a set of points, which should follow the centre of

63

the lane along its path. Before progressing further however, a number of potential
exceptional scenarios of this system need to be dealt with.

Firstly there may be no lane markers for the first 100-150 pixels. In these cases, points
should be plotted where the algorithm has determined the vehicle is positioned. For
example if the camera module is situated in the exact centre of the vehicle then the front
position of the vehicle is at the centre bottom of the image i.e. (x,y) point (0, 200). So
where no lane markers have yet been found the vehicle should maintain this line e.g. (0,200),
(50,200), (100,200) etc.

The next exceptional scenario can occur when there is a lane marker visible on one side of
the lane butnot on the other. In this case the central point should be calculated as being 45
pixels away from the lane edge intersection with the 50-pixel line in the appropriate direction
along the y-axis. The figure of 45 is chosen as the lane width was found to be approximately
90 pixels (see section 4.2.3.2).

The last exceptional scenario is towards the top of the image where there are no longer any
lane marker objects from which to calculate points. In this case it was determined that the
best course of action was to continue plotting points based on the direction of a straight line
between the last two properly calculated points. However, only one of these is actually
needed or useful for the generation of a curve that follows all these target points as will be
discussed in section 4.3.7. Continuing to follow points along this straight line would not be
wise and the algorithm should not consider points beyond this. Any points beyond this

must come from the acquisition of another image frame.

3.6 Path Trajectory and Steering Algorithm.

3.6.1 Introduction
After it has been ascertained where it is intended the vehicle should go, the next challenge is

to get the vehicle to actually go there. Assuming a two dimensional flat plane for the vehicle
to drive on, this will usually take the form of starting with a number of target points, which
the vehicle should hit while moving from its current position to its final destination. In
order to get the vehicle to hit these points a curve should first be fitted to hit each of these

points and the final task is to determine how the vehicle can follow this curve. This entails

64

taking into account the kinematics of automobile type vehicles. As the vehicle changes
position, the steering angle required to maintain its position along the curve must be

generated from the target points.

3.6.2 Using Cubic curve method

In [6] such atarget point following algorithm is described. See section 2.5.3.1 for more

information on this algorithm.

3.6.2.1 Generating the curve

To implement this algorithm on computer/digital hardware it must be remembered that a
computer cannot deal with continuous mathematical functions. For this reason the
mathematical functions described in [6] and section 2.5.3.1 must be implemented in a
discrete form. Also the functions are given in terms of velocity which doesn’t affect
trajectory shape, assuming no slip, so the equations were changed to a form which specified
the trajectory in terms of distance and not time. The pseudo code below describes how the

algorithm is used to draw the cubic curve from (0,0) to (xI5yt) operates

Loop until (xrewis greater than x}A N D yrewis greater thanyj)

Vtotal < =V total + V

Xnew <= X previous + V(DS"previous

y neW <= § previous + V sin g previous

snew <=tan 1(3ax* + 2bxrew)

draw a straightline between (xpevowsy ol and (xrewy ren,

y previous N n

y previous ™ n
evi(ﬁs E

Back to beginning o floop

Note that vis now a distance rather than a speed. vngis the total distance that has been
travelled along the curve up to that point. Any value can be chosen for v, however, the
larger the value of vchosen, the less like a continuous curve the result will be. This will lead
to a lack of precision in the result. 1f a very small value of vis chosen, then this will be much
more like the continuous curve but will require more processing. Should this algorithm mm
out to be a bottleneck in an overall system then changing this value might lead to important

compromises between speed and precision. Also note in the pseudo code above that &ewis

In section 2.5.3.1 it was seen that y = ax® +bx’so %y = 3ax’ + 2bx
X

So from this it can be seen that 0 = tan-1(3ax2+ 2bx).

The algorithm is implemented in the Java programming language given that language’s

powerful graphics libraries.

3.6.2.2 Determining the steering angle.
In [6] it is stated that the steering control angle at the origin in the x-y system that leads the

vehicle along the cubic curve to hit the point (xj, y,), with the heading 0j is given as follows:
a = tan 1(2lb) (15)
However, in most cases the steering angle must change as the vehicle traverses the curve. So

in order to determine the required steering angle at each point along the curve another

method was used and is described below.

Since a continuous curve is not being dealt with here but a discrete approximation to the
curve then anumber of discrete steering angles must be obtained. The steering angle can be

obtained as shown in Figure 24, for any given point along a curve.

66

/
Figure 24. Wheel base |, steering angle a and Radius R

The computer must of course calculate the angle by means other than diagram method. The
wheelbase Iwill be known for any given vehicle but the radius R mustbe calculated. To

calculate R its relationship with the curve must first be understood. The radius is given as

follows

R= /\éurvature (16)

W here Curvature is defined as the second differential ofy with respect to x

d
i.e. curvature = —ZL @an
dx2
. . .o dy . . .
The first differential Ey is the instantaneous slope of the tangent to the curve, i.e. what has
X

earlier been referred to as 0. So the second differential must be the instantaneous change in
9. Since a discrete system is being dealtwith here then curvature must be the change in 0
over the distance in which this change takes place, i.e. what has been referred to earlier as v.

Therefore,

(thetarew-theta iow)
curvature ; - (lo)
%

So the radius is

*

" (theta - theta) (19)

67

R = @

(thetarew ~ theta previuws)

This will give a set of discrete radii for each discrete change in 0 along the discrete
approximation of the curve. From Figure 24 above it can be seen that the steering angle can

then be calculated as

a = tan I{an @)

Again itis important to note that these will be discrete steering angles and not continuously

changing steering angles.

3.6.3 Using a B-spline method.

A quick reminder is perhaps desirable at this point as to what information will be available
before the trajectory is calculated. The lane detection algorithms will generate a set of target
points, which the vehicle will be expected to hit. The previous algorithm only shows how to
get between any two of these points. More specifically the algorithm works on the
assumption that the first pointis the origin (0,0) and that the heading of the vehicle 0 is 0
rads at the first point. One of the examples in the results section 4.4.1 for the cubic curve
shows the vehicle starting at the origin with a heading of zero and moving to the point (12,8)

with a final heading of 1.3 rads. Now consider three target points, i.e. (0,0) (0 = 0), (12,8) (0

=1.3) and (20,6) (0=-0.4). In this case it has already been shown how to get from (0,0) to
(12,8) but how to then proceed on to (20, 6) poses a problem. To use the same algorithm as
before it must first be assumed that (12,8) is actually (0,0), this would mean that the relative
position of (20,6) would be (8, -2). The second assumption however, would change this
again. It states that the heading at the first pointis assumed to be 0. This would mean that
the position (8, -2) must be rotated around the origin by —1.3 rads. This is a far from
insurmountable problem butif for example, five target points are considered then after the
second pointis reached all three of the other points must be transposed in the same way.

Then after the third point the last two must be transposed etc. Add to this the fact that new

68

target points are likely to be added on the fly as the vehicle moves along a roadway and the
camera picks up further points along the road.

Since each frame ofvideo will take time to process, during this time the vehicle will have
continued to move and may have performed one or more transposes before the new targets
are calculated. This will require noting the co-ordinate space at the moment the frame was
captured and trying to link these new points into the co-ordinate space of the targets already
in the system. Thus the problem becomes much more complex and more importantly,

heavier in computational terms.

3.6.3.1 B-spline.

In the previous case having the vehicle hit each point by generating an approximate curve
between each point and then patching each of these curves together was considered.
Matching the endpoints of the curve segments in this way is not considered the most
acceptable way. Itis important also to match the gradients and defining curves by the points
through which they pass. This does not lend itselfvery well to patching [28].

Before looking at the B-spline, consider the more general Bezier curve. Bezier curves are
defined using four control points, known as knots. Two of these are the end points of the
curve, while the other two effectively define the gradient at the end points. These two points
control the shape of the curve. The curve is actually a blend of the knots [28].

One disadvantage of Bezier curves is that they do not have much local control. This means
that as the number of points increases the effect of any individual point/knot along the way
is reduced. This is due to the nature of the blending used for Bezier Curves. They combine
all the points to create the curve. The obvious solution is to combine only those points
nearest to the current parameter.

These points are labelled internally from 0 to (number of points) -1. To calculate the curve
at any parameter t a gaussian curve is placed over the parameter space. This curve is actually
an approximation to a gaussian curve; it does not extend to infinity at each end, justto +/- 2

[29]

?
B(u)=%(2+u)' ~2<u<-l| (22)

69

5(m)=—(4-6m 2-3m 3) -1 < M<oO0 (23)
6

B(U) = —(4-6m 2+ 3m3) 0<Mc<1 (24)
6

B(u) = —(2-m)3 1< M<2 25)
6

5(m)- 0 otherwise (26)

It is helpful to put this in a general form where u can only vary between 0 and 1. In the first
case above substitute (u-2) for u. This gives,

1 1 27)
-<

1
B(u)=-(2 +u-2) = y)=-(m 3+ 0Om + Om+0)
6 6

In the second case above substitute (u-1) for u.

(28)
B{u) = -6(4 - BU2- 3m3) = -(4 - 6(m - 1)2- 3(m - 1)3) = -(-3m 3+3U2+ 3u +1)

In the third case above u is already in the appropriate range, so simply put in the same end
form as the others.

(29)
B(u) = E(4-6m 2+43m3) = —(3m3-6m 2+ 1m+ 4)

In the final case above substitute (u+1) for u.

1 (30)
B(u) = E(lz —m)3=> —(2 —m—1)3= — (1 —m)3= — (—1m3+ 3m2 —3m +1)

A general matrix form for the cubic B-spline can be constructed from these new equations

which match that found in [30], It is given as:

103 -3 fape

3 -6 3 0 for mS (0,1) (31)
3 0 3 0 ppy

1 4 1 0 pm

S;(m) = [w3 m2 u 1]—

For the x and y co-ordinates specifically these are given as

70

-1 03 -3 1] Xpy
S - 3 -6 3 0 Xp
= m
: -3 0 3 0 XPy (32)

1 4 1 0J

-1 3 -3 f Pyp»
3 -6 3 0
=M u2 u I} 3 0 3 0 < (33)
) ypM
1 4 1 0 _ypM

uis a fractional part of 1, i.e. it must always lie somewhere between 0 and 1. Given thatwhat
will be generated is an approximation to a curve made up from small single line segments, if
uis chosen to increase in increments of 0.1 for example, then this will mean that there will
be 10 straight-line segments between each of the points approximating the curve. Ifuis
chosen as 0.01 there will be 100 straight-line segments between each of the points
approximating the curve. Again a trade off between precision in approximating a
continuous curve and the processing power available is clearly seen to exist here.

Matrix calculations like those above require mainly multiplication and accumulations.

The multiply-accumulate is a basic building block in DSP. In fact, the speed of DSP-based
computers is often specified by how long it takes to perform a multiply-accumulate

operation [27].

71

4 Results

4.1 Introduction

This chapter looks at the results of the running the algorithms that are implemented in this
project

A set of test images is used in the testing. These compose ofa number of roadway images as
follows

An image of a straight stretch of roadway.

An image of a section of roadway with an S-bend ahead.

An image of roadway partway through the S-bend.

Each of these images are considered first, with regard to the Inverse Perspective Mapping
algorithm. Once these have been passed through the Inverse Perspective the images will
have changed. So after each resulting image has been discussed with regard to the Inverse
Perspective the resulting image is then used as the input test image to the next algorithm,
namely the Detection of Lane Markings algorithm.

So the three road images mentioned above have now all had theperspective effect removed
and are now inputin the Detection of the Lane Markings algorithm. The resultsfor the
three sections of roadway are then discussed.

Again this algorithm will produce a set ofresults on the three images, which can be used as
the input information into the next algorithm namely the Path Trajectory and Steering
algorithm. This algorithm should produce as a result a curve that defines the trajectory for
the vehicle to follow. The three different curves for the three different road sections are
then discussed.

In order to test the algorithm for Steering and further look at the algorithm for Path
Trajectory, the algorithm is tested in a more general way by using the Java programming
language with a graphical output. This enables different types of curves to be looked at as
well as arbitrary target points to be chosen. It also permits the varying ofvehicle properties
to be modified to see the effect this has on steering control. The results of running these

algorithms are discussed at the end of this chapter.

72

4.2 Inverse Perspective Mapping Results
In this section, results of applying the inverse perspective to testimages captured by the

camera module are looked at. Images of three sections of model road are looked at. The
firstis entirely straight; the second has a left turn followed by a right turn and the third
shows just a right turn.

In the image examples, the captured image will be 400 X 400 pixels but the remapped image
will be 400 X 800. This is simply to make the results easier to look at. In a final running of
the algorithm 400 X 400 or other resolutions (e.g. 200 X 400) could be used to save

processing time.

4.2.1 A Straight Piece of Road Way

The image in Figure 25 shows a straight stretch of road. The perspective effect is very

noticeable. It would also appear that the camera module is not centred in the lane.

Figure 25. Long straight section of road. Perspective effect is clearly visible.

Applying the inverse perspective mapping algorithm to this image the output obtained is

shown in Figure 26.

73

Figure 26. Corrected image after Inverse Perspective Algorithm has been applied

The pure black pixels are pixels on the x-y plane that the camera cannot see. All other pixels
are within range of the camera module.

Attempts were made to line up the camera module to be in a straight line with the lane (i.e.
Y=0) and itwould not appear from the captured image (see Figure 25) that there was a
significant error in this. However, it can be seen with the remapped image (see Figure 26)
that the road, while appearing to be straightis at an angle to the x-axis, which is shown as the
white line up the centre of the image (y = 0). Ifthe camera module was mounted and
calibrated mechanically on avehicle to be directly in line with the heading of the vehicle,
then this result would inform the control system that the vehicle is not on the correct
heading in order to traverse this stretch of roadway. This would mean that steering control

would be required to bring the vehicle back in line.

4.2.2 Calibration

This section looks at the resulting effects of changing the values of variables that were

explained in sections 2.5.2.1 and 3.3.

4.2.2.1 Effect ofy value

In section 4.2.1 itwas assumed that the camera was perfectly calibrated mechanically and the
reason the road didn’t proceed vertically up the image was that the camera (and therefore,
vehicle) were not perfectly lined up in parallel with the lane markings. However, starting
with the situation where itis known that the roadway is straight and that the caris on an
exact straight heading to traverse this, then it can be inferred from the image above, that the
camera is not mounted on the vehicle in line with the vehicle heading. In other words it
would show that the y value is not zero. In this case mechanical adjustments could be made
to the camera mounting to calibrate it. Within reason this could also be calibrated in
software. For example looking at the situation where the y value used for the inverse
perspective mapping is changed from 0 to -0.06 rads, the following is the result (see Figure

27).

Figure 27. Effect of changingy value, in this case a value of -0.06 rads is used.
It can be seen that the roadway is now straight ahead. In effect the image has been rotated,

compensating for the y value.

75

4.2.2.2 Effect ofd value

It was noted earlier that the camera module didn’t appear to be centred in the middle of the
lane. This may or may not be a problem. The following should be taken into account.

Is the camera mounted in the centre of the vehicle?

If the camera is mounted in the centre of the vehicle then the above result informs the
algorithm that the vehicle is also off centre in the lane and the control system can take this
into account in its next control sequence.

If the camera is not centred on the vehicle however, then for the vehicle to be centred in the
lane the camera must by virtue of this be off centre in the lane. From the control system’s
point of view, the positioning of the vehicle (not the camera) is what is important. For this
reason itwould be useful for the centre of the image to also be the central position of the
vehicle. This can be dealt with by modifying the dvalue in the algorithm. This won’t change
what the camera sees but will change how the remapped image is positioned. The following
three diagrams (see Figure 28) show a dvalue of + 10, —10 and —4. A minus value signifies

that the camera is to the left of the centre of the vehicle.

(a) (b) (c)
Figure 28. Effect of varying the d variable, (a) uses a value of +10, (b) uses a value of-10 and (c)
uses a value of -4.

76

Therefore, ifitis known that the camerais a value of 10 to the right of centre of the vehicle,
the image informs the algorithm that the vehicle is currently well to the left of centre of the
lane (as shown in the first remapped image). If however, itis known that the camera is
mounted avalue of 10 to the left of the centre of the vehicle then the remapped image
informs the algorithm that the vehicle is slightly to the right of centre of the lane. Ifitis
next considered that the camera is mounted a value of 4 to the left of centre of the vehicle
then the remapped image informs the algorithm that the vehicle is in the exact centre of the
image. It is important therefore, that the positioning of the camera on the vehicle be known

in advance so that the re-mapping algorithm can compensate for it.

4.2.2.3 Effect of I value

The next variable to look atis the I variable, which as mentioned earlier represents the
position on the x-axis that the camera is positioned. If this variable is left at zero, itis
assumed that the camera module is positioned at x=0. Three examples follow, with | values

of0, -40 and +40 respectively (see Figure 29).

(a) (b) (©)
Figure 29. Effect of | variable, (a) uses a value of 0, (b) uses a value of-40 and
(c) uses a value of +40.

77

As can be seen from the results, changing the value of/simply moves the valid pixels up or

down the x-axis.

4.2.2.4 Effectofh value
Next the effect of changing the value of h (height) will be investigated. The following three

diagrams (see Figure 30) show has avalue of 35, 10 and 70 respectively.

(a) (b) (©)
Figure 30. The effect of h variable, (a) uses value of 35, (b) uses value of 10 and
(c) uses a value of 70.

As stated earlier, his in units of pixels, so changing the value of h from 10 to 35 to 70 has a
proportional effect on the scene visible to the camera module and will increase or decrease

all items in the scene in size proportionally.

4.2.2.5 Effect of a value

2a is the angular aperture of the camera. A definite value for a was difficult to obtain for
the camera module used in the experiments. However, through trial and error the value used

was 0.3 rads. The following diagrams demonstrate the effect of changing the value of a

used in the algorithm to 0.28 rads and 0.32 rads (see Figure 31).

78

@ (b)

Figure 31. Effect of the a variable, (a) uses a value of 0.28 rads and (b) uses a value of 0,32 rads.

It can be seen in the first case that the algorithm has failed to compensate fully for the
perspective effect, as the lane markings are still converging. In the second, the algorithm has

over compensated for the perspective effect; the lane markings are now in fact diverging.

4.2.2.6 Effect of 0 value

The 0 value is 20° or 0.349 rads. The next two diagrams show the effect of changing this

value to 0.3 rads and 0.39 rads (see Figure 32).

79

(@) (b)
Figure 32. Effect of 0 variable, (a) uses a value of 0.3 rads and (b) uses a value of 0.39 rads.

In the first diagram the lane markings appear to diverge and also it would appear that much
less of the road is visible in the remapped image. This is because the algorithm has been
given the information that the camera module is at a shallower angle and can therefore, see
much further into the distance, so in the section of the x-y plane that is being looked at
much less of the original image is seen.

The opposite is the case when the algorithm is given the information that the camera is at a
steeper angle. This assumes the image takes up much less space on the x-y plane, as if the
camera is looking down at a lower angle. Therefore, it will not see as far into the distance.
This leaves an incorrect result with lane markings that converge.

In any mechanical set-up of a camera module on avehicle it may be required that the 9 value
be modified in software by small amounts. This compensates for tolerances in the

mechanical set-up of the camera.

4.2.3 Using the Results to Measure Distances.
In this section, how the positioning of an individual pixel can relate to a position on the real-

life x-y plane is considered.

80

4.2.3.1 Vertical Distances

Firstly some sort ofreference must be used to equate a pixel to a real world measurement
unit. In this case the height of the camera module (with respect to the x-y road plane) at the
centre of the lens was known to be approximately 130mm. The value of hused in the
algorithm is 35 pixels. This equates to each pixel representing 3.7mm. Given that each of
the lane markings was designed to be approximately 100mm long the expectation is that
following the algorithm they would be 100/3.7=27 pixels in length. However, a look at the
result shows that the lane markings appear to be 35 pixels long as can be seen from Figure

33.

Figure 33. Close up of lane markings in the vertical direction, grid is at 1 pixel resolution.

It is difficult to determine exactly where the edge of the lane marking is, to determine the
length of the lane marking. However, all lane markings appear to be approximately of
uniform length. The distance between each of the lane markings is also 100mm, so this
should give an even better idea of how the transition from white to grey/black is not well
defined. This doesn’t match with what is expected given the height value in the algorithm
though this doesn’t pose a major problem since they are uniform, the length at any point can

be calculated by multiplying by a pre-determined scaling factor. In this case the value would

81

be 35 pixels = 100mm. This means that each pixel equates to 2.86mm. Later however, it

will be seen that this scaling factor is only appropriate for pixels in the vertical direction.

4.2.3.2 Horizontal Distances

Next the hori2ontal distances are examined; in particular the distance between the lane
markings is looked at i.e. the lane width. Given the hvalue of 35 corresponding to 3.7 mm
per pixel and the prior knowledge that the lane width is 360mm, the expectation is that the
lane width should be approximately 97 pixels. However, as Figure 34 shows this is not what
results. Unlike the vertical distances, where the measured value was larger than the
calculated value, in this case the measured value is less than the calculated value. The

measured lane width comes in at approximately 90 pixels wide.

Figure 34. Close up of lane markings in the horizontal direction, grid is at 1 pixel resolution.

Again given the uniform width along the lane this is not a major issue and can be corrected
when any measurement is taken by multiplying by a constant value. In this case this means
that 90 pixels = 360mm. This means that each pixel equates to 4mm in the horizontal

direction.

4.2.4 Roadway section with S Bend Ahead

Now a section of roadway with an S bend is considered. Figure 35 shows the captured

image of the curved road.

Figure 35. Captured image of roadway section with S-bend

As can bee seen from the image the road proceeds straight and then takes a left turn,
followed by aright turn and continues straight again. The remapped image is shown in

Figure 36.

Figure 36. S-bend section of roadway after Inverse Perspective Algorithm applied.

W hile this gives quite a good representation of the road, the further towards the top of the
image and the further towards the side of the image the less clear the road markings become.

This is due to the fact that in the original image there are much fewer pixels to detail these

83

parts and therefore, it cannot be expected that these will be as clear. In the lane detection
algorithm section later (see 4.3.1.2 and 4.3.4) it will be seen how successful a computer
algorithm is at collecting appropriate information from these parts of the diagram.

One other observation is that the width of the lane should be more or less uniform along the
length of the lane. However, comparing the lower part of the lane straightin front of the
vehicle to the far off part of the lane, after the s-curve it can be seen that there is clearly a
difference in lane width. By measurement the lane width in the lower part of the image
seems to be slighdy over 80 pixels whereas in the top of the image it seems to be only half
that at approximately 40 pixels. This number is only an estimate as the poor resolution in
the upper parts of the image makes it very difficult to ascertain the value accurately. This
combined with the lack of definition in those lane markings may make them unusable for

detection and path determination.

4.2.5 Roadway section half way through S Bend.

In the next example the camera module has again been moved on further along the lane and
is this time placed part way through the curve with every effort made, by hand, to putitin

parallel with the curve. Figure 37 shows the captured image and the remapped image.

84

a
Figure 37. Roadway section halfway through S-bend, (a) shows captured image and (b) shows
image after Inverse Perspective Algorithm has been applied.

It is noted here that part of one set oflane markings is missing. In this case itis the right
side lane markings. This is due to those lane markings not being in the field ofview of the

camera.

4.3 Detecting Lane markings
The next set of results examined are those of the Lane detection algorithm. Each of the

road sections shown in the results of the inverse perspective mapping (see section 4.2) is

analysed by this algorithm to see how successful it is at determining the lane ahead.

4.3.1 Finding all Objects in the Scene

The first task of this algorithm is to determine all the objects in the scene before they can

then be categorised into lane markers and non-lane markers.

4.3.1.1 Straight Section of Roadway

The images before and after thresholding for the straight section of roadway are shown in

Figure 38.

(a (b)
Figure 38. Threshold operation on straight road image, (a) shows image before thresholding and
(b) shows image after thresholding.

86

The list of objects found in this image are as follows.

Object Size in Pixels Centre Object Size in Pixels Centre
Number Number

0 52 (133,158) 25 4 (597.323)
1 109 (194,156) 26 1 (600,324)
2 11 (204,249) 27 5 (607,311)
3 141 (255,250) 28 6 (612,312)
4 127 (263,156) 29 13 (618,160)
5 165 (321,251) 30 3 (617,313)
6 3 (305,274) 31 85 (642,159)
7 10064 (503,294) 32 34 (649,278)
8 117 (329,157) 33 8 (647,249)
9 161 (386,251) 34 7 (647.283)
10 118 (397,157) 35 7 (648,288)
11 148 (446,251) 36 72 (667,282)
12 152 (463,157) 37 7 (655,284)
13 4055 (554,18) 38 6 (654,289)
14 1 (461,42) 39 9 (657,250)
15 2 (463,41) 40 7 (664,105)
16 2 (466,40) 41 38 (671,249)
17 127 (505,250) 42 7 (671,104)
18 138 (520.158) 43 1 (675,103)
19 31 (534,329) 44 41 (686,291)
20 120 (562,250) 45 6 (680,282)
21 119 (577,158) 46 22 (691,160)
22 2582 (638.111) 47 15 (690,283)
23 4 (592,322) 48 8 (687,285)
24 86 (613,249) 49 6 (694,286)

Table 1. All the objects found in the straight section of roadway.

There are 50 objects in total found in this image. They range in sizes from 1 pixel to the
largest at 10064 pixels. By inspection of Figure 38, 10 of these should be Left lane markers
and 9 of them should be right lane markers. However, a number ofissues could cause
problems with this. A look at the lowest right lane marker shows that itis very small in size
due to the fact that only a small amount of the marker is visible. In the listitis Object
Number 2 and is only 11 pixels in size. Realistically there is not enough information in this
lane marker to reliably inform the algorithm about the lane ahead. In particular, a least
squares fit to a straight line of so few pixels may result in an incorrect assumption about the
slope of the line of the lane marker. Also a closer look at some of the other lane markers

reveals that some of them may be splitinto more than one object (see Figure 39).

87

Figure 39. Close up of lane makers in straight road image.

In the Left-hand marker in this image, this marker will actually be made up oftwo objects.
The lane marker is splitinto Object Numbers 29 and 31 from the list. The lane marker in the
top left of Figure 39 above may appear to be two objects butis in fact three, as a further

zoom in will show (see Figure 40) that this is not the case.

Figure 40. Relationship between objects 33,39 and 41 in straight road image.

There is no near neighbour relationship between the pixels, as outlined in white, these are far

neighbours. So these objects are in the listas Object numbers 33, 39 and 41.

4.3.1.2 Roadway with S-bend Ahead.
The example with the roadway section with S-bend ahead is now examined.

The images before and after thresholding are shown in Figure 41.

88

(@) (b)
Figure 41. Threshold operation on Roadway with S-bend ahead, (a) shows image before threshold
operation and (b) shows image after threshold operation.

The list of objects found in this image is as follows:

Object Size in Centre Slope Object Size in Centre Slope
Number Pixels Number Pixels

0 73 (146,170) -0.015388 23 13 (419,125) -0.091580
2 91 (205,171) 0.028406 24 125 (440,229) -0.338209
3 78 (252,256) 0.014248 28 9 (464,202) 0.000000
4 90 (259,172) 0.019669 29 9 (475,204) 0.000000
5 1 (277,267) 30 63 (475,209) 0.000000
6 7927 (458,279) 0.003497 31 9 (484,201) 0.000000
7 1 (283,107) 32 9 (484,203) 0.000000
8 79 (302,256) -0.017787 33 27 (492,186) -0.059454
9 103 (310,175) 0.002228 34 31 (511,159) -0.071208
11 2 (301,109) 0.000000 35 25 (532,142) -0.106918
12 4730 (281,131) -0.064519 36 22 (5655,138) -0.121145
14 101 (349,254) -0.051849 38 4 (569,295) 0.000000
15 94 (357,173) -0.111034 39 5 (578.141) 0.000000
16 2 (358,287) 0.000000 40 7 (586,140) 0.000000
18 123 (395,247) -0.233326 45 8 (614,266) 0.000000
19 86 (392,162) -0.437757 47 7 (675,149) 0.000000
21 17 (409,146) -0.170735 50 1 (673,241)

22 31 (414,140) -0.147122 53 11996 (673,197) -1.304891

Table 2. All of the objects found in the roadway section with s-bend ahead.

From the numbering it appears that there are 54 objects in this image but closer inspection
reveals there are actually only 36 objects. Many of the object numbers between 0 and 53 do

not appear. The reason for this is that in some cases one object has been assimilated by

89

another object. As was described previously (see section 3.5.2) this leads to the original
object being destroyed but the pixels of that object are now all linked into a larger object.
One major concern evident from these results is in the curve. A close up is shown in Figure

42.

Figure 42. Close up of lane marker objects in curve.
While these do appear to follow the curve as a group, looking at each individually, there is no

indication that the slope of the best-fit line through each object is approximate to the slope
of the curve at that point. For example object number 34 has a slope of -0.071208 rads and
object number 28 has a slope of 0 rads. 0 rads is vertical on the image or straight-ahead
from the vehicle’s point of view. The angle at this point in the curve would be expected to
be somewhere between —0.5236 and —0.785 rads. This suggests that objects this far from the

camera source cannot be relied upon to give an accurate indication of the lane markings.

4.3.1.3 Roadway Section Half way through S Bend.

A third example is now looked at. The images before and after thresholding from the

algorithm are shown in Figure 43.

(@) (b)
Figure 43. Threshold operation on Roadway image halfway through S-bend. (a) shows image
before threshold operation and () shows image after threshold operation.

The list of objects detected in this image are as follows

Object Size in Centre Slope Object Size in Centre Slope
Number Pixels Number Pixels
0 1 (115,159) 16 2 (460,33) 0.000000
1 3 (118,158) 0.000000 17 2 (463,32) 0.000000
2 26 (127,155) -0.193261 18 3 (466,31) 0.000000
3 40 (172,150) -0.041946 19 1886 (522,55) -0.061549
4 83 (174,234) -0.028891 20 1 (468.30)
5 4 (209.153) 0.266252 21 2 (498.35) 0.000000
6 70 (223,239) 0.193318 22 2 (501,34) 0.000000
7 32 (221,155) 0.183409 23 2 (504,33) 0.000000
8 68 (255,251) 0.403270 24 2 (519,79) 0.000000
9 12 (258,164) 0.113792 25 4 (521,75) 0.000000
10 39 (270,169) 0.331142 26 4 (522,78) 0.000000
n 44 (276,267) 0.396676 29 4 (525.74) 0.000000
12 2 (285,272) 0.000000 31 3 (527,77) 0.000000
13 9 (308,185) -0.165149 32 2776 (580,75) -0.151943
14 4 (321,193) 0.000000 35 789 (576,106) 0.022789
15 830 (476,39) -0.098154 36 42 (589,121) -0.142147

Table 3. All the objects found in road-way image halfway through s-bend.
Again a few object numbers are missing as they have been assimilated into other objects.

One thing to note here is the size of the lane markers in pixels appears to be a little smaller

than in previous cases. In some of the cases there is no value for the slope, this occurs

where the object has only one pixel. A slope cannot be calculated from a single point and

therefore, the slope for such an object is undefined.

4.3.2 Criteria for Determining Lane Markers from Other Objects.
Once all the objects are inserted in a linked list, the first operation to be carried out is to

remove any objects that are definitely not lane markers. These would include any objects
that have very few pixels (e.g. less than 8) and those that have far too many pixels (e.g. more
than 200). This eliminates many objects from the list, which will speed up searching at later

stages.

4.3.3 Sorting Lane Markers into Right and Left Lanes

4.3.3.1 Finding First Lane Markers in Left and Right Lanes
How the algorithm goes about finding the first lane markers on the Left and Right side of

the lane is discussed in section 3.5.4.1.

Running the algorithm to this point on the straight road image reveals the following lane
markers as being the first Left and Right lane markers.

The attributes of the first Left and first Right lane markers are:

The First Left Lane Marker is number 0

Object number 0 Size is: 52 Centre (X, Y):(144,160) slope:-0.078009
The First Right Lane marker is number 3

Object number 3 Size is: 141 Centre (X, Y):(265,252) slope: 0.017131

Figure 44. Finding the first lane markers on left and right sides of the lane.

Notice that just below object number 3 is object number 2. As it happens, this is actually a
small section of the first Right lane marker that is visible to the camera but this object is only
10 pixels in size and such a small object couldn’t reliably inform the algorithm about the lane
position or direction. A look at the slope of object number 2 shows it is 0.161837 rads,

which is considerably different to lane marker object number 3, proving this point.

4.3.3.2 Sorting the remainder of the Lane Markers into Right and Left

Lanes
The results of sorting the remainder of the lane markers into right and left lanes following

the criteria put forward in section 3.5.4.2 are now considered.
The results on the straight lane section are given below. The full list of objects in the image

can be seen in Table 1.

The list of Left lane markers is as follows

Object Number Size in Pixels Centre Slope

0 52 (133,158) -0.088533
1 109 (194,156) -0.020644
4 127 (263,156) -0.014257
8 117 (329,157) -0.016483
10 118 (397,157) -0.030369
12 152 (463,157) -0.030563
18 138 (520,158) -0.039070
21 119 (577,158) -0.046723
29 13 (618,160) 0.000000
31 85 (642,159) -0.044251
46 22 (691,160) -0.054826

Table 4. List of Left lane markers in straight section of roadway.
(a) <b)

Figure 45. Finding all the Left lane markers in the straight road image, (a) shows all the lane
markers identified in the Left lane and (b) shows a close up of objects 29 and 31.

Of particular note here is the relationship between 29 and 31 (see Figure 45). It is likely that
these were part of the one lane marker but became separated during the processing.
The search for Right lane markers takes the same form as that shown for the Left lane

markers above.

The results are as follows.

Object Number Size in Pixels Centre Slope

3 141 (255,250) 0.016587
5 165 (321,251) 0.020921
9 161 (386,251) 0.025997
1n 148 (446,251) 0.032536
17 127 (505,250) 0.044690
20 120 (562,250) 0.052208
24 86 (613,249) 0.036544
33 8 (647,249) 0.000000
39 9 (657,250) 0.000000
41 38 (671,249) 0.068315

Table 5. List of Right lane markers in straight section of roadway.
(@) (b)

Figure 46. Finding all the Right lane makers in the straight road image (a) shows all the lane
markers identified in the Right lane and (b) shows a close up of objects 33,39 and 41.

Part (b) of Figure 46 shows a closer look at the situation for lane markers 33, 39 and 41.

It may appear that object number 39 should be part of object number 41 but where the two
meet is not a near neighbour relationship and so they are not considered to be the one
object. In reality objects 33, 39 and 41 all come from the one lane marker on the original

roadway.

4.3.4 Finding the Lane Markers on Roadway section with S-bend
ahead.

Now the whole algorithm is run on a piece of curved roadway. The roadway image and

results follow.

Figure 47. Roadway with S-bend ahead, after Threshold Operation.

The complete list of objects found in this section of roadway can be seen in Table 2.

The list of Left lane objects is as follows:

Object Number Size in Pixels Centre Slope

0 73 (146,170) -0.015388
2 91 (205,171) 0.028406
4 90 (259,172) 0.019669
9 103 (310,175) 0.002228
15 94 (357,173) -0.111034
19 86 (392,162) -0.437757

Table 6. List of Left lane markers in section of roadway with s-bend ahead.

The list of Right lane objects is as follows:

Object Number Size in Pixels Centre Slope

3 78 (252,256) 0.014248
8 79 (302,256) -0.017787
14 101 (349,254) -0.051849
18 123 (395,247) -0.233326
24 125 (440,229) -0.338209
29 9 (475,204) 0.000000
32 9 (484,203) 0.000000

Table 7. List of Right lane markers in section of roadway with s-bend ahead.

Figure 48. All the detected Left and Right lane markers found in the image of roadway with
S-bend ahead.

The Left lane seems to stop short of where the human observer would expect. However,
the next object above object 19, which is object 21 (not marked on image), just narrowly fails
the criterion 4 (see section 3.5.4.2). Its value for this is 0.317347 rads and the limitis 0.3
rads. However, the 0.3 was an arbitrary value and could be modified if deemed beneficial.
As mentioned in section 3.5.4.2, Criterion 4 could be determined more definitely if the
maximum curvature of a given road is known. For the general case here it is just left at the
arbitrary value 0.3 rads.

The Right lane seems to also stop short of where a human observer would expect. This is
due to the fact mentioned earlier that the pixels at this point do not seem to group together

properly to form the correct lines made up by the lane markers and so will not meet the

97

criteria. Objects 29 and 32 meet the criteria though as can be seen from the results their
slope is alot different from what would be expected given the trend. This erroris due to the
fact that they have very few pixels (only 9 each) and should clearly be part of some larger
object, which would give a slope with higher precision. Again through exhaustive testing it
may be found necessary to deal with this problem by eliminating objects below a larger
threshold than is currently being used. Currently this threshold is set to 8 pixels but this may

need to be increased.

4.3.5 Finding the Lane Markers on Roadway section halfway
through S-bend ahead.

The next curve examined is a right hand curve as the image was taken part way into the
curve shown in the previous image. The camera module would have been placed some
where between marker objects 15 and 18 of the previous image.

Results:

The complete list of objects found in the image can be seen in Table 3.

Figure 49.

The list of Left lane objects is as follows:

Object Number

3
7
9
10
13

Size in Pixels Centre

40 (172,150)
32 (221,155)
12 (258,164)
39 (270,169)
9 (308,185)

The list of Right lane objects is as follows:

Object Number

4

6
8
n

Size in Pixels Centre

83 (174,234)
70 (223,239)
68 (255,251)
44 (276,267)

There are a number of points to note here.

All the detected Left and Right markers in image of roadway halfway through S-bend.

Slope

-0.041946
0.183409
0.113792
0.331142
-0.165149

List of Left lane markers in section of roadway halfway through s-bend.

Slope
-0.028891
0.193318
0.403270
0.396676

List of Right lane markers in section of roadway halfway through s-bend.

Objects 9 and 10 are connected as far neighbours and appear to be one object but are
actually two objects. They are circled as one in Figure 49.

Some of the markers in the Left lane have a very small number of pixels. Object 9 has 12
pixels and object 13 has 9 pixels. Having fewer pixels like this leads to unusual results in the
slope of the object, which may be out of line with the trend of the other markers, which it is
in this case. However, recognition of the objects making up the lane is all that is important
here. The algorithm will work as long as the slope is not out of line with the others by
enough to prevent the algorithm from correctly identifying the subsequent lane markers in
the image.

It is also noted that the first Left lane marker is clearly not the first marker that a human
observer would have picked out. A closer look will show that it doesn’t meet the criteria set
out for the first-in-lane markers of being over 30 pixels in size. Itis in fact only 26 pixels.
The 30-pixel value was picked as an arbitrary value and could be changed. However,
changing this value could lead to objects with very few pixels being used as the first lane
marker and thus making it difficult to determine the position and orientation of the vehicle
in the lane.

It is also noted that when lane markers are at a more extreme angle with respect to the
heading of the vehicle, as seen in this last example, that there is a greater tendency for lane
markers to be split into different objects which may appear to the human observer to be one
object. This relates to objects that touch via far neighbour pixels. '"The algorithm doesn’t
consider these to be touching, only near neighbour pixels can be acceptable criteria for
connecting objects. This decision was made on the basis of processing power concerns as
adding checks for a further two pixels during object creation would double the processing
required to carry out the algorithm. However, as can be noted from the results these only
happen in a few places and as such a mechanism to cycle through all the objects and see if
any are far neighbours of each other and then amalgamate them into one larger object could
be considered. A large amount of testing would be required to determine if this is necessary

and worth while.

4.3.6 Determining a Set of Target Points to follow.
Following the scheme set out in section 3.5.5 the algorithm determines target points for the

vehicle to follow. These points can be seen in Figure 50 at points where the curve does not

actually hit the target.

4.3.7 Curve Following the Target Points.

A B-spline curve was used to follow the points generated. This is described in section 3.6.3
and results of tests are given in section 4.4.3.

As described in section 4.4.3 points before and after the first and last targets are often
beneficial to having a complete curve that traverses all the target points. This is why the
algorithm takes one point after there are no more lane markers to determine target points.
This extra point, which is calculated to be in line with the last valid point is vital for allowing
the curve to reach as far as the last valid point. Also in order for the curve to start on or
before the first valid point, points must be placed before the first valid point. In the
discussion of the algorithm above, a point was placed where the camera and vehicle front is
assumed to be, i.e. (0, 200). In order for the curve to pass through this point, another point
is assumed to be behind the vehicle but in line with the heading. In this case it was assumed
to be (-50, 200). This allows a complete curve to be generated. The reasons for these are
explained in greater detail in section 4.4.3.

Results for the three sections of road shown throughout this section are shown in Figure 50.

(a) (b) (c)
Figure 50. The trajectory curve calculated for the three roadway sections, (a) is the straight section
of roadway, (b) is the section with S-bend ahead and (c) is the section halfway through the S-
bend.

It is noted particularly in part (b) of Figure 50 that the trajectory seems to go wrong part way
through the curve. A look back at Figure 48 and Table 7, shows that the markers on the
Right side of the lane give the wrong impression of where the lane is going and the trajectory
is following this. Also as stated previously an extra target will be set continuing in the same
direction as the trajectory was previously going. This makes the trajectory error appear even
worse. However, if the algorithm were to be run on a real vehicle system new images would
be taken as the vehicle travels and this would mean that new points that would likely not
have error would be added and thus remove the problem shown in Figure 50. Even if new

target points are not added the trajectory line stops short of leaving the lane entirely.

4.3.8 Vehicle Speed Vs Algorithm Speed.

Now that a trajectory has been decided upon it should be considered how fast a vehicle
should travel (assuming no slip) and still have enough information to follow the lane. In
effect this means determining how far ahead of the vehicle the algorithm can reliably predict

and how often new data will be introduced to the algorithm. Unfortunately there are

102

unknowns in this. Much will depend on the type and speed of the hardware used, to
determine how quickly the algorithm can be tun and therefore, how many image frames can
be dealt with each second. This determines how often new data is available to the control
system. With this in mind the three stretches of roadway are considered at three different
frame rates. Then taking three different vehicle speeds a table shows how many image
frames should occur within the distance over which one image frame can reliably determine
the lane. If less than one frame can occur in this space then this will show that the algorithm
is not viable at this vehicle speed/frame rate combination. The more frames that occur in
this space the more reliable and safe the system is considered to be.

In each of the three roadway sections only the x-axis movement will be considered as
opposed to calculating the distance by following all the way around the curve. The x-axis
movement will be the worst case scenario in any case. The point picked as the final point
that can be reliably determined will be the centre point of the furthest lane marker. Given
the vertical distance calculated in section 4.2.3.1 each pixel was determined to represent
2.86mm. Given the 1:10 scale this would mean in an ordinary road car each pixel would
represent 28.6mm. So for example if the centre point of the lane marker was 300 pixels on
the x-axis then this would be equivalent to 8580mm from the vehicle i.e. 8.58 metres from
the vehicle.

The five frame rates used are 4fps, 5fps, 10fps, 15fps and 30fps.

The three speeds used are 50kph, 100kph and 130kph.

Straight Section of road way 50km/h 100km/h 130km/h
4fps 5.73 2.85 2.19
5fps 7.16 3.56 2.74
10fDS 14.23 7.11 5.47
15fps 21.45 10.67 8.2
30fps 42.69 21.34 16.4
Section with s-bend ahead

4fps 3.98 1.99 1.54
5fps 4.98 2.49 1.92
10fps 9.97 4.98 3.83
15fps 14.95 7.48 5.75
30fps 29.9 14.95 115
Section half way through s-bend

4fps 2.54 1.26 0.976
5fps 3.17 1.58 1.22
10fps 6.34 3.17 2.44
15fps 9.5 4.76 3.66
30fps 19 9.5 7.32

Table 10. Frame rates Vs Vehicle speed

What does the table above mean for the algorithm used in this project? Looking at the
lowest number in the table i.e. 0.976, this value occurs at 130 km/h using 4fps on the section
of roadway halfway through the s-bend. This means that the algorithm is able to see 0.976
image frames into the distance if it can operate at 4fps and the vehicle is moving at
130km/h. In other words if the vehicle is travelling at 130 km/h in this section it will have
travelled completely the trajectory that it has calculated and then have to stop and wait for
the next image frame to be analysed before it can move on. However, if the algorithm is
capable of operating at 5fps then the figure is 1.22 which means that the vehicle will have
travelled (1/1.22=0.82) 82% of the trajectory it has calculated from the previous image
frame before the algorithm supplies it with new information. 5fps would mean that the
algorithm must be complete within 200ms.

Note: In driving 82% of the calculated trajectory it is assumed that the trajectory is correct
and obstacle free, as this algorithm is not capable of recognising obstacles in any event. The
greater the number in the table above the less the effect of trajectory miscalculation, as any
miscalculation should be corrected in the next frame and the vehicle will only have travelled
a short distance in the intervening period of time, e.g. in the Straight road section if driving
at 50km/h. using 30fps the vehicle will only have travelled (1/42.69=0.0234) 2.3% of the
calculated trajectory before the next data is available.

I f the algorithm could be improved to see further into the distance then this would mean
lower frame rates could be tolerated. Of course improving the algorithm might lead to more
processing that will take up more of the extra processing time that has been gained.

These figures will be very useful in determining if a piece of hardware is capable of carrying

out the algorithm at a particular vehicle speed.

4.4 Path Trajectory and Steering Algorithm.

4.4.1 Cubic Curve tests.

The following two graphics show the results based on different (xI5yt) and 0) values. In

each case (x0 yQ was (0,0) and 0Owas also 0. The rvalue used in each case was 0.01.

Example 1

(xy,) is (16,5); 0, is 0.8 rads.

Figuresi. Curve for Example 1, (xj, yp iS(16,5) and o iSo.8 rads, viso.o1.

As can be seen from example 1 (see Figure 51) quite a gende curve results. From the point
ofview of avehicle, the steering change would be gradual and all changes would be in the

one direction.

Example 2

(x”™) is (12,8); 9j is 1.3 rads.

Ve - — L e —_—f -
»
/ t
/ 1
/ i
/ 4
/
i
t
/ 1
/
/
4
i
4
4 4 2 3 * 5 5 7 t 5 10 n 1] >3 1« 15 16 17 10

Figure 52. Curve for Example 2, (xi, yi) is (12, 8) and 0i is 13 rads, v is 0.01.

Example 2 (see Figure 52) shows a much more extreme curve. In order to have the final 0
value of 1.3 in such a short space the curve must first go down before turning back up.

From avehicle point of view this would mean steering to the right before quickly changing

the steering to the left.

A third example is now shown (see Figure 53) which is the same as Example 2 except that
the rvalue has changed to 2 rather than 0.01. This is purposely chosen as unacceptably high

to show the effect of this variable on the precision of the curve estimation.

Example 3.

i Vehicle Ir.ijcilftiy

N~
<

0 1 2 3 4 5 a 7 # a <0 i 13 13 14 15 1B 17 18

Figure 53. Curve for Example 3, (xi, y0 is (12,8) and 0i is 1.3 rads, vis 2.

Take particular note that the curve should end as close as possible to the (xI5yt) position. In
this case this should be (12,8) but because of the lack of precision the end point is
approximately (12.88, 9.35) which is a long way from the expected value. For comparison in

Example 2 the end values are (12.004, 8.005).

4.4.2 Effect of Wheelbase on Steering Angle

Two examples now follow, which will show the effect of wheelbase on steering angle. Both

examples will use the curve that starts at (0,0) with a0 of 0 and ends at (12,8) and 0j of 1.3

rads.

Example 1 (see Figure 54)
In this case a wheelbase of 2 is used. The vehicle is pictured near the point on the curve

where the radius is the smallest, i.e. largest curvature, so that the steering angle is most

pronounced.

Centre
-W tieri-

Kigi't
Whee

Figure 54. Steering angle using wheelbase value of 2.

In the diagram it can be seen that the car has three front wheels. The left and right wheels
are there to give the effect of an actual automobile. The centre wheel shows the average
steering angle. The left and right wheel show the exact same angle though on a real vehicle
of this type these wheels would be at different angles. The reason for this is that each wheel
is traversing a different trajectory. If they were at the same angle this would lead to excessive
tyre slip and wear as well as difficult handling. However, these differing angles will be sorted
out by mechanical elements in the car so from the point of view of this project the average
angle is all that is important. By moving the slider at the top of the window above the
vehicle can traverse the curve and the changing steering angle can be viewed as the vehicle

moves along the curve.

Example 2 shows the same curve but this time being traversed by a vehicle with a wheelbase

of 5. Again itis pictured at the point along the curve where the curvature is the greatest.

Figure 55. Steering angle using wheelbase value of 5.

Note here that the radius of curvature is the same as in the last example, this should not be a
surprise as the curve itself has not changed and again the vehicle is positioned at the point of
greatest curvature. However, the wheelbase of the vehicle is different from the last example
and so in order to keep the vehicle on this trajectory the steering angle must be much greater
than in the previous case. This would be a limiting factor in the maximum curvature that a

vehicle could traverse given a maximum steering angle that a given vehicle would be capable

of.

4.4.3 B-spline tests.

To show this algorithm, again Java has been used, given its powerful graphics capabilities.
In the example that follows ten target points have been chosen as follows

0,0) (1,1) (2,4 (3.4) (B4 (7,4 (9,2) (11, -2) (12, -1) (14, -2)

Figure 56. B-spline using points (0,0) (1,1) (2,4) (3,4) (5,4) (7,4) (9,2) (11, -2) (12, -1) (14, -2)
There are a number of important things to note regarding Figure 56.
The coloured dots represent the ten different points listed above. The curve also changes
colour across its length, the colour of the segment at any point indicates which coloured
dot/target point is the current local control point, i.e. the point P;mentioned in the general
matrix form previously (see section 3.6.3.1).
The curve doesn’t extend from the first dot to the last dot. It cannot properly extend from
the first dot (Magenta), as when 1/ is the first dot then Pi4 does not exist and therefore, the
matrix calculation cannot be carried out or could at best be carried out on incomplete data.
A solution to this will be discussed in amoment. This is also the case for the final two dots
(Green and Yellow) as when P, is the second last dot then Pi+2doesn’t exist and when P, is
the final dot neither P¥. nor Pi+2 exist. So again the matrix calculation cannot be carried out
in its entirety. However, in this project this should only happen if and when the vehicle runs
out of road and it is likely to be desirable that the vehicle stops short of this point in any
case.
Another important point to note here also is that the B-spline does not always pass through
the target point but instead passes close to it. This is not necessarily a problem in this

application. If the target point is always the centre of a lane, a human driver will regularly

deviate from the centre of a lane while travelling through bends but will tend to stay to the
centre of a lane while travelling in a straight line. In the diagram the first red, green, yellow
and blue dots are in a straight line. For the middle two of these the curve hits both target
points similar to avehicle travelling in a straight line.

As can be noted from the second red dot the curve misses this target by a considerable
distance. Would this be a large enough difference in this application to cause the vehicle to
leave the intended lane? The answer to this question depends on a number of factors.
Firstly it depends on the relative size of the vehicle compared to the scale of the curve. It
also depends on the relative distance between the points compared to the size of the vehicle.
In any case roads are designed for vehicles to travel around the lanes safely. Therefore, these
problems can be solved by increasing the number of target points and by virtue of this,
having the target points close to each other relative to the size of the vehicle. The overall
number of target points can always be traded off against the resolution between each point,
the incremental value of u as mentioned previously, to gain a curve that comes sufficiendy
close to each target point to maintain position of the vehicle in its own lane. On the subject
of the incremental value of u, it should also be noted that the different colour segments of
the curve in the diagram are not of uniform length. The main problem that this causes is
that the incremental value of u cannot be used to gauge distance travelled. Remember that
the incremental value of u is a fractional value between 0 and 1 and not a measure of
distance as was v in the target point following algorithm discussed earlier in section 4.4.1 and
[6]. The reason that this is an issue is that controlling a robotic vehicle to follow a lane not
only requires steering output but also drive output, u cannot be used to inform the vehicle
control system how far to move forward for each incremental change. However, this can be
solved as follows. The curve as generated is an approximation to a curve made up of short
straight-line segments. Due to the problem mentioned above however, these are not of
uniform length. However, each individual length can be obtained by co-ordinate geometry
since each of the individual end points of these lines are calculated by the matrix calculation.
Each of these lengths can then be used to determine how far to move the car forward for
each incremental change in u.

This is also how the steering angle is obtained for each point along the curve. Each straight-
line segment has a slope. This is effectively the slope of the tangent to the approximated

curve at that point. Likewise the change in slope between two points divided by the length

of the straight line segment between those two points gives us the curvature at that point on
the approximated curve. From this the radius of the curve at that point can be determined.
Then given the wheelbase of the vehicle the appropriate steering angle can be obtained.
Earlier it was mentioned that the curve doesn’t start at the first point for stated reasons.
This raises the question of how the vehicle should go about moving towards where the curve
does start, in order to then traverse alongit. As there is no information to guide the vehicle
between its current position and where the curve starts this would be impossible given the
situation as it stands. One solution is to have the first point somewhere behind the vehicle
and in this way it can be used in calculations but does not need to be an actual target point
for the car.

An example follows (see Figure 57). Assume the vehicle is on the second (blue) target point
at position (1,0).

The points used in this example are

(0,0) (1,0) (2,1) (3,2) (54 (7,4) (9,2) (11, -2) (12, -1) (14, -2)

Figure 57. B-spline using points (0,0) (1,0) (2,1) (3,2) (5,4) (7,4) (9,2) (11, -2) (12, -1) (14, -2)

The result obtained here is certainly better than in the previous case but is still problematic.

The blue line doesn’t actually connect with the blue target point. The other big issue is that

unless by luck the heading of the car just happened to coincide with the starting slope of the
blue section of the curve then the vehicle will be pointed in the wrong direction. Again this
leaves the situation that there is no information available to get the vehicle from its start
point to the curve and so a further solution must be found.

The more complete solution is as follows. Firsdy assume the first target point to be directly
behind the vehicle in line with the heading of the vehicle. Secondly assume the third target
point to be directly in front of the vehicle again in line with the heading of the vehicle. Since
the co-ordinate space that will be used will be obtained from the first frame of video from
the vehicle, it is fair to assume that the vehicle start point is at (1,0) and its headingis 0 = 0
rads. Although the mounted camera cannot see behind the vehicle, it can be assumed that
the first pointis directly behind the vehicle, for example (0,0).

No matter what the information from the camera tells us about direction to travel it should
be assumed that the first target point is directly ahead, meaning that the vehicle’s first
movements must always be straight ahead. In the example this will be given as (2,0). After
this the target points obtained from the lane recognition algorithm should follow, the first
seven of which will be given in the example as

(31) 54 (74) (9,2) (11, -2) (12, -1) (14, -2)

Ncv 'First
Tar; ;et Poi it

/
/

New! rird
larget Point

Figure 58. B-spline using points (0,0) (1,0) (2,0) (3,1) (5,4) (7,4) (9,2) (11, -2) (12, -1) (14, -2)

The results are much better in this case. The assumptions were that the vehicle is initially
positioned on the second point (Blue dot) at (1,0). The first point (Magenta) at (0,0) is
behind the vehicle. The third point (Red) at (2,0) is directly in front of the vehicle on the
same heading. Most importantly the blue section of curve extends right to the blue starting
location and the first section of the blue curve has the same slope as the heading of the
vehicle, which means that the vehicle has enough information now to traverse the whole
curve. It should be noted of course that the curve doesn’t go all the way to the last target
point. However, this is not as much of a problem as at the beginning of the curve. Itis not
important that the vehicle makes it all the way to the final target point for two reasons.
Firstly in most cases as the vehicle moves new images will be captured by the camera, which
will lead to new target points being generated and the curve will then continue on without
any discontinuity. Secondly if no new images or target points are generated it is time for the
vehicle to stop moving and it would be prudent for the vehicle to stop short of the final

target point for safety reasons.

14

5 Discussion

5.1 Test Bed Model Vehicle

The test bed model vehicle was not focused on during this project. Nonetheless it is
considered very important. The learning and development curve required to work on the
sort of algorithms discussed in this project is so significant that it becomes difficult to
concentrate on any new or novel work. If each new job ofwork involved in this area
required the set-up of a new development system then very litde advance would be made.
Having a ready made test model vehicle and development environment that can be used
across various algorithm types would be very beneficial to advancing novel algorithms in this
area.

A number of issues are still outstanding, which would need to be worked on to get the

model vehicle system operational.

5.1.1 Mechanical Issues.
The main board and camera module as well as some ancillary power electronics for the drive

motors would need to be mechanically attached to the vehicle.

The main board shouldn’t cause to many problems but interference from the large DC drive
motor could be problematic and requires some Electro-magnetic shielding. The other issue
with the main board is its power supply. Supplying power to the board from the same
battery as that used to power the main drive motor could lead to serious noise problems for
the main board. Hence separate battery sources for each circuit would be advisable. Again
mechanically fixing these batteries to the vehicle will have to be considered particularly in
light of the fact that the batteries would need to be recharged regularly.

The Camera module would need to be mechanically attached to the vehicle. Position and tilt
angles would need to be reasonably accurate in order to be useful. As explained in section
4.2.2, many of these variables can be compensated for in software. However, the degree of
software compensation is limited and cannot be carried out dynamically. Therefore, the
camera module would have to be attached in a way that doesn’t allow it to vary with the

movements of the vehicle.

5.1.2 Electronics and Software issues.
The main board would need to be configured to operate applications on start up rather than

wait for command line input to initiate. This is due to the fact that when the vehicle is to be
used it must be stand alone and not attached to a host PC.

Test applications should be written with a time delay before start or a user input (button)
before start. This is necessary so that the test personnel can have the circumstances for the
test in place before the vehicle tries to react to its circumstances.

Currently the port of uClinux for the Blackfin processor doesn’t have many of the common
mathematical functions in its compiler libraries. While many of these problems can be

worked around, for use as a general test bed a library of these would need to be developed.

5.2 Inverse Perspective Mapping.
Using some form or inverse perspective mapping seems a logical step in any lane detection

and following algorithm. While many algorithms may not do it explicitly, at some point
when moving from the captured image to determining lane following controls, some form of
mapping must be done. However, a number of issues must be consider when using the

inverse perspective mapping as part of an algorithm.

5.2.1 Processing and Memory Overheads.
The algorithm uses a considerable amount of complex mathematical operations.

Consider the case in this project where it was acting on each of 800 x 400 pixels i.e. 320,000
pixels in all. This means that all of the operations involved in the inverse perspective
mapping must be carried out 320,000 times for each image frame. This takes a large chunk
of any system’s processing power. Those with fast maths processing instructions will of
course do so quicker. As mentioned in [14], SIMD would be particularly suited to this sort
of operation. Can this processing requirement be lightened? Yes, but not without
compromise in another area. Looking closely at the inverse perspective mapping shows that
the exact same operations and results are obtained each time the algorithm runs unless one
of the variables in section 2.5.2.1 change in value. Itwould be expected in most set-ups that
these would not change once calibration was finished. For this reason the mapping from

captured image to re-mapped image could be calculated in advance and stored in a lookup

116

table. This would mean that for each of the 320,000 pixels in each frame, the algorithm
would simply look up the appropriate value in the lookup table that would tell the algorithm
the appropriate pixel value to take from the captured image. All of these operations are
reduced to indexing and assignment instructions. All microprocessors tend to be fast at
executing these instructions. However, the downside of this is the amount of ROM required
to store a lookup table of 320,000 integer values. At 2 bytes minimum this would take up
640kbytes. In fact it would take up twice that as a number would be required for both u and
v values (the horizontal and vertical co-ordinates of the captured image). Altogether this is
well over 1 megabyte in size. Taking the BF533 board as an example, there are only 4
Megabytes of flash ROM available and this must also store the uClinux operadng system
image. One other solution is to store the table in RAM, which may be more plentiful
(BF533 has 128 Megabytes of RAM for example). However, this requires that the table be
calculated at some point e.g. start up initialisation. One problem related to this, which was
found on the BF533 board was that there were no maths functions such as atan in the
compiler libraries for the uClinux port for the Blackfin processor, which would make the

calculation of the table a non-trivial matter.

5.2.2 Using the results of the Inverse Perspective Mapping for
Measurement.
As can be seen from the results the inverse perspective mapping was by no means perfect

when it came to allowing the algorithm measure distances etc. from the results of the
mapping. Actual horizontal and vertical distances differed from calculated values. More
alarming still was the fact that when the results of the roadway image with the s-bend ahead
were studied (see section 4.2.4), itwas apparent that horizontal distances, which were the
same in the real world scene, didn’t appear the same in the re-mapped image. It is not clear
whether this was the fault of the inverse perspective mapping in any way and it is assumed
that this was in some part, if not solely, due to lens distortion. It would seem that any
system that was to rely on inverse perspective mapping should probably include some form

of lens distortion compensation.

Although not mentioned in [14], it is assumed that there are more variables that can affect

the mapping. Of particular note is yaw angle. If the camera was to rotate around its optical

1y

axis this could upset the output of the algorithm considerably. While it would be unlikely
any system designer would wish to introduce this rotation intentionally it could come about

through imperfections in the mounting process.

5.2.3 Calibration.

Some robust, reliable and repeatable mechanism would be required to calibrate any system
that was to rely on inverse perspective mapping. Be it through mechanical or software
calibration, it would be necessary to compensate for imperfections in the mounting process
both of the camera module to the vehicle and the lens to the camera module.

If some part of the vehicle were in the view of the camera module this calibration could be
achieved based on recognisable markings on the parts of the vehicle that are in the view of

the camera.

5.3 Lane Recognition Algorithm

For the small set of test images used this seemed to work reasonably well but to work in a
large set of varying circumstances it is believed that this algorithm must become much more

robust.

5.3.1 Lane Marker Objects with Insufficient Information.
Firstly in many cases, lane marker objects were too small to give accurate information,

particularly regarding direction. Many lane markers were split into multiple objects. If these
could be combined back into one object they could become more useful and reliable. Many
were only split by virtue of the fact that they had no near neighbour relationship between
them but did have a far neighbour relationship. Consideration of including far neighbour
relationships could make a big improvement to results. This could perhaps be carried out
after objects have already been created as they are currently. This could lead to this
functionality being added without the need for excessive extra processing. In other cases the
individual segments of a split lane marker were only split by a few pixels. Some form of

region growing algorithm [27] could achieve the rejoining of these in just a few iterations. If

these operations suited particular target hardware (e.g. SIMD hardware) they should be

considered.

5.3.2 Priority Based Marker Recognition System

Currently the algorithm works on a priority-based system where each object is considered on
merits based on particular criteria set out and marks awarded for this. This part of the
algorithm in its present state was not very successful. While it did find most of the obvious
markers it failed to consider many further up the image (i.e. further from the camera), which
the human observer could see quite clearly. Part of the problem here is the lack of
sophistication and limited amount of criteria set out. It was found that during the testing of
the algorithms that to get the best results, any object that didn’t attain full marks from each
of the criteria was not an appropriate marker. Therefore, setting different priority marks to
the different criteria proved unnecessary. However, this would seem to be more of a
criticism of the number and type of criteria used to determine an appropriate marker, than of
the priority based system itself. The major improvement that could be made here is to
consider more general trends in the lane markers and include marks based on this. With the
algorithm in its current guise, only the most recently selected marker is used in determining
the next appropriate marker. This could lead to one non-marker that accidentally meets the
criteria to cause the lane to carry on in the wrong direction. Also it seems particularly from
section 4.3.4 that while the curve here is clearly visible to the human observer because of the
trend of the markers, it is invisible to the current algorithm because of the individual
attributes of the marker objects. Looking at the general trends of markers should also be
considered. Therefore, improving the priority based system with points for markers that

seem to fit a general trend could justify the use of the priority marks system.

6 Conclusions

It would seem from research into this area that a fully robust system for lane recognition and
following, which can deal with all the road types that human drivers can deal with, is still a
long way from realisation.

The work in this project was based on many constraints and assumptions, such as the road
being perfecdy flat and lane widths and lane markings being a definite pre-determined size.
Any robust system for real-world use could not be based on such strict constraints but
instead must be capable of dealing with awide range of changing circumstances in the same
way as a human driver. It would need to deal with varying types and sizes of road markings
and roads that do not have lane markings at all. 1t must be capable of dealing with many
types of road surfaces in varying weather and lighting conditions and real world roads cannot
be assumed to be flat.

The literature review showed a large number of different approaches to solving the subsets
of this task but always under particular constraints and assumptions. Itis likely in the future
that the optimum solution to any of these tasks will change as hardware advances in

sophistication.

The inverse perspective mapping would seem to be a vital part of any algorithm in this area
though in its current guise it is incomplete and will need other variables and mappings such
as lens distortion corrections to be added to make it more useful.

Calibration methods will be very important to the accuracy of the inverse perspective
mapping algorithm. It is likely that some form of measurement system to gauge this
accuracy will be necessary in the future.

The issue of how the inverse perspective map is generated is one that will have to be tailored

to the strengths and weaknesses of the particular hardware platform.

The lane detection algorithm used in this project was based on the system used in [7] and
discussed in section 2.5.1.2. However, in that system the inverse perspective mapping was
not used prior to lane detection and also the specifics of how the algorithm was carried out

by the author are not published.

The algorithm as developed in this project was successful in determining the lane correctly
for the test lanes used, though only to a certain distance in front of the vehicle. Itis believed
that this distance from the vehicle could be increased by improving the sophistication of the
algorithm, to include methods to rejoin lane markings that have become split into different

segments and also to include methods of looking at the general trend of the lane.

The method of path trajectory planning worked very well and properly determined the
appropriate route through the lane ahead. However, the next phase in the development of
this algorithm must include the matching of data from several image frames which must all
be incorporated into the one general co-ordinate system. For this to be fully appraised it
must be tested on a moving vehicle that is following the control signals set out by the
trajectory planning algorithm. This is important as it is likely that the next generation of this
trajectory planning algorithm will be required to take into account the movements of the
vehicle in the intervening time since the last image frame in order to estimate the vehicle’s
current position.

The use of the B-spline for trajectory planning was successful and was applicable to the

strengths of most DSPs, which are likely to be heavily used in vision system applications.

While it is likely that any robust lane detection and following algorithm will need to
incorporate many different types of algorithms perhaps running side by side, there is still a
need to compare individual algorithms against each other. This will only be possible with a
standard model system on which many different algorithms can be tested in a safe, compact
and controlled environment. With this in mind it is believed that the most important future
work in this area is towards the development of a model vehicle and road system, which can
be used to test the effectiveness of different algorithms.

The model system considered in this project would work well for this, given that it uses
reasonably inexpensive off the shelf components and open source software. However, a
certain amount of mechanical build would still be necessary and on the software side some
standard libraries, such as common maths functions, will need to be developed as these may

be necessary to enable the speedy generation of new or improved algorithms.

7 Bibliography

7.1 References

[1] Margie Peden et al, “World report on road traffic injury prevention”, World Health Organisation
Geneva 2004. ISBN 92 4 159131 5.

[2] Popular Science Magazine, May 2007.

[3] Tsugawa, S, “Vision-based vehicles inJapan: machine vision systems and driving control systems”,
Industrial Electronics, IEEE Transactions on, Volume 41, Issue 4, Aug. 1994 Page(s):398 —405.

[4] Clarkson, Douglas, “Driving into the future”, Electronics Today International November 1995.

[5] Dickmanns, E.D., “The Development of machine Vision for road Vehicles in the last decade.”, IEEE
Proc. Intelligent Vehicle Symposium 2002 14-17 June 2004 Page(s):54 - 59

[6] Kohji Tomita, Sadayuki Tsugawa, ‘Visual navigation of a vehicle along roads the algorithm and
experiments”, Vehicle Navigation & information systems Conference Proceedings 1994 Page(s): 419-
424,

[7] Juan Pablo Gonzalez, Umit Ozguner , “Lane detection using histogram-based segmentation and
decision trees.” IEEE Intelligent Transportation Systems Conference Proceedings 2000 Page(s):346 —
351

[8] Kreucher, C.; Lakshmanan, S., “A frequency domain approach to lane detection in Roadway images.”
International Conference on Image Processing, 1999. Pages 31-35.

[9] Otsuka, Y.; Muramatsu, S.; Takenaga, H.; Kobayashi, Y.; Monj, T., “Multitype lane markers
recognition using local edge direction.”, IEEE Intelligent Vehicle Symposium 2002 Pages 604-609.

[10] Pomerleau, D.;Jochem, T., “Rapidly adapting machine vision for Automated vehicle steering.”, IEEE
Intelligent Systems and Their Applications Volume 11, Issue 2, April 1996 Page(s):19 —27

[11] Nicholas Apostoloff, Alexander Zelinsky, “Robust Vision based Lane Tracking using Multiple Cues
and Particle Filtering”, IEEE proceedings from Intelligent Vehicles Symposium, 2003, 9-11 June 2003
Pages: 558-563.

[12] Michael Smuda von Trzebiatowski, Axel Gem, Uwe Franke, Uwe-Philipp Kaeppler, Paul Levi.;
“Detecting Reflection Posts —Lane Recognition on Country Roads.”, IEEE Intelligent Vehicles
Symposium, June 2004. Pages 304-309.

[13] Akihiro Suzuki, Nobuhiko Yasui, Nobuyuki Nakano, Mamoru Kaneko, “Lane Recognition System for
Guiding of Autonomous Vehicle”, IEEE Intelligent Vehicles 92 Symposium proceedings, 29 June-1
July 1992, Pages 196-201.

[14] Massimo Bertozzi, Alberto Broggi, “GOLD: A Parallel Real-Time Stereo Vision System for Generic
Obstacle and lane Detection”, IEEE Transactions on Image Processing, Vol 7, No. 1,January 1998,
Pages 62-81.

[15] Alberto Broggi, “An image reorganization procedure for automotive road following systems”, IEEE
Proceedings International Conference on Image Processing, 1995 Volume 3, 23-26 Oct. 1995, Pages
532-535 Vol. 3

[16] Alberto Broggi, “Robust real-time lane and road detection in critical shadow conditions”, IEEE
Proceedings International Symposium on Computer Vision, 1995, 21-23 Nov. 1995, Pages 353-358.

[17] Yuan Shu, Zheng Tan, ‘Vision Based Lane Detection in Autonomous Vehicle”, IEEE Proceedings of
the 5thWorld Congress on Intelligent Control and Automation, June 15-19, 2004 Hangzhou, Pages
5258-5260.

[18] Gang Yiliang; Tae Young Choi; Suki Kyo Hong; Jae Wook Bae; Byung Suk Song; “Lane and
Obstacle Detection Based on Fast Inverse Perspective Mapping Algorithm”, IEEE International
Conference on Systems, Man and Cybernetics, 2000, Volume 4, 8-11 Oct. 2000. Pages 2969-2974.

[19] Anuar Mikdad Muad, Aini Hussain, Salina Abdul Samad, Mohd. Marxuki Mustaffa, Burhanuddin
Yeop Majlis, “Implementation of Inverse Perspective Mapping algorithm For the Development of an
Automatic Lane Tracking System”, IEEE Region 10 Conference TENCON 2004, 21-24 Nov.
Volume A Pages 207-210 Vol. 1

[20] ADSP BF533 BlackGn Processor Hardware Reference Revision 3.2 July 2006
[21] http://www.uclinux.orp/description/

[22] http://docs.hlackfin.uclinux.org/doku.php?id=compiling the kernel

[23] M3188A Camera Module spec sheet

[24] Omni-Vision OV7620/0V7120 Detailed SpeciGcation document Version 2.1.
[25] http://docs.blackfin.uclinux.org/doku.php?id=sample t>pi driver

[26] http://www.efunda.com/math/leastsauares/Istsarldcurve.cfm

[27] Steven W. Smith, “Digital Signal Processing —A Practical Guide for Engineers and Scientists”
[28] http://www.doc.ic.ac.uk/~dfg/AndvsSplineTutorial/Beziers.html

[29] http://www.doc.ic.ac.uk/~dfg/AndvsSplineTutorial/BSplines.html

[30] http://en.wikipedia.org/wiki/B-snline

http://www.uclinux.orp/description/
http://docs.hlackfin.uclinux.org/doku.php?id=compiling
http://docs.blackfin.uclinux.org/doku.php?id=sample
http://www.efunda.com/math/leastsauares/lstsarldcurve.cfm
http://www.doc.ic.ac.uk/~dfg/AndvsSplineTutorial/Beziers.html
http://www.doc.ic.ac.uk/~dfg/AndvsSplineTutorial/BSplines.html
http://en.wikipedia.org/wiki/B-snline

8 Appendices

8.1 Appendix A- Wiring Diagram and Pin Explanation.

+VCC

The Camera module pins and short explanation are as follows.

This information is mainly taken from [24], particularly pages 2 and 3.

Pins 1-8 ::Y0-Y7:- Digital Output Y Bus. The M3188A is a Black and White Camera
Module which shares its interface layout with the C3188A Colour Camera Module. The
Colour camera module has different modes of operation i.e. 8 bit, 16 bit etc. In 16 bit mode
it would use the eight Y bits to output luminance data and a separate 8 U bits to output
chrominance data. However, since the M3188A is only Black and White chrominance
would have no meaning and so the YO0-Y7 data lines are used as the complete 8 bit output

for the camera.

81

Pin 9::PWDN Power down mode. Defaults to logic 0, if PWDN = 1 puts the camera chip
in power down (sleep) mode. Left un-connected in this project.

Pin 10 ::RST:- Reset. Can be used to reset the chip, Activated by a logic 1. Left un-connected
in this project.

Pin 11::SDA:-1XC serial data. The data line of the 12C interface, this is used to read and write
registers in the cameras chip. Camera CMOS chip considers this to be an SCCB interface in
which this pin would eventually terminate at SIO-O.

Pin 12 ::FODD:- Odd Field Flag. Asserted High during the Odd field, Low during the even
field. Left un-connected in this project.

Pin 13:: SCL:- 12 serial clock output. The clock line of the 12C interface, this is used to read
and write registers in the cameras chip. Camera CMOS chip considers this to be an SCCB
interface in which this pin would eventually terminate at S10-1.

Pin 14::HREF: Horizontal window reference output. HREF is high during the active pixel
window, otherwise low.

Pin 15::AGND:- Analogue Ground.

Pin 16:: VSYN: Vertical Sync output. This pin is asserted high during several scan lines in
the vertical sync period.

Pin 17:: AGND: Analogue Ground.

Pin 18::PCLK:- Pixel Clock Output. By default, data is updated at the falling edge of PCLK
and is stable at its rising edge. PCLK runs at the pixel rate in 16-bit bus operations and twice
the pixel rate in 8 bit bus operations. For B/W mode | think this runs at the pixel rate i.e.
same as 16 bit mode for colour camera.

Pin 19::EXCLK:- External clock input(remove crystal). Left un-connected in this project.
Pin 20::VCC:- Power supply 5VDC.

Pin 21::AGND:- Analogue Ground.

Pin 22::VVCC:- Power supply 5VDC

Pins 23-30:: NC: Not connected. On colour camera module these would be the U data
outputs for chrominance data.

Pin 31::GND: Common Ground.

Pin 32::VTO: Video Analogue output (750 monochrome)

8-2

8.2 Appendix B - Blackfin peripheral support information.

8.2.1 DMA Support

The following description of the DMA support comes from [20].

The processor has multiple, independent DMA controllers that support automated data
transfers with minimal overhead for the core. DMA transfers can occur between the
internal memories and any of its DMA-capable peripherals. Additionally, DMA transfers
can be accomplished between any of the DMA-capable peripherals and external devices
connected to the external memory interfaces, including the SDRAM controller and the
asynchronous memory controller. DMA-capable peripherals include the SPORTS, SPI port,
UART and PPI. Each individual DMA-capable peripheral has at least one dedicated DMA
channel. The DMA controller supports both one-dimensional (ID) and two-dimensional
(2D) DMA transfers. DMA transfer initialisation can be implemented from registers or
from sets of parameters called descriptor blocks.

The 2D DMA capability supports arbitrary row and column sizes up to 64K elements by
64K elements and arbitrary row and column step sizes up to +/- 32K elements.
Furthermore, the column step size can be less than the row step size; allowing
implementation of interleaved data streams.

This feature is especially useful in video applications where data can be de-interleaved on the
fly.

Examples of DMA types supported include:

* A single, linear buffer that stops upon completion.

* A circular, auto-refreshing buffer that interrupts on each full or fractionally full buffer.

* ID or 2D DMA using alinked list of descriptors.

» 2D DMA using an array of descriptors specifying only the base DMA address within a

common page.

8.2.2 Parallel Peripheral Interface
The following is a brief description of the PPI, taken from [20].

83

The processor provides a Parallel Peripheral Interface (PPI) that can connect directly to
parallel A/D and D/A converters, ITU-R 601/656 video encoders and decoders and other
general-purpose peripherals.

The PPI consists of a dedicated input clock pin, up to 3 frame synchronisation pins and up
to 16 data pins. The input clock supports parallel data rates up to half the system clock rate.
In ITU-R 656 modes, the PPI receives and parses a data stream of 8-bit or 10-bit data
elements. On-chip decoding of embedded preamble control and synchronisation
information is supported.

Three distinct ITU-R 656 modes are supported:

* Active Video Only - The PPI does not read in any data between the End of Active Video
(EAV) and Start of Active Video (SAV) preamble symbols, or any data present during the
vertical blanking intervals. In this mode, the control byte sequences are not stored to
memory; they are filtered by the PPI.

* Vertical Blanking Only - The PPI only transfers Vertical Blanking Interval (VBI) data, as
well as horizontal blanking information and control byte sequences on VBI lines.

* Entire Field - The entire incoming bit-stream is read in through the PPI. This includes
active video, control preamble sequences and ancillary data that may be embedded in

horizontal and vertical blanking intervals.

The general-purpose modes of the PPI are intended to suit a wide variety of data capture
and transmission applications. The modes are divided into four main categories, each
allowing up to 16 bits of data transfer per PPI_CLK cycle:

 Data Receive with Internally Generated Frame Syncs

 Data Receive with Externally Generated Frame Syncs

 Data Transmit with Internally Generated Frame Syncs

» Data Transmit with Externally Generated Frame Syncs

These modes support ADC/DAC connections, as well as video communication with
hardware signalling. Many of the modes support more than one level of frame
synchronisation. If desired, a programmable delay can be inserted between assertion of a

frame sync and reception/transmission of data.

8.2.3 Timers

There are four general-purpose programmable timer units in the processor.
Three timers have an external pin that can be configured either as a Pulse Width Modulator
(PWM) or timer output, as an input to clock the timer, or as a mechanism for measuring

pulse widths of external events.

85

8.3 Appendix C - Contents of the Enclosed CD.

The CD attached to this Thesis document contains the source code for both the C language
algorithm and the Java language algorithms.

The CD also contains a free C compiler and IDE as well as a free Java IDE.

8.3.1 The C Programme.

The C programme was compiled using Dev-C++ whose installation file is on the CD in the
devC directory.

The programme may compile with other compilers but this is not guaranteed.

The C programme which implements the full algorithm from taking in the captured image to
detecting the lane and determining the trajectory to follow is called fullAlgorithm.c and can
be found in the C-programme directory on the CD.

To run the programme, first copy the contents of the C-programme directory to a directory
on the hard drive of the computer on which it is to mn. After copying from a CD the files
or directories may maintain a read-only status. This should be changed, as there may be a
need to modify the C file. Also the fullAlgorithm.c programme creates files in the directory
that it is placed, if this directory is read only then this will not be possible. Make sure that
the fullAlgorithm.c and the bitmap files are in the same directory on the hard drive.

Once this is done, open the fullAlgorithm.c from inside the Dev-C++ environment. The
file can be mn standalone without need to make a project file. Go to the “Execute” menu
and click “Compile & Run”. A DOS screen should appear momentarily with outputting text
and then disappear again.

At this point in the directory where the C-file was placed on the hard drive there should be
new files created.

The “intermediateOut.bmp” file contains the road image after thresholding.

The “finalOutbmp” file contains the road image after thresholding and with the calculated
trajectory superimposed on the image.

The “objectTexttxt” file will contain information about the objects found in the image.

Currently the file is set to operate on the straight road image, however, it can operate on
either the road image with S-bend ahead or section half way through S-bend by changing
line 477 of the fullAlgorithm.c file.

To look at image with S-bend ahead change line 477 to

fpln = fopen("longcurl20.bmp", "'rb"™);

To look at image halfway through S-bend change line 477 to
fpIn = fopen("'shortcurl20.bmp™, "'rb");

The reader should note that the original results in the thesis body are slightly different to
those that will be found by running these files.

86

8.3.2 The Java Programmes
There are two Java programmes, one called “Steering” and one called “BSpline”. These are

set up as project folders as they contain more than one file.
The development environment used was Netbeans 4.1 whose installation file can be found

on the CD in the Netbeans 4.1 directory.

To run the programmes copy the “Java Programmes” directory from the CD to the hard
drive of the computer it is to be run on. After copying from a CD the files or directories
may maintain a read-only status. This should be changed, as there may be a need to modify

the Java files.

Open Netbeans IDE and go to the “file” menu and click “Open Project”. Then navigate to
the directory where the java programmes were copied too. Click (don’t double click) on
either “BSpline” or “Steering”, then click “Open Project Folder”, this will open either of the
two programmes.

Navigate down to the source files as shown in the diagram below. Double clicking on either

of the files will cause them to open in the main sub-window.

87

»«Craijnrrrrauj™ hp -ircm rrf
File Edit View Build Run Refactor Versioning Tools W

cr C fer « V- if';l‘! A

jj Projects <0 x IFiles j Runtime

E ~ Source Packages
E- £3 Steering
IB"A""'Steering.java
0 - Hi™Trajectory.java
0-Ga Test Packages
a-Q Libraries
E-ca TestLibraries

To run the programme go to the “Run” menu and then click “Run Main Project”.

Making modifications to files.

The “Steering” project refers to sections 4.4.1 and 4.4.2.

In the “Steering” project the wheelbase value can be changed by modifying line 82 of
Trajectory.java.

Lines 86, 87 and 88 contain the final co-ordinates and heading of the vehicle, so these can be
modified by modifying these lines.

Finally the vvalue can be changed by modifying line line 95.

The “BSpline” project refers to section 4.4.3.
In the “BSpline” project the target points for the curve can be modified by changing lines
24-60 of Trajectory.java. Note that this is not the same Trajectory.java file as in the

“Steering” project.

8-8

