Scheduling and Optimising XML Pipeline

Processing

Michal Sankot

Submitted to Council for:

Master of Science (Research)

Institute of Technology, Sligo

Supervisors:

Tom McCormack

Tony Partridge

Submitted to the Higher Education and Training Awards Council, July 2004

Scheduling and Optimising XML Pipeline Processing Declaration

Declaration

Scheduling and Optimising XML Pipeline Processing Declaration

Declaration

This thesis has not previously been submitted to this, or any other college. With

acknowledged exception, it is entirely my own work.

Michal Sankot

Scheduling and Optimising XML Pipeline Processing Abstract

Abstract

Scheduling and Optimising XML Pipeline Processing Abstract

Abstract

Scheduling and Optimising XML Pipeline Processing, Michal Sankot

This thesis describes PropelXbi - an implementation of the XPipe paradigm -
then investigates and critically assesses relevant techniques which have the
potential for streamlining PropelXbi’s performance and, finally, it presents and
tests improvements in PropelXbi which are achieved by implementing a number
of devised enhancements.

XPipe is a paradigm for processing a great number of very large XML
documents in an efficient way. PropelXbi is a commercial implementation of
the XPipe paradigm based on JMS and J2EE architecture. Relevant topics we
have investigated include architectures and enhancement techniques used in
parallel processing, Jackson Inversion, TupleSpaces, Project JXTA and Grid
computing technologies. We have implemented a J2SE-based compact version
of PropelXbi runtime (compiled pipelines) and a Grid-based distributed version
of PropelXbi. Tests showed that the compact version of PropelXbi runtime
achieves significantly better performance than original J2EE version. Tests also
showed, that distributed processing can be used for streamlining PropelXbi’s
performance and that the distributed version follows the same laws as other
standard parallel processing systems. This thesis identifies potential
enhancements from different areas of computing which can be used not only for
streamlining PropelXbi, but also for any other similar large-scale document
processing system, and demonstrates that they can be efficiently utilised.

Scheduling and Optimising XML Pipeline Processing Preface

Preface

Scheduling and Optimising XML Pipeline Processing Preface

Preface

This thesis has three major goals:

1. To present the XPipe paradigm and its implementation called PropelXbi;
to examine the current landscape of document processing and then to

identify the position of XPipe paradigm in it.

2. To scrutinize techniques, used in different areas of the computer world,
which are related to document processing and examine if these ideas can

be used to enhance the performance of PropelXbi.

3. To examine what enhancements are actually delivered when selected

techniques are implemented in the existing application.

The text of this document is organised correspondingly so that every part

corresponds to one ofthe above goals.

PART 1- PropelXbi and Document processing analysis

This part gives a description of the XPipe document processing paradigm and
presents the PropelXbi implementation. Afterwards, it examines document
processing in general and identifies the position of XPipe within it.

Chapter 1 explains the concept of XPipe processing and presents a
detailed description of PropelXbi, which is its commercial implementation.

Chapter 2 examines the different document processing scenarios that are
available taking into consideration the number of documents that are processed
at the same time and the number of processors available. It categorises these
scenarios; states the advantages and disadvantages of each and identifies which
scenarios are relevant to the XPipe paradigm.

Chapter 3 surveys the document-processing techniques which are

currently used and establishes the position of XPipe among them.

Scheduling and Optimising XML Pipeline Processing Preface

Chapter 4 examines a study which aimed to precisely characterise the
computing related process of complex problem solving, and then looks at XPipe

and PropelXbi in light ofthe results of this study.

PART 2 - Document processing techniques survey

This part investigates different techniques related to document processing,
which are used in the computer world and appear to have the potential to offer
ideas which can be used to enhance the performance of PropelXbi.

Chapter 5 looks on the relevant improvement techniques used in parallel
processing. Firstly, it examines the architectures used for high performance
computing, then it introduces parallel problem classes and, finally, it discusses
techniques which can be utilized in pipeline document processing.

Chapter 6 examines the Jackson Inversion technique. At first, it presents
Jackson Structured Programming in which the Jackson Inversion technique is
found. It then examines how Jackson Inversion can be used in XPipe’s
implementation and, as a final point, it introduces the concept of the
XComponent compiler - an implementation of Jackson Inversion in PropelXbi.

Chapter 7 scrutinizes the different technologies used in area of
distributed computing which relate to our case of document processing. The
concept of Tuple spaces, Project JXTA and Grid computing technologies are
researched. For each technology, their main concepts are introduced, their
implementation is described and finally their relation to PropelXbi is discussed.

Chapter 8 gives an overview of the techniques and concepts researched
in chapters 5 to 7. First, the current state of PropelXbi is described and then
each of the surveyed techniques is summarised in terms of the way they can

enhance current pipeline XML processing.

PART 3 - Document processing enhancements implementations
Part 3 looks on implementations of the document processing enhancements
found in Part 2 and examines what enhancements are really delivered when
selected techniques are implemented in the existing application. The last chapter
summarises the results of this thesis and suggests directions for future work.

In Chapter 9 we present the implementation of XComponent Compiler

conceived in Chapter 6. We explain its concept; describe the technical design

vii

Scheduling and Optimising XML Pipeline Processing Preface

and implementation and present a performance comparison of PropelXbi and
pipelines compiled by XComponent compiler.

Chapter 10 examines the implementation of the distributed document
processing system. First, we present the implementation of distributed system,
then we present the questions we wanted to answer about the utility of the
document distributed processing, then we give theoretical solutions to these
questions and, in the end, we compare and contrast them with the results
obtained from the performance tests of implementation of the distributed
compiled pipelines processing system.

Chapter 11 summarises the major findings of this thesis and suggests

directions of potential future work.

Scheduling and Optimising XML Pipeline Processing Table of Contents

Table of Contents

Scheduling and Optimising XML Pipeline Processing Table of Contents

Table of Contents

(DX =T o] F- 1 = 1 Lo o USSR ii
A €13 1 - o SR iv
o =) - o] SRRSO Vi
QLI Lo T T 0 1 O30T (=Y o1 £SO X
TADIE OF FIgUI S ittt sttt reesaesaeereeneas Xiv
Partl. PropelXbiand Document processing analysis 1
1 XPipe and PropelXbi 3
11 XPIPe PArA0IgM oot 3

1.2 PropelXbi- an XPipe implementation........c.ccoccoooiiiiiniiieiincic e 6
12.1 J2EE architecture....c.cccocvovnnencinenne. 7

1.2.2 JMS arChiteCtUre . ..coi et 7

1.2.3 PropelXbi architeCture. ..o 8

2 Document Processing Scenarios Analysis 14
2.1 Terminology definitioN. ... 14

2.2 Categorisation of document processing SCeNarioS.......cccceeveeervreennnne 17

2.3 SDSP - Single Document, Single Processor .. 17

2.4 SDMP - Single Document, Multiple ProCcessors.....ccccoeverieneeienenseene. 18
241 SDMP - PIPEINE. e e 19

2.4.2 SDMP - Scatter/Gather.....c.ccoveiiiieeeee e 20

2.5 MDSP - Multiple Documents, Single ProCessor....ccccvoevieiieevieeseeneens 22
251 MDSP - DUlK UNaWare. ..o 22

2.5.2 MDSP - bulk aware . 23

2.6 MDMP - Multiple Documents, Multiple Processors........c.cccceevrenen. 25
2.6.1 MDMP - d-t-Corrireieicesie e 27

2.6.2 MDMP = dS-1-Cuirieiiiiiieiiiieieie et 27

2.6.3 MDMP - PipeliNe ..o e 28

2.7 Graphic comparison of document processing scenarios.......c.cc.ceeu..... 30

2.8 Major concepts of efficientdocument processing......ccccccevevvveeierivernnn 32

3 Current approaches to large-scale document transformations 35
3.1 Straightforward methodsS. ... 35

B Ll S A X ettt 35

3.1.2 DO M et 36

3.1 3 X S LT e et 36

B.14 DS SSL it 37

3.1.5 Traditional code - Java, Perl, Python ..o 38

3.2 Advanced MethodS. ... 38
3.2.1 Compound monolithic transformations.........cccceeevovneniennnnnne. 39

3.2.2 Pipeline transformations.......cccccoevveiiiiie e 42

3.3 POSIION OF X PIP e i 42

4 PropelXbi as a solution of complex problem 45
4.1 Process of complex problem sOIVING ..o 45

4.2 PropelXbi as a complex problem solution.........cccocoviiiiiiicicicciciee 48

Scheduling and Optimising XML Pipeline Processing Table of Contents

Part 2. Document processing techniques survey 52
5 Review of Parallel Processing 54
5.1 Parallel processing arChiteCturesS.......ccoouoeriirienenciee e 54
51.1 Von Neumann arChiteCtUres......ccooeieivieeieirne e 54

5.1.2 Dataflow architeCtures. ... 55

T T2 (o] [o=V - 34 S 55

5.1.4 Neural Network arChiteCtures......ccoeovrereinininieeeesenee 56

5.2 Techniques exploitable in PropelXbi.....cccocooiiiiiiiniiiiiiieccc 56
5.2.1 Pipeline processing........ccceeeeuvueen. 56

5.2.2 Instruction Cache and Instruction Pre-fetch.......ccccoovivinnnne 58

5.2.3 Data forwardinNg ... 60

5.2.4 Vector pipeline Chaining.......ccccoiiiieiiiieieec e 63

5.3 Parallel problem ClaSSesS ... 65
5.3.1 SYNCRIONOUS. ..ottt 65

5.3.2 L00Sely SYyNnChronouUS......cccccoviiiiiiicice e 66

5.3.3 ASYNCNIONOUS....ciiiiiitiiceee e 66

5.3.4 Embarrassingly Parallel........ccooiiees 66

5.3.5 Compound Metaproblems.......ccccviiiiiiicincie e 66

6 Jackson Inversion Survey 70
6.1 Jackson Inversion and Jackson Structured Programming..........c.c...... 70

6.2 Suitability of employing Jackson Inversion in PropelXbi.................. 72

6.3 PropelXbi on-line XComponent cOompiler......ccoooeiiinieinniniienns 75

6.4 PropelXbi off-line XComponent compiler........cccoceeunnee 79

7 Review of Distributed Computing Technologies 82
% R VT o]] o Lo = SRS USSSPR 82
7.1.1 Concept 0f TUPIESPACE. ..o 83

7.1.2 IMplementationS. ..o s 84

7.1.3 Relation of TupleSpaces to PropelXDi......cccooveiiiiiiiiiniiennne 95

A 2 o 0] =101 S G I S 107
7.2.1 Project IXTA INtroducCtion.......ccceoveiininiieiniee e 107

7.2.2 Design 0fProjeCt IXT A .o 108

7.2.3 JIXTA arChiteCtUre. oo 109

7.2.4 Relation of JXTA technology to PropelXDbi....cccooovvviennnnene. 116

7.3 Grid COMPULING .ot 123
7.31 CoNCePt OF Grid ..o 123

7.3.2 Grid arChiteCtUIe....ccooiieieiciees e 125

7.3.3 PropelXDbi on Grid ... 126

8 Summary and appraisal of surveyed techniques 159
81 Current XML pipeline processing implementation...........cccccocevenenne 159

8.2 Appraisal of surveyed teChNiQUES.......ccceiieiiiniicee e 159
8.2.1 Parallel proCesSiNg. ..ot 160

8.2.2 JaCKSON INVEISIONcciiiiiiieiece st 161

8.2.3 Distributed COMPULING....cccoiiiiiieierere e 161

8.3 ldentified potential enhancements and selected implementations 163

Scheduling and Optimising XML Pipeline Processing Table of Contents

Part 3. Document processing enhancements implementations 165
9 XCompiler 167
9.1 Concept OF XCOMPIIET oo 167
9.2 Technical implementation ofthe XCompiler........cccoeniicinincncnnn, 168
9.21 Compiler....cccoevennene. 168
9.2.2 Execution runtime (COPPEIN)..cccoeie e see et 177
9.3 Performance COMPATiSON....cccciiieiieieeieesieeseesreesreesreesreeseesreesreesraesreeens 183
9.3.1 Processing Performance ReSUltS......cccccooviiiiiiiic i 184
9.3.2 Processing Pattern AnalysiS......ccocevieviininniec v 187
9.3.3 Conclusion and Improvement SuggestionsS........ccccceveviveveereenn 195
10 Distributed XML processing 201
10.1 Distributed processing SYStEMcccccciiviiirienieiie e 201
10.2 Questions We WEre aSKIiNG....ocvieiieeiiierenieese e e e eie e e e sre e s 203
10.3 Theoretical SOTUTION ..o 203
10.3.1 Parallel processing time....ccccccovoeiievieciie e 203
10.3.2 Maximal number of beneficial processors.......ccocvvvvecvccnnnnne 206
10.3.3 Required number of processors to achieve desired execution
time 209
10.4 Actual performance reSUltS.....cccev i 211
10.5 CONCIUSTON .ttt 215
11 Conclusion and Future Work 217
11,1 CONCIUSTON it 217
11.2 FULUIE W OTK oottt 218
L EE =TT Lot USSR 221
Appendix A. Efficacy of SDMP-Scatter/Gather approach........ccccocvvvveieninnens Il
Appendix B. Efficacy of MDMP-bulk aware processing.......cccocecvvvvivivininnene XVI

Appendix C. Selected Parallel Processing GraphsS.......ccocccvivvinvicncnnnnnnnnn XXV

Scheduling and Optimising XML Pipeline Processing Table of Figures

Table of Figures

Scheduling and Optimising XML Pipeline Processing Table of Figures

Table of Figures

Fig. 1.1 Pipeline of XCOMPONENTS....cciiiiiiiiieiee et 4
Fig. 1.2 XCompPonent MOUE L. ..o 4
Fig. 1.3 XPIpe MOGE. ..o e 5
Fig. 1.4 PropelXbi arChit@CtUre ..o 10
Fig. 1.5 Detailed view of PropelXbi architecture..........ccocooeiiiiiiiiciiiee 1
Fig. 2.1 Document processing MOUel......ccooveiiiiiiiieiee e 16
Fig. 2.2 SDSP SCENAITO...ciiieiiiiiiieiteieet sttt sttt 18
Fig. 2.3 SDMP - Pipeling SCENATTO...cccviiiiiieieiiieeeese s 19
Fig. 2.4 SDMP - Scatter/Gather SCENAIiO.......coviviieiiiie e 21
Fig. 2.5 MDSP - DUlk UNaware SCENAII0.......cccoiiiriereeieinieseeee e 23
Fig. 2.6 MDSP - bulk aware SCENAIiO........cccciiiriieieirisese e 24
Fig. 2.7 MDMP SCENATIO...ccociiiiiiiiiicisisiee e 26
Fig. 2.8 MDMP - d-1-C SCENAITO ...cuviiiiiitiieeeeiee e 27
Fig. 2.9 MDMP - dS-1-CQ SCENATTOeivevirieiieiiriiiteieeei et 28
Fig. 2.10 MDMP - pipeling SCENAITO.....cceiiiirieeieieese e 29
Fig. 2.11 Single Document SCENArios COMPAariSONccccvcirerverieiieiriesreseeeeie e 30
Fig. 2.12 Multiple Document SCenarios COMPAriSON........ccovreirirerierieeeeseesieeenns 31
Fig. 4.1 Airflow simulation problem solution process.........cccoeoviieieiiiiinienen. 46
Fig. 4.2 General complex problem solution process......c.ccoeovvniniicicinninenen. 47
Fig. 4.3 XPipe and PropelXbi as solutions of complex large scale
transformations Problem ... 49
Fig. 5.1 Data fOrWardiNg . ..ottt 61
Fig. 5.2 Vector pipeline Chaining.......coccoiiiiiiiceineeses e 64
Fig. 6.1 JACKSON INVEISTON ..cuiiiiii ittt st 71
Fig. 6.2 Comparison of processing in Inverted system and Pipeline................ 73
Fig. 6.3 PropelXbi processing arChiteCture.......cccocovovvieiiiiice i 76
Fig. 6.4 Transformation step process diagramccoerevririirereieeinseseeeeeseens 77
Fig. 6.5 Jackson Inversion and XComponent compiler code.......cccccoevrervnnnnnn. 79
Fig. 7.1 Tuple Space MO ... e 83
Fig. 7.2 High level PropelXbi architeCture........ccooeieiiiiiieieeee e 95
Fig. 7.3 Current PropelXDbi architeCture........cooviiiiiiieieeeeeee s 96
Fig. 7.4 PropelXbi architecture with TupleSpaces......c.coovrvieiiiiiicieic e 97
Fig. 7.5 Documents processing Without priorities........cccovvviniiiiiciciesine e 100
Fig. 7.6 Documents processing With priorities.......ccccovvvivievininiine e 101
Fig. 7.7 IXTA VIrtual NetWOIK.....ccccooiiiiiiie s 108
Fig. 7.8 Project IXTA architectural 1ayers. ... 110
Fig. 7.9 Network 0F JXT A PEEIS oottt s 112
Fig. 7.10 Current PropelXbi architecture with JMS communication system... 118
Fig. 7.11 PropelXbi architecture with JXTA communication system............... 118
Fig. 7.12 Grid layered arChiteCtUre ..o 125
Fig. 7.13 Distributed PropelXbi non-Grid architeCture..........ccccovevvveiniicinennn 128
Fig. 7.14 Distributed PropelXbi Grid-based architecture.......c.ccccccoovveviveinnnnns 130
Fig. 7.15 non-OGSA to OGSA GIlobus transition...........ccoceceviiineicieininceen 136
Fig. 7.16 PropelXbi 0n GlODUS....ccoiiiiieeceee e 137
Fig. 7.17 Possible Condor installations.........ccccce e 139
Fig. 7.18 Janet arChiteCIUTE ... 141
Fig. 7.19 Distributed PropelXbi using Janet SysStemcccccceovinininniinieiciene 142

Xiv

Scheduling and Optimising XML Pipeline Processing Table of Figures

Fig. 7.20 EZ-Grid high-level StruCTUIe........cocooiiiiiieeecee e 144
Fig. 7.21 EZ-Grid internal architeCture. ... 144
Fig. 7.22 Types of Grids according t0 SUN .c..cooeiiiiiiieiiies e 149
Fig. 9.1 Architecture of XComponent compiler.....cccoviiiiiiiiiiii i, 169
Fig. 9.2 XPipe example - transformation VIeWcccceoviiieneicinc i 173
Fig. 9.3 XPipe example - file System VIEWcccccoviiiiencincnenne, 174
Fig. 9.4 Structure of example compiled pipeling......ccooiiiiiiiiiineicceee 174
Fig. 9.5 Example cmdlist.Xm ..o 176
Fig. 9.6 ArchiteCture 0f COPPEI ..o 177
Fig. 9.7 Execution of example compiled pipeline.......cccoooiiiiniiiiciiee 183
Fig. 9.8 Transformation performance of small-size pipeline......cccccovevvvivninnnen, 184
Fig. 9.9 Transformation performance of mid-size pipeline......ccccovnvniennnnnn. 186
Fig. 9.10 Transformation performance of large-size pipeline.......c.ccccovinenenne 187
Fig. 9.11 Document transformation StagesS.......ccovvvveeeieneni e 188
Fig. 9.12 PropelXbi and XCompiler transformation stagesin single run 189
Fig. 9.13 Ratio of PropelXbi and XCompiler transformation stages in single run
... 190
Fig. 9.14 Proportion of PropelXbi transformation stages inbatch run 193
Fig. 9.15 Change of average processing times with respect to file size in batch
FUNS .o 194
Fig. 9.16 Distributed processing SYStEMcccccivieiiiiiirnin e 202
Fig. 9.17 Theoretical parallel processing time with respect to number of
AOCUMEBNTS. ..ottt bbbttt 206
Fig. 9.18 Theoretical parallel processing time with respect to number of
PrOCESSOIS.ciiiieiireeieeeteeesreeseee s 207

Fig. 9.19 Detail of non-approximated function of parallel processing time.... 208
Fig. 9.20 Required number of processors with respect to desired processing time

210

Fig. 9.21 The measured parallel processing times with respect to the number of

documents......ccceeveveernnne. 211
Fig. 9.22 Measured parallel processing time with respect to number of

PO CESSOIS ettt ettt ettt sttt r et sb e st she e nre e nr e e r e s 212
Fig. 9.23 Processing overhead with respect to number of documents.............. 213
Fig. 9.24 Processing overhead with respect to number of processors................ 213
Fig. 9.25 Processing timelines for run on 3 and 10 processorS....cccoevievverennne 214
Fig. A.l Gain and Speed-up fOr t(N)=CN.....cccoiiiiiiiee s X
Fig. A.2 Gain and Speed-up for t(N)=CN2.....ccccceeieiie i e X
Fig. A.3 Gain and Speed-up for t(n)=cn3......cccccvcvrvrvrnnn. X1
Fig. A.4 Gain and Speed-up for t(n)=log(n)....ccceev...... X111
Fig. A.5 Gain and Speed-up for t(N)=nlog(N)....cccooereiminiiieeee s Xl
Fig. B.l Gain in MDSP-bulk aware SCENAario.......ccccevvvriierieiiesen e siee e e XXI
Fig. C.I The measured parallel processing times with respect to the number of

documMENtS (Fig. 9.21) s XXV
Fig. C.2 Measured parallel processing time with respect to number of processors

(FIG. 9.22) ettt XXVI
Fig. C.3 Processing overhead with respect to number of documents (Fig. 9.23)

.. XXVII
Fig. C.4 Processing overhead with respect to number of processors (Fig. 9.24)

... XXV

XV

Scheduling and Optimising XML Pipeline Processing Part 1: PropelXbi and Document processing analysis

Partl

Propel Xbiand Document

PROCESSING ANALYSIS

1/230

Scheduling and Optimising XML Pipeline Processing Chapter 1: XPipe and PropelXbi

Chapter 1

XPipe and Propel Xbi

2/230

Scheduling and Optimising XML Pipeline Processing Chapter 1: XPipe and PropelXbi

1 XPipe and PropelXbi
In this chapter we describe the XPipe methodology of document processing and
present a detailed description of its implementation, called PropelXbi. XPipe is

described in section 1.1 and PropelXbi in section 1.2.

1.1 XPipe paradigm

XPipe is a methodology for document processing that was developed by Sean
McGrath, CTO of Irish IT company Propylon (Redmond & McGrath 2002). Its
main aim is to define a standard methodology for large-scale document

transformation processing in an efficient way.

The XPipe paradigm is based on four essential concepts. These are listed in

decreasing order of importance:

1. Break up the transformation into simple components (transformation

steps/stages);

2. Chain the components into a pipeline, connecting them by queues;

3. Allow the components to be written in any language (they are black

boxes, that only take a document in, process it and output it);

4. Describe the components using the XML language;

The first concept comes from observation that every complicated transformation
can be decomposed into sequence of simple transformations. Interestingly,
many of these simple transformations are used repeatedly and so, once these
transformations are coded, they can be used again every time they are needed.
Transformation decomposition also allows us to construct complicated
transformations even in cases when it seems that writing one code for a whole
transformation would be impossible. Components of the pipeline are, in the

XPipe terminology, called XComponents.

3/230

Scheduling and Optimising XML Pipeline Processing Chapter 1: XPipe and PropelXbi

The second concept naturally follows the transformation decomposition.
Decomposition produces the sequence of components, which need to be chained
in sequence again, in order to have components perform the intended
transformation. In contrast with common code modular synthesis, pipeline
chaining allows for more documents being present in the pipeline at the same

time and thus more documents being processed at the same time.

As components may not be able to process documents at such speed, one
document may not be processed before the next document arrives, queues are a
natural storing space for incoming documents. With queues, the arrived

documents simply wait in queue until the next component becomes free.

The third concept of not restricting components to any particular language gives
XPipe great flexibility on how to process incoming documents. The view of the
component is that of a black box, which takes a document in, processes it and

flushes the transformed document out.

g— Pcd— -a

Document in XComponent Document out

Fig. 1.2 XComponent model

4/230

Scheduling and Optimising XML Pipeline Processing Chapter 1: XPipe and PropelXbi

Different languages and technologies (e.g. XSLT, Java-SAX, Java-DOM,
Python etc) are good for different types of operations and this simple model of
XComponent allows a component to be written in whichever language, best

suits the transformation.

The last concept of describing XComponents with the XML language, aims at
the possibility of processing the information in the XComponents by computer
in a way that doesn’t depend on the platform and the underlying data storage
format. As the XML standard is commonly used today, there are many tools for

processing this information in an easy and elegant way.

As said previously, the only limitation set on the XComponents is that they have
to be able to take in a document, and output it afterwards. To create the
complete document transforming device, the XComponents are connected

together to create one big pipeline called XPipe.

ff—CcD”*~0)CD — U

Document in XComponent 1 XComponent 2 XComponent 3 Document out

Fig. 1.3 XPipe model

XPipe also uses the concept of Scatter and Gather components. These
components can be used when the document to process contains parts which can
be processed separately. An example of such a document can be an overall list
of all employees in a company, where each employee is represented by a large
structure which can be processed separately. The Scatter component divides the
document into a set of independent documents, which contain separated
elements of the original file. After they are all processed, the Gather component
assembles them together into the resultant document. By dividing the document
into smaller independent pieces, the Scatter and Gather components allow the

processing of documents, which would otherwise take a long time to process

5/230

Scheduling and Optimising XML Pipeline Processing Chapter 1: XPipe and PropelXbi

because of excessive size. Furthermore, by dividing the document, individual
processing nodes can be better utilised, as division provides many small
documents to process compared to a few original large documents which would
use only these nodes to which they were sent and would leave all the other

processing nodes unused.

As discussed in greater detail in chapter 3.3, the XPipe paradigm proves to have

many advantages. The main benefits of the XPipe paradigm are:

Transformation decomposition enables us to create very complicated
transformations by a simple construction method;

- Components are language independent - each component can use the
language and/or technique that best suits the transformation (XSLT,
DOM, SAX, Python etc);

- Component structure facilitates easy load balancing;

Decomposed structure allows for high parallelizability and scalability -
mainly because of high independency of individual pipeline stages;
Components are reusable - it uses the simple model of black box which
takes document in, processes it and outputs it, and this allows simple
reusability of previously written components;

Enhanced monitoring capabilities - as the whole transformation is
divided into clearly defined stages, it’s possible to monitor the current
stage of the document processing and whether there was a problem to
find and in exactly which component it occurred;

Easy maintenance - if one component needs to be changed, it can be
simply plugged out, changed and plugged in again;

- Easy transformation changing - components can be easily added or

removed as needed without the need to affect the whole code.
1.2 PropelXbi - an XPipe implementation

PropelXbi is Propylon’s implementation of XPipe paradigm (Propylon 2003). It

is written in Java, built on J2EE architecture (Sun Microsystems) with the use of

6/230

Scheduling and Optimising XML Pipeline Processing Chapter 1: XPipe and PropelXbi

JMS messaging (Sun Microsystems) as a message passing communication

system.

1.2.1 J2EE architecture

The J2EE architecture is based on objects called Enterprise JavaBeans (EJB’s),
which encapsulate some functionality, which can be used by calling the EJB’s
methods. This is different from other object-based architectures in that all the
maintenance of EJB’s is performed by the server and the programmer can focus
on merely writing the logic of an object without concern about the maintenance
tasks. Another benefit of J2EE is that the logic of EJB’s is written as if there
was only one object running even though in reality there are many objects

running concurrently.

The server creates a pool of EJB’s and, depending on requests from clients,
assigns them to the tasks. If some of the EJB’s aren’t used for a long time, they
are passivated and saved to the disk, so that more memory is available for

objects demanded at the time. Ifthey are requested again, they are re-activated.

All the object maintenance is hidden from the user who doesn’t have to care
about maintenance issues or about load balancing, which is done by the server
automatically. As pooling is in the hands of the server, it can spread its

functionality over more computers and all this remains transparent to the user.

There are three essential types of Enterprise JavaBeans, of which one particular
- Message-Driven Bean (MDB) is used in PropelXbi. Message-Driven Bean is
an object, which waits for the messages to come, and when they arrive, it carries

out some action.

1.2.2 JMS architecture

An MDB receives messages from JMS queues, to which it can also send
messages back. There are two types of queues. The first type is Multiple
Publisher, Single Subscriber - simply called a “Queue”, which delivers

messages to one MDB. Messages can be sent to the Queue by any other EJB or

71230

Scheduling and Optimising XML Pipeline Processing Chapter 1: XPipe and PropelXbi

normal Java program. This is equivalent to e-mails being sent to one person.
The second type is Multiple Publisher, Multiple Subscriber, called
“Publish/Subscribe”, “Pub/Sub” or a “Topic”. This is analogous to a News
conference, where anybody can send a message to the queue, which is then

received by everybody who subscribes to it.

1.2.3 PropelXbi architecture

The natural implementation of the XPipe paradigm would use a set of MDB’s,
implementing the XComponents, connected together with JMS queues.
However, this would not allow for the dynamic assigning of MDB’s to points in

the pipeline where the worload is high and MDB’s are most needed.

There is another problem set by the limitation of the J2EE architecture. It comes
from the need to have the queues persistent, to have all messages saved in case
the server crashes. Persistent queues can be created only at start-up of the J2EE
server, and, at that time, it is not known how many queues would be needed, as
the user can create and start a new pipeline at an arbitrary time after the start of
the server. Maintaining a pool of persistent queues, which can be assigned as
needed to the MDB’s would be a solution. However, this is hindered by another
limitation set by JMS architecture. An MDB can only be assigned to the queue
at the time of creation of the MDB and it cannot be changed afterwards. This
disallows use of a pool of queues, as there wouldn’t be a way of assigning

already created MDB’s to them.

Because of these two limitations, the resulting PropelXbi architecture consists
of one queue which caters for all messages being processed in PropelXbi.
Messages which flow through PropelXbi contain an identification tag denoting
the pipeline they belong to and thus it is possible to distinguish which pipeline

they were submitted to, even though they are all held in a single queue.
The drawback ofusing one common queue for all messages is that monitoring is

more complicated than it would be in case of separate queues for each

component. Nevertheless, it is possible to implement a monitoring facility

8/230

Scheduling and Optimising XML Pipeline Processing Chapter 1: XPipe and PropelXbi

thanks to the information about what pipeline the message belongs. From a
performance point of view, there is no difference in speed because gqueues are

implemented as blocks in memory in both cases.

The processing part of the PropelXbi system is implemented by a pool of
Message-Driven Beans, which all listen to the main queue. Documents are
inserted into JMS messages which are then placed into this main queue. When
an MDB detects a message, it retrieves it from the queue and performs the
appropriate transformation of the document. Each message contains information
stating which particular transformation should be applied on the document next
and this data is used by the MDB to identify which XComponent should used to
transform the document. Data contained in the message identifies which
pipeline it belongs to, the last XComponent used to process it, the identification

ofthe document it holds and the document itself.

Message-Driven Beans don’t contain any transformation logic in themselves.
When they retrieve information about what XComponent should be used, they
ask the Executive (which is another Java object) which passes them the right
component. This allows MDB’s to be assigned to any XComponent that is
needed at the time and thus it carries out load balancing by itself.

The whole PropelXbi architecture is depicted in the following figure:

9/230

Scheduling and Optimising XML Pipeline Processing Chapter 1: XPipe and PropelXbi

Fig. 1.4 PropelXbi architecture

Figure 1.4 shows the process of a document going through one pipeline stage -
i.e. being processed in one XComponent. At first, the MDB retrieves the
message from a queue, which contains the document to be processed and
information about which XComponent to use. In the second step, it asks the
Executive for the appropriate component and receives it in the following step.
The MDB then executes the component it received and saves the transformed
document back to the queue together with the information about the next

XComponent, which should be applied to the document.

The presented architecture is a mid-level view of PropelXbi that is sufficient for
a conceptual understanding how PropelXbi implements XPipe. The actual
implementation is a little more complicated. The main queue is in fact
implemented by four different queues. There is Input queue, which holds
documents that arrived in the system and are to be put in the Processing queue.
The processing queue stores documents waiting to be processed, and it is this
queue that the MDB’s watch for waiting documents. The third queue is the
Error queue, where documents are placed which caused some error during the

processing or which can’t be further processed because of an error that occurred

10/230

Scheduling and Optimising XML Pipeline Processing Chapter 1: XPipe and PropelXbi

in some of the pipelines. The last queue is the Output queue holding processed

documents ready to be shifted to their final destination.

Executive
, O O O O
moes 1 O O O O O Error Queue
O O O o
Input Queue Processing Queue Output Queue

Fig. 1.5 Detailed view of PropelXbi architecture

Figure 1.5 shows the detailed architecture of PropelXbi. A document enters the
Input queue, moves to the processing queue waiting to be processed. MDB’s
pick documents from the processing queue, process them and return them back
to the same queue, when the document is fully processed it is output to the

output queue.

All this implementation architecture is hidden from the user, to whom the whole
PropelXbi system looks like the original XPipe design - like pipelines of

components interconnected by queues.

The architecture of PropelXbi built on J2EE and MDB’s has the benefit that the
flow of documents and the load balancing are done automatically by the J2EE
application server without any additional work required on the programmer’s
side. However, it is important to mention that the J2EE architecture doesn’t
provide any way to influence the way in which documents are passed between
XComponents which in consequence means that we can’t change the way

scheduling is done in PropelXbi.

11/230

Scheduling and Optimising XML Pipeline Processing Chapter 1: XPipe and PropelXbi

Chapter 2 analyses different scenarios of document processing and positions the
XPipe paradigm within it. Chapter 3 then looks at different processing
techniques currently used for document transformations and discusses the
relation of XPipe to them. The last chapter of Part 1, Chapter 4 presents a
project aimed at the characterisation of the complex problem-solving process

related to computing and views the XPipe and PropelXbi in light of its findings.

12/230

Scheduling and Optimising XML Pipeline Processing Chapter 2: Document Processing Scenarios Analysis

Chapter 2
Document Processing Scenarios

Analysis

13/230

Scheduling and Optimising XML. Pipeline Processing Chapter 2: Document Processing Scenarios Analysis

2 Document Processing Scenarios Analysis

This chapter looks at different document processing scenarios, which exist in

today’s computer world.

At first, in section 2.1 we define the terms related to document processing which
are used throughout the document. Section 2.2, then introduces a categorisation
of the document processing scenarios and sections 2.3 to 2.6 look on individual
scenarios in greater depth. Section 2.7 summarises the qualitative features of the
inspected scenarios and juxtaposes them in graphical comparison and the
closing section 2.8 lists the major concepts for improving efficiency which are

employed in today’s document processing.

2.1 Terminology definition
In order to describe different scenarios we first need to clearly set fixed terms,
which will be further used throughout this documentation when speaking about

document processing.

First, we define what will be considered a Document, which is the subject of
the transformation processes examined in this thesis. A document is a group of
data. The definition is general to allow us to speak about all types of documents
without need of narrowing the spectrum of documents. In particular we set no
conditions on how the data should be structured, ordered, whether it is local or
remote, unique or replicated, or in any particular format. The document can be a
HTML page, an XML page, a Word document, a raster or bitmap image, raw

data gathered from a measuring device, etc.

Secondly, we define a Processor. It is a device which performs operations on a
document. A processor can be understood as a general computing device or a
computing node that performs operations on a document. Examples of
processors can be an XSLT processor, code written by the user, an Enterprise
JavaBean, ftp client, etc. In the following document, the terms ‘processor’,

‘processing device’ and ‘processing node’ will be used interchangeably.

14/230

Scheduling and Optimising XML Pipeline Processing Chapter 2: Document Processing Scenarios Analysis

We define a Transformation as one or more operations on a document. It is a
higher-level task that we want to perform on the document. Examples can be
converting a file Ifom one format to another, annotating a document or copying
a file from one folder to another. Each transformation consists of one or more
lower-level operations. In the XPipe view of the world, a transformation is

implemented by an XPipe pipeline.

To be able to examine transformations in greater depths we define Operations,
which are logically independent elements of the whole transformation. An
operation is a lower-level group of rudimentary actions that encapsulate one
logically independent task that is to be done on the way to complete the whole
transformation. When implementing the document processing system, the
feature of logical independence of operations naturally leads to the concept of
components that build up the whole transformation. In XPipe, an operation
corresponds to an XComponent, which carries out one particular step of the
transformation. An example of operations may be the adding of an element to an

XML tree, removing comments from transformed code or saving a file to disk.

Each operation consists of three stages. These stages group actions of an
operation and occur in a defined order. Every stage contains zero or more

actions.

1. Pre-processing stage

In this stage, the processing device prepares the document and the eventual
resources for the main processing stage. It can be downloading a DTD file
for validation of the XML document, connecting to a database or checking

the input stream for a correct format

2. Core-processing stage

The essential functionality of the operation is implemented in the core-
processing stage. It can be, for example, applying an XSLT sheet, inserting a
record from a database or converting the input stream to a format suitable

for output.

15/230

Scheduling and Optimising XML Pipeline Processing Chapter 2: Document Processing Scenarios Analysis

3. Post-processing stage

In the post-processing stage, the processor carries out actions that are
necessary for successful and correct completion of the operation. For
example, checking the output XML document for well-formedness, closing
a database connection or adding standard formatting elements to the output

steam.

The concept of three-stage processing with its distinct features does not have to
apply only to stages of operations but can and will be used in context of distinct

stages of transformations as well.

In the definition of operations we referred to Actions, which are rudimentary
pieces of work carried out on a document. Examples of actions can be
incrementing a counter, concatenating two strings or assigning a value to a

variable.

The whole document processing model is demonstrated by following figure:

Transformation
l"| Operation 1 Operation 2
Pre- Core- Post- Pre- Core- Post- 0
Document proc proc proc proc proc proc Document
in 1 1 out
Actions Actions ;
ZL 111 11 i 1!

Fig. 2.1 Document processing model
Now, when we have defined all the needed terms, we can inspect how to

categorise different document processing scenarios with regard to the unique

characteristics of particular groups of scenarios and their specific features.

16/230

Scheduling and Optimising XML Pipeline Processing Chapter 2: Document Processing Scenarios Analysis

2.2 Categorisation of document processing scenarios

To divide the scenarios into different groups with different features we take into
account the number of documents that can be processed at one time (D) and the
number of processors available at one time (P).

This division leads into following four categories:

SDSP - Single document, single processor scenario
SDMP - Single document, multiple processors scenario
MDSP - Multiple documents, single processor scenario

MDMP - Multiple documents, multiple processors scenario

Examples could be:

SDSP: applying an XSLT sheet to an XML file
SDMP: distributed image processing

MDSP: batch file conversion

MDMP: pipeline document processing

A feature to note is that all SDSP and SDMP systems are inherently
synchronous - when a new document is to be processed, it has to wait until

processing of the previous document is finished and can enter only after it.

All four scenarios will be examined in detail in following sections. Section 2.3
describes SDSP, section 2.4 SDMP, section 2.5 MDSP and section 2.6 MDMP

scenario.

2.3 SDSP - Single Document, Single Processor
Example: Applying XSLT sheet to XML file

The SDSP scenario is a case of document processing where only one document

can be processed at a time and only one processor is available. SDSP document

processing is also called a monolithic transformation, because the

17/230

Scheduling and Optimising XML Pipeline Processing Chapter 2: Document Processing Scenarios Analysis

transformation process is viewed as one unit. This transformation process of

SDSP scenario can be depicted by following figure:

Fig. 2.2 SDSP scenario

As shown figure 2.2, one document enters the processing unit, is processed and

then one document leaves.

The SDSP scenario by itselfis not too interesting, but serves as a building block
for more complex systems and also provides the basis for reasoning about
scenarios which have SDSP’s as its components. Even though it’s not
interesting from the point of view of structure complexity, it is a very common

case in personal use, when the user needs to process one document just once.

Features of SDSP can be summarized by following list:

Advantages: - no or very little work needed to set up transformation

- no maintenance needed

Disadvantages: - inefficient for larger volumes

2.4 SDMP - Single Document, Multiple Processors

Example: Distributed processing of large image data

18/230

Scheduling and Optimising XML Pipeline Processing Chapter 2: Document Processing Scenarios Analysis

SDMP scenarios are common in situations where the input document is large in
volume or the transformation is very computationally demanding or needs to be
done very quickly. There are two approaches to SDMP processing employing

pipeline and the scatter/gather concept.

2.41 SDMP - pipeline

Processing units executing smaller pieces of transformation are connected one
after another. These units are SDSP nodes where output of the preceding
component is passed to the input of the successive one. In contrast with the
SDSP approach, the processing units in the pipeline paradigm do just a small
piece of transformation and therefore their logic can be very simple. This allows

for better re-use of components and easier monitoring.

([

Fig. 2.3 SDMP - pipeline scenario

Apart from maintenance and monitoring advantages, pipeline processing

doesn’t bring improvement of execution speed. In fact processing in the SDMP-

pipeline system can take slightly longer that in the SDSP system, as time spent

19/230

Scheduling and Optimising XML Pipeline Processing Chapter 2: Document Processing Scenarios Analysis

by passing intermediate documents between components is added to execution

time.

Advantages: - fast assembly of complicated transformations

good monitoring capabilities

support of re-use of components for future transformations

Disadvantages:

work needed to assembly pipeline

slightly longer time of completion than SDSP

2.4.2 SDMP - Scatter/Gather

In the Scatter/Gather approach, the document is divided (scattered) into small
parts which can be processed in parallel and these document portions are
distributed on the available processing nodes. Usually, not all the document can
be processed in parallel and so, there is a part of the document that has to be

processed sequentially without distribution to available nodes.

In the group of executing nodes, there are three essential units. The scatter unit
examines the input document and distributes its parts to the available nodes. The
core-processing unit is the group of nodes carrying out core-processing of the
transformation. These nodes can be simple SDSP nodes, without any knowledge
of being part of a Scatter/Gather system. Finally, the Gather unit, which brings
together individual transformed document parts to assemble the final complete

transformed document.

20/230

Scheduling and Optimising XML Pipeline Processing Chapter 2: Document Processing Scenarios Analysis

fl 1

fl

Fig. 2.4 SDMP - Scatter/Gather scenario

In Appendix A, we investigate the efficiency of using the Scatter / Gather

approach in detail and reach the following conclusions:

The speed gain obtained by employing the Scatter/Gather approach increases
with the increasing number of processors, but the speed difference we get
lessens with every added processor. Gain depends on the proportional size of
sequential and parallel parts of the document. Gain increases only to a specific
upper limit. A certain number of processors will yield maximal possible gain
and using additional processors does not bring any extra advantage. The exact

mathematical expressions for these conclusions can be found in Appendix A.

21/230

Scheduling and Optimising XML Pipeline Processing Chapter 2: Document Processing Scenarios Analysis

Summary of features of SDMP-Scatter/Gather approach:

Advantages: - faster than SDSP and SDMP-pipeline
- better scalability

Disadvantages: - work needed to assembly whole system
- not suitable for documents with small percentage of

parallelizable content

2.5 MDSP - Multiple Documents, Single Processor

Example: Uploading group of files on FTP server

The substance of this scenario is deciding how to handle the processing of
multiple documents in a single processor system. There are two types of MDSP

scenarios. Bulk aware MDSP and bulk unaware MDSP.

When working with processing of multiple documents, we will use the concept
of an ‘average document’. An average document is a representative document
with an average size and average properties. The total size of the average
documents would have the same total size and same properties as the whole
collection of actual files. In the following documentation, when we refer to
processing a document, we’ll mean an ‘average document’, unless we state

otherwise.

2.5.1 MDSP - bulk unaware

This is a scenario where one SDSP node processes files, which are delivered to
it in sequence. It has no knowledge about the relationship between the files that
are passed to it. It is a common case in personal computing that a task consists
of individual sub-tasks grouped in a batch. An example would be batch file

conversion from one format to another.

22/230

Scheduling and Optimising XML Pipeline Processing Chapter 2: Document Processing Scenarios Analysis

fl
fIfl —

Ofl

(e
([
(@)

Fig. 2.5 MDSP - bulk unaware scenario

The MDSP-bulk unaware scenario is only a simple SDSP node processing
documents one after each other and there is really no time saving that could

arise from processing documents in a batch.

Execution time is sum of the completion times of the transformations of the
individual documents. The only secondary time savings might come from
having some data saved in cache, as they were processed very recently.

However, this is dependent on underlying structure and may not happen at all.

Summary of features of MDSP-bulk unaware approach:

Advantages: - easy to create

- no or very little maintenance coding needed

Disadvantages: - no time savings

2.5.2 MDSP - bulk aware

In this scenario, the processing node uses knowledge about the common parts of
the document transformations to make the total time of completion minimal.

Minimisation can be achieved by reducing the overhead of pre- and post-

23/230

Scheduling and Optimising XML Pipeline Processing Chapter 2: Document Processing Scenarios Analysis

processing stages which can be run fewer times if they can be shared for more

documents in the whole task.

A good example of this approach is uploading files to an FTP server, where pre-
and post-processing stage is opening and closing the connection to a server.
These stages are run only once and the connection is shared for all files of the

batch.

Fig. 2.6 MDSP - bulk aware scenario

In Appendix B we investigate the efficiency of bulk aware processing in detail

and reach the following conclusions:

The time saving obtained when using MDSP-bulk aware processing increases
with increasing size of the joint section and decreases with increasing size of
documents. The percentage of maximal gain obtained by processing a given
number of documents is not dependent on function of execution time, but only
on number of documents. Exact mathematical expressions for the given

conclusions can be found in Appendix B.

247230

Scheduling and Optimising XML Pipeline Processing Chapter 2: Document Processing Scenarios Analysis

Summary of features of MDSP-bulk aware approach:

Advantages: - minimizes overhead by sharing parts of transformations

common for more documents

Disadvantages: - slightly more work to create MDSP-bulk aware system
compared to MDSP - bulk unaware

- small time savings when joint section of transformations is

small compared to length of whole document

transformation

2.6 MDMP - Multiple Documents, Multiple Processors

Example: Pipeline multiple-document processing

There are three types of MDMP scenarios. All of these use three groups of
processing nodes: a Dispatching group, that cares for the directing of documents
in the system; a Transforming group (Transformers), which are nodes carrying
out the actual transformation of the documents; and a Collecting group
collecting transformed documents or their pieces and putting them together and
or transporting them to the specified location so that output of whole MDMP

system is produced in the correct manner.
In some systems, some nodes integrate more roles in one. For example, nodes
can combine the role of a transforming node and collector, when shipping out

the output is an inseparable part of the actual document transformation.

Transforming nodes can be any of systems discussed in the previous sections.

SDSP nodes - simple components

SDMP - pipeline nodes - more complex pipeline assembled
components

SDMP - scatter/gather nodes - specialised components for documents with

25/ 230

Scheduling and Optimising XML Pipeline Processing Chapter 2: Document Processing Scenarios Analysis

parallelizable sections

MDSP - bulk unaware nodes - simple bulk processing components

MDSP - bulk aware nodes - bulk processing components for documents
that have something in common and parts of

their transformation processes can be shared
The dispatching unit can take advantage of knowing what the special features of
different transforming nodes are and send documents to these nodes that would

finish the transformation in the shortest possible time.

All MDMP scenarios look like following:

Fig. 2.7 MDMP scenario

The difference from previous scenarios is that documents can flow in and out

when other documents are being processed inside the system at the same time.

The MDMP scenario is a pipeline structure, combined with the concept of

parallel processing.

The three scenarios differ in how they handle the flow of documents and their

dispatching.

26 /230

Scheduling and Optimising XML Pipeline Processing Chapter 2: Document Processing Scenarios Analysis

2.6.1 MDMP - d-t-c
D-T-C stands for the three node groups employed in this scenario, a Dispatching
unit, Transforming nodes and a Collecting unit. Nodes are organised as

following:

Transforming

Fig. 2.8 MDMP - d-t-c scenario

It resembles the Scatter/Gather setting and it is indeed the same concept. The
only difference is that here it is the individual documents that are sent to the
processing nodes, not portions of a document as in Scatter/Gather. It doesn’t
mean that individual documents can’t be processed with Scatter/Gather
approach. As the transforming nodes can be any of the previous processing

systems they can be SDMP-Scatter/Gather nodes as well.

2.6.2 MDMP - ds-t-cg

A minor variation of the previous approach is ds-t-cg. This has Scatter/Gather
functionality shifted to directing nodes. Scatter is incorporated in the Dispatcher

and Gather in the Collector.

271230

Scheduling and Optimising XML Pipeline Processing Chapter 2: Document Processing Scenarios Analysis

Transforming nodes

Fig. 2.9 MDMP - ds-t-cg scenario

This change further separates the logic of document maintenance (dispatching,
preparing for core-transformation, etc.) and transformation of the document.
This allows the transforming nodes to focus more on the transformation itself
and not to care about additional issues. The transformation nodes can thus
contain less additional logic and be more efficient and, as a result, contribute to

an overall reduction in the time of completion.

The dispatching unit has more information about whole job and the state of the
system and therefore it can better decide how to handle documents than the

individual transforming nodes.

2.6.3 MDMP - pipeline

In the MDMP-pipeline scenario, the document processing system is a pipeline
of MDMP - d-t-c or MDMP - ds-t-cg systems. This enables pipelines to contain
more documents at the same time. This approach is convenient for large
transformations, where documents stay a long time inside the processing system
and for transformations of large amounts of documents, that aren’t submitted as
one batch but rather ‘flow in’ the system as they come. Furthermore, this system
brings a higher level of modularity, which facilitates scalability and thanks to

this higher modularity of code it makes monitoring easier.

281230

Scheduling and Optimising XML Pipeline Processing Chapter 2: Document Processing Scenarios Analysis

This approach can be implemented in three different variations.

Variation 1

MDMP D MDMP - D MDMP

Variation 2

Variation 3

Fig. 2.10 MDMP - pipeline scenario

The first variant has a dispatching unit placed between each MDMP sub-system.
The second has dispatching units only after the sub-systems that are substantial
in some way and using the dispatching unit in this place brings significant gain.
It tries to find a balance between the cost of employing dispatching units and the
gain they bring. In a third variation, there are one or more global dispatching
units which completely control the flow of documents. In this variant, the
dispatcher has most of the information about the state of the whole system and

therefore can dispatch documents with the greatest efficiency.

The XPipe paradigm implements the MDMP-pipeline document processing
scenario as every component runs different transformations (corresponding to
multiple processors) which are carried out on multiple documents entering the

pipeline.

29/230

Scheduling and Optimising XML Pipeline Processing Chapter 2: Document Processing Scenarios Analysis

2.7 Graphic comparison of document processing scenarios
We can compare different scenarios in regard to their complexity, or how much

work we need to do to construct them, versus the speed or their scalability.
Single Document scenarios

speed scalability

complexity / complexity /
work to construct work to construct

Fig. 2.11 Single Document scenarios comparison

The SDMP-pipeline system requires more work to construct without a gain in
speed, but with better scalability compared to the SDSP system. As an
additional advantage, it has good re-use capabilities for prospective SDMP-
pipeline systems. SDMP-scatter/gather demands even more work than the

SDMP-pipeline, but it brings speed and scalability gains.

30/230

Scheduling and Optimising XML Pipeline Processing Chapter 2: Document Processing Scenarios Analysis

Multiple Document scenarios
speed

complexity /
work to construct

scalability

complexity /
work to construct

Fig. 2.12 Multiple Document scenarios comparison

MDSP-bulk aware system is slightly more complex than MDSP-bulk unaware,

but it brings speed gains by sharing joint sections of the transformation

31/230

Scheduling and Optimising XML Pipeline Processing Chapter 2: Document Processing Scenarios Analysis

processes. As this is an improvement on MDSP-bulk unaware, rather than a
new approach, it does not improve the scalability of the whole system. MDMP -
ds-t-cg shows slightly better performance than MDMP - d-t-c because the
dispatching logic is shifted to the nodes that have more information about the
state of the whole system. As in the previous case, there is no difference in
scalability. MDMP - pipeline shows the best performance and scalability, but is

the most complex of the multiple document systems too.

2.8 Major concepts of efficient document processing

To close the chapter about the different document processing scenarios we can
summarise the technigues that have emerged as being used nowadays in pursuit
of increased efficiency of document processing. All these techniques are
described in the following list with a brief description of their core idea and

features.

1. Bulk processing
Using information or data common to more processed documents.
Benefits: - shorter time of completion,

- less processing power used

2. Pipeline processing
Using smaller code segments / components to execute smaller units of
transformations, which are ordered in sequence, passing output of one
component as input data to a successive one.
Benefits: - better maintainability

- enhanced monitoring capabilities

- easier load balancing

- support for easy re-use of transformation components

3. Scatter / Gather
Dividing document to smaller segments which can be processed in parallel
Benefits: - shorter time of completion

- easier load balancing

32/230

Scheduling and Optimising XML Pipeline Processing Chapter 2: Document Processing Scenarios Analysis

4. Parallel processing

Processing documents on parallel devices and collecting their output to one
common location afterwards. In contrast with Scatter / Gather, in parallel
processing approach, whole documents are concurrently processed, not only
portions of one document as in previous case.

Benefits: - shorter time of completion

- easier load balancing

All these paradigms can be found in previously examined document processing

scenarios which leverage their specific features.

33/230

Scheduling and Optimising XML Pipeline Processing Chapter 3: Approaches to document transformation

Chapter 3
Currentapproachesto large-

scale DOCUMENT TRANSFORMATIONS

347230

Scheduling and Optimising XML Pipeline Processing Chapter 3: Approaches to document transformation

3 Current approaches to large-scale document transformations
After we inspected the different document processing scenarios, we can focus
on one which is of particular interest to us. The focus of this research is on those
techniques relating to PropelXbi, which belongs to the MDMP - pipeline

document processing scenario.

The objective is to examine how large-scale document processing is currently
done and inspect the different areas of the computer world to identify techniques
that can be used to enhance PropelXbi as a large-scale document transformation

system implementation XPipe.

In the following sections, we give an overview of current state-of-art large-scale
document processing techniques. First, in 3.1 we present the straightforward
methods being used, then in 3.2 we describe the more advanced approaches and

in 3.3 we point out how XPipe relates to the inspected technologies.

3.1 Straightforward methods
The straightforward approach to document transformation is to use one of the
technologies available today and compose a transformation. We present five

major transformation technologies publicly available today.

3.1.1 SAX

The principle of SAX (Simple API for XML) (SAX) is that a parser processes
an input XML file and informs us about the events that happen when it is doing
so. Events are of the types: data element start reached, data element end
reached, comment reached, etc. The user can define what happens when a
particular event is fired. The event calls contain various information, such as the

contents of an element, namespace etc. and the user can use them as they prefer.

As the user implements actions only for events that interest him, he does not
have to care about processing the rest of the document. This approach also leads
to fast execution of the transformation and low memory requirements, as there

is no need to allocate large space to save entire document in memory.

35/230

Scheduling and Optimising XML Pipeline Processing Chapter 3: Approaches to document transformation

SAX technology is a low-level technology and its simplicity is also the source
of its disadvantages. It does not provide the user with the functionality of other
techniques that facilitate working with elements. Thus, when more complicated
transformations are required, too much coding is necessary to simulate the

functionality which is commonly available in other higher-level techniques.

3.1.2 DOM

DOM (Document Object Model) (W3C) is a standardized object-oriented model
of a document. Parsers providing a DOM interface load the whole document
into memory and create a tree model representing the structure of the document.
The application can then traverse this document model and work with its nodes
representing the document elements. Every node contains information about the

element it represents.

By creating a tree representation of document, DOM technology takes the
burden of low-level text processing off the developer and allows him to focus
on the element transformations. However, this has its disadvantages. As the
whole document is parsed and its tree representation allocated in memory, it has
high demands on memory space and, if only small transformation is needed or
the document is instantly mapped to non-tree model, it creates an unnecessary

waste of resources.

High demands on available memory condemns this technology to being
unsuitable for large documents, especially if they are going through a sequence
of transformations where the whole document tree would have to be recreated in

memory again and again.

3.1.3 XSLT
XSLT (Extensible Style Language - Transformations) (W3C 1999) is a
language used for converting XML documents by applying templates specifying

what transformation should be applied on a particular set of elements.

36/230

Scheduling and Optimising XML Pipeline Processing Chapter 3: Approaches to document transformation

A template rule has a pattern specifying trees it applies to and an output
template used when the pattern is matched. The file processor creates a tree
representation of the XML file in memory and successively scans each sub-tree.
As each tree in the XML document is read, the processor compares it with the
pattern of each template rule in the style sheet. When the processor finds a tree
that matches a template rule’s pattern, it outputs the rule’s template. Templates
can perform calculations, can copy content from the original XML document
and can work with the initial content as it wants. It can also change the way in

which the sub-trees are scanned.

The disadvantage of this approach is an even higher demand on memory space,
as three trees are created in memory, compared with two in the DOM case.
These three trees are the original document tree, the tree of the XSLT templates
and the resulting document tree. This higher demand on memory results in a
longer processing time, as more objects need to be created in memory and need

to be operated upon.

Another problem for the developer of complex transformations is the complex
programming model, which turns out to be cumbersome for realising large-scale
transformations. XSLT was never meant to be general purpose XML
transformation technology (W3C 1999) and it turns out to be most suitable for
simple XML to XML transformations. Even with these weaknesses, it is
currently used in some commercial applications performing XML document

transformations (BEA; D.1.B.; DataConcert).

3.1.4 DSSSL

DSSSL (Document Style Semantics and Specification Language) is an
International Standard for specifying document transformation and formatting in
a platform- and vendor-neutral manner. In particular, it can be used to specify
the presentation of documents marked up according to Standard Generalized
Markup Language (SGML) (Bosak 1996). DSSSL came from publishing
community and is widely adopted there. However, as DSSSL aims at

transforming complex SGML documents it is complex as well and seemed

37 /230

Scheduling and Optimising XML Pipeline Processing Chapter 3: Approaches to document transformation

unsuitable for on-line transformations in Web browser environment. For that
purpose a downsized application profile called DSSSL Online (DSSSL-O) was
created. DSSSL-0 is a profile of DSSSL which removes some functionality and

adds capabilities to make it more suited for online documentation. (Quin 2004)

As XML emerged (being simpler subset of SGML) a new simpler style-sheet
language was requested and XSLT was constructed, largely based on DSSSL.
Both languages share the same concept of application of templates to the trees
of elements. Yet, DSSSL doesn’t use XML syntax to define transformation
templates and as it was more-general predecessor of XSLT, it has more
capabilities than XSLT. In contrast with DSSSL, XSLT was widely adopted,
whereas DSSSL stayed largely only in the publishing community.

3.1.5 Traditional code - Java, Perl, Python ...

All four technologies mentioned above are focused on XML to XML or SGML
to SGML transformations. For transforming documents not in SGML/XML
format, traditional code programs are needed. They can process SGML/XML
documents as well, but in comparison with SGML/XML-oriented technologies
they lose the convenience of document syntactic and semantic pre-processing

done by default.

As traditional code is not meant to be a document-transforming technology, it is
difficult and inconvenient to create more complex document transformations in
it. Flowever, it is useful for converting non-SGML/non-XML documents to

SGML/XML for further processing with SGML/XML-focused technologies.

3.2 Advanced methods

When there is need to process either a large number of documents, perform
complicated transfonnation or process documents of large size, the
straightforward methods are shown to be insufficient. They are not optimal
either in performance or in discriminating complexity of code, which renders

the need for more advanced approaches. The following methods use the

38/230

Scheduling and Optimising XML Pipeline Processing Chapter 3: Approaches to document transformation

available technologies in a compound way to achieve the desired processing

performance.

3.2.1 Compound monolithic transformations
In the monolithic transformation approach, one object, which conducts the
entire transformation, is generated and used afterwards every time a

transformation is requested.

Even though the monolithic transformation approach is relatively easy to
implement, it has many flaws. As the transformation is performed in one block
of code, it is not fault tolerant, and when one portion of the code fails, it
infringes all the transformation. Another fault is that systems implementing the
monolithic transformation approach don’t scale, as there is no way to distribute
the execution of a compact block of code. Its massiveness does not allow
parallelization either, so only one document can be processed by a system at one
time (which is one of the reasons why it does not scale). Finally, for the same
reason - the massive nature of code - it is very difficult to monitor and diagnose
the execution of transformations, which is a crucial feature necessary when
performing the transformations of great numbers of large documents in systems

whose execution takes a long time.

The following three methods use the technique of monolithic transformation.
These three methods differ both in how the transformation object is constructed

and what technology it is built on.

Monolithic transformation - sequence of calls

This first method generates a set of objects, which implement the individual
steps of the transformation. The technology used in these objects is not
restricted as long as they are executable and can process the given document. It
iS up to the programmer, or the generator, what code he writes in there. All these
transformation classes are then assembled in one embracing script, which

successively calls individual transformation objects.

39/230

Scheduling and Optimising XML Pipeline Processing Chapter 3: Approaches to document transformation

Monolithic transformation - rule based mapping

In this method, the transforming code is generated from a set of business rules
describing the difference between the source and target document
(Innovations Softwaretechnologie GmbH 2004). Business rules are generally of
the form IF condition THEN action. The condition is usually a match on an
element of the input file and the action is a transformation that should be carried
outt. An example of such a business rule would be: IF
source.invoice.invoice_number THEN target.record.add(invoice number) ,
stating that when the invoice number is found in the source document, a new
record with the invoice number should be written in the target document. In
some implementations, this model is extended by the possibility to match on the
structure of the target document too and the analyst can then construct the target
document from a view of what is yet needed to add to the target document,

rather than what is still available in the source document.

When properly implemented, the business rules model can produce efficient
transformation code. However, as the rule-based model corresponds to rule
inference programming, it is often un-natural to common thinking of
programmers and transformation analysts and in many cases sequential
programming is a more natural and suitable way of implementing

transformations.

Monolithic transformation - semantics based mapping

This method, tries to approach XML data in a different way. XML by itself
captures the structure of the data, but does not store any information about the
meaning of the data it contains - about the semantics of the data. Semantics, or
“ontology”, is formal definition of relations between terms (document
elements). Such a relation could be “Invoice report is subclass of Report”,
“Invoice contains invoice rows”, “Invoice number is unique integer identifier

greater than 1000 and lesser than 10000”.

For some particular types of documents, there exist business standards, which
define a fixed vocabulary (names and meaning of document elements) used in

adhering documents (Commerce One; cXML; ebXML; SAP; OAG; OASIS;

40/230

Scheduling and Optimising XML Pipeline Processing Chapter 3: Approaches to document transformation

FIX Protocol; ISDA; 1SO; RosettaNet). By fixing the vocabulary, they in fact
define the semantics (meaning) of the document elements. As a result, when we
need to transform documents between two business formats, we can use
knowledge about their semantics and automatically create mapping
transformations (Contivo 2001). For example, if we had an EDIFACT invoice
document and needed to transform it to a SAP IDoc invoice message, we could
leverage knowledge of their semantics defined in their specification and
generate the transformation which maps the corresponding elements to each
other. However, often standards aren’t fully overlapping and often one must

manually specify the mapping of elements not covered in both standards.

The discussed semantic approach builds on existence of standards for particular
types of documents. As a result, use of this approach is narrowly restricted to
areas where such standards exist (e.g. exchange of trading messages in financial

sector, exchange of standard business messages like invoice, payment, etc.).

Another approach, based on semantic viewing of documents is that of hub-and-
spoke. In this approach, one global information model is created which captures
all the semantic structure of areas in which we want to carry out conversions
(e.g. global information model can be created inside a company which captures
aview of all its assets, comprising a view of technical and business personnel).
After the global information model (a hub format) is created, to transform, the
document in format A to format B, we need to create semantic mappings from
both formats to the hub format. As the hub format should capture all the
semantics of the transformed documents, transformation form A to B via the
common format should be generated mostly automatically. (Contivo 2001; Fox

2003; Unicom)

This approach appears useful, when a lot of different documents in differing
formats need to be viewed in a unified view and various transformations need to
be done between them. However, for straight transformation between two
formats, (as is case of XPipe and PropelXbi), conversion to a common hub

format would create unnecessary overhead.

41/230

Scheduling and Optimising XML Pipeline Processing Chapter 3: Approaches to document transformation

3.2.2 Pipeline transformations

Several companies implement the pipeline approach, e.g. (iWay Software;
Karora; Xbeans). In essence, pipeline consists of transformation components
which are chained together into a pipeline and documents pass from one

component to another.

Implementations are by and large written in Java using either standard Java or
J2EE architecture. Communication systems are mostly built on messaging using
JMS or SOAP format. Few implementations use JavaSpaces which is Java

implementation of “tuple space”1(Karora).

The biggest flaw of all these pipeline implementations is that they allow use of
only one transformation technology, which is mostly the application of the
XSLT template sheets. Because of the XSLT used as a transforming technique,
they inherently suffer from the bad features of underlying technology, which are

high demands on memory space and resulting slow processing.

There are two exceptions, namely PerXML (PerCurrence) and Cocoon
(Cocoon), which use a different transforming technology. PerXML is an
extension of XSLT aimed at extending the template-based transformation
approach to allow more intuitive operations and to be able to match on non-
XML documents too. Cocoon is a Publishing Framework, which uses SAX
filters as a transformation device, and thus it does not suffer from high memory
requirements and slow processing. However, as Cocoon is mainly an XML
publishing framework aimed at transforming pages, it is not suitable for general
and large-scale document transforming. Even more, it explicitly says in its
documentation that it is not suitable for the processing of large documents.

(Cocoon)

3.3 Position of XPipe
A common problem of all the straightforward technologies mentioned above, is

that they are focused on some particular aspect of transforming (low use of

1TupleSpaces are discussed in depth in Section 7.1.

42/230

Scheduling and Optimising XML Pipeline Processing Chapter 3: Approaches to document transformation

memory, ease of access to document elements, etc.) and therefore they are
convenient only in some particular area of document transformation. Real-world
cases of document transformation do not consist only of these special scenarios

and often contain all of them together.

XPipe described in 1.1 solves this problem by allowing individual components
of the pipeline to be written in the language most appropriate for the actual
transformation stage. Hence, the traditional code can be used to convert a non-
XML document to the XML format, SAX code to perform simple maintenance
operations and XSLT component can be used for large summarizing actions at
the end. This overcomes the performance problem of the majority of other
pipeline approaches by allowing the most appropriate language to be used and

retaining the flexibility of pipeline composition at the same time.

As XPipe is a pipeline approach, it enables easy monitoring, load balancing and
scalability, which are not provided by the monolithic methods. Apart from that,
thanks to its modular approach, it allows for composition of very complicated
transformations from simple components which can be easily reused and

managed.

43/230

Scheduling and Optimising XML Pipeline Processing Chapter 4: PropelXbi as a solution of complex problem

Chapter4
PropelXbiasasolution of

COMPLEX PROBLEM

447230

Scheduling and Optimising XML Pipeline Processing Chapter 4: PropelXbi as a solution of complex problem

4 PropelXbi as a solution of complex problem

In Chapter 4 we look at a study which aimed at a precise characterisation of the
computing-related process of complex problem solving and we then look at

XPipe and PropelXbi in the light of results of this study.

4.1 Process of complex problem solving

As part of Caltech Concurrent Computation Program (C3P) run on California
Institute of Technology, research was carried out which aimed at the
characterisation of the processes of solving complex problems in precise terms.
The problem solving processes that were the focus of this research were related
to computing. This section draws on results of C3P program and all citations in
this section are from (Fox, Williams & Messina 1994), which will not be further

indicated.

The aim of this research was to create a formal means of looking at the process
of solving of complex problem that are related to computing. Researchers
wanted to develop a means that allows us to reason about the stages of the
problem-solving process and to be able to set a measure on convenience of the

proposed solution for different computer architectures.

The fundamental concept is to view the complex problem solving process as a
consecutive mapping between complex systems, where complex system is “a
collection of fundamental entities whose static or dynamic properties define a
connection scheme between entities.” The concept of consecutive mapping is

demonstrated by the following example of Airflow dynamics simulation.

45 /230

Scheduling and Optimising XML Pipeline Processing Chapter 4: PropelXbi as a solution of complex problem

Flow around Molecular Continuum
the Airframe 7 > picture T > model
Initial question System 1 System 2
(numerical formulation)
Multigrid High level
_____ N computational . program e Final computer
approach solution implementation
System 3 System 4 System 5
(numerical formulation for (high level (low level
particular hardware) software solution) software solution)

Fig. 4.1 Airflow simulation problem solution process

The whole problem-solving process starts with an initial task or question, which
in this case is a problem of how to simulate the flow of air around an airframe. It
is then consequently mapped to the following system representing the logical
steps to solving the problem. The last three systems are particularly important as
is shown in the following general solving process definition.

Airflow simulation is real-life instance of general problem solving definition,

which views process as a sequence of maps between complex systems

S, I<i<k .

46/230

Scheduling and Optimising XML Pipeline Processing Chapter 4: PropelXbi as a solution of complex problem

Initial
N ;| S2 > Nk-a
guestion
numerical

formulation

Nko-2 Arinin woxx.1 . A HLSoft k ~~ comp
numerical formulation for virtual computer high actual computer low
particular hardware level software solution level software solution

Fig. 4.2 General complex problem solution process

The last three systems have special importance.Sim is the numerical
formulation of the problem solution with respect to the hardware that is
expected to be available. E.g. the numerical solution can take into account the
parallel capabilities of the foreseen hardware and may chose a different

calculation technique suitable for parallelization. SHSfi is high level software
solution, not concerned about details of computer hardware. The last system
Sanp represents the low-level software solution, taking into account all the

details of the implementation including the hardware communication and issues

specific to the chosen architecture.

This general view of the complex problem-solving is important because of two

substantial observations:

0-1. (Performance) “Performance of a particular problem or machine can
be studied in terms of the match (similarity) between the architectures

of the complex systems Smm (numerical problem formulation) and

Sanp (actual computer software implementation)”

0-2. (Implementation appropriateness) “Structure of appropriate parallel
software will depend on the broad features of the (similar)

architecture of Stmand SHLSof.

471230

Scheduling and Optimising XML Pipeline Processing Chapter 4: PropelXbi as a solution of complex problem

Observation 1 speaks about implementation performance and Observation 2
about the appropriateness of the solution implementation in terms of the
matching architectures of complex systems.

0-1 implies that the more distant the implementation is from the proposed
numerical formulation (the more original approach is distorted), the worse is the
performance of the problem solution.

0-2 can naturally be expected, as the software maps the two complex systems

into each other.

One interesting point is that the observations 1 and 2 correspond to the idea of
Michael A. Jackson, which says that the structure of programs should
correspond to the structure of the input and output data (Sutcliffe 1988). Jackson
came to this idea in the 1970’s and in the 1980’s the more general idea, but with
the same fundamental concept, was discovered in parallel computing research
by C3P.

4.2 PropelXbi as a complex problem solution
Knowing this high-level general approach to problem solving, we can now have
a look at how XPipe and PropelXbi can be viewed as problem solutions of the

complex large-scale document transformations problem.

481230

Scheduling and Optimising XML Pipeline Processing Chapter 4: PropelXbi as a solution of complex problem

Complex large- Transformation Pipeline
scale document W decomposition transformation
transformations W processing
Initial problem s2

Runtime of
PropelXbi on
specific OS

XPipe model PropelXbi

nm SR S

Fig. 4.3 XPipe and PropelXbi as solutions of complex large scale transformations

problem

This graph shows consecutive steps leading from stating the initial problem to
the actual implementation of a solution. It captures the key steps, which
represent the essential thoughts of the XPipe approach - transformation
decomposition and pipeline transformation processing which are then embraced

in the overall XPipe approach.

The most important asset of this graph is that it identifies what systems Smi and
SHSj are in our large-scale document transformation problem. smm is XPipe and
SHgji ‘s PropelXbi - an XPipe implementation. This allows us to look at how

good implemenation is PropelXbi as a document transformation problem

solution as observations 0-1 and O0-2 refer exactly to Smmand

SHM (SaPrespectively).
As 0-1 and 0-2 speak about the quality of the problem solution implementation
in relation to the match of solution formulation and implementation

architectures, the following paragraph compares how well PropelXbi

49/230

Scheduling and Optimising XML Pipeline Processing Chapter 4: PropelXbi as a solution of complex problem

architecture (SHSM) matches the architecture of the general XPipe approach

As XPipe envisages processing as components connected by document queues,
the ideal theoretical implementation architecture would be a system of nodes,
with one node for each component connected by queues. Ideal nodes would be
able to increase its processing power (which is equal to increasing
capacity/throughput of queue) in correspondence with the changes of actual

workload.

The first realistic implementation architecture would be a data flow computer as
it is purposely built to support the flow of data (documents). The problem with
this architecture is that it is not realistically realisable, as data-flow computers
aren’t commercially produced and are not a common part of available hardware
facilities. Moreover, the data-flow architecture wouldn’t have the ability to
increase the computing power of the processing nodes, unless dynamic role

assigning could be implemented.

The second best architecture is one involving transputer grids. One transputer
node implements one component. It is also connected with other components
using a grid. Use of this architecture would have the same problem as the
previous one as transputers are not widely used. In fact, transputers are even less

common than the data-flow computers today.

The third available implementation architecture is normal personal computers
with queues implemented by software pipes. This is in fact a very good and
natural match, as pipes are organic parts of computer systems for a long time

and are taken as a natural part of the computer environment.

The actual PropelXbi J2EE implementation simulates software pipes as one
main queue takes care of passing documents to the appropriate components, as
software queues would do. The possibility of dynamically assigning a

component to an MDB gives an ability to increase the computing power of the

50/230

Scheduling and Optimising XML Pipeline Processing Chapter 4: PropelXbi as a solution of complex problem

selected component as more allocated MDB'’s process more documents waiting

to be processed by that component.

Another good feature of the PropelXbi implementation is that inter-node
communication is built on the JMS message passing system. One of the findings
of the C3P project was that “Explicit message passing is still an important
software model and in many cases, the only viable approach to high-
performance parallel implementations on MIMD machines”(Fox, Williams &
Messina 1994). This proves that it was the correct decision to choose message

passing as a means of communication in the PropelXbi implementation.

The architecture of PropelXbi matches the general XPipe paradigm and thus
fulfils the conditions for good problem solution implementation set by
observations 0-1 and 0-2 in both aspects of appropriateness of implementation

and implementation performance.

51/230

Scheduling and Optimising XML Pipeline Processing Part 2: Document processing techniques survey

Part 2
Documentprocessing techniques

survey

52/230

Scheduling and Optimising XML Pipeline Processing Chapter 5: Review of Parallel Processing

Chapter 5

Review of Parallel Processing

53/230

Scheduling and Optimising XML Pipeline Processing Chapter 5: Review of Parallel Processing

5 Review of Parallel Processing

When dealing with parallel XML pipeline processing system, it is useful to look
at the different areas of computing where pipeline and parallel paradigms have
already been explored. Concepts and techniques used in parallel processing may
also be used in PropelXbi and may equally come with a solution of a problem

that PropelXbi may face in a future.

First, in section 5.1 we look at architectures which are used in today’s parallel
computing. Then in 5.2 we discuss which enhancement mechanisms found in
the current parallel architectures can be used in enhancing PropelXbi. In the last
section, 5.3, we present a classification of parallel problems, state to which
particular class document processing belongs and look at how well PropelXbi’s

architecture matches the problem it is meant to solve.

5.1 Parallel processing architectures

When looking on the area of today’s parallel processing, four major computing

architectures appear.

5.1.1 Von Neumann architectures

Theses are architectures build on Von Neumann’s original concept of a
computer. This category includes by far most of the current parallel
architectures, comprising SIMD and all the various flavours of the MIMD

architectures.

SIMD stands for Single Instruction, Multiple Data. In SIMD architecture, there
are multiple processing units performing the same instructions, each capable of
fetching and manipulating its own data. An example of SIMD architectures
would be vector computers, where whole vectors of data are processed at the

same time.
MIMD are Multiple Instruction, Multiple Data architectures. In MIMD, each

processor executes its own instruction stream in its unique data stream. Today,

nearly all parallel machines are built on MIMD architecture. There are different

54/230

Scheduling and Optimising XML Pipeline Processing Chapter 5: Review of Parallel Processing

variations of MIMD, based on a way in which processors access memory. In
Shared memory MIMD’s all processors have access to pool of shared memory.
If there is one level of memory, it is called UMA (Uniform Memory Access)
Shared memory MIMD. When there are hierarchies of memory and thus access
to different parts of memory can take different time, it’s called NUMA (Non-
uniform Memory Access). In contrast with Shared memory approach, there are
also Distributed Memory MIMD’s where every processor has its own local
memory and exchange of data is achieved by message passing. Computing
clusters and Massively Parallel Processors belong to the later category. (Kaiser;
Le & Huu 1997; Plachy 1997; Dongarra 2003; Voicu 2004)

Various enhancement techniques used in parallel computers based on von
Neumann concept, which have potential of improving performance of

PropelXbi are discussed in later section 5.2.

5.1.2 Dataflow architectures

Significantly different to the architectures based on the Von Neumann concept
are dataflow architectures (Duncan 1990). In dataflow computers, computation
is driven by the data being processed. Dataflow architectures consist of
independent processing units performing fixed operations, which are activated
by the arrival of the data to process. After processing the given data, they

forward the result to one or more of the processing units.

PropelXbi’s architecture is somewhat similar to dataflow, as documents flow
from one component to another. However, in PropelXbi, different MDB’s can
carry out different transformations (depending on what particular XComponent
they execute at the moment). This flexibility allows MDB’s to be used for
whatever transformation is needed and avoids idle waiting which is present in

dataflow computers where each processing unit has a fixed function.
5.1.3 Systolic arrays

Another parallel architecture is Systolic arrays (Duncan 1990). A systolic array

is a “network of small computing elements connected in a regular grid. All the

55/230

Scheduling and Optimising XML Pipeline Processing Chapter 5: Review of Parallel Processing

elements are controlled by a global clock. On each cycle, an element reads a
piece of data from one of its neighbours, performs a simple operation, and

prepares a value to be written to a neighbour on the next step” (CSEP 1995).

An important feature of systolic arrays is that each processing step is performed
in a fixed period of one tick of a global clock, which makes the systolic arrays
fast and predictable. Nonetheless, the requirement to have the processing done
in a fixed amount of time is not a realistic one for pipeline document processing,
as processing in each component can take a different amount of time.
Granularity of the steps of document processing is much larger than the
granularity of processing in systolic arrays and thus it is not realistically

possible to fix the time per processing component.

5.1.4 Neural Network architectures

Neural networks can be viewed as another parallel architecture, as each neuron
works in parallel with regard to other components of neural network. However,
neural networks are aimed at different work to document processing (e.g.
pattern recognition or automatic clustering of complex data), and they are not

relative to our case.

5.2 Techniques exploitable in PropelXbi

When researching techniques used in parallel computers based on the Von
Neumann concept, the following enhancement techniques emerged. Most were
employed in PropelXbi already. As PropelXbi has its specific requirements and
architecture, techniques usually had to be adjusted so that they fit the PropelXbi
particular case and some were even further enhanced utilizing features particular

to XML pipeline processing system.

5.2.1 Pipeline processing
The concept of pipeline processing was first used in 1960’s in the construction
of computer instruction processing units. Instruction processing was speeded-up

as individual machine operations were executed in parallel.

56/230

Scheduling and Optimising XML Pipeline Processing Chapter 5: Review of Parallel Processing

Instruction processing is divided into stages, which can be run in parallel and for
every stage there is one (or more) dedicated independent execution units. All
these units work with the same clock cycle and pass its output to input of unit
realizing following stage. As stages are independent of each other, with every
clock cycle, new instruction can start to be processed and after the time of
processing one instruction in all stages (called latency), with every clock cycle

one instruction is processed.

Ibbett and Topham (Ibbett & Topham 1989) provide equations expressing
amount of possible speed-up when using multi-stage pipelines. If r is the time
of a clock cycle (or latency of one stage) and k is number of stages in the

pipeline, then the time to process n instructions is Tk=kr+ («-l)r. If we assume
that a non-pipelined implementation would take time T =km, what in fact is a

pipeline with one stage, then we can express the speed-up resulting from use of

k -staged pipe as:

c.. N X
K *+(»-]

With higher number of processed documents, speed-up increases with a limit of

limS =k which is theoretically reached when the number of documents goes to

rt-»co
infinity. This limit can never be reached, as the number of documents passing

through the pipeline is always finite.

The motivation for this technique was the increase of execution speed. In
PropelXbi, though, motivation for using the pipeline approach was different
because of the different underlying architecture. Computer processors have a
separate dedicated unit for each stage of the pipeline that runs in parallel. In the
case of PropelXbi, there is in reality only one (or a not large number) of
processors. Because of this limitation, employing the pipeline approach on a
single-processor machine doesn’t bring any speed-up (as there is nothing that

runs in parallel).

57 /230

Scheduling and Optimising XML Pipeline Processing Chapter 5: Review of Parallel Processing

In PropelXbi, the rationale for using the pipeline paradigm was to simplify
complex document transformations and encapsulate individual simple
transformations in the pipeline stages. This decomposition allows for better re-
use, easier monitoring and easier maintenance of components working as the

building blocks of the whole complex transformation.

The concept of the pipeline is even furthermore extended in PropelXbi, where
for every stage a group of nodes is allocated which can be dynamically added or
recalled depending on the actual workload in that particular stage. By that,
balance can be reached in utilization of computing power of the underlying

processor architecture.

If we return to the approach when one pipe stage corresponds to one
independent processing unit it would lead us to the thought of using transputers.
Every transputer node or group of nodes would be used for one pipe stage and
the results would be passed to neighbouring nodes realizing the succeeding
stage. In this architecture it would be possible to reach real parallelism of the
transformation and achieve speed-up in the same manner as in computer
processors. However, the days of transputers are now gone and therefore we
have to give up this architecture and focus on implementations achievable on

machines that are available today.

5.2.2 Instruction Cache and Instruction Pre-fetch

Both these concepts come from the principle called ‘Principle of Locality’ or
‘Locality of References’ (Liu, Weng & Sun 2001; Prabhu 2003). It says, that
relation of instructions of code is linearly related to its mutual locations. In other
words, the closer instructions are to each other, the higher is the probability that
there is relation between them. This observation results from the nature of
programs, which are predominantly sequential and instructions are executed

successively as they are written in code.

The concept of a cache comes from two sources. First is that loading from hard

disk or any another permanent storage space is expensive in relation to spent

58/230

Scheduling and Optimising XML Pipeline Processing Chapter 5: Review of Parallel Processing

time, when on the other hand, time of accessing the same information in
memory is many times faster. The second source is the notion that if one
address (or file, component) was accessed recently, it is very probable that it
will be accessed soon after. This is the implication of Locality of Code because
when related instructions have close locality they are executed in near time

points as a consequence of sequential execution.

Due to these two reasons, it is beneficial to keep recently accessed items in
memory to save the time of loading them from storage space when they are

requested again.

The second concept of instruction pre-fetch deals also with saving of loading
time. It exploits the direct implication of Locality of Code concept in a way that
when one instruction is loaded, processing unit loads several successive
instructions ahead of execution. This way, when the next instruction is
requested it is loaded in memory already and it is not necessary to wait for its

loading. This approach is called look-ahead or speculative execution.

The problem with this approach arises when there are branches in the code (as
there usually are). In this case, pre-fetching has to be either disabled until it’s
resolved which branch will be followed or establish a way of prediction of
which way will be taken. In the second solution, called speculative execution,
the computer estimates how the code will branch. In case of a right prediction,
the execution continues without any changes. In the opposite case, all pre-
fetched instructions have to be cancelled and instructions of the right branch
have to be loaded from scratch. The latter case causes delays in execution and

therefore it is crucial to choose a good prediction method.

Both these concepts are implemented in PropelXbi in a modified way taking
advantage of PropelXbi particular architecture. XPipe can be likened to normal
sequential code, where each XComponent corresponds to one sequential
instruction. There are two chief differences from the computer program, though,
which allow PropelXbi to implement Cache and Pre-fetch concepts even more

effectively than they are implemented in CPUs.

59/230

Scheduling and Optimising XML Pipeline Processing Chapter 5: Review of Parallel Processing

The first, and crucial, difference is that there is limited, and small, number of
components and that their size (2 kilobytes on average) is small compared to
amount of working memory which is available. In case of computer instruction
processing units, the size of the cache was limited to the order of tens of cached
instructions which is a minute fraction of the number of instructions in common

programs, which is higher by several orders.

The second difference is that there are usually only a few branches (if any) and
the sum of XComponents of all possible branches is still small in comparison
with the available memory. The situation with PropelXbi is also better by
another factor, which is that the XComponents that would be loaded in the
wrong branch prediction wouldn’t have to be removed from memory and thus

time that would be spend by memory erasing would be saved.

Because of these particular characteristics, it is possible to load all the
XComponents that will be accessed throughout the XPipe execution into the
memory on start-up of the whole XPipe and keep them in memory without any
further need to access the storage structure in which they are saved. This way
the Cache and Pre-fetch concepts are employed at once with even greater

efficiency than they are implemented in architecture of computers.

5.2.3 Data forwarding

The concept of data forwarding originated from the significant ratio of time
spent by sending data from execution units to registers and the time of actual
function execution in a unit. The time of delivering results to registers usually is
not negligible compared to the functional unit execution time and thus when
consecutive instructions work with the same elements, they can be directly sent
from the first unit to the second, without the need of saving the intermediate

result to registers and loading them again.

60/ 230

Scheduling and Optimising XML Pipeline Processing Chapter 5: Review of Parallel Processing

without with
Data forwarding Data forwarding

Fig. 5.1 Data forwarding

In XPipe every succeeding component works with the same element as previous
one and therefore XPipe looks like ideal candidate for employing data

forwarding.

A problem arises with the Java implementation of XPipe - PropelXbi, which is
based on queues and the dynamic pooling of Message Driven Beans. The
PropelXbi architecture was discussed in detail in section 1.2. In brief, there is a
gueue, which stores XML documents and a pool of working nodes (Message
Driven Beans - MDB’s) which load these documents from the queue, execute
individual stages of the whole document transformation (XComponents) and

return the transformed documents back to the queue.

If data forwarding was implemented in PropelXbi, the working node would send
the transformed document directly to the following worker if there were any
free. If there were not, it would save the document to the queue as normal. Gain
would be obtained from the shorter time between the end of executing one stage
and the beginning of the next one as the document would not be passed to the

queue and loaded to the worker, but would be sent directly to him.

61/230

Scheduling and Optimising XML Pipeline Processing Chapter 5: Review of Parallel Processing

It could be thought that even greater time saving would be achieved if the
worker would not pass the XML document to another one, but would process
the next transformation stage itself (thus removing the time of passing the XML
document to the following worker). However, this approach would not allow the
dynamic assigning of working nodes to stages where there is higher workload

and monitoring facilities would be degraded as well.

One major problem is that the Message Driven Beans can send messages only to
gueues and do not allow sending messages to some other particular MDB. It
might be possible to implement a pipeline consisting of Stateless Session Beans
passing results directly to each other, but it would mean that the facility of

dynamic working node assigning would be lost.

Another fact concerning the data forwarding implementation in PropelXbi is
that the time spent by passing documents to and from the queue is negligible
compared to how much time documents spend waiting in queues. Because of
this disparity, the gain that would be obtained would not be of any significant

size.

In light of these facts it appears that employing data forwarding in PropelXbi
would not be beneficial because the cost of the loss of dynamic MDB
assignment would be greater than the gain obtained by the occasional removing
MDB -> Queue -> MDB communication. Nevertheless, the promising concept
of data forwarding does not have to be fully abandoned. In fact, it can be
exploited in these parts of the pipeline where the loss of the possibility of
dynamic assigning does not matter because the execution time of components is
small and coupling components together delivers significant gain. These are the
cases when the XComponent compiler can be used. Compiled components then
represent the extreme case of close coupling of functional units where the time
of passing documents from one component to another is very near to zero. The
concept of the XComponent compiler is discussed in greater depth in sections
6.3 and 6.4.

62 /230

Scheduling and Optimising XML Pipeline Processing Chapter 5: Review of Parallel Processing

5.2.4 Vector pipeline chaining

Vector pipeline chaining is a technique used to speed-up the processing of
pipelined functional units of vector computers. On vector computers, one
instruction can be used to process the whole vector of data and thus entire block
of data is loaded and processed at once. This processing is done in pipelined
units and because all vector elements are preloaded, it can start processing the
next vector element every clock cycle, even though the execution time of the
pipeline is many times longer. When the situation occurs where consecutive
vector instruction refers to the result of a previous one, the functional units can
link together so that the second unit doesn’t wait until the execution of the
vector in the previous unit is completely finished, but starts processing vector
elements as soon as they reach end of the preceding pipeline. This resembles the
data forwarding technique, but the difference is that this case employs the
coupling of units on a higher level where data (data vectors in this case) are

forwarded even before they are entirely processed.

The effect of pipeline chaining is demonstrated in the following picture, which
shows the time diagrams of two 3-stage pipelined units processing a vector of
four elements. The horizontal axis indicates the time in clock cycles. The

vertical axis indicates in what stage the elements of vector (V1-V4) are located.

63 /230

Scheduling and Optimising XML Pipeline Processing Chapter 5: Review of Parallel Processing

Execution without pipeline chaining

VI V2 V3 V4
Unit 1 Vi V2 V3 V4

VI V2 V3 V4

Save VI V2 V3 V4
Load MI M2 M3 V4

M M2 MB V4
Unit 2 Ml M2 V3 V4

M v2 v3 v4

Execution time: 14 cycles

Execution with pipeline chaining

VI V2 V3 V4
Unit 1 VI V2 V3 V4
VI V2 V3 V4
Pass VI V2 V3 V4
vi M M V4
Unit 2 Vi M2 Vv3 V4
M M2 V3 V4

Execution time: 9 cycles

Fig. 5.2 Vector pipeline chaining

Figure 5.2 clearly shows the advantage of using pipeline chaining. The time
saved by employing this technique increases with the size of the vector being

processed as the saved time can be expressed as t8B¢d=n+1, where N is length of

the vector.

Even though, it may seem that the vector pipeline chaining isn’t utilisable in
PropelXbi, as there aren’t any corresponding vector structures on the document
level, it can be used at a lower level, where a document is considered to be
group of interrelated elements. When these elements are self-contained, like for

example in a document representing an invoice, containing independent

64 /230

Scheduling and Optimising XML Pipeline Processing Chapter 5: Review of Parallel Processing

elements representing individual invoice rows, these elements can be extracted,
producing a set of autonomous documents, which can be processed in parallel
independently of the others. Thanks to that, parts of document can be processed
by later stages even though some other parts were not yet processed by stages

placed earlier in the transformation pipeline.

In PropelXbi, this functionality is implemented by Scatter and Gather
components, as described in section 1.1. Scatter divides the document into a set
of independent documents, which contain separated elements of the original file.
After they are all processed, the Gather component assembles them into the

resultant document.

5.3 Parallel problem classes

Apart from the categorisation of different parallel architectures, the literature
about parallel computing also suggested the division of problems, which are
solved by parallel computing and recommended architectures which match the
given problem type the best. This section looks on the categorisation of parallel
problems and looks on how the PropelXbi’s architecture matches our problem

of document processing.

In (Fox, Williams & Messina 1994) Fox et al. categorise problems solved by

parallel computing into following five classes.

5.3.1 Synchronous

This class represents tightly coupled problems where the software needs to
exploit features of the problem structure to get good performance. Compared to
problems of other classes, synchronous problems are relatively easy as different
data elements are essentially identical. An example of a synchronous problem is

the numerical solution of a magnetic field distribution.

65/230

Scheduling and Optimising XML Pipeline Processing Chapter 5: Review of Parallel Processing

5.3.2 Loosely Synchronous
Loosely synchronous problems have the same nature as synchronous, but with
the difference that the data elements are not identical. One of loosely

synchronous problems is solving sparse linear algebra equations.

5.3.3 Asynchronous

Asynchronous problems display functional parallelism, which is irregular in
space and time. This means, that relations between data elements changes with
proceeding time (irregular in time) and that node interconnection needs to
change with proceeding time as well to suit the problem (irregular in space). A

good example of asynchronous problem is game of chess.

Problems in this class are often loosely coupled and so it’s not necessary to
worry about optimal decomposition to minimise communication. These
problems are usually hard to parallelize, unless they belong to following special

class of asynchronous problems.

5.3.4 Embarrassingly Parallel

Embarrassingly parallel problems are type of asynchronous problems, where
components solving the problem can be executed independently and mutual
communication is sparse if not unnecessary at all. These low communication
requirements make them particularly suitable for a distributed implementation
on a network of workstations. An instance of an embarrassingly parallel
problem is the radio signal frequency analysis performed by SETI@Home
project (SETI@Home).

5.3.5 Compound Metaproblems

Metaproblems are asynchronous collections of asynchronous, synchronous or
loosely synchronous components where these programs themselves can be
parallelized. An example of compound Metaproblem would be army tactics

decision support software.

66 /230

Scheduling and Optimising XML Pipeline Processing Chapter 5: Review of Parallel Processing

The case of large-scale document transformation problem handled by PropelXbi
belongs to class of Embarrassingly Parallel problems. Documents entering
PropelXbi have nothing in common (at least form transformation point of view)
and so they all can be processed separately and no communication is needed
between processing components. The only communication which needs to be

carried out is passing documents from one stage to another.

Fox at al. also suggest most suitable (“‘correct”) mappings of a problem to

software, machine pair (Fox, Williams & Messina 1994).

Problem Class Software Machine
Synchronous Synchronous SIMD or MIMD
Loosely Synchronous Loosely Synchronous MIMD
Asynchronous Asynchronous MIMD (but may not

work well without

special hardware

features)
Embarrassingly Parallel ~ Asynchronous Network of MIMD

workstations

Compound Asynchronous with Fleterogeneous network
Metaproblems heterogeneous
components

Tab. 5.1 Suitable mapping of a problem to software, machine pair

Table 5.1 suggests that embarrassingly parallel problems should be handled by
asynchronous software on MIMD architectures. PropelXbi is exactly this case
as it implements a system where every component can perform different
transformations (MIMD architecture) and communicates by asynchronous
communication message-passing system. This correspondence shows that

XPipe is a correctly chosen approach for large-scale document transformation.

The project of SETI@Home shows the eventual extension of PropelXbi, where

documents would be processed on the same basis as in SETI - processed on

67/230

Scheduling and Optimising XML Pipeline Processing Chapter 5: Review of Parallel Processing

computers that would otherwise stay idle. Thus a computer gets whole pipeline
and batch of documents to process and processes them when computer’s usage
is low for a set amount of time. From a theoretical point of view, there is

nothing that would stop PropelXbi from expanding in this direction.

68/230

Scheduling and Optimising XML Pipeline Processing Chapter 6: Jackson Inversion Survey

Chapter 6

Jackson Inversion Survey

69/230

Scheduling and Optimising XM1, Pipeline Processing Chapter 6: Jackson Inversion Survey

6 Jackson Inversion Survey

In section 4.1 “Process of complex problem solving”, we saw that one of
findings of C3P parallel computing project was, in other words, that the quality
of software is related to how much it reflects the data it works with.
Interestingly, a corresponding idea was pronounced by Michael Jackson ten
years earlier in relation to how to write sequential programs efficiently. It
appears that this idea has general validity and it is useful to have a look on the
work of Michael A. Jackson in more detail, particularly at his principle of
Jackson Inversion, which has remarkable similarity with the scenario, which is

dealt with in PropelXbi.

In this chapter, we firstly introduce the essential idea of Jackson Structured
Programming and Jackson Inversion. In the following section 6.2 we examine
how beneficial it would be to employ Jackson Inversion in PropelXbi and in
closing section 6.3, we examine the concept of an XComponent compiler, which

develops from findings of two previous sections.

6.1 Jackson Inversion and Jackson Structured Programming
Jackson Inversion was developed by Michael A. Jackson, a computer scientist
in the area of information systems development. It is part of broader work called
JSP - Jackson Structured Programming, which originated in the 1970’s by
examining how sequential batch-processing systems were written and how they
should be constructed in order to be effective. (Sutcliffe 1988; Ourusoff2003)

JSP is an approach how to design and implement programs, so that they are
effective and easy to modify when system requirements change. The central
idea of JSP is to write programs so that structure of code reflects the structure of

input and output data.
Jackson Inversion is a method to simplify complex systems of programs

communicating with each other through temporal storage spaces or in other

words through queues.

70/230

Scheduling and Optimising XML Pipeline Processing Chapter 6: Jackson Inversion Survey

The idea itself is to transform original individual programs to one block, where
programs call each other directly. By this technique, the need for intermediate

gueues is eliminated and thus these intermediate parts are removed.
As described here, Jackson Inversion could be also called with the more
descriptive word ‘absorption’, as called programs are absorbed into calling

code.

Jackson Program Inversion is demonstrated by following picture:

P I=> (Q i() m=> P 00 wm=> P 1=0

PI: i=read(in) P2 : j=read(Ql) P3: i=read(Q2)

process(i) process(i) process(i)

write(i,Ql) write(i,Q2) write(i,out)

Jackson Inversion
Pl
P2
P3

Pl: i=read(in) P2 < P3:

process(@) process(i) process(@)

call P2(i) call P3(i) write(i,out)

Fig. 6.1 Jackson Inversion

Even though the picture above suggests that P1, P2 and P3 are all written in one

file, they may be different programs merely being able to call each other.

The process of Jackson Inversion is in fact the transformation of asynchronous

system to synchronous.

71/230

Scheduling and Optimising XML Pipeline Processing Chapter 6: Jackson Inversion Survey

Summary of Jackson Inversion features follows:

Advantages: - system simplification

- execution speed-up

Disadvantages: - by removing pipes, we forcesystem to be synchronous
and thus loose advantages of asynchronous execution

- not convenient for data-driven applications (limited to
sequential batch processing scenarios)

- it is more difficult to add or remove individual
functionality components in one big monolithic code than
it would be in previous decomposed system

- resulting program is modular, but monolithic code. This
goes against whole concept of transformation
decomposition into small individual transformation

components which is base of entire XPipe paradigm

6.2 Suitability of employing Jackson Inversion in PropelXbi

PropelXbi is in its nature a big asynchronous pipeline containing large number
of components. The problem of employing Jackson Inversion in PropelXbi
arises from its transformation from an asynchronous, event driven system to a
synchronous, code driven system. This transformation causes loss of processing

efficiency.

In PropelXbi, document transformation is triggered by arrival of a document to
pipeline. In an inverted system, transformation is initiated by the first
component of the pipeline. If there isn’t any document to process, the first
component waits until it arrives. Otherwise, it takes a document in, processes it
and passes the partially transformed document to the following component. This
iterates until the document reaches the last component, which finishes the

transformation and outputs the final document. The last component then finishes

72 /230

Scheduling and Optimising XML Pipeline Processing Chapter 6: Jackson Inversion Survey

its running and processing is returned to the previous component, which repeats
until the first component is reached. If there isn’t any document to process, the
first component waits for arrival of such data. Otherwise, it processes document

on input and whole transformation runs again.

Difference in processing is shown on following process diagrams.

Inverted System PropelXbi Pipeline
Components: Cl Cc2 C3 Cl Cc2 C3
. 5
U 5 0
P K
b
I

o
=

L1 r n T 1%
I
0 n >
"A > s >
z l ---------------- >
B = :
n s
'W ------------------ > - el 2
_ >
I- >
1 a
L— fg.
L == a
B T
Processed
documents: 3 documents 5 documents

Fig. 6.2 Comparison of processing in Inverted system and Pipeline

This figure demonstrates two problems rising when employing Jackson

Inversion

1. Components are blocking each other (problem of synchronicity)
2. Redundant use of processing time (need for passing call from last to first

component)

73/230

Scheduling and Optimising XML Pipeline Processing Chapter 6: Jackson Inversion Survey

A disadvantage not displayed on the picture above is that it is not possible to use
Scatter/Gather in monolithic inverted program. The advantage of Scatter/Gather
comes from independent parallel processing of portions of document which isn’t

possible in serial code produced by Jackson Inversion.

There is an improvement based on the Scatter/Gather method which could be

used to increase the efficiency of Inverted code. It can be only applied when

o(i(«))>0(w) AND p>0

i.e. order of time function is greater than linear (e.g. quadratic, polynomial ..)
and there are portions of document which can be processed separately, n stands
for the size of document and p for the portion of document which can be
processed in parallel. The idea is to divide the document into as small portions

as possible and then process these small portions sequentially one by one.

As <?(/(«)) >O(n), the sum of processing times of portions is smaller than the

processing time of the whole document.

Aportion “ “whole _ document
portions

To sum up, we can say that it would be beneficial to employ Jackson Inversion

in PropelXbi by inverting whole pipeline to Inverted code only if:

1. Gains earned by removed component communication are greater than
gains earned by employing parallel processing in Scatter/Gather

(improbable)
2. “Condition of Asynchronity Loss Acceptance”

The time between document arrivals is greater than average time of

completion of document transformation (might occur)

74/230

Scheduling and Optimising XML Pipeline Processing Chapter 6: Jackson Inversion Survey

Marrivai ~ “transformation

If both these conditions were fulfilled then Jackson Inversion would have the

following Pros and Cons:

Advantages:

execution speed-up

Disadvantages: loss of ability to dynamically allocate MDB’s

depending on actual workload

- processing time used even when there aren’t any
documents to process (phase of returning call from last
to first component)

- no scalability (once pipeline is inverted, it looses
scalability)

- difficulties with clustering

The strongly limiting condition (2) of document arrival period greater than
transformation period leads to the concept of an On-line and an Off-line

XComponent compiler, which are discussed in following sections.

6.3 PropelXbi on-line XComponent compiler
The concept of an on-line XComponent compiler (XCOc) is to compile portions
of pipeline in cases when it would bring execution speed-up and the conditions

for useful employing of Jackson Inversion would be easily fulfilled.

In order to be able to analyse when it is beneficial to employ an on-line
XComponent compiler, we revisit the PropelXbi architecture as described in
detail in section 1.2. The PropelXbi architecture consists of main Queue,

Working nodes - workers (Message Driven Beans - MDB’s) and Executive.

75/230

Scheduling and Optimising XML Pipeline Processing Chapter 6: Jackson Inversion Survey

Fig. 6.3 PropelXbi processing architecture

The queue serves as a storage space for documents in their intermediate phases.
The working nodes watch the queue and when there is some document to
process, they load it in together with information about with what
transformation (XComponent) should be used. The Worker then asks Executive
for appropriate XComponent and Executive loads it and passes it to the working
node. Afterwards the worker executes the transformation and saves new
document in storage space together with information about what transformation

should be applied to this document next.

The following process diagram shows one of these transformation steps.

76/230

Scheduling and Optimising XML Pipeline Processing Chapter 6: Jackson Inversion Survey

Executive Worker Queue

XML to process?

loadXML
(pass XML to
XML, stage number worker)
stage number
loadXCO
(pass XCO to worker)
XComponent
transform
new XML,
new stage no saveXML
(pass XML to
queue)

Fig. 6.4 Transformation step process diagram

The condition advising when to use on-line XComponent compiler (XCOc)
comes from the observation of how the transformation process changes when
XCOc is used. In the following we compare the process sequence of two
successive components being executed sequentially and the sequence when

these two components are compiled together with XCOc.

without XCOc with XCOc
loadXML 1 loadXML 1
loadXCO 1 compileXxCO 1-2
Transform 1 loadXCO 1-2
saveXML 2 Transform 1-2
loadXML 2
loadXCO 2
Transform 2
saveXML 3 saveXML 3
For simplicity we assume that the time of loadxco 1-2 = loadxco 1 +

loadXCO 2 and transform 1-2 = transform 1 + tranform 2. Under this

771230

Scheduling and Optimising XML Pipeline Processing Chapter 6: Jackson Inversion Survey

assumption, the steps that differ in these two processes are loadXML 2 and
saveXML 2 in the former and compiiexco 1-2 in later.
These two segments show when the use of on-line XComponent compiler is

beneficial. For it to be so, the following condition has to be satisfied:

compileXCO 1- 2 < loadXML 2 +saveXML 2

where comparing two segments is considered to be comparing their execution
time. In other words, it says that time spent by compiling must be lesser than

time spent by extra communication (maintenance).

For general case of n>2components XCOr.XCOninequality generalises to

n
compileXCO1-—n< £ (loadXML i+saveXML i)

1=2

With knowledge of this condition and consideration of “Condition of

Asynchronity Loss Acceptance” (tarm >t,nmionalan), it is the work of Executive to

decide whether to compile certain parts of the pipeline together or leave them in

original “monoidic” form.

In order to be able to decide whether to compile XComponents XCOx.XCOn the

Executive needs to know following information:

- tamaxcoi average document arrival period of first XComponent

and execution times of:

- compileXCO 1-n
- loadXCO 1-n
- loadXmL i of all XComponents

i
- savexMmL i of all XComponents

- transform i of all XComponents

This information can be measured and gathered by Executive in cooperation

with the Queue and working nodes.

781230

Scheduling and Optimising XML Pipeline Processing Chapter 6: Jackson Inversion Survey

To incorporate on-line XComponent compiler into the current implementation

of PropelXbi, the following steps need to be done:

1. Code on-line XComponent compiler

2. Add logic to Executive to enable it to decide when to use XCOc

3. Modify working nodes (MDB’s) so that they set the number of next
transformation (XCO) to correct value (increment counter by correct
number depending on how many components were applied in

transformation they executed)

Note: Code generated by XCOc differs from code that would be obtained by
applying Jackson Inversion in the way in which individual components are
assembled together. Jackson Inversion produces hierarchy of nested components
whereas XCOc would rather construct sequence of components fitted in uniting

skeleton.

Jackson Inversion code XComponent compiler code

A skeleton

A

fc

Fig. 6.5 Jackson Inversion and XComponent compiler code

The later approach allows easier exception handling and makes it easier to

monitor the transformation process.

6.4 PropelXbi off-line XComponent compiler
The concept of off-line XComponent compiler (XCOc) is to compile
XComponents of pipeline into standalone package (compiled pipeline), which

can be used to transform documents without need of running whole PropelXbi

79/230

Scheduling and Optimising XML Pipeline Processing Chapter 6: Jackson Inversion Survey

engine. As XComponents are designed as black boxes, which simply take a
document in and output it out, a compiled pipeline can be used as another
XComponent as well. The Off-line XComponent compiler differs from the on-
line version in that XComponents chosen for compilation are not chosen in
execution time by Executive, but by the user, without the need of having

PropelXbi running.

The functioning of off-line XCOc is envisaged as following. It takes the name
of pipeline to compile as an argument and checks if it is possible to compile all
its XComponents into java classes. XComponents that can be transformed in
such a way are normal Java classes, XSLT sheets, which can be compiled with
XSLTc and Jython scripts, which can be compiled to Java code as well. Ifit is
not possible to compile some XComponents it returns with error, otherwise it
compiles all components and generates a handling class with a fixed name (e.g.
transform) which handles sequential passing of incoming document to one
XComponent after another in the order defined in the pipeline description. Apart
from document passing, the handling class also caters for exception
management, error reporting and correct functioning of Scatter/Gather
components. As a final step, off-line XComponent compiler packages all

created classes into ajar file with the name of the original pipeline.

A compiled pipeline created in such way then can be used from the command-

line with simple command:

jJava -cp MyPipe.jar transform In.xml Out.xml Error.xml

80 /230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

Chapter 7
Review of Distributed Computing

Technologies

81/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

7 Review of Distributed Computing Technologies

As found in previous chapters the problem being solved by XPipe belongs to the
class of embarrassingly parallel problems. Problems in this class are ideal
candidates for loosely coupled distributed computing solutions and thus it is
beneficial to examine some technologies from the present distributed computing
world. These technologies could be used for the expansion of PropelXbi into the
distributed world.

In this chapter, we look at three different techniques found in distributed
computing. Each technology has the potential of enhancing PropelXbi in its
specific area. In each section, we explore what is the relation of this technology
to PropelXbi as an implementation of XML pipeline processing system and how

it could help in expansion of PropelXbi to a distributed computing environment.

Firstly, in section 7.1 we examine TupleSpaces, which stand as an alternative
storage mechanism for intermittent documents between component
transformations. TupleSpaces were designed to provide seamless distribution
over multiple computers, which could be used for the distributed version of
PropelXbi. Secondly, in section 7.2 we examine the JXTA Project, which is
aimed at peer-to-peer computing, again potentially offering ways for the
distribution of document processing. Finally in section 7.3 we look on the area
of Grid computing. Grid technologies are meant to use multiple computers for
common computational tasks, reflecting what is desired of distributed
PropelXbi to do.

7.1 Tuple spaces

In this section, we look at TupleSpaces, which present an alternative storage
space for intermittent documents between component transformations. In fact, it

presents a complementary way of how to conduct distributed computing.

Firstly, we introduce the concept of TupleSpaces in section 7.1.1, then in section

7.1.2, we examine currently available implementations of TupleSpaces and at

82/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

the end in section 7.1.3, we inspect how TupleSpace implementations relate to
the current PropelXbi design and which implementation would be most suitable

for integration in the PropelXbi architecture.

7.1.1 Concept of TupleSpace
Tuple Space were invented by David Gelemter in 1984 and was first described

in “Linda in context” (Carriero & Gelemter 1989; Zhao 1998).

In essence, Tuple Space is a global shared memory (shared storage space) for
lists of typed values called “tuples”. A simple model is used to access the tuple
space, usually consisting of simple operations: write, take, read and optionally
waitToTake, waitToRead, count and scan. Tuples themselves are accessed by

pattern matching on their content (by associative addressing).

Access to tuples is by its nature asynchronous. When an application wants to
read a tuple, it waits until the appropriate tuple is inserted into tuple space and
then it is notified and the tuple is consumed. The whole system is implicitly
event driven and allows concurrent access of multiple applications to the same

tuple space. Another important feature of tuple spaces is that tuples are

83/ 230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

persistent, or can have set time of expiry and thus they can stay in tuple space

long after the inserting application is gone.

Tuple space is meant to be distributed, hiding its distributed character from the
user, to whom whole tuple space seems like one shared memory. A tuple space
provides a Distributed Shared Memory (DSM) model, which gives the illusion
of shared memory on top of a message passing system. Programming
distributed applications, using distributed shared memory abstraction is less
complicated than explicit message passing. The user thus, can just use a simple
access model to a tuple space and leave all distributed data management (data
localization, synchronization, persistence etc.) to the tuple space

implementation.

In its present implementations, the tuple is represented by an object rather than a

list of values, which was the original representation of the tuple by its inventors.

7.1.2 Implementations

At present, there are three major implementations of tuple spaces (CoverPages-
TS; Strain). Firstly, Gelemter’s original implementation in Linda language is
presented and after that, a description of presently available implementations
follows. Sun’s JavaSpaces, GigaSpaces from GigaSpaces Technologies and
IBM’s TSpaces. Finally, we have a look at other implementations of tuple

spaces.

Linda

The concept of tuple spaces was first implemented by the Linda language (or
the Linda model in another view). The Linda language is a set consisting of a
few simple operations, which embody the tuple space model of parallel
programming. Linda was never a stand-alone programming language but was
implemented as an extension to a base language (e.g. C, Fortran, C++), which

yielded a parallel programming dialect, such as C-Linda.

84 /230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

The aim of Linda was to allow easy creation and coordination of multiple
execution threads. This objective was achieved by providing a simple model for
inter-process communication, independent of the programming language in

which the processes are written.

In Linda, tuples were represented as lists of typed values and associative access
to them was implemented by use of efficient hashing. Fundamental language

primitives were:

out - Non-blocking write. Used to place tuple in tuple space.
in Blocking read and delete. Used to remove a tuple from the
tuple space. As it is a blocking statement, it waits until the

matching tuple appears in the tuple space and is then

executed.
rd Blocking read.
inp, rdp . Non-blocking versions of in and rd
eval - Statement to create new process, being a ‘live tuple’, which

after completion of its computing turns into an ordinary data
tuple (this command was removed from today’s tuplespace

implementations)

Commands take a template as a parameter, which specifies the tuples on which
the command should be executed. The template is just another tuple with
assigned and un-assigned fields. The tuple matches if all the assigned fields in a
template match identically and any un-assigned fields are matched by fields of
the same type (in fact, un-assigned fields work as wildcards). If it happens, that
there are more matching tuples for rd or in, one of the tuples is chosen non-

deterministically.

85/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

Apart from eval, all commands mentioned above appear in today’s
implementations, usually with more intuitive names write and read for moving

tuples to and from tuple space.

Linda was the first tuple space implementation and even at this early stage, it

already had many of the advantageous features of the tuple space model.

As the tuple space model is machine and language independent, it inherently has
a feature of portability on heterogeneous networks, scalability because of its
simple architecture independent model and innate support for asynchronous
communication, which is the most commonly used communication mechanism

in parallel programming.

The fact that senders and receivers of tuples do not need to know anything about
each other genuinely promotes an asynchronous uncoupled programming style.

Another important feature of Linda, as well of other tuple space
implementations, is data persistency, which allows for fail-over recovery if the

system crashes.

The last and conceivably most important feature of Linda (and other tuple space
implementations) is a simple APl and a simple programming model which
allows less and easier coding and intuitive understanding of how the system

operates.

Nonetheless, Linda has its deficiencies. The main obstacle, hindering Linda
from realistic use today is that it was created in 80’s and 90’s and today better
implementations exist, which incorporated new findings discovered since
Linda’s creation. Even more, Linda’s distribution isn’t realistically available

today.

One another problem of Linda comes from the environment for which it was
primarily designed. It was predominantly designed as a parallel computing
model for Local Area Networks (LANSs) and because of this, it lacks a security

model and any support for transactional execution.

86 / 230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

JavaSpaces

JavaSpaces is Sun’s implementation of tuple spaces (Zhao 1998; Shalom 2002b;
Shalom 2002a; Sun Microsystems 2002d; Sun Microsystems). It is distributed
as part of JINI Technology Starter Kit and its underlying communication
mechanism is based on RMI, which constitutes the core of the JINI Network
Technology. As indicated, JavaSpaces use Remote Method Invocation calls

(RMI) as commands for placing tuples into a tuple space and retrieving them.

In contrast to Linda, in JavaSpaces a tuple is represneted by a Java Object, more
concretely by an object implementing the Entry interface
(net.jini .core .entry.Entry). Entry is Java’s equivalent of Pascal’s record

or C’s struct, thus being a collection of Serializable Java Objects.

Templates are implemented by Entry objects too. A matching tuple is an entry
of the same type as a template with fields with assigned values matching exactly
and with un-assigned fields used as wildcards. As an innovation, a match can
also return a subtype of a template, which allows for polymorphism as entries
like any other objects can have methods encapsulated in them. Entries are
placed in a tuple space on a lease, meaning that the time of expiry can be set on

them, after which they are removed from the tuple space.

Another new feature provided by JavaSpaces is support for distributed
transactions keeping ACID properties. Operations can be issued either as
singletons i.e. single individual operations or can be grouped into transactions
where either all or none of them take place. Transformations in JavaSpaces can
span multiple spaces meaning that various operations in one transaction can
operate on various JavaSpaces. To achieve ACID properties, transformations

are executed using a 2-phase commit technique.
As indicated, JavaSpaces implementation supports multiple spaces. Even

though it implements multiple spaces, it doesn’t natively support spaces spread

over a cluster of computers.

871230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

To store entries, JavaSpaces use serialization (for this reason, the entry fields
must be Serializable). This method though, may cause an overhead when

serialization is executed every time an action is issued.

The usual operations in JavaSpaces are write - to write a copy of an entry to a
tuple space, read - to get a copy of an entry from a tuple space and take to get
a copy of an object and remove it from a tuple space. Non-blocking versions of
read and take are readifExists and takeifExists. In addition to these
standard operations, JavaSpaces provide two new commands - notify and

snapshot.

Notify is used by a process to register as a listener to an event, which is fired
when an entry matching with a specified template is inserted into the JavaSpace.
Snapshot is used for performance optimisations reducing the overhead of

repetitive entry serializations.

JINI JavaSpaces Service Specification states “Persistence is not a required
property of JavaSpaces technology implementations” (Sun Microsystems
2002d). Nevertheless, Sun’s reference implementation provided in JINI

Technology Starter Kit claims it does provide persistency.

The reliance of JavaSpaces on RMI as a communication mechanism may be a
source of its drawback. Execution completely based on RMI may be slow and
repetitive serializations may cause non-negligible overheads. Another
imperfection of JavaSpaces is that it lacks any security model and does not

genuinely support spreading JavaSpaces over a cluster of computers.

GigaSpaces

GigaSpaces is commercial implementation of Sun’s JavaSpaces specification
developed by GigaSpaces Technologies (GigaSpaces Technologies 2002c;
GigaSpaces Technologies 2002b; GigaSpaces Technologies 2002a; Shalom
2002a). In contrast to Sun’s reference implementation discussed in previous

section, GigaSpaces contains various important enhancements.

88/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

They are summarised in the following list, each discussed in more detail

successively

m Space clustering

m External database JDBC support
m Web services support

m Batch operations

m Administration and configuration GUI and command-line interface

Space clustering provides the possibility to create multiple GigaSpaces possibly
on different physical machines and to access them through one unified point of
access called clustered proxy. Clustering allows for three main features -

Replication, Fail-over and Load-balancing.

Replication means that data is partially or fully replicated (mirrored) on multiple
spaces so that clients accessing space don’t have to connect to one specific
machine but can access the one that is closest to them. Replication also makes

possible data recovery in case of a breakdown of some of the replicated spaces.

Fail-over is a security technique allowing redirection of transaction execution to
a different space when the original target space crashes or is unavailable for any

other reason, like for example maintenance.

Finally, load-balancing conducted by cluster proxy implements policy-based
work distribution to member spaces so that computing resources are used as

efficiently as possible.

As GigaSpaces aren’t always used in clustered environment, it also provides
supports for embedded space and local transactions. Embedded space is
GigaSpace created in the same JVM as the application (client) and because of
this proximity, the client can use local (not remote) operations, reducing

overhead associated with distributed remote transactions execution.

89/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

JDBC support is part of the technology used in GigaSpaces to implement
persistency. In GigaSpaces, space can be either transient, when all data is kept
in memory or persistent when data is stored in a database. Persistent spaces can
use either an internal database or any external database which is JDBC

compliant like for example Oracle, DB2, MS SQL etc.

Support for web services means, that internal space of GigaSpaces can be

accessed from web using web protocols e.g. UDDI, WSDL and SOAP.

GigaSpaces extends the standard JavaSpaces API in three major ways.
Firstly batch operations were added, so that performance can be improved by

executing operations on groups of entries in one step. Added methods are:

writeMultiple _ Writes a group of entries in one access to space

readMultiple Returns a group of entries that match a specified
template

takeMultiple Takes a group of entries that match a specified
template

Secondly, administration APl was added to allow management and control of
spaces. For example it allows, creating spaces on the fly, destroying them,
checking their content etc. This API is used to provide an administration and

control GUI and a command-line interface.

The last enhancement is a semantic extension allowing execution of updates on
entries already placed in a space and to define actions, which should be
performed at defined points of executions. These actions are called “filters” and
their placings are On_Init, Before Write, After_Write, Before_Read and

After_Read.

As two last technical enhancements, GigaSpaces supports database entry

indexing which speeds up searching for matching entries and support for

90/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

gueues, where entries are added to the tail and are taken from its head.
GigaSpaces can contain any number of named queues, which can be created and

shared on the fly.

TSpaces

TSpaces is an implementation of tuple spaces developed by IBM research team
at Almaden Research Center (IBM; IBM; Wyckoff et al. 1998; Zhao 1998;
Lehman, McLaughry & Wyckoff 1999; Lehman et al. 2001; IBM). It is not an
implementation of JavaSpaces specification (like GigaSpaces) but has a lot in

common.
Like GigaSpaces, it allows tuplespaces to be either transient, stored in memory
or persistent, stored in an internal DB2 database. It doesn’t provide means for

connecting to any other external database though.

Again, like GigaSpaces, it provides extended API allowing handling groups of

tuples:
multiwrite Equivalent to writeMultiple
multiUpdate Updates all matching tuples
Scan Equivalent to readmultiple
consumingScan Equivalent to takeMultiple

In addition, it offers other commands, from which the most interesting are:

Update - Updates matching tuple, being already in tuplespace

countN Returns number of matching tuples

Concerning transactions, TSpaces does provide transactions support, but with
the limitation that transactions cannot span over more TSpaces servers.
Concerning distribution of TSpaces over more machines, it is promised to
implement it in Enterprise TSpaces. Enterprise TSpaces aim to provide

replication over more servers for fault-tolerance and scalability. At present, this

91/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

version is not available, and because of IBM’s decision not to continue in
support of TSpace project anymore, it is questionable when Enterprise TSpaces
will be released (Lehman). In the current version, TSpace server can be located

only on one machine.

Compared to GigaSpaces, TSpaces offer several enhancements. In brief they

are:

m Extended querying facility
m Security based on Access Control Lists
m Possibility to dynamically define new commands

m Notification on update event

These features are discussed in the following paragraphs in greater detail.

TSpaces leverage features of the underlying DB2 database. Tuples are
implemented as vectors of fields and every named field stored in the database is
indexed for faster access. Indexing also allows for range queries, like for
example “get all tuples with first field ‘record’ and second containing value in
range <1-100>". The next feature under the extended querying heading is the
ability to construct more complicated queries by joining templates, using the

logical connections AND and OR.

The last improvement of the query mechanism is focused on special kind of
tuples. Tuples can contain at most one XMLField, which stores an XML
document. This document can then be queried using a subset of the XQL
language (XML query language). The returned result is then a tree of tuples

mirroring a DOM representation of an XML document.

Even though TSpaces allow saving XML documents as parts of tuples, XML
documents are not meant to be the sole data saved in tuplespace. Authors say
that XML support was added as a repository for Web Services Descriptions thus

allowing web services discovery.

92/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

As indicated in paragraph above, a tuple in TSpaces is implemented as Tuple
object, which is a vector of Field objects. A Field specifies type, value and
name of a field. Apart from exact match, matching on templates can also return
any subtype of a template, as a Tuple is an object itself. This object-oriented
extension of the original concept of tuple matching can be found in all current

Tuplespace implementations.

The second worthy enhancement provided by TSpaces is a basic security
technique based on Access Control Lists (ACLs). ACL sets permissions for
various groups, into which users can be assigned. A user can be assigned to any
number of groups and authorities of these groups are then assigned to him.
Every time a client calls a command, it submits client username and password
which are used by the server to determine who is requesting execution of the
command and to which group he belongs and consequently what are his

authorities.

In addition TSpaces provides the possibility of defining new commands, which

use already existing functions, and load them dynamically to the server.

TSpaces also extends the notification mechanism, so that an application can

register for an update event (not only for read event as in GigaSpaces)

Apart from discussed major improvements, there are other rather minor

improvements.

TSpaces provides a property which can be set when a new tuplespace is created,
which defines whether or not, a tuplespace keeps FIFO ordering. Meaning, that
when a client matches on a group of tuples, it receives the one which was put
into the space first. By default, tuple selection is unordered and this extension

was made for cases, when tuple order plays important role.

An interesting added feature is the possibility to reference a file by a URL and

to write just this reference to a tuple. This is useful, when the file to be

93 /230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

transported is big and writing it to tuplespace would use a lot of space and
would take a long time. With URL referencing, the receiver retrieves file from

the sender only when it actually reads the tuple and consumes it.

In contrast to JavaSpaces implementations, TSpaces doesn’t use RMI, but
implement its own remote procedure call (RPC) mechanism. TSpaces’ RPC
uses serialization and Java TCP/IP sockets, which implementation may be faster

than general purpose RMI, as it is designed specifically to be used for TSpaces.

The last of TSpace improvements is support for local operations, which is
implemented in GigaSpaces too. Local operations are used when the client and
the TSpaces server run in the same JVM, where the use of direct calls

significantly reduces execution time compared to the time taken by RPC calls.

The main limitation of TSpaces appears to be its lack of support for clustering

and therefore does not provide replication and load-balancing capabilities.

Other Tuplespace implementations

There are other projects aimed at implementing the tuple spaces, but none of
them are in the utilizable form or they are focused on different areas of
computer world than our research. As a reference we mention two of them,

namely jxtaSpaces and Ruple (Collab.Net; Quovadx).

JxtaSpaces is a project aimed at implementing a Distributed Shared Memory
(DSM) service on a JXTA peer-to-peer platform by implementing tuple spaces.
The JxtaSpaces Project is still in the design stage and there isn’t any
implementation available yet. Furthermore, the project proposal doesn’t mention

any intention to implement security and data persistency.

Ruple is a project of Rogue Wave Software, which came with an interesting
idea. In contrast to other tuplespace implementations, it chose the XML
document architecture as the mechanism for tuple implementation. It was meant
to be an “Internet based space” for which XML is an ideal technology. As an

Internet based space, it was accessible by HTTP and SOAP protocols, backed

94/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

by security model based on X.509 digital certificates. Unfortunately, this

promising project was discontinued without any articulated reason.

In following section, we discuss relation of TupleSpaces to XPipe’s

implementation PropelXbi.

7.1.3 Relation of TupleSpaces to PropelXbi
In this section, we examine how tuple spaces and their implementations relate to

the PropelXbi architecture and how it could be incorporated into it.

To see how the TupleSpaces relates to PropelXbi, let’s recall the current
PropelXbi architecture. From the high-level view, there are two fundamental

parts of PropelXbi.

Document transformation executive

Documents in Transformed

documents out
Document storage space

Fig. 7.2 High level PropelXbi architecture

The first part is a document storage space, which acts as a storage space for
documents in their intermittent stages. The second part is a document

transformation executive, which executes the actual transformation of

documents.

95/ 230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

In PropelXbi, the document storage space is implemented by a JMS queue and a

document transformation executive by a pool of MDB objects.

Document transformation executive

0] 0> 0 0 0

woes 90O O O O O
O O G>G>0>

JMS queue

Documents in Transformed

documents out
Document storage space

Fig. 7.3 Current PropelXbi architecture

The JMS queue was chosen to implement the document storage space, because
it possesses three important architectural features. Firstly, it allows
asynchronous communication, secondly, it is an event driven architecture and
thirdly it provides data persistence for cases when a system crashes. However,
persistence of JIMS queues is limited to static queues only (created on start-up),

not allowing dynamic creation of persistent queues on the fly.
Tuple space is in its nature a distributed shared storage space and thus it is an

alternative to JMS queues as a document storage space implementation in
PropelXbi.

96/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

Document transformation executive

O O0O0o0o
stses O O O O O O
O0O0O00O0

TupleSpace

Transformed
documents out

Documents in

Document storage space

Fig. 7.4 PropelXbi architecture with TupleSpaces

Message driven beans are activated by notifications fired from JMS queue when
appropriate message arrives. If we replace JMS queues with a TupleSpace, the
bean activation mechanism would need to be changed, as there will be no
messages coming from the JMS queue. MDB’s would need to be replaced by
Stateless Session Beans (SLSB’s) performing read command on the
TupleSpace. As read is a blocking command, the beans would wait until the
message (tuple) appears in the TupleSpace and would then be activated. This
substitution would preserve the event-driven nature of beans activation and

behaviour.

TupleSpace possesses all three architectural features of JMS queues - an
asynchronous communication mechanism, an event driven architecture and data
persistence capabilities. In addition, it allows space distribution over number of
computers, thus allowing data replication for fail-over recovery facility,
scalability and locality based load balancing. However, this clustering facility is

available only in GigaSpaces.

Feature qualities of JMS queues and TupleSpces are comprehensibly

summarised in following table.

97/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

JMS Queue TupleSpace

Asynchronous YES YES
Event driven YES YES
Persistent YES * YES
Distributed YES YES
Clustered no *** YES **

Tab. 7.1 JMS Queue and TupleSpace comparison table

Note:

* Persistence of JMS queues is limited to static queues only. GigaSpaces and
TSpaces provide persistence of also dynamically created queues.

** All tuple space implementations support multiple tuplespaces being placed
on different machines. However, only GigaSpaces provide space clustering i.e.
unified access to spaces spread across number of computers with transparent
view of one big tuplespace.

*** Some JMS implementations provide queue replication facility for clusters
of computers. However, this feature is not required by JMS Specification (it’s

not even mentioned) and can’t be counted on.

Apart from the storage space distribution facility, replacing the JMS queue by

tuplespace implementation would provide other enhancements:

Individual pipelines can be implemented by individual separate tuplespaces.
This would largely simplify monitoring of pipelines.
Moreover, by allocating one tuplespace per pipeline, the whole
PropelXbi architecture would become more close to original XPipe
architecture, which is a move in good direction, as discussed in section
4.2.

Architecture with tuplespace would open the possibility to implement
PropelXbi@Home
PropelXbi@Home is the concept, that computers in company would

process documents in their idle time, corresponding to the concept of

98/ 230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

SETI@Home, where home computers process radio data in time when

they aren’t used

Pipeline separation would allow the option to set priorities on different
pipelines.

This concept is discussed in greater detail in paragraphs below.

The rationale to introduce this feature is to handle the situation where a
company uses many pipelines of which some do higher pripority work than

others.

For example, there might be one pipeline, which executes transformation of
records of large legacy database. This job needs to be done, but without having
strictly limited timespan. In contrast, there might be another pipeline for
processing documents, which are of high importance to company and timely
completion of their transformation is the company’s main interest. In this
scenario, it would be convenient to have an option to set different priorities of

individual pipes.

If each pipeline was represented by one tuple space, storage space separation
would lead to different ways for SLSB’s to retrieve documents to process. In a
single space scenario, they would access a single tuple space from which they
would get documents. With separate spaces for every pipeline, SLSB’s would

have to poll individual spaces one by one.

As transformation beans are meant to have as little handling logic as possible, so
that their sole function is transformation execution, retrieving documents from
individual pipelines can be implemented by other handling beans whose only

function would be providing documents to transforming workers.

New architecture then would look like the following figure, which is described

underneath.

99 /230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

This new architecture looks fairly complex, but in its core it only consists of
three simple steps. Firstly, it retrieves documents from pipeline spaces, then it

transforms the documents and finally writes them back to tuple spaces.

At the start of the document transformation cycle, SLSB’s are assigned to every
pipeline’s tuplespace and wait for any document to appear in the tuplespace.
When it arrives, the SLSB takes it out and places it into the docs-to-process
tuplespace. This space works as a storage space for documents ready to be

processed by transforming beans.

Transforming SLSB’s watch the docs-to-process space and when new a
document arrives it is immediately consumed, if there are any free SLSB’s. The
SLSB then performs the document transformation and outputs the document

into the transformed-docs space.

The transformed-docs space is observed by a Outward Dispatcher, whose role is

to place partially transformed documents into the tuplespace representing an

100/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

appropriate pipeline and take out documents which are completely transformed
and place them in a done-docs tuplespace. The done-docs tuplespace is watched
by out-routing beans, which take care of shipping out the processed documents.
As take and write are the only blocking operations used, the whole system

stays event driven as in the architecture with the JMS queue.

When we decide to add priority handling, the whole system gets a bit more
complicated. Additional logic needs to be added between the pipeline spaces
and the transforming beans to apply priority selection. The Inward Dispatcher
object, realising this policy would select the documents according to priority
settings and pass them to a new docs-to-transform tuple space, from which the

SLSB’s get the documents to process.

The architecture with the priorities module plugged in is shown on figure below.

SLSB's
write
\ Docs-to-transform tuplespace | Transformed-docs tuplespace
A\ !
R Priorities ‘ tak
write = implementation ake
Inward Dispatcher Outward Dispatcher
takelfExists)
\r (cyclic) write

Docs-to-process tuplespace

<xco=last>
write write write

0
take take take

r 1Nf 3>f"1 >-\l
i

} TupleSpaces

SLSB's

o
o

Opa (@%
PRy °03

<u
&
Fig. 7.6 Documents processing with priorities

101/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

Priorities could be implemented by setting the default priority of pipelines to the
highest value. If a user decides not to use priorities, then all pipelines would

have the same priority and would be treated equally.

If priorities are used the Inward Dispatcher would check documents of
individual pipelines in the docs-to-process space, and if the priority of some
pipeline was lowered, it would simply skip checking its documents accordingly

to the level of its priority.

To give an example, the default priority (highest) may be set to 10. If there were
two pipelines in system, one with a default priority of 10 and another with
priority of 7, in 10 checking rounds, documents of the first pipeline would be
checked 10 times and documents of the second pipeline 7 times (the dispatcher

would skip 3 checks of the second pipeline documents).

Information about pipeline priorities can be saved in another dedicated
tuplespace containing configuration information of all tuple spaces in the

system.

Before we look at individual TupleSpace implementations we can envisage,
how the operating code of the SLSB’s would look if TupleSpace was used
instead of the JMS queue. The code below is conceptual code for three types of
beans, which exist in PropelXbi - in-routing bean, worker and out-routing bean

and further code for additional beans, which would have to be created.

102/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

In-router: in_space.take(mnsg)
prepare(msg)
pipeline._write(mnsg)

Worker: docs-to-transform.take(msg)
transform(msg)
transformed-docs.write(msg)

Out-router: done-docs.take(msg)
ship-out(msg)

additional handling beans:

Pipe listener:

pipeline_take(msg)
docs-to-process.write(mnsg)

Inward dispatcher: apply priorities and

select msg
docs-to-transform.write(msg)

Outward dispatcher: transformed-docs.take(msg)

if (xco=last)
done-docs .write(msg)
else
pipeline.write(msg)

Tab. 7.2 Conceptual code of architecture with TupleSpaces

This code overview shows that operation code stays simple and no extended

querying facilities are needed.

If we ultimately decide to employ TupleSpaces in PropelXbi, we would have to

select the most suitable TupleSpace implementation. For this purpose, the

following table is provided. It summarises the features of examined TupleSpace

implementations and juxtapose JMS queue system currently used in PropelXbi.

Linda can’t be reasonably considered as possible candidate, but is included for

reference.

Language
Tuple

implem.

JMS
Java SE
JMS

Message

Linda JavaSpaces GigaSpaces TSpaces
Various Java SE Java SE Java SE
Vector of Serializable Serializable Serializable

values Object Object Object

103/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

Method RMI + Function RMI + RPC1+
RMI call
invocation local calls call local calls local calls
RMI + RMI + RPC1+
Speed ? RMI
local calls local calls local calls

Asynchro-

Y Y Y Y Y
nous
Event

_ Y Y Y Y Y

driven
Persistent Y - Y2 Y Y
Distribu-

Y - Y Y Y
ted3
Clustered

- - - Y -
spaces
Security - - - - ACL
Transaction

Y - Y2 Y Y
support
Leasing4 Y - Y Y Y
Message

Y - - Y5 Y
ordering
Free Y Y Y NO NO

Tab. 7.3 Features of TupleSpace implementations

Notes:

1 TSpaces uses in-house implementation of RPC using Serialization and Java
TCP/IP Sockets.

2 Feature isn’t required by specification

3 “Distributed” meaning that individual tuplespaces can be placed on different
computers and can be used at the same time

4 “Leasing” means setting limited time of life on tuples. After lease expires, the
tuple is removed from tuplespace.

5In addition to message ordering, GigaSpaces provide support for queues.

Java SE - standard edition of Java. Not using J2EE architecture.

104/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

For JMS: Space = JMS queues, Tuple = JMS message, Method invocation =

adding and retrieving messages to/from queue

Each implementation also has some unique features not found in other

implementations. These advanced features are listed in following table.

3 8 .

Advanced features ‘é’ :,E;- :’;— g

18 5 P

— O

Command eval (creates tuple as a process) Y - - -

Command notify - Y -

Command snapshot - Y - -
Local transactions - - Y Y
Tuple indexing - - Y Y
Batch transactions - - Y Y

Clustering - - Y -

JDBC - - Y -
Web services support - - Y Y1
Extended querying - - - Y
ACL security - - - Y
Dynamic definitions of new commands - - - Y

Tab. 7.4 Advanced features of TupleSpace implementations

Note:
1 Support for Web services is provided by additional TSpaces services suite

package, which creates a service layer on top of TSpaces architecture.

From the three possible candidates (JavaSpaces, GigaSpaces, TSpaces), the
selection can be narrowed to GigaSpaces and TSpaces as they provide database
persistency and local transactions support, which are not provided by Sun’s

reference implementation.

105/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

Both selected implementations provide APl for batch operations, ACID
transactions support, support for web services, aforementioned support for local

calls and both implement tuple indexing for improved speed of access to tuples.

In areas where they differ, TSpaces provide Access Control List based security,
extended querying possibilities and faster execution mechanism (by using in
house developed RPC technique). GigaSapces, on the other hand, enable space

clustering and persistence binding to external database.

When comparing these two feature sets, clustering facilities appear more
important than features provided by TSpace. Extended querying is by all means
a helpful tool, but for the needs of PropelXbi, the standard template matching

mechanism is sufficient.
For these reasons, GigaSpaces looks like the most suitable TupleSpace

implementation for integration into PropelXbi as distributed document storage

space.

106/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

7.2 Project IXTA

In this section, we will look on Project JXTA as a platform for distributed peer-
to-peer computing. First we introduce the JXTA project and its primary goal in
section 7.2.1. Secondly, we present the high-level design of Project JXTA in
7.2.2 and after that, in section 7.2.3 we look at the actual architecture which
implements Project JXTA’s objecive. Finally, in section 7.2.4, we look at the

interrelation of Project JXTA and PropelXbi.

7.2.1 Project IJXTA Introduction

Project JXTA is an open-source project, originally initiated as Sun’s internal
research project, opened to public in April 2001 (Sun Microsystems; Verbeke et
al.; Gong 200la; Gong 2001b; Sun Microsystems 2001d; Sun Microsystems
2001c; Sun Microsystems 2002e; Traversai et al. 2002; Collab.Net; Collab.Net;
Sun Microsystems 2003b). The primary goal of Project JXTA is to provide a

platform with the basic functions necessary for a peer-to-peer (P2P) network.

Project JXTA defines a set of protocols for ad hoc peer-to-peer computing
allowing peers implementing these protocols to communicate and collaborate

with any other devices on the network implementing JXTA protocols.

As JXTA aims at standardization of peer-to-peer messaging system it defines

only the protocols, not their implementations.

To let you better understand what Project JXTA is, we can use an analogy with
Open GL. Similar to Project JXTA, Open GL is a specification which provides
a common platform for applications written in different languages on different
hardware and software configurations. Whereas JXTA is common networking
platform, Open GL provides a common programming platform for computer

graphics.

Both Project JXTA and Open GL themselves are just platform specifications

and the actual services / functions are implemented in different languages. As

107 / 230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

these implementations are based on common specifications they all provide the
same methods with the same behaviour, hiding actual implementation on any

given HW and SW configuration from the user.

7.2.2 Design of Project IXTA
In order to achieve the goal of providing a universal peer-to-peer

communication platform, Project JXTA set its three key objectives.

m Interoperability - any P2P system built on JXTA can talk to each other

m Platform independence - JXTA technology is independent of
programming languages, network protocols,

hardware and software platforms

m Ubiquity - JXTA can be deployed on any device with a digital heartbeat

The protocols defined by Project JXTA implement JXTA’s core concept of
establishing a virtual network on top of existing physical networks, hiding their

underlying physical topology.

JXTA Virtual
Network

Virtual Mapping

Physical
Network

Fig. 7.7 IXTA virtual network

108/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

Because the JXTA network is virtual, any peer can interact with other peers and
other resources directly, even when some of the peers and resources are behind
firewalls and NATs (Network Address Translation - network security

technique) or are on different network transports (Collab.Net).

In a nutshell, protocols defined by Project JXTA standardise the maimer in

which peers

Discover each other

Self-organize into peer groups

Advertise and discover peer services
m Communicate with each other

Monitor each other

Because these protocols are independent of both programming language and
transport protocols, heterogeneous devices with completely different software

stacks can interoperate with one another.

7.2.3 JXTA architecture

The architecture of Project IXTA is rather complex and therefore we divide its
description into three sections proceeding from the top level view down to the
more technical details. First we introduce the architectural layers of Project
JXTA, then we examine the components which constitute the JXTA architecture

and finally we look at the protocols on which the architecture is built.
Note: Information, diagrams, descriptions and definitions in this section (7.2.3)
were taken from Project JXTA: Java Programmer’s Guide (Sun Microsystems

2001d) as they succinctly and clearly explain the JXTA technology architecture.

1) JXTA Architectural layers

109/ 230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

The Project JXTA software architecture can be divided into three layers, as

shown on following figure:

Sun
JXTA Community Applications IXTA
Applications
J

IXTA
Applications

XTA
Shell

Sun . indexing
JXTA Community Services IXTA « Searching Peer
Services ‘FBShang ~ Commands

JIXTA
Services

IXTA Peer Groups Peer Pipes Peer Monitoring

Core .
Security

Any Peer on the Expanded Web

Fig. 7.8 Project JXTA architectural layers

These layers are:

Platform Layer (JXTA Core)

The platform layer, also known as the JXTA core, encapsulates minimal and
essential primitives that are common to P2P networking. It includes building
blocks to enable key mechanisms for P2P applications, including discovery,
transport (including firewall handling), the creation of peers and peer groups,

and associated security primitives.

Services Layer

The services layer includes network services that may not be absolutely
necessary for a P2P network to operate, but are common or desirable in the P2P
environment. Examples of network services include searching and indexing,
directory, storage systems, file sharing, distributed file systems, resource
aggregation and renting, protocol translation, authentication, and PKI (Public

Key Infrastructure) services.

110/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

Applications Layer

The applications layer includes implementation of integrated applications, such
as P2P instant messaging, document and resource sharing, entertainment content
management and delivery, P2P Email systems, distributed auction systems, and

many others.

The boundary between services and applications is not rigid. An application to
one customer can be viewed as a service to another customer. The entire system
is designed to be modular, allowing developers to pick and choose a collection

of services and applications that suits their needs.

2) JXTA Components

In a nutshell, the JXTA network consists of a series of interconnected nodes, or
peers. Peers can self-organize into peer groups, which provide a common set of
services. Examples of services that could be provided by a peer group include
document sharing or chat applications. JXTA peers advertise their services in
XML documents called advertisements. Advertisements enable other peers on
the network to learn how to connect to, and interact with, a peer’s services.
JXTA peers use pipes to send messages to one another. Pipes are an
asynchronous and unidirectional message transfer mechanism used for service
communication. Messages are simple XML documents whose envelope
contains routing, digest, and credential information. Pipes are bound to specific
endpoints, such as a TCP port and associated IP address. These concepts are

described in greater detail in the following sections.

111/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

Fig. 7.9 Network of JXTA peers

Peers

A peer is any networked device that implements one or more of the JXTA
protocols. Peers can include sensors, phones, and PDAs, as well as PCs, servers,
and supercomputers. Each peer operates independently and asynchronously

from all other peers, and is uniquely identified by a Peer ID.

Peers publish one or more network interfaces for use with the JXTA protocols.
Each published interface is advertised as a peer endpoint, which uniquely
identifies the network interface. Peer endpoints are used by peers to establish

direct point-to-point connections between two peers.

Peers are not required to have direct point-to-point network connections
between themselves. Intermediary peers may be used to route messages to peers
that are separated due to physical network connections or network configuration
(e.g., NATSs, firewalls, proxies). Peers spontaneously discover each other on the

network to form transient or persistent relationships called peer groups.
Peer groups

A peer group is a collection of peers that have agreed upon a common set of

services. Peers self-organize into peer groups, each identified by a unique peer

112/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

group ID. Each peer group can establish its own membership policy from open
(anybody can join) to highly secure and protected (sufficient credentials are

required to join).

Peers may belong to more than one peer group simultaneously. By default, the
first group that is instantiated is the Net Peer Group. All peers belong to the Net
Peer Group. Peers may elect to join additional peer groups. The JXTA protocols
describe how peers may publish, discover, join, and monitor peer groups; they

do not dictate when or why peer groups are created.

Creation of peer groups allows to create secure environment, (peer groups can
implement their own security policy), scoping environment (groups can
establish a local domain of specialization, like for example working on one
specific task) and monitoring environment (peers of a group can monitor each

other).

Network services
Peers cooperate and communicate to publish, discover, and invoke network
services. Peers can publish multiple services. Peers discover network services

via the Peer Discovery Protocol.

The JXTA protocols recognize two levels of network services - Peer Services
and Peer Group Services. A Peer Service is accessible only on the peer that is
publishing that service. If that peer should fail, the service also fails. Multiple
instances of the service can be run on different peers, but each instance

publishes its own advertisement.

A Peer Group Service is composed of a collection of instances (potentially
cooperating with each other) of the service running on multiple members of the
peer group. If any one peer fails, the collective peer group service is not affected
(assuming the service is still available from another peer member). Peer group

services are published as part of the peer group advertisement.

113/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

JXTA defines a core set of peer services. Core services are Discovery Service
for searching for other peers, services and groups, Membership Service for
joining peer groups, Access Service for securing access to services, Pipe Service
for managing pipe connections between peers, Monitoring Service for peer
monitoring and Resolver Service enabling sending generic query requests to

other peers.

Not all core services must be implemented by every peer group. A peer group is
free to implement only the services it finds useful, and rely on the default net

peer group to provide generic implementations of non-critical core services.

Messages

A message is an XML document that is sent between JXTA peers; it is the basic
unit of data exchange between peers. It is an ordered sequence of named and
typed contents called message elements. Thus a message is essentially a set of

name/value pairs. The content can be an arbitrary type.

The use of XML messages to define protocols allows many different kinds of
peers to participate in a protocol. Because the data is tagged, each peer is free to
implement the protocol in a manner best-suited to its abilities and role. If a peer
only needs some subset of the message, the XML data tags enable that peer to
identify the parts of the message that are of interest. For example, a peer that is
highly constrained and has insufficient capacity to process some or most of a
message can use data tags to extract the parts that it can process, and can ignore

the remainder.

Pipes

JXTA peers use pipes to send messages to one another. Pipes are an
asynchronous and unidirectional message transfer mechanism used for service
communication. Pipes are indiscriminate; they support the transfer of any

object, including binary code, data strings, and Java technology-based objects.

114/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

Pipes are virtual communication channels and may connect peers that do not
have a direct physical link. In this case, one or more intermediary peer

endpoints are used to relay messages between the two pipe endpoints.

The pipe endpoints are referred to as the input pipe (the receiving end) and the
output pipe (the sending end). Pipe endpoints are dynamically bound to peer
endpoints at runtime. Peer endpoints correspond to available peer network
interfaces (e.g., a TCP port and associated IP address) that can be used to send
and receive message. JXTA pipes can have endpoints that are connected to

different peers at different times, or may not be connected at all.

Pipes offer two modes of communication, point-to-point and propagate. A
point-to-point pipe connects exactly two pipe endpoints together: an input pipe
on one peer receives messages sent from the output pipe of another peer. A
propagate pipe connects one output pipe to multiple input pipes. Messages flow
from the output pipe (the propagation source) into the input pipes. All
propagation is done within the scope of a peer group. That is, the output pipe
and all input pipes must belong to the same peer group. The JXTA core also

provides secure unicast pipes, a secure variant of the point-to-point pipe.

Additional types of pipe services can be built using the basic core pipes. For
example, the current J2SE platform binding (implementation) includes bi-

directional pipes.

Advertisements

All IXTA network resources - such as peers, peer groups, pipes, and services -
are represented by an advertisement. Advertisements are language-neutral
metadata structures represented as XML documents. The JXTA protocols use
advertisements to describe and publish the existence of peer resources. Peers
discover resources by searching for their corresponding advertisements, and

may cache any discovered advertisements locally.

Each advertisement is published with a lifetime that specifies the availability of

its associated resource. Lifetimes enable the deletion of obsolete resources

115/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

without requiring any centralized control. An advertisement can be republished

(before the original advertisement expires) to extend the lifetime of a resource.

3) JXTA Protocols

JXTA defines a series of XML message formats, or protocols, for
communication between peers. Peers use these protocols to discover each other,
advertise and discover network resources, for inter-peer communication and

messages routing.

All JXTA protocols are asynchronous, and are based on a query/response
model. A JXTA peer uses one of the protocols to send a query to one or more
peers in its peer group and it receives zero, one, or more responses to its query

depending on how many (if any) other peers can send a reply.

JXTA peers are not required to implement all core protocols; they only need
implement the protocols they will use. The current Project JXTA J2SE platform
binding supports all six core JXTA protocols. The Java programming language
API is used to access operations supported by these protocols, such as

discovering peers or joining a peer group.

7.2.4 Relation of IXTA technology to PropelXbi

Project JXTA itself is a set of protocols. To actually use it, some
implementation (called binding) of JXTA has to be chosen. As PropelXbi is
written in Java, we decided to use a Java implementation called Project JXTA
2.0 J2SE platform binding.

JXTA 2.0 J2SE binding provides an APl implementing the Project JXTA
specification. It allows a user to write peer to peer applications using JXTA
high-level concepts (peers, peer groups, pipes, services and advertisements),
hiding actual low-level implementation from the wuser (e.g. it hides

communication protocols and actual format of JXTA messages).

116/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

In addition to the standard services defined in the Project JXTA specification,

Java binding offers two additional enhancements :

m Dbi-directional pipes

W secure pipes

Note: Pipes are still assumed to be un-reliable (as stated in JXTA specification).
Their actual implementation may use the special characteristics of the network
protocol they run on, but it’s not required by the Project JXTA specification.
Java binding uses TCP/IP which is in most cases reasonably reliable, but still

can not be considered fully reliable.

JXTA’s place in PropelXbi architecture

As mentioned earlier, JXTA provides a network communication system.
Therefore, in the PropelXbi architecture, it would act as a communication
mechanism between the document storage space (JMS queue) and the document

transformation executive (Enterprise JavaBeans - EJB’s).

The current PropelXbi architecture consists of a JMS queue realising a
document storage space and pools of MDB’s realising a document
transformation executive. Communication between these two primary
components is implemented by JMS messages and a messaging infrastructure

provided by the JMS system.

The following figure depicts the present PropelXbi implementation showing
MDB pools as clients and the JMS queue as the server. This is a reasonable
view as it is the setting in which the distributed PropelXbi would run in a real-
world scenario (the only change is that the server could potentially host MDB

pool too)

117/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

MDB's MDB's
_ CD CD CD CD
Clients CD CD CD CD CD CD
CD CD CD CD
messages
I " i job_done
Server JMS queue

Fig. 7.10 Current PropelXbi architecture with JMS communication system

If IXTA was integrated into PropelXbi architecture, it would replace the JMS
messaging system providing communication between the document storage

space and the EJB pools by using bi-directional JXTA pipes.

Clients

cl. dispatcher 3y cl. dispatcher

job todo
Communication
through JXTA v
pipes any_work? job_done
1 1

Server dispatcher
i
Server

JMS queue

Fig. 7.11 PropelXbi architecture with JXTA communication system

118/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

JXTA pipes allow transportation of any data structure containing any desired

message representation.

MDB’s can only work when supplied with JMS messages and thus they would
need to be replaced by Stateless Session Beans (SLSB’s), which are another,

less specialised type of Enterprise JavaBean.

As JXTA messaging is not bound to any particular language, clients can be
written in any language for which there is JXTA implementation and can use
any transforming technology they desire, as long as they understand what to do

with incoming document.

At the moment there are JXTA implementations in Java SE, Java ME and C.
Other language implementations (Perl, Python, Smalltalk and Ruby) are open

projects in different stages of progress.

By removing JMS messaging we loose inherent work distribution infrastructure
(as EJB’s can not directly access the JMS queue anymore). Because of that we
would need to build some other way of document passing from server to clients.

This is implemented by Client and Server Dispatchers.

The client dispatcher polls the Server dispatcher to see if there are any
documents to process. If they are, they are sent to the dispatcher which passes
the work to SLSB’s. When the SLSB finishes processing of the document, it
passes the document back to the client dispatcher, which sends it back to the
server dispatcher. The server dispatcher retrieves the document from the JXTA

pipe and inserts the transformed documents back to the queue.

Comparison of current and JXTA-augmented architecture

When we look on what needs to be done to replace JMS messaging by JXTA
we can immediately see the main drawback. We must take out innate messaging
system and then build it again with JXTA technology, abandoning JMS

messaging infrastructure which is there already available.

119/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

Incorporating the JXTA communication technology in PropelXbi is un-natural
as PropelXbi already contains an innate messaging system, which is used in the

present PropelXbi architecture as it was intended.

Further advantages and disadvantages of JXTA incorporation into PropelXbi are

listed in following summary and discussed in greater detail afterwards.

Advantages
Clients can be written in any language (for which there is JXTA
implementation)
- Client’s transformation technology is not bound to JMS and EJB

Document server could be dynamically discovered by JXTA lookup

Disadvantages
- Not reliable
- Not persistent
- Not part of J2EE package (not natively designed to be used with other
J2EE technologies)
Redundant dispatching logic

The advantages brought by employing JXTA come mainly from its language
and platform independence. As JXTA is a language-independent
communication system, participating clients can be written in any language, for
which there is JXTA implementation. However, at the moment there are only

Java and C bindings.

For the same reason of technology-independence, clients are not bound to EJB
and JMS paradigm, and their document transforming technology can be any
other (like for example monolithic code, proprietary pipeline systems ...).
However, there is one problem that would arise if we wanted to use multi-
language clients. The problem is how to convey information about what should
be done with the passed document. At the moment, passed messages contain the

document to process and the number of the pipeline stage. The stage number

120/ 230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

identifies the component (piece of code) which -carries out actual
transformation. With different languages used by the receiving clients, there
would have to be multiple sets of components in different languages, so that

every client would be able to execute them.

An alternative method of conveying information about the document
transformation process, is to invent some formal language, which would
describe the transformation. This would be a blind alley though, as formal
languages are never flexible enough (definitely less flexible than actual code)
which would result in limiting the range of transformations which can be carried

out on the document.

Another advantage of using JXTA technology is that it would be possible to
advertise server pipe in the JXTA network and any client would be able to look
it up using the JXTA discovery mechanism. This would allow clients to join the
data transformation process at an arbitrary time. However, the implementation
of PropelXbi@Home using JXTA as communication mechanism is hindered by

JXTA’s serious faults which are discussed in following paragraph.

The faults of JXTA come mainly from the authors’ aim at having as general
communication mechanism as possible. In order to have a general
communication system, they chose the lowest common denominator in the area
of communication technologies, resulting in the mere requirement, that pipes
have to be unidirectional and unreliable. Unreliability is serious problem, as
data commonly gets lost when transferred by JXTA communication pipes. Even
though, JXTA 2.0 J2SE binding provides bi-directional and secure pipes,
reliable pipes weren’t implemented yet. As PropelXbi needs to have reliable

messaging, this fault rules out use of JXTA in its architecture.
Another JXTA’s drawback is that it doesn’t provide data persistency and so if

system crashes, all the data that was in transit between the sender and the

receiver is lost.

121/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

Project JXTA is an open source project and as it is, it was not included in J2EE
platform. This gives advantages to the other alternative technologies (like JIMS
for example), which are part of J2EE, as they are designed to natively cooperate

with other components of J2EE package.

The last indicated flaw was already mentioned earlier on the beginning of the
section. By incorporating JXTA into PropelXbi, we unnecessarily build work

dispatching logic, which is already available as a native part of JMS technology.
All these mentioned flaws overweight JXTA’s advantage of relative language

independency and makes it unsuitable for incorporating into PropelXbi

architecture.

122/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

7.3 Grid computing

In this section we look at the area of Grid computing. At first, in 7.3.1 we
introduce the concept of the Grid, present definition of the Grid and describe
different types of Grids that exist today. In the following section 7.3.2 we
present generic Grid architecture and in the final section 7.3.3 we examine how
PropelXbi can be enhanced using Grid computing technologies. Section 7.3.3 is
further subdivided into sections describing generic architecture of distributed
PropelXbi, section where we examine existing Grid applications available
today. In the closing section, we discuss most suitable candidates for

deployment of PropelXbi into a distributed computing environment.

7.3.1 Concept of Grid

The concept of Grid computing is to enable communities to use and share
geographically distributed resources as they pursue common goals. These
resources represent computational resources, storage devices, special-purpose
devices and any other computing devices, which may be useful for any

community user (Foster & Kesselman 1999; Foster & Kesselman 2001).

A Grid itself is defined as “an ensemble of geographically-dispersed resources
interconnected by fast network that appear to the end-user as a single seamless

computing and communication environment.” (Weissman 2002)

The grid computing environment has many unique characteristics distinguishing
it from other more conventional computing environments. The essential trait of
Grid is that its constituting computing devices are physically distributed often
over very large areas without any central point of control and without
knowledge of global state of the whole Grid. Other distinguishing feature is
high heterogeneity of the computing devices, as computing is carried out on
various hardware and software platforms. The fact that Grids are often created
in collaboration of several institutions exposes another unique Grid feature,
which is that Grid resources are owned by multiple different entities with

different usage policies. Finally, one of the most important Grid features is, that

123 /230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

resource availability can change with time, as resources are added and removed.

(Foster & Kesselman 1999)

There are three major reasons why organisations decide to build Grid networks.
Pursued goals are increased computational performance, access to widely
distributed data and establishment of new enhanced multi-institutional services.
These three distinct goals lead to three different types of Grids, whose
architecture reflects different organisational goals (Krauter, Buyya &
Maheswaran 2002).

1. Computational Grid - the goal is improved computational performance
by using the current idle and remote computational resources.
Computational Grid provides higher aggregate computational capacity

than can be provided by any single machine.

2. Data Grid - the goal is to get access and share widely distributed data
(across companies, states, continents ...). Data Grids are aimed to allow
synthesises of new information from data repositories distributed over
large area networks (e.g. massive data mining) In contrast with
computational Grids, data Grids provide special infrastructure for data

access and storage management.

3. Service Grid - the goal is to create enhanced services that can not be
provided by any single machine. Example of such services are
collaborative computing - allowing dispersed teams to interact and work
together, real-time multimedia applications and on-demand computing -
using grid capabilities to meet peak short-term requirements for

resources that can not be cost-effectively or conveniently located locally.
There are other different classifications of Grid types (Foster & Kesselman

1999; Sun Microsystems 2002f; Jacob 2003), but in the core, all classes they

define fall in one of the classes defined above.

124/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

The Computational Grid architecture is chosen for deployment of PropelXbi on
the Grid, to increase computational power and thus to increase the number of

processed documents per time unit.

The following section discusses the general Grid architecture common to all

three types of Grid.

7.3.2 Grid architecture

General Grid architecture was described in “The Anatomy of the Grid” (Foster,
Kesselman & Tuecke 2001). It consists of layered model similar to layered

Internet protocol architecture.

Internet protocol

Grid architecture architecture
Application
coordinated use of
multiple resources
access to individual
resources
communication + Transport
security Internet
resources .
Link

Fig. 7.12 Grid layered architecture

The components within each layer share common characteristics and can build

on capabilities and behaviours provided by any lower layer.

The Fabric layer provides interfaces to local resources such as computational
resources, storage systems, networks and sensors. Requests through unified
fabric layer interface are mediated to fabric components, which implement local

resource-specific operations on involved resources.

125/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

The Connectivity layer handles network communication and security. It defines
core communication and security protocols required for Grid-specific network
transactions. Apart from transport and security, the Connectivity layer also

handles routing and naming.

The Resource layer builds on the communication and authentication protocols
of the Connectivity layer to define protocols for secure negotiation, initiation,
monitoring, control, accounting, and payment of sharing operations on
individual resources. Resource layer protocols are concerned entirely with
individual resources and hence ignore issues of global state and atomic actions
across distributed collections, such issues are the concern of the Collective

layer.

The Collective layer handles coordinating of use of multiple resources. While
the Resource layer is focused on interactions with a single resource, the
Collective layer defines services and protocols, which are not associated with
any specific resource but rather are global in nature and capture interactions
across collections of resources. Services commonly provided by the Collective
layer applications are co-reservation and co-allocation, workflow management,

replication, global monitoring and metainformation directories.

The final layer is an Application layer consisting of Grid applications. Grid
applications can use any services defined at any underlying layer, accessing the

ones that best suits their needs.

7.3.3 PropelXbi on Grid

In this section we look on how PropelXbi can be enhanced using Grid

computing technologies.

Praxis showed, that the use of Grid is beneficial when the problem to be solved
exhibits any of following features - data parallelism, task parallelism and data-
flow (Foster & Kesselman 1999). XPipe paradigm and PropelXbi have all these

features - data parallelism in mutual independence of documents being

126/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

transformed, task parallelism in independence of individual pipeline stages
(which were intentionally designed as black boxes that can be used as stand-
alone entities) and data-flow in the mere concept of pipelines and data flowing
from one component to another. All these features make PropelXbi an ideal

candidate for the employment of Grid technologies.

First, in “Generic PropelXbi Grid architecture” we present generic high-level
view of how PropelXbi can be deployed in distributed environment using Grid
technologies. Afterwards in “Current Grid technologies survey” we review the
Grid applications which are currently available and finally in “Most suitable
candidates for PropelXbi” we present the most suitable candidate applications

which can be used in PropelXbi in its expansion to distributed computing world.

Generic PropelXbi Grid architecture

The reasons people decide to use Grid architecture are either to increase
computing power or throughput, access widely distributed data or improve fault
tolerance of system. The first and last goals - increased throughput and fault
tolerance can be achieved using Grid-based approach described later in the

section. But first, let’s have a look on what is current PropelXbi architecture.

As said many times before, in essence, PropelXbi consists of message queue,
storing documents and pool of Message Driven Beans (MDB’s) transforming
them. As the message queue and MDB pool are two separate entities, they can
be placed on different computers. Naturally, this separation leads to a
straightforward extension of PropelXbi for distributed computing by placing

multiple MDB pools listening to one message queue on different machines.

127/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

Machines with MDB pools then serve as “workers” providing execution power
to main queue machine, which may contain MDB pool as well. MDB’s in pools
listen to a remote central queue and the transportation of messages is executed

via a standard RMI serialization protocol.

The power of this system can be simply increased by adding another pool of
MDB’s. The process of taking a document form queue, transforming it and
returning back to the queue is a single transaction. Therefore, the sudden
removal of an MDB pool doesn’t cause the system to crash. When an MDB
pool is removed, all transactions involved are stopped and rolled back and all
involved documents re-submitted to other pools. This feature ensures a basic

level of fault tolerance.

Even though, this solution is straightforward and requires very little change to

current PropelXbi system, it has numerous drawbacks.

The first problem is that this solution has very bad scalability. As there is only
one central message queue, we can add only a limited number of MDB pools,
after which the load on the central queue would be too high and the queue
would be unable to effectively deal with such large number of simultaneous

listeners.

128/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

Moreover, the singularity of a central message queue can create a performance
bottleneck. If there was large number of documents to process and the queue
was already congested handling previously arrived documents, there may be
free idle MDB'’s which stay unutilised because the central queue would be too

busy and incapable of distributing the new work.

The next drawback lies in mechanism used for document transformation, which
is RMI. RMI is a general remote transport mechanism and because of its general
focus it exhibits long transportation times. Time spent in transporting
documents to and from the main queue would be unacceptably long in

comparison to time spent in actual document transformation.

The last problem, which relates to the previous one, is the inefficient document
handling. One document needs to be transferred between the queue and the
MDB at least twice as many times as its number of pipeline stages. Again, time
spent by the document transfer creates a big overhead in comparison with the

time spent by the actual document transformation.

The problems mentioned above can be avoided if we use a Grid-based

architecture as depicted on following figure.

129/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

Fig. 7.14 Distributed PropelXbi Grid-based architecture

At the top of the diagram is a Scheduler, which receives documents and
distributes them to computing nodes according to their workload and optionally
other additional policies. Computing nodes are normal PropelXbi queue & pool
machines. If it is found that it is beneficial to use non-Grid architecture as a
computing node, it can be added in, as the scheduler is oblivious as to how
documents are processed in the computing nodes. Because there aren’t
restrictions on how documents should be handled on computing nodes,

hierarchical architectures of computing nodes can be built.

The scheduler, in fact, performs a role of document distributor/collector being
the document-level analogy of the Scatter/Gather, which works in the scope of
document segments. The distribution policy of scheduler can be adjusted to
meet different needs, so for example it is possible to specify the preferred
computing platform or that some computers should be used only if their
workload is less than 5% and were idle for at least 15 minutes. By this, it is
possible to implement PropelX@Home (being parallel to SETI@Home project)
using computing cycles of idle workstations to carry out document

transformations.

As the scheduler keeps track of execution progress, it provides automatic fault-
tolerance facility by re-submitting jobs to new machines if the original machines

became unavailable (either because of crash or any other reason).

Additionally, Grid-based architecture solves the problem of communication
overhead encountered in previously discussed non-Grid installation. Documents
are sent to computing nodes only once and received back only when they are
transformed, so the number of needed transfers per document decreases to two.
As documents are submitted directly to computing nodes, they are processed in
local environment and MDB’s can communicate with queue through local calls

without the need of lengthy remote invocations.

130/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

Current Grid technologies survey

After presenting the generic view of PropelXbi’s deployment on a Grid, we will
examine what actual applications currently exist in Grid computing world. As
Grid computing originated in academic circles, there are many toolkits,
libraries, programs and applications in different stages of development covering
different layers of Grid architecture. As different architectural layers pose
different programming challenges on developers, programs often specialize on

one layer, leveraging services of applications from layers underlying them.

Our survey is divided correspondingly into two parts. In first part (page 131),
we examine resource management tools covering Fabric, Connectivity and
Resource layer. Surveyed toolkits are Legion and Globus. In second part (page
137), we have a look on schedulers (or resource brokers), which handle job
management and implement the Collective layer of Grid architecture. Some of
the schedulers prefer not to depend on resource management services of other
software and rather use their own means of resource management, which

incorporates all the architectural layers from Fabric to Collective.

As different schedulers may have different performance goals, the survey of
them is accordingly further subdivided into a section of High-throughput
schedulers (page 138) and a section of High-performance schedulers (page 152).
More detail about this division is given in section “Schedulers” introducing

schedulers survey.

Resource management
The area of Grid resource management is governed by two major toolkits -
Legion and Globus. Their main responsibilities are resource discovery and

keeping track of resource properties, state and availability.

Legion
Legion (Foster & Kesselman 1999; Legion; Natrajan, Humphrey & Grimshaw
2001; Avaki Corporation; Avaki Corporation 2003b) is an object-based system

providing abstraction of a grid as a single powerful virtual machine. By its

131/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

nature it is a middleware layer between operating system and other Legion
resources. While providing single machine abstraction, it transparently takes
care of scheduling of applications on available processors, managing data
migration, data cashing and data transfers. Moreover it performs fault detection
and fault management and ensures that user’s data and physical resources are

adequately protected.

Legion is designed to work on a variety of architectures (Intel, IBM, HP ...) and
to run applications on multiple platforms (Windows, Unix, Linux ...). Legion
supports legacy applications without requiring any change to source or object
code. Applications do not have to be “Legion-aware”, i.e., they need not access
Legion objects. For Legion-aware applications, Legion provides a C++, C, Java

and Fortran interface.

Legion Architecture

As mentioned above, Legion is reflective object based system consisting of
classes and metaclasses (which are classes whose instances are classes itself).
“Reflective” here means that system is able to retrieve information about its

objects at run time.

Architecture of Legion is built upon four essential concepts:

Firstly, “Everything is an object”. Every entity which is part of computing
system is represented by a Legion object. Objects represent both software
(applications, users ...) and hardware resources (processors, storage spaces ...).
Objects in Legion system are mutually independent and communicate with each

other via non-blocking method calls.

Secondly, “Classes manage their instances”. The duty of object management is
assigned to the class objects themselves, by which Legion implements an
architecture in which central management hub is not needed. Class objects have
system-level responsibilities, meaning that they cater for new instance creation,

scheduling of instance execution, activation and deactivation and providing

132/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

information about their current location, when other clients want to

communicate with them.

Thirdly, “Users can provide their own classes”. Legion allows users to define
and build their own class objects and by that Legion programmers can
determine and even change the system-level mechanisms that support their
objects. Legion’s reference implementation provides default implementations of
class objects and of all the core system objects. Users can use them, but aren’t
required to do so. In particular, users can build their own class objects, which
are better suitable for requirements of concrete Legion application like high

performance or high security.

And finally, “Core objects implement common services”. Legion defines the
interface and basic functionality of a set of core object types that support basic
system services, such as naming and binding, and object creation, activation,
deactivation, and deletion. Core Legion objects provide mechanisms that classes
use to implement policies appropriate for their instances. Examples of core
objects include hosts (processors), vaults (data stores), contexts and binding
agents (global naming systems agents), and implementations (system-specific

code executives).

PropelXbi and Legion

It is desirable to envisage deployment of PropelXbi on Legion system to enable
it function in multi-location Grid system. Unfortunately, Legion system was
bought by a commercial organisation called Avaki and is no longer available to
the public. Avaki doesn’t expose Legion architecture anymore, but instead it
offers three complete software Grid products which use Legion architecture as
its base infrastructure. The offered products are Avaki Data Grid providing
secure wide-area access to data stored on multiple locations, the Avaki Compute
Grid, providing wide-area access to available remote processing resources based
on business policies defined locally or centrally and the Avaki Comprehensive
Grid which bundles the two previous products. The product which would be of
interest to us is the Avaki Computational Grid, as it provides the functionality

which we would leverage in the Legion architecture. Regrettably, no technical

133/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

documentation is provided by the Avaki company and thus it is not possible to

devise how PropelXbi could possibly be integrated with the Legion system.

Globus

The Globus Toolkit is a community-based, open architecture, open-source set of
services and software libraries which support Grids and Grid applications
(Foster & Kesselman 1999; Foster, Kesselman & Tuecke 2001; Globus Project
2001; Foster et al. 2002a; Foster et al. 2002b; Globus Project; Shalom 2002a).

The toolkit addresses issues of remote job submission and control, secure file
transfer, system and service information, Grid security, infonnation discovery,
fault detection, resource and data management, communication and portability.
Services of Globus Toolkit are accessible by simple well-defined APIs (for C
and Java) hiding the underlying hardware and software heterogeneity. Services
operate in Open Grid Services Architecture (OGSA) - a conceptual framework

for grid computing formed by Globus research team.

Globus architecture - OGSA

Open Grid Services Architecture is a conceptual service-oriented model for Grid
computing integrating Grid technologies and Web services (Foster et al. 2002b).
In OGSA, Web services framework is further refined focusing on features

required by Grid infrastructure and applications.

Via standard interfaces and conventions, OGSA supports creation, termination,
management, and invocation of stateful, transient services as named, managed

entities with dynamic, managed lifetime.

OGSA'’s fundamental concept is the adoption of a common representation of
computational and storage resources, networks, programs, databases and the
like. All are treated as services - network enabled entities that provide some
capability through exchange of messages. More precisely, every entity is treated
as a Grid service, which is a Web service conforming to a set of conventions
that define how clients interact with a Grid service and provide for a controlled,

fault resilient and secure management of a service. These conventions are

134/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

represented by interfaces defined in Open Grid Services Infrastructure
specification (OGSI) (OGSI-WG 2003), which has to be implemented by a Web
service in order to be a Grid service. OGSI interfaces are defined in WSDL
(Web Services Description Language) leveraging its language independency
and the fact that this Web services standard is already broadly used and
supported by industry. As these services expose their interfaces defined in
language-independent WSDL, they can be written in any language for which a
WSDL binding exists (e.g. Java, C, Python ...)

By defining this architecture, OGSA defines uniform exposed service
semantics, identifies standard mechanisms for creating, naming and discovering
transient Grid service instances, provides location and implementation
transparency and supports integration with underlying native platform facilities.
As the service interface is separated from its actual implementation, the service
can have multiple implementations on different platforms which can take

advantage of native facilities available on individual systems.

Thanks to this service-oriented abstraction model, OGSA enables consistent
resource access across heterogeneous platforms. Moreover it provides a
common framework for Grid services allowing inter-Grid operability, which
was missing before. As another merit, services abstraction allows composition
of complex services from lower-level services without regard to how these

services are implemented.

Globus implementation - Globus Toolkit

As OGSA is fairly recent invention, there are two versions of the Globus
Toolkit. Globus Toolkit 2 was written before OGSA/OGSI was published and
therefore it doesn’t incorporate OGSA architecture, but rather uses services
commonly available in operating systems without any underlying unifying
service model. Globus Toolkit 3 aims at implementing OGSA architecture but at
the moment (April 2004) in current available release (3.2), some Globus
services are OGSI-compliant already and some are still using the same basis as
in previous versions. The intended migration from non-OGSA to OGSA

architecture of Globus Toolkit is depicted on following picture.

135/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

Globus Globus Toolkit 2 Globus Toolkit 3
service non-OGSA OGSA
GRAM GridFTP MDS GRAM GridFTP MDS
HTTP FTP LDAP Grid Services Abstraction
TLS/GSI SOAP Other
P P

Fig. 7.15 non-OGSA to OGSA Globus transition

Note: GRAM (job submission service), GridFTP (data transfer service) and
MDS (information service) are services provided by Globus Toolkit. TLS is
transport-level security protocol (follower of SSL) and GSI is Grid security

infrastructure.

It is expected that the OGSA architecture will be widely adopted throughout the
Grid computing world and that over two years, the majority of grid systems will
be OGSI-compliant with non-OGSI application being gradually abandoned
(Globus Project).

PropelXbi and Globus

Globus Toolkit is written in C, but there are ways how to access its functionality
from other languages as well. It is done through Community Grid Kits (CoG)
for various languages. The latest stable Java CoG Kit (version 1.1) is compatible
only with Globus Toolkit 2.4 and thus if we wanted to use Globus’ functions

directly in PropelXbi we would have to choose Globus Toolkit 2.4.

Globus Toolkit 2.4 is a set of services and as such it provides a good foundation
layer for Grid computing. However, it is not concerned about job-scheduling
and load balancing issues which are the domain of other higher-level grid
schedulers. These schedulers use Globus services as its execution base and
examples of them are Condor-G and AppLeS. These will be discussed in the

following sections. The following figure shows the composition of the

136/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

envisaged application - an assembly consisting of an application wrapper, a

scheduler and Globus services.

Application PropelXbi
Resource broker / Scheduler Condor-G / EZ-Grid / PBS
Globus services Globus Toolkit
Fabric

Fig. 7.16 PropelXbi on Globus

Schedulers

Globus and Legion provide a basic infrastructure for Grid computing taking
care of distributed resource management. These two systems usually aren’t used
alone, but work as a base for higher-level (also called application-level)
schedulers, which take care of job management. It is important to mention that
not all application-level schedulers use Globus or Legion infrastructure, but

several use their own means of resource management.

There are two types of application-level schedulers differing by the goal they
strive to achieve. They are High Throughput Schedulers (HTS) and High
Performance Schedulers (HPS). High Throughput Schedulers (also called Batch
systems) want to achieve highest possible throughput (number of completed
tasks/jobs) in given time, expecting non-ideal computing circumstances.

Computing time is usually long, in order of days or weeks.

On the other hand, High Performance Schedulers aim at maximising
performance of one individual application, expecting ideal computing
circumstances and not caring about performance of other jobs running on the

same system.

In short, High-throughput schedulers (HTS) are used for processing of massive
amounts of data (in order of petabytes) over long periods of time (days/weeks)

using any computer available. In contrast, High-performance schedulers (HPS)

137/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

are used for jobs that aren’t aimed at processing large amounts of data but need
to be processed as quickly as possible and are usually run on special dedicated

machines.

The other way to differentiate schedulers is by the question, which a user asks
when considering their task. In the case of High-throughput applications a user
asks “How many jobs can be processed in given time using all available
machines?”, whereas High-performance scheduler users ask “How fast can be

this job done on this machine?”.

There are many schedulers available today with various advantages and
limitations. In following sections we will review these which are realistically
utilisable in PropelXbi (according to their hardware and software limitations).
Reviewed schedulers are Condor / Condor-G, Janet, Frugal, EZ-Grid, GRB,
OpenPBS / PBS Pro, Platform LSF, N1 Grid Engine / Sun Grid Engine
Enterprise Edition, Weblogic clustering facility and AppLeS.

High Throughput Schedulers

Condor

Condor is high-throughput scheduling system developed at University of
Wisconsin (Condor; Condor-G; Bent & Thain 2002; Foster 2002; Frey 2002;
Livny 2002; Condor Team 2003a; Condor Team). The Condor system consists
of two parts. First part, called “Submit machine” takes care ofjob management
(submitting jobs, keeping track of their status, gathering information about
execution progress ...). The second part (“Execution machine”) performs
resource management, meaning that it controls resource availability and

allocation.

Job requests, on submit side, and available resources, on execution side, are
matched by Condor’s matchmaker using concept of ClassAds (advertisements),
which is similar to the advertisement concept used in JXTA. Every resource
advertises itself, specifying its properties and optional usage restrictions (e.g.

use only when load<5% and machine idle for 15 minutes). At the same time,

138/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

every submitted job is also represented by a classad specifying the resources it
needs. The matchmaker matches ‘compatible’ classads and informs the engaged
sides of successful match. The matched entities then interact with each other

independently without any intervention (or help) from the matchmaker’s side.

As Condor is divided in two parts, it’s not necessary to install both of them and
only one can be installed if desired. The submit part allows submission jobs for
execution and execution part carries out actual execution ofajob. Both parts are

usually installed, but it is not required.

The Condor system takes care of job and resource management, but because of
the separation of its functions it also allows alternative mode of operation. Users
which have Globus Toolkit already installed on their machines and would like
to use Condor’s job management capabilities can install Condor-G (Condor-G).
Condor-G performs the job-management part of Condor and is specifically
designed to use the Globus Toolkit as a resource managing base. The two

possible operation scenarios are depicted on following figure.

Condor & Condor Condor-G & Globus Toolkit
installation Installation
Job management Condor Condor-G
Resource mgt Condor Globus Toolkit

Fig. 7.17 Possible Condor installations

The advantage of the Condor-G & Globus Toolkit installation is that users of
already existing Globus Toolkit (GT) infrastructure can use it as before and
additionally, they can use Condor-G job submitting facilities as well. Condor-G
facilitates work with jobs of multiple tasks which are otherwise tedious to
handle on plain GT. Flowever, compared to the Condor & Condor installation,
the Condor-G & Globus Toolkit doesn’t provide job migration, process

checkpointing and dynamic resource selection.

139/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

Both installations provide the main Condor merits - high-level job management,
fault tolerance and credential management (automatic remote logging,

authorisation and authentication).

The current version of Condor (6.6.3) runs on Linux and Windows NT/2000
machines. As the main developing effort is targeted on Linux environment, the
current Windows version is missing several non-critical features. Compared
with Linux, it doesn’t have DAGMan (work-flow manager), doesn’t support
checkpointing and doesn’t support access to files on shared network drives
(condor automatically transports them to local drive). Condor-G is implemented

only for Linux and uses the Globus Toolkit version 2.2 (non-OGSI compliant).

Janet

Janet (Capello; Capello 2003b) (formerly JICOS) is a research project from the
University of California, Santa Barbara (UCSB) and is focused on developing a
Java-based network computation system. It builds on experiences of systems
previously implemented on UCSB - Javelin and CX, which are being cited in

relation to distributed computing as well.

Janet acts as a scheduler, distributing work to host nodes being implemented by
individual Java Virtual Machines. Its programming model is based on the
concept of abstract distributed machine, which to a user, seems like a single
computing machine, while it uses multiple execution nodes, which can be

placed on different machines, hardware architectures and operating systems.

140/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

The abstract distributed machine consists of a Hosting Service Provider (HSP),
TaskServers and Hosts. HSP serves as a point of contact between application
and distributed Janet system. TaskServers take care of work distribution to
individual Hosts, which are expected to be volatile - i.e. are expected to
dynamically connect and disconnect from TaskServers. TaskServers moreover
provide fault-tolerance feature by keeping track of assigned work and re-

assigning work of these Hosts, which became unavailable.

Tasks executed by Host can spawn successor tasks or another sub-tasks and thus
further decompose problem being solved and allow for greater parallélisation of

computation and better use of parallel resources.

The Janet system is based on Java language and RMI/JINI calls between
dispersed parts of the system. Java through its Java Virtual Machine provides a
homogeneous platform on top of otherwise heterogeneous sets of machines and
operating systems. This solves the problem of many other distributed systems,
which fight with high heterogeneity of hardware and software configurations of

execution machines.

Even though it would be desirable, Janet APl doesn’t provide the possibility of

asynchronous task execution. A task can be executed in either synchronous

141/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

mode, where the calling application waits until it receives result of a distributed
computation or pseudo-asynchronous mode, where application spawns multiple
tasks without waiting for their outcome and then at some point waits for result

from all of them.

The synergy of PropelXbi and Janet can be imagined as suggested by the
generic architecture of Grid-enabled PropelXbi Fig. 7.14.

As Janet’s functionality is accessed through Java API, an application wrapper
would need to be written, which would collaborate with Janet’s Hosting Service
Provider and a Task Server. Each computing node would then host the
PropelXbi installation and a Janet Host, which would submit documents to a
local PropelXbi installation. Janet by itself doesn’t provide asynchronous calls,
and thus additional code would need to be written to accommodate PropelXbi’s

intrinsic asynchronous behaviour.

Janet is a research project and at the moment it shows signs of un-robust
behaviour and several bugs were encountered when experimenting with the
current release (1.6.1). Even though it provides the functionality required for
PropelXbi expansion to distributed computing, it still seems not mature and

robust enough for considering its fully-fledged application in PropelXbi.

142/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

Frugal
Frugal is another distributed computing research project developed by R. Sean

Borgstrom from John Hopkins University (CNDS; Borgstorm 2000).

It is built on Java and JINI technology. The system consists of Frugal Managers
and Frugal Resources. Resources are JINI-enabled objects, registered in a JINI
lookup service, residing on different machines which provide the execution
power. Frugal Managers then control collections of Resources and when client
asks a Manager to perform some work, the Manager selects the appropriate
Resources and passes their reference to the Client. The Client then

communicates directly with Resources.

Managers use a sophisticated strategy to select Resources, so that the overall
CPU and memory load of the whole collection of computing nodes is
minimized. The computing distribution strategy is called Differential PVM
Strategy and in essence it selects that node, whose increase of load is minimal

after assigning a given job to it.

The Frugal system was completed in 2000 and it seems that it wasn’t updated
since. In functionality tests, some parts of system were proven not to work with
the current JINI release. As Frugal is based on obsolete JINI distribution, it

can’t be realistically used with PropelXbi.

EZ-Grid

EZ-Grid is research project form University of Huston (EZ-Grid; Chapman,
Sundaram & Thyagaraja 2002). EZ-Grid sits on top of standard Globus Grid
computing infrastructure (pre-OGSA version) and provides simple job
submission interface hiding Grid computing internals from the user. Apart from
user interface, EZ-Grid provides ajob-scheduling broker, enhanced information
service (more rich than default Globus information set) and offers means for

richer definition and control of usage policies set on computing resources.

143/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

As mentioned above, EZ-Grid uses the infrastructure of Globus toolkit, which is
accessed through Java CoG library - a Java interface to Globus services. Apart
from indirect access to Globus, EZ-Grid also interacts directly with local
schedulers in order to get additional detailed information not provided by
Globus.

EZ-Grid
access through
Direct | coG
access T
to local CoG library Java access to Globus
schedule))
r Globus Toolkit Middleware layer
Resource specific software Security, Resource, Mgt, Storage
Remote resource Physical

Fig. 7.20 EZ-Grid high-level structure

EZ-Grid Internal architecture is similar to other high-level Grid computing

systems.

Remote
computing
machines

Client
machine

Fig. 7.21 EZ-Grid internal architecture

144/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

EZ-Grid consists of four principal components. Grid Server, Grid Register,

Broker Kernel and Grid Client.

The Grid Server is located on every machine connected to the Grid and manages
application profiles, job submission history and static and dynamic information
about local resources. The Grid Register serves as central information server
providing information about all available resources. As resources are often
added and removed, it performs automatic resource discovery and periodically
checks if registered resources are still available. The Broker Kernel performs
matching between job requirements and available resources using sophisticated
methods to achieve optimal load and time constraints. The last component, the
Grid Client takes care of job submission through GUI and authentication and

authorisation.

Even though we tried to contact EZ-Grid development team, we received no
response from them and thus we cannot state what platforms are supported by

EZ-Grid and how feasible is its incorporation in PropelXbi.

PBS

The Portable Batch System (PBS) (Altair Grid Technologies) is a batch
queueing and workload management system originally developed for NASA. It
operates on networked, multi-platform UNIX and Linux environments,
including heterogeneous clusters of workstations, supercomputers, and

massively parallel systems.

Every resource in PBS system is maintained by a PBS resource monitor.
Resource monitors are used by job schedulers, which are in turn used by PBS
servers. PBS provides job submission system either through GUI or command-
line interface, keeping track of job progress, job priority and security
management and job scheduling meeting various resource usage policies and

load constrains.

PBS exists in two versions - freely available OpenPBS for non-commercial use

(Altair Grid Technologies) and commercial PBS Pro (Altair Grid Technologies).

145/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

OpenPBS has basic features mentioned above, with a simple round-robin work
distribution algorithm. In contrast, commercial PBS Pro offers more
sophisticated work distribution algorithm, achieving better dispersion of work
across different machines, better scalability and increased fault tolerance. PBS
Pro furthermore provides support for Mac OS-X and Windows 2000 and XP
platforms, support for cooperation with Globus Toolkit and an application

programming interface.

Grid Resource Broker

The aim of Grid Resource Broker (GRB) project (Aloisio et al.; Aloisio et al.)
developed in the HPC Lab of University of Lecce, Italy, is to create a simple
GUI, which would allow trusted users to create, use and maintain Globus

computational grids.

In order to use GRB, the user has to apply for an account at HPC Lab and has to
have Globus 2.0 running on his computer. His own computational resource and
other resources registered in Globus grid are then accessible through a Web
browser, which provides the GUI interface. As GRB’s only functionality is
providing a GUI interface to Globus infrastructure it’s not usable in PropelXbi.
The only way to use GRB is through manual interaction with the graphical
interface, which is not possible to use it in runtime code. If we wanted to use
Globus infrastructure, it would be more pertinent to use the Globus Toolkit

itself, anyway, and access it through Java CoG Kit API.

Platform LSF

Platform LSF (Platform Computing 2003d; Platform Computing 2003c) is a
software tool for managing batch workload processing of compute and data-
intensive applications. It allows scheduling of batch workload across a
distributed, virtualised IT environment, utilizing all IT resources available
including desktops, servers, supercomputers and mainframes regardless of their
operating systems. Platform LSF runs on wide range of operating systems,
covering Windows 2000, XP, various Linux and Unix flavours, Mac OS and
supercomputer operating systems. Jobs are submitted either through a Web

Browser, a command-line interface, an APl or a SOAP interface.

146/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

Platform LSF is part of a Grid computing suite developed by Platform
Computing (Platform Computing; Platform Computing 2003d). Other relevant
Platform products are Platform JobScheduler (Platform Computing 2003b),
which extends LSF’s functionality with the Graphical design studio, where a
business process containing intensive computing can be designed and a Control
console for monitoring of scheduling and execution of batch processes is also
provided. Platform ActiveCluster focuses on the utilization of unused
computing cycles of Windows workstations. Platform Clusterware manages the
entry-level batch application workload processing on Linux clusters. Platfrom
MultiCluster manages resource sharing between multiple autonomous

geographically spread LSF grids with differing local access policies.

The synergy of PropelXbi and Platform suite can be envisaged as illustrated by
Fig. 7.14 with PropelXbi installations being satellites, providing computation
power and Platform LSF doing the job of work scheduling and load balancing.
In addition Platform JobScheduler can be used as a monitoring facility,
providing on-line information about state of the work execution and includes an
exception handler, which reports failures in processing and alerts the
appropriate people of such events. In addition, Platform ActiveCluster can be
augmented to harness the power of idle Windows desktop computers, if such

enrichment is desired.

Platform also offers another product which is focussed on a different usage
scenario - Platform HPC, which is aimed at enabling High Performance
Computing, leveraging specialized high performance network interconnects of
clustered systems or supercomputers. As it is a product aimed at High
performance computing, its objective is to provide maximal application
performance using all available hardware, usually over a short period of time.
This product would be usable in situations where PropelXbi receives occasional
computationally intensive tasks and its aim is to process them individually as
quickly as possible. Its strength lies in its utilization of specialised network
interconnects, which aren’t always available on common systems. Supported

operating systems are Linux and supercomputer systems.

147/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

N1 Grid Engine, Sun Grid Engine Enterprise Edition

N1 Grid Engine 53 (N1GE) (Sun Microsystems 2002a) (formerly Sun Grid
Engine) and Sun Grid Engine Enterprise Edition 53 (SGEEE)
(Sun Microsystems 2001b) (formerly Sun ONE Grid Engine, Enterprise
Edition) are two distributed resource management software solutions allowing
transparent use of distributed computing power (Sun Microsystems 2001a;
Aberdeen Group 2002; Sun Microsystems 2002c).

The front-end development for both N1GE and SGEEE is done in the Grid
Engine open source project (gridengine.sunsource.net) sponsored by Sun
Microsystems. Sun does not deviate from the source code produced via the Grid
Engine project for releases of NIGE/SGEEE. Reference releases, which are
functionally identical to N1GE and SGEEE at a point in time, are available via
the Grid Engine project. N1GE and SGEEE are both made from the same source
tree in the Grid Engine project and share internal components. When Sun
decides to release a new version of N1GE and SGEEE, it brings a stable build of
Grid Engine software into the Sun quality assurance process and documents and

offers the software under the N1GE/SGEEE brands.

Sun has a vision of various types of Grids differing by their size and span.

Cluster Grids, which are grids dedicated to one project within one

department.

- Enterprise Grids (or Campus Grids), which span multiple departments

within one enterprise and can be used for multiple simultaneous projects.

- Global Grids, which go behind enterprise boundaries with resources

shared over Internet.

N1GE provides functionality necessary for Cluster Grids computing, SGEEE

then for Enterprise computing. Global grid needs are addressed by Globus

148/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

Toolkit, which is supported by Sun Microsystems as a partner of Globus

development team.

Global Grid
Globus Toolkit
Enterprise Grid + Internet
SGEEE
Cluster Grid Cluster Grid

Fig. 7.22 Types of Grids according to Sun

The basic function of N1GE, is providing transparent access to all departmental
resources by matching available resources in a grid with users’ requests. NIGE
supports both batch jobs, without need of user intervention, and interactive jobs

for which it opens X-terminal window.

When a user wants to submit ajob, he specifies a requirement profile for the job
along with the user identification and a priority number. The requirements
profile contains attributes associated with the job such as memory requirements,
operating system required, etc. According to the profile and priority, N1GE then
dispatches the job to a suitable queue associated with an appropriate host server
on which the job will be executed. N1GE uses load-balancing techniques to
spread the workload among available servers. To obtain necessary resources for
execution, N1GE uses policies to examine available computational resources
within the grid and allocates them to jobs in a manner that optimises their usage
across the cluster grid. As N1GE is layered above the operating system it

requires no alterations to applications.

149/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

N1GE runs on Linux and Solaris platforms and is free for personal and

commercial use.

SGEEE provides all the functionality of N1GE, and in addition, it provides
mechanism to allocate Grid computing resources based on policies, which
dictate how resources are distributed among projects and people, notjobs. These
policies are a level above job resource allocation. Incorporating these high-level
policies allows SGEEE consolidate multiple cluster grids into enterprise grids,
where multiple projects are run simultaneously and computing power is

distributed according to firm’s business objectives.

With SGEEE, a user, team, department, or project can receive a resource
allocation for a period of time, based on some percent of the total resources
available. SGEEE will ensure that the assigned percentage of resources is
available to the jobs within that project or for a user, team, or department.
SGEEE policies are flexible, so users and project teams can negotiate resource

assignments that can vary from week to week.

SGEEE runs on Linux and Solaris platforms and is priced depending on grid

size.

The standard version of N1 Grid Engine looks ideal for symbiosis with
PropelXbi, as its job distribution feature is exactly what PropelXbi Grid
extension requires. Individual documents can be passed as individual jobs,
which are distributed on hosts containing PropelXbi installations, achieving
load distribution and shorter processing time. N1GE, furthermore, has a
favourable feature of being completely free for personal and commercial use.
The only drawback of N1GE is that it runs only on Linux/Solaris platforms and

thus potential existing Windows computers can’t be used.
It appears that in relation to PropelXbi there isn’t a need for the implementation

of high-level policies, provided by Sun Grid Engine Enterprise Edition and the
functionality provided by N 1 Grid Engine is sufficient.

150/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

WebLogic clustering facility

At present PropelXbi is deployed either on BEA WebLogic application Server
(BEA 2002a; BEA 2003a; BEA 2003c; BEA 2003b) or JBoss application server
(JBoss). Even though WebLogic Server is not aimed at area of Grid computing,
it provides the clustering mechanism, which in fact can do the work of the
surveyed Grid schedulers. The currently used distribution of JBoss (3.0.5)
doesn’t provide any JMS clustering facility, while it is promised to be
implemented in future release of JBoss 4.0. For that reason we focus only on

clustering features of the WebLogic application server.

A cluster is a group of servers, which appear to user as a single “super” server,
in same way as machines in Grid appear to user as single “super” computing
machine. The difference is that, members of cluster group are of the same
platform and mostly with the same operating system and software facilities.
Furthermore, computers in a cluster are more tightly bound, often requesting
LAN connection (and thus not allowing connecting over Internet), as clusters

installations are not meant to exceed institutional boundaries.

Weblogic provides a feature called “distributed destinations” (also called virtual
destinations) which allows PropelXbi’s extension to distributed computing. A
distributed destination is a set of physical destinations (places where JMS
messages can be sent) called under a single JNDI name, so they appear to be a
single logical destination to a client. Each member of such set can be placed on

a different machine in a cluster and must be placed in a separate JMS server.

When a message is sent to a distributed destination, a load-balancing algorithm
is used to choose to which particular member of a set is the message redirected,
so that messages are evenly spread over all members and the overall load is
optimised. Available load-balancing algorithms are plain round robin, random
scheduling and weighted variants of both mentioned algorithms, where weights
assigned to individual destinations determine which destinations are more

preferred (and thus receive more load).

151 /230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

In addition, distributed destinations provide a fail-over feature. When one
member becomes unavailable due to server failure, the traffic is redirected to

other available members in the set.

An interesting fact considering load balancing in general, is BEA’s statement
about why they didn’t implement more advanced load balancing algorithms than
round robin and random. They come from observation that a standard
application server work load contains many short-running requests. They state
that in this setting, parallelism is most efficiently exploited by processing each
request on as few servers as possible, as the overhead for communication is
relatively large. The consequence is that simple round robin or random load
balancing schemes are particularly effective and it is rarely worth the effort
either to take actual server load into account or to redistribute on-going work

when it occasionally becomes unbalanced. (BEA 2003a)

This statement is interesting because the situation of PropelXbi is almost
identical, with timespans of processing of individual documents being of rather

small to medium length.

High Performance Schedulers

AppLeS

AppLeS used to be High-performance scheduling project from University of
Carolina, San Diego. As the objectives of original development team broadened,
AppLeS project led to the establishment of GRAIL laboratory with various
projects covering different aspects of Grid computing (GRAIL). GRAIL
projects, which would be relevant to our research, are GrADS (Dail) and
AMWAT (AMWAT).

The goal of the GrADS project (Grid Application Development Software) is to
enable development and performance tuning of Grid applications by simplifying
distributed heterogeneous computing. This aim is meant to be achieved by
providing a set of C libraries, hiding the details of low-level Grid programming

from users. The GrADS project is currently in development stage.

152/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

AMWAT (AppLeS Master Worker Application Template) aims to do similar
thing as GrADS, but is focused on Master-Worker (divide and conquer)
scenario. It is a C library that makes it easier for programmers to develop
applications that solve a problem by breaking it into subproblems, distributing
the subproblems to multiple processes (typically running on multiple CPUs),
and combining the subproblem results into an overall solution. The AMWAT
library takes care of scheduling, communications, and fault tolerance, allowing
the developer to concentrate on the application-specific aspects of the program.

In contrast with GrADS, AMWAT’s implementation exists already.

As both these projects produce C libraries, they are not suitable for

amalgamation with PropelXbi, as it is all written in Java.

Most suitable candidates for PropelXbi

Considering PropelXbi scenario it is difficult to identify the most suitable
scheduler. PropelXbi works as a document transformation engine, taking
documents in, transforming them and outputting them afterwards. Under this
prospect, processing of each document can be viewed as a separate job, which
can be individually scheduled. As there are two different ways in which
PropelXbi can be used, there are also two different performance metrics leading

to two different performance goals.

The first possible PropelXbi use is as a transformation engine for a large set of
documents (of possibly large size) that need to be modified or transformed from
one format to a new one (e.g. converting data from a legacy database to XML
format). The goal here is to achieve the highest possible throughput of data
rather than maximised speed of processing of individual documents. In this
case, frequency of incoming documents is high (as they are most probably
loaded straight from local disk). Most suitable schedulers for this scenario are

the High-throughput schedulers.

153/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

The second possible use of PropelXbi is as an on-the-fly transformer of
messages between two or more applications. In this case, the performance
metric is speed of message transformation and thus suitable type of schedulers
are the High-performance schedulers. The size of the transformed documents is
rather small or moderate and frequency of their arrival is also of rather small to

moderate.

Scenario characteristics and fitting schedulers are summarised in following

table.
Doc.)
PropelXbi Suitable Scheduler
Data size arrival Goal
use scheduler example
frequency
_ _ Condor,
Large data High HTS - High)
Large High N1 Grid
transformer throughput throughput _
Engine
) AppLeS,
On-the-fly Small/ Low/ _ HPS - High
) High speed Platform
transformer Medium Medium performance HPC

Tab. 7.5 PropelXbi use scenarios and suitable schedulers

However, most of available schedulers, which title themselves “High
Performance Schedulers”, are focused on support of high performance versions
of C, C++ and Fortran languages. PropelXbi is written in Java and cooperation
with such schedulers would be rather difficult, resulting in cumbersome
solutions, trying to overcome language differences, rather than utilising their

intrinsic advantages.
Nevertheless, as PropelXbi usage scenarios are not likely to be of extreme

nature, High Throughput Schedulers may possibly do the same work with

satisfactory results.

154/230

Scheduling and Optimising XML Pipeline Processing

Chapter 7: Distributed Computing Technologies

Following table summarises the surveyed high throughput schedulers and their

relevant features

Name

Condor

Condor-G

Janet

Frugal

EZ-Grid
GRB

OpenPBS

PBS Pro

N1 Grid

Engine

Platform
LSF

Vers

6.4.7

6.4.7

1.7

5.3

5.3

5.1

Submi

CLI

CLI

API

API

GUI

GUI

API
GUI

API
CLI
GUI
API
CLI
GUI
SOAP

Res.

Layer

Condor

Globus

Janet

Frugal

Globus
Globus

PBS

PBS,

Globus

Sun

Platform

Lang

Java

Java

Java

Java

Java

155/230

Orig

Res

Res

Res

Res

Res

Res

Com

Com

Com

Com

Cost

Free

Free

Free

Free

Free

Free

Free

Com

Free

Com

Distrib

Rules

Rules

Plain

Diff

PVM

Rules

77?

Plain

Rules

Rules

Platf

Win,
Lin
Win,
Lin
Win,
Lin
Win,
Lin
27?
Lin,
Unix
Lin,
Unix
Win,
Lin,
uUnix,
Mac
Lin,

Unix

Win,
Lin,
Unix,

Mac

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

Sun Grid 5.3 API Sun C Com Com Rules Lin,
Engine CLI Unix
Enterprise GUI

Edition

WebLogic Web Java Com Com Plain, Win,
clustering Logic * Rand. Lin,
facility Unix

Tab. 7.6 High throughput schedulers

* - commercial use is prohibited
** - included in installation of BEA Weblogic Server, on which are some

PropelXbi installations currently deployed

The table first specifies name and version of surveyed scheduler. Then it
specifies how jobs are passed to the scheduler - through use of API, from
command-line interface, from GUI or by passing a SOAP message. The Res.
Layer column refers to the software package used in the resource layer, as some
products rely on different software packages for handling resource issues. Lang
specifies the programming language that the software is written in. The Origin
refers to the origin of the product - either as the research project or the
commercial product and the cost column states whether it is freely available or
priced. The Distrib column identifies the algorithms used for the load
distribution - plain round robin, random, differential PVM or more
sophisticated rules. The Platf column states on which platforms the software

runs.

We divide our assessment of suitable candidates into two halves - first we
consider the candidates which are freely available and then the commercially

available candidates.
Among the freely available schedulers, there are two competitors for the best
choice - N1 Grid Engine and WebLogic clustering facility. N1GE has

advantage of more sophisticated scheduling algorithms than WebLogic. Its

156/230

Scheduling and Optimising XML Pipeline Processing Chapter 7: Distributed Computing Technologies

disadvantages are that it is written in C, and so job submitting must be done
through command-line interface external to Java and the only supported
platforms are Linux and Unix, not allowing use of existing Windows computers.
WebLogic clustering facility isn’t free, but as it is part of WebLogic server, on
which some PropelXbi installations are currently deployed, it can be considered
to be so if it is such case. WebLogic has the advantage that the clustering
facility is native to the platform on which PropelXbi runs and that load-
balancing can be implemented by mere configuration of the WebLogic cluster
without the need of any changes in the way PropelXbi currently works. The
drawback of WebLogic is that it provides only simple round robin and random
scheduling. However, it has been stated that efficiency of these scheduling
algorithms is sufficient. If the deployment application server is JBoss and there
isn’t need to use Windows computers, then N 1 Grid Engine is the clear choice.
In the other scenario, where the deployment application server is WebLogic, the

best scheduling device is WebLogic’s native clustering facility.

In the group of commercially available schedulers, Sun Grid Engine Enterprise
Edition is salient with its unique feature of sophisticated people/project centred
resource allocation policies not available in any other product. If such feature is
not needed then other schedulers provide comparable functionalities. In
addition, other schedulers may be considered if Windows and Mac computers
need to be used, as SGEEE is the only commercial product, which does not
support them. In such cases, the selection would be based on product pricing

and brand preferences.

157/230

Scheduling and Optimising XML Pipeline Processing Chapter 8: Summary and appraisal of surveyed techniques

Chapter 8

Summary and appraisal of

SURVEYED TECHNIQUES

158/230

Scheduling and Optimising XML Pipeline Processing Chapter 8: Summary and appraisal of surveyed techniques

8 Summary and appraisal of surveyed techniques

In this chapter we first briefly review current XML pipeline processing model as
represented by the XPipe paradigm’s implementation PropelXbi in section 8.1.
In section 8.2 we then review the techniques we surveyed in chapters 5 to 8 and
point out how their particular features can enhance the current XML pipeline
processing implementation. In last section 83 we summarise the identified
potential enhancements of PropelXbi, present the enhancements we decided to

implement and briefly describe them.

8.1 Current XML pipeline processing implementation
The current technical implementation of the XML pipeline processing system
was described in detail in Section 1.2. Before we progress to surveyed

techniques, we summarise the current architecture.

Documents, to be transformed, are placed in JMS messages and sent to a JMS
queue. The JMS queue serves as a storage space for documents being processed.
Above the JMS queue there is pool of MDB objects, which observe contents of
the queue and when a document appears there, one of the MDBs retrieves it
from the queue, loads the appropriate transformation component (XComponent)
with which it is to be transformed, transforms it and returns it back to the queue.
As MDBs are self-sufficient objects, they are automatically managed by the
server, which takes care of their whole life-cycle management. The fact, that
MDBs load the appropriate XComponents dynamically, allows them to be
assigned to places in the pipeline with the current highest workload. After being
processed by all stages of the pipeline, the document is removed from the
processing queue and placed in a separate storage space designated for fully

transformed documents.

8.2 Appraisal of surveyed techniques

The following paragraphs, list the surveyed techniques and point out how their
particular features can enhance current XML pipeline processing represented by

PropelXbi as implementation of the XPipe paradigm.

159/230

Scheduling and Optimising XML Pipeline Processing Chapter 8: Summary and appraisal of surveyed techniques

8.2.1 Parallel processing
Our study of parallel processing revealed four enhancements, which are,

however, already present in PropelXbi.

The first is the concept of pipeline processing. Processing is divided into
individual stages, which can be executed in parallel. This is implemented by
XComponents, which are independent components of whole document

transformation.

The second is the technique of instruction pre-fetch and caching. In this
technique, instructions which were recently used or which are likely to be used
soon, are kept in memory, avoiding the need for lengthy access to the physical
memory. As the size and number of the XComponents is many times less than
the size of available memory, all the XComponents are loaded in on start-up and
during execution there is never a need to access the physical memory to load

them.

The third revealed technique is data forwarding. Consecutive units, which
process the same data, pass intermediate results directly to each other, saving
time which would be otherwise spent by saving intermediates to a storage space
and loading them in again. In PropelXbi case, this can be utilized only when the
processing times of the involved XComponents are short, because otherwise it
would hinder the parallelism feature currently present in PropelXbi. PropelXbi
implements the data forwarding concept using the XComponent compiler,

which is discussed in greater detail in next section about Jackson Inversion.

The last concept from area of parallel processing is vector pipeline chaining.
This trick is used where two consecutive vector units process the same vector of
data. The second unit connects directly to the output of first one and starts
processing already finished vector elements even before all remaining elements
are finished by the previous unit. In PropelXbi, the technique of vector pipeline

chaining is implemented by the Scatter/Gather components. When document

160/230

Scheduling and Optimising XML Pipeline Processing Chapter 8: Summary and appraisal of surveyed techniques

contains a group of independent elements, it is divided by the Scatter, and each
piece is processed independently of the rest. By such doing, the Scatter in fact
transforms a solid document into a vector of its independent parts. Thanks to
this element separation, parts of the document can be processed by later stages
even though some other parts were not yet processed by stages placed earlier in
the transformation pipeline. When all elements of original document are
processed, the Gather component assembles them together into the final

document.

8.2.2 Jackson Inversion

The concept of Jackson Inversion is to transform a set of programs, which
communicate with each other through temporal storage spaces into one
monolithic code, which incorporates all the individual programs.
Communication between the former individual programs is then implemented
by function calls from one block of code to another. The aim is to simplify and
speed-up the whole programme compound. This transformation can be applied
to a set of XComponents, but as mention earlier, their processing time span has
to be short, so that loss of parallelism is negligible. Sections 6.3 and 6.4 present
two designs based on Jackson Inversion. The first is an on-line XComponent
compiler, where the decision on which components to compile is made by
PropelXbi’s inner logic during the run of the transformation. The second is the
off-line XComponent compiler, where the components to compile are selected

manually by the user before the transformation runs.

8.2.3 Distributed Computing

In area of distributed computing, we researched three topics, where each has

potential for PropelXbi enhancement.

TupleSpaces
TupleSpaces come with the concept of a global distributed space to which
objects are written and from which they are read. The innovative aspect is that

all issues of space distribution are hidden from user and that a very simple

161/230

Scheduling and Optimising XML Pipeline Processing Chapter 8: Summary and appraisal of surveyed techniques

interface is used for objects manipulations. Using TupleSpaces, programmers

can very quickly develop applications performing distributed computing.

In PropelXbi, TupleSpaces can be used to replace the JMS queue currently
functioning as document storage space. As TupleSpaces can be easily
distributed, such replacement would facilitate shift of PropelXbi from one-
machine to distributed computing. However, conversion to TupleSpaces would
require a change of the transformation mechanism as well. It seems that the cost
of work that would need to be spent on such a change would be higher than
benefits of PropelXbi’s distribution. Besides, such benefits can be gained more

easily by using Grid technologies discussed in a later paragraph.

Project IXTA

Project JXTA is a set of language independent peer-to-peer communication
protocols. An enhancement, which can be brought by using JXTA protocols, is
that it can be used as an internal communication mechanism for distributing
PropelXbi’s work. Client then could be written in any language for which there
is JXTA binding (currently Java and C) and it would be possible to use a wider

range of machines and transforming devices to do PropelXbi’s work.

However, there are numerous disadvantages of using JXTA as PropelXbi’s
internal communication mechanism. JXTA communication is unreliable, lacks
persistence mechanisms and hinders a load-balancing feature which is natively
present when using JMS communication system. Furthermore, by implanting
JXTA into PropelXbi we would be futilely replacing a native communication

mechanism, which is innately available in the current PropelXbi architecture.

Grid Computing

Grid computing comes with the possibility to use a group of physically
distributed machines as one big computing device. Various grid products take
care of work distribution, process monitoring and collection of results. High
throughput and computing power can be achieved by a using grid scheduler to
distribute documents to different machines, so that they are processed in

parallel.

162/230

Scheduling and Optimising XML Pipeline Processing Chapter 8: Summary and appraisal of surveyed techniques

8.3 ldentified potential enhancements and selected

implementations
Our research has identified several potential enhancements, which can be
utilised for streamlining PropelXbi. The first two are on-line and off-line
XCompilers. XCompilers increase processing speed by compiling components
together. They remove the need to spend time on saving documents to
intermediary storage space. An on-line XCompiler decides which components
to compile in run-time whilst in the off-line XCompiler case, this decision is
made by the program users. The next enhancement is provided by TupleSpaces
which provide a potential replacement for the JMS queue. Such a substitution
would facilitate the expansion to distributed computing. However, the same goal
can be achieved more conveniently with Grid technologies. The JXTA Project
offers an alternative communication system, which is independent of the
underlying hardware and operating system. Yet, its unreliability and lack of a
persistence mechanism, hinder its employment and in addition, the
communication system currently present in PropelXbi is wholly sufficient
anyway. The Grid technologies offer performance enhancement by providing
facilities to distribute document processing on multiple machines. By such,
documents can be processed in parallel, which results in shorter total processing

time.

From studied techniques and enhancements, we chose to implement the Off-line
XCompiler and a Grid-based distributed version of document processing
system. Having considered technical complexity and time constrains, these two
were identified as the most promising in terms of potential performance

improvement and technical feasibility.

The first implemented enhancement is an Off-line XCompiler. XCompiler
compiles XPipes into self-contained transforming devices called compiled
pipelines. Compiled pipelines are the building blocks of the compact J2SE-

based runtime of PropelXbi.

163/230

Scheduling and Optimising XML Pipeline Processing Chapter 8: Summary and appraisal of surveyed techniques

The second implemented enhancement is the Grid-based distributed document
processing system. The distributed version uses features provided by the Condor
package to distribute documents on multiple machines where they are processed

by compiled pipelines.

Discussion of implementations with evaluation of how big benefit they actually

deliver is subject of Part 3 which follows.

164/230

Scheduling and Optimising XML Pipeline Processing Part 3: Enhancements implementations

Part 3

Document processing

ENHANCEMENTS IMPLEMENTATIONS

165/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

Chapter 9

XCompiler

166/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

9 XCompiler

In chapters 6.3 and 6.4 we developed concepts of On-line and Off-line
XComponent compilers (XCompiler). An XCompiler is a program, which
compiles multiple XComponents of a pipeline into one self-contained
transformation package. The difference between on-line and off-line versions is,
that in an on-line XCompiler, it is the computer who decides which segments of
XPipe to compile, whereas in the off-line case, it is the programmer or user,

who chooses which XComponents to compile.

The high-level concept and technical implementation of an off-line XCompiler
are discussed in the following sections 9.1 and 9.2. In section 9.3 we examine
the performance improvement brought by an off-line XCompiler and the causes
of PropelXbi’s worse performance. We decided to implement the Off-line
XCompiler. This will be referred to by the shorter term as XCompiler from now

on.

9.1 Concept of XCompiler

The XCompiler transforms a pipeline of XComponents into one self-sufficient
package (called a compiled pipeline), where all the code and information
necessary for the execution of multiple XComponents is collocated into a single

location.

This transformation eliminates the need to save and load intermediate results,
which are passed between XComponents, as they can be held in memory and
passed directly to next XComponent. This change provides a significant
performance improvement, as accessing a permanent storage medium is usually

the most lengthy part of computer transformations.

Another benefit of the XCompiler is possibility to run transformations through
XPipes without the need of running the whole PropelXbi engine, where the
start-up and run time demand a lot of resources and take a relatively long time.

The runtime execution engine of compiled pipelines is based on simple Java

167/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

class invocation, whereas PropelXbi transformation engine is built on Enterprise
Java Beans. The former proves to be more efficient which is demonstrated and

discussed in section 9.3.

9.2 Technical implementation of the XCompiler

We have designed and implemented the XCompiler as a Java program
consisting of two parts. The first is the XComponents compiler and the second
is the COmpiled PiPeline Execution Runtime (Copper). This division comes
from the two stages in which the XCompiler is used. The first is compilation of
the pipeline and the second is an execution of the document transformation by

Copper.

9.2.1 Compiler

The task of the XComponent compiler is to create a self-contained package
implementing the transformation defined by a given XPipe and its respective
XComponents. Compilation, in this context, means producing a device which
performs the same transformation as its defining sources (XPipe and
XComponents), but independently of them, without any need to access them.
The objective of the compiler is that the generated code must be executable by

the standard Java Virtual Machine without need of J2EE environment.

The XCompiler achieves decoupling from J2EE environment by creating a
package of standalone Java classes representing the transformation code of each
XComponent. In addition to Java classes, an XML file is created which contains

information about each XComponent, its type, parameters and required libraries.

Compiler architecture

Following figure Fig. 9.1 shows compiler’s architecture:

168/230

Scheduling and Optimising XML Pipeline Processing

XComponent Compiler

XML Parsing o
unit External libraries
XML Generation XSLT compiler
unit (XSLTc)
Packaging Jython compiler
unit (jythonc)

Fig. 9.1 Architecture of XComponent compiler

Chapter 9: XCompiler

The compiler consists of three essential internal units, taking care of parsing

XML documents, generating XML output and packaging of generated code. For

the compilation purpose, two external libraries are used. The first is publicly

available XSLTc (Joergensen 2001) for compilation of XSLT sheets. The

second is freely available jythonc (jythonc) for compilation of Jython scripts.

The actual work of the compiler is illustrated in Tab. 9.1,

described in following text:

169/230

and is further

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

1) Create temporal folder for generated code

2) Parse XPipe definition Tfile;
for each XComponent {

a) Parse XComponent definition file;
b) Acquire XComponent transformation code;
(9] case (XComponent is Java):

copy Java class
case (XComponent is Jython):
compile code with jythonc
case (XComponent is XSLT):
compile code with xsltc
case (XComponent is Exec):
copy command definition
d) Copy required libraries for execution code
e Add record to command list with information
about XComponent (type, parameters, libraries)
}

3 Copy run-time execution classes (Copper)

4) Package generated code and command list into
executable JAR archive

Tab. 9.1 Conceptual code of compiler

The compiler first creates a temporary folder into which all the generated code
is copied. At the end of the compilation process, all data in this temporary folder

is packaged into a JAR archive.

Next, the compiler parses the XPipe definition file. In PropelXbi, the XPipe is
represented by an XML document containing list of its constituting
XComponents and their parameters. The XComponents referenced by XPipe are
defined in other XML files containing descriptions of their type, the
transformation code they provide, their parameters and other information related
to their execution. By parsing the XPipe definition, the compiler acquires a list
of XComponents used in given transformation and a list of parameters supplied
to individual XComponents. Following that, it performs standard compilation

loop on each of used XComponents.

The compilation loop starts by parsing the XComponents definition file. If the

compiler determines that an XComponent was processed in some of previous

170/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

compilation loop, it skips the subsequent three steps and continues to the last

one.

The next step of the compilation loop is the acquisition of the transformation
code. XComponents can either specify the location of the external code (e.g.
Java class file, an XSLT sheet etc.) or can have the code embedded in
themselves in a special CDATA element. When the transformation code is
embedded in the XComponent, it is either kept as plain text (which is case of
XSLT sheets, Jython scripts and Exec commands) or as a binary file encoded by
Base64 algorithm. Base64 algorithm encodes binary data using only 64
alphanumeric characters of standard ASCI encoding, so that it can be treated as
a text. This encoding is necessary when embedding binary files into XML
documents, as CDATA elements must not contain any data which aren’t
Unicode characters (W3C 2000). Depending on how code is referenced in
XComponent, the compiler either loads the transformation code from disk or

extracts it from the XComponent definition file.

The third step of the compilation loop is compilation of the acquired code. For
each compiled XComponent, a new unique sub-folder is created in the temporal
folder, so that code from different XComponents is clearly separated. All code
resulting from this step is placed in its corresponding sub-folder. Depending on

the type of transformation code, compilation can result in four different actions.

Java compilation
When transformation code is a Java class, it is simply copied into its sub-folder

as Java classes are already compiled and no further compilation is required.

Jython compilation

Scripts written in Jython are essentially python scripts which are interpreted by
Java Python interpreter (Jython). In order to create Java classes which would do
the same work as the original Jython script does, it is compiled by a Jython
compiler, jythonc. Jythonc produces a jar file which contains a Java class with
the same name as the Jython script. This class then performs the same work as

the Jython script would have done if it were interpreted by a standard Jython

171 /230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

interpreter. Apart from the compiled class, the jar file also contains precompiled

Jython libraries which are necessary for execution of the compiled script.

Jythonc also provides an option to exclude libraries aren’t from the resulting jar.
This would be beneficial if the Jython libraries were located on some know
location and were reused for all compiled scripts. The advantage is that the
resulting jars are smaller as the runtime libraries aren’t included in each of them.
However, as goal of XComponent compiler is to create a stand-alone
transforming device, it must not rely on presence of any external libraries and

thus this option could not be used.

XSLT compilation

XSLT sheets perform transformations of any XML files to which they are
applied. One way of using them is to compile them into translets
(transformation applications) first. A translet is a Java class which performs the
same XML transformation as the original XSLT sheet would do. This translet is
then either run from command line, or invoked at runtime as a normal Java
program. The advantage of compiling XSLT sheets into translets is that
execution of the Java program is faster than applying standard XSLT

stylesheets.

This fits nicely into what we want to achieve and so we use XSLTc to compile
XSLT sheets contained in XComponents into translets and use the generated

translet code as the transformation code.

Exec compilation

Exec definitions are textual commands. At the time of execution, those
commands are given to the underlying operating system to execute. Hence, no
compilation is needed and the whole exec command is simply copied into an

information record which is persisted in the last step of the compilation loop.

The next step of the compilation loop copies the libraries, which are necessary

for execution of generated transformation code, into the transformation package.

172/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

The compiler provides an option to note the location of libraries without their
physical copying. This leads to smaller size of the generated code, but makes

compiled pipeline dependent on presence of required libraries on the classpath.

The last step of the compilation loop enters a record into the XML command list
which contains runtime information about the processed XComponent. Namely,
it describes the transformation code, states the XComponent’s type, its

parameters and libraries it needs for execution.

When all the XComponents are processed, the compiler adds command list and
Copper classes (execution runtime) to the transformation package. As a final
step, the compiler packages all prepared files into an executable Java archive
(JAR) file.

The JAR file created by compiler (compiled pipeline), performs the same
transformation as the XPipe from which it was created, but can be run stand-
alone from command line which dramatically speeds up execution as shown in
9.3.

Usage example
To show how compiler works, lets have a look at an example of the compilation
process. Suppose we have an XPipe called XPipel, which consists of 5

XComponents as on following figure Fig. 9.2.

XPipel

Fig. 9.2 XPipe example - transformation view

To illustrate different types of XComponents, let’s say that XComponent A is a

Java XComponent, B a Jython XComponent and C an XSLT XComponent.

173/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

Third and fourth components of XPipel are the same as XComponent A with

different parameters.

In the file system, XPipel is implemented by following files:

\XPipel.xpi (XPipe definition Tfile)

\A.xco (definition file of XComponent A)

\B.xco (definition file of XComponent B)

\C.xco (definition file of XComponent C)

\A.class (transformation Java class of XComponent A)
\B.py (transformation Jython script of XComponent B)
\C.xslt (transformation XSLT sheet of XComponent OC)

Fig. 9.3 XPipe example - file system view

We have chosen to make all the XComponents reference their code externally,

so that it better illustrates what happens in the compilation process.

When the compiler is run on XPipel.xpi, it produces a compiled pipeline,

contained in XPipel.jar. Structure of XPipel.jar is on following figure Fig. 9.4.

\1\A.class (transformation code of XComponent A)
\2\B. jar (transformation code of XComponent B)
\5\C.class (transformation code of XComponent C)
\cmdlist._xml (an XML file containing information

about how XPipel should be executed)
\Transform.class (execution runtime class)
*_class (other necessary execution classes)
\lib*_jar (necessary Java libraries)

\META-INF\manifest.mf (JAR description Tile)

Fig. 9.4 Structure of example compiled pipeline

Folders 1, 2 and 5 contain generated transformation code. As XComponents 3
and 4 use the same code as XComponent 1, their transformation code isn’t

generated anew, but the code of XComponent 1 is reused. Both XComponents

174/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

A and C are compiled into Java classes, as they are of type Java and XSLT. The

Jython XComponent B is compiled into ajar file.

Other files, which are needed for execution of the compiled pipeline apart from
the transformation code, are also included in XPipel.jar file. The cmdlst.xml is
an XML file which contains information necessary for execution. The
Transform.class and associated classes implement the actual execution runtime
(Copper). The Manifest.mf is a file which gives information about the archive
file and informs Java Virtual Machine that Transform.class should be invoked,

when the compiled pipeline is run from the command line.

The cmdlist.xml for our example is shown on figure Fig. 9.5

175/230

Scheduling and Optimising XML Pipeline Processing

<cortueandLi st>
<xcomponents>
<xco number="1">
<type>JavaClass</type>
<code dir="I1" package="">A_class</code>
<classpath absolute-classpath=""true'>
C :\xml-apis.jar
</classpath>
<parameters>
<param name="Paraml’>111</param>
</parameters>
</xco>
<xco number="2">
<type>Jython</lype>
<code dir="2" package="">B_jar</code>
<classpath absolute-classpath="true'">
C :\jython_core_libs_jar
</classpath>
<parameters/>
</xco>
<xXco humber="3">
<type>JavaClass</type>
<code dir="1" package="">A_class</code>
<classpath absolute-classpath="true">
C :\xml-apis.jar
</classpath>
<parameters>
<param name="‘Paraml'>222</param>
</parameters>
</xco>
<xco number="4">
<type>JavaClass</type>
<code dir="I1" package=""">A_class</code>
<classpath absolute-classpath=""true">
C :\xml-apis.jar
</classpath>
<parameters>
<param name="'Paraml''>333</param>
</parameters>
</xco>
<xco number="5">
<type>XSLT</type>
ccode dir="5" package=""">C.class</code>
<classpath absolute-classpath=""true'>
C :\endorsed\xalan.jar;
C:\endorsed\xsltc. jar
</classpath>
<parameters>
<param name='"newName''>CCCC</param>
</parameters>
</xco>
</xcomponents>
</commandList>

Fig. 9.5 Example cmdlist.xml

Chapter 9: XCompiler

Execution runtime is described and example of how the execution is performed

is given in following section.

176/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

9.2.2 Execution runtime (Copper)
The execution runtime (Copper) performs the document transformation which is
embodied in the compiled pipeline. Figure Fig. 9.6 depicts Copper’s

architecture.

Copper
XML Parsing Java
unit Executor
Extraction Jython
unit Executor

XSLT
Executor

Exec
Executor

Fig. 9.6 Architecture of Copper

Copper consists of four essential units. XML Parsing unit is used for parsing
command-list, which provides Copper with all the information necessary for
correct execution. The Extraction unit is used for the extracting of data from the
JAR files. The Execution manager takes care of the flow of document through
the XComponents during the transformation process and the Executor classes

perform the actual execution of transformation code.

Functioning of Copper is illustrated by following high level code:

177/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

1) Extract content of JAR archive into temporal folder

2) Parse command-list file;
for each XComponent {

a) Acquire input document

b) case (XComponent is Java):
Load libraries required by XComponent;
Create instance of transformation class;
Set instance"s parameters;
Execute transformation instance;

case (XComponent is Jython):
Load libraries required by XComponent;
Create instance of transformation class;
Execute transformation instance;

case (XComponent is XSLT):
if (correct Xalan is NOT available):
Stop;
Save input to temporary File;
Create parameter list;
if (correct Xalan is already in JVM):

Create instance of transformationclass;
Execute transformation instance;
else:

Instruct 0S to execute command which creates
new JVM that runs the transformation;

case (XComponent is Exec):
Pre-process command definition for current OS;

Instruct 0OS to execute command definition;

(9] if (occurred Error):
save state of document before last XComponent;

save Error message;
Stop;

else:
if (next XComponent can read input from memory):

keep result in memory

else:
save result to disk

Tab. 9.2 Conceptual code of Copper

The pipeline execution, performed by Copper, starts with extraction of the
content of the archive which contains the compiled pipeline. This is necessary,

as the libraries needed for execution can’t be loaded form an archive file.

178/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

Next step is parsing the command-list file, which contains information about
how the process of transformation should be performed. The list of
XComponents which should be executed is obtained and for each of them, the

Execution manager performs following sequence.

Firstly, it either loads the input document from disk or acquires it from memory,
depending on if previous XComponent produced result as a file or data kept in
memory. Then, it passes document and information about transforming code to
appropriate Executor, which carries out actual transformation of the document.
Depending on the type of XComponent, execution can be run in four different

ways.

Java execution

To be able to run given Java class, we first need to get its instance. This
however, can be a difficult task, because not only we need to load the class, but
also all libraries it uses. Therefore, the first step of the Java execution is loading

the libraries referenced by the transformation code.

The Java executor has to follow the same algorithm as is used by Java Virtual
Machine (JVM) to locate the libraries. First, it searches the system classpath,
then it inspects the folder in which the transformation class is placed, then the
\lib folder in the compiled pipeline archive and finally classpath which may be
passed in from command-line. If the required library is found on any of those

paths, it is loaded in the memory.

After all necessary libraries are loaded, an instance of the transformation class is
created. If there are any parameters, which change the XComponent’s
behaviour, they are set by invoking appropriate methods of the created instance.
The XComponent system requires that all Java codes implementing
XComponent with parameters must have methods of type setXxx(String value),
where Xxx is the name of parameter. Thanks to that, parameters can be set at
run-time by knowing name of its setting method. So for example, if there is a

parameter “count”, it is set in the instance by calling its “setCount” method.

179/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

Furthermore, the XComponent system requires, that all Java XComponents
must have an execute(in, out, err) method which performs the transformation.
Thence, after all parameters are set, input, output and error variables are
supplied to the execute() method and the method is invoked using standard Java

invocation call.

Jython execution

Invocation of Jython code starts by loading the Jython specific run-time library
and creating an instance of the transformation class. Unfortunately, because of
the way that jythonc works, it is not possible to pass any parameters to compiled

Jython scripts.

In all compiled Jython scripts used for XComponents, there is method called
“main” which is the main (and only one) access point to script’s functionality.
Transformation is then executed by invoking the “main” method of the

instantiated class with input, output and error variables passed in as parameters.

XSLT (translet) execution

In order to run translets, XSLTc and the Xalan library, version 2.5 or greater,
must be available to run-time of JVM. This however causes a lot of difficulty.
As we want to remove the dependence of compiled pipelines on external
libraries, we need to check if the correct versions of XSLTc and Xalan are

available.

The XSLT Executor checks if Xalan is already available in current JVM. If it is
not available, it checks the \lib folder of the compiled pipeline and the classpath
supplied on command line to see if the correct Xalan and XSLTc libraries can
be found there. If all checks are unsuccessful, execution stops, as it is not

possible to continue with the transformation.

When it has checked that execution of translet can go ahead, the input document

is saved to the temporal directory as translets take files as their input.

180/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

In next step, the Executor constructs a list of parameters which will be passed to
the translet. Translets take parameters in a special format and the parameter list

must be formatted accordingly.

As a final step, the Executor performs the execution which is different for
systems where Xalan and XSLTc are already available to JVM and systems

where Executor needs to use supplied Xalan and XSLTc libraries.

In the first case, Executor simply passes the parameter list to the “main” method
of the class org.apache.xalan.xslt.Process and invokes it, which is the standard
way of invoking translets. We need Xalan and XSLTc already loaded by the
JVM as the class org.apache.xalan.xslt.Process is located in XSLTc library,

which requires the correct version of the Xalan library for its execution.

The second case, where JVM doesn’t have Xalan/XSLTc loaded or where it has
the wrong version of Xalan, is more complicated. Xalan and XSLTc libraries
can’t be simply loaded into JVM, but have to be loaded as “endorsed libraries”
(Sun Microsystems 2002b). This is achieved by passing special directive to
JVM on its startup. In our case, we can’t change settings of the JVM that is
available. We have to create a command which starts a completely new JVM
with a directive specifying the location of the Xalan and XSLTc libraries and
stating that they are “endorsed libraries”. This command is then passed to
underlying operating system for execution with the

org.apache.xalan.xslt.Process and the prepared parameter list as its arguments.

Exec execution

The Exec definition is a line of text presenting a command which is to be run by
the underlying operating system. This text can contain three special words -
“SOURCE”, “OUTPUT” and “ERROR” which are replaced by the full names
of the input, output and error files respectively. In addition, in Windows, names
of files have to be surrounded by double quotes as they can contain spaces,

which can cause malfunction of the system commands.

181/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

In order to be able to run the command specified in the exec definition, we have
to prefix it with the name of executing command interpreter. In Unix systems,
command interpreter is shell “sh”. In Windows 95 and 98, it is “command.com”

and in newer versions of Windows it is “cmd.exe”.

The command specification prefixed with the interpreter is then submitted to the

underlying operating system, which executes it.

When the Executors have finished executing the document transformation, the
Execution Manager checks if the transformation has run correctly, or if there
were any errors during the transformation. If an error occurred, the Execution
Manager stops the transformation and creates two information files, which can
help in determining what caused the problem. The first file contains the state of
document before it was submitted to the last XComponent and the second is an
error message which was received during its processing. If no error occurred, it
either saves the resulting document to the disk, or keeps it in memory, if

following XComponent can read its input from memory.

Example of execution
To illustrate how execution works, lets have a look at execution of the compiled
pipeline XPipel.jar, created in previous section. As the pipeline is encapsulated

in an executable jar, it is invoked by the standard Java jar invocation command:

jJava -jar Xpipel_jar in.xml out.xml error.xml

Using this command, we instruct the pipeline XPipel to transform in.xml and
save the resulting document in out.xml. If an error occurs, the state of the

document before entering the erroneous XComponent is saved in error.xml.

Process of execution of XPipel is shown on the following figure Fig. 9.7.

182/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

The execution example shows that documents are saved to temporal files
between those XComponents that can’t read or write its input and output to
memory (Jython, XSLT and Exec XComponents). Conversely, the
XComponents which can read and write documents to and from the memory
pass the intermittent documents directly to each other (third and fourth

components).

9.3 Performance Comparison

To evaluate the performance improvement provided by XCompiler, we carried
out performance tests on the execution of pipelines compiled by the XCompiler
and pipelines run in the current PropelXbi. First, we describe the testing
procedure and the performed tests. Then, in section 9.3.1 we present the
performance results we obtained and in section 9.3.2 we discuss the causes and
reasons of PropelXbi’s bad performance. Finally, in section 9.3.3 we draw
conclusions and suggest ways of how to improve performance of current XML

processing.

To test the transformation performance of the current PropelXbi implementation
and the XCompiler, we carried out the following performance tests. We selected
three sample XPipes each of different complexity (small, mid-size and large).
For each pipeline we created three test files of small, mid and large size. Each
test file was run through its pipeline in two scenarios. The first scenario was the

transformation of single file, where the test file was consecutively submitted to

183/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

the pipeline five times in a row, but at any given time, there was only one file
being processed by the pipeline. The second scenario was the transformation
under heavy load, where a group of twenty files was submitted to a pipeline in a
batch. The average processing times stated in the following tables are calculated
from the times for all processed documents obtained in their respective
scenarios. All tests were run on Pentium Il 1Ghz, with 512 MB of memory and

Windows 2000 operating system.

9.3.1 Processing Performance Results

The first tested XPipe was a small pipeline of four Java XComponents, which
carried out the transformations of CSV files to XML files. Sample files were of
size 10 KB, 800 KB and 1600 KB. The tables and graphs below give the results
of execution of compiled pipeline (XComp) and the pipeline in PropelXbi for
each testing file size and each scenario. The last column is the ratio between the

processing times of compiled pipeline and PropelXbi.

Single XComp P’Xbi P/X Batch XComp P’Xbi P/X
Small 16s 82s 513% Small 2.3s 79s 343 %
Mid 92s 354s 385% Mid 9.7s 342.1s 3527 %
Large 188s 698s 371 % Large 19.7 s crash* — %
© ko | o
e

Small Mid Large Small Mid Large
File size File size

Fig. 9.8 Transformation performance of small-size pipeline

* PropelXbi crashed after processing 3 documents of 20. Reported problem was

Out of memory error.

The tables and graphs show the performance results for a single and batch runs

for small, mid and large size documents.

184/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

In the single run scenario, the execution of the compiled pipeline showed to be 3
to 5 times faster than the transformation by the current PropelXbi application.
The slow-down of PropelXbi decreased with larger sizes of test files. We
believe that, the main source of inefficiency of PropelXbi is the overhead
associated with the maintenance of Enterprise Java Beans. This premise would
explain why PropelXbi performs worse in runs of small files. In such runs, the
time spent by useful activity - that is the transformation itself - is lesser

compared with the overhead which stays relatively the same.

Batch run scenario showed the even greater inefficiency of the current
PropelXbi architecture. When the number and size of documents transformed by
PropelXbi increased, the EJBs started blocking each other and the overall time
of transformation greatly grew. In the small-size file run, the transformation of
individual files didn’t overlap each other and thus processing time didn’t change
significantly. However, in the mid-size file run, the EJB overhead manifested
itself in such a way, that PropelXbi performed 35 times slower than compiled
pipeline. As another proof of the inadequacy of the EJB approach, the large-size
file run didn’t finish at all, as PropelXbi crashed after processing three files out
oftwenty. The reason give for the crash was shortage of memory, even with 512

megabytes available.

In the batch run, the compiled pipeline didn’t exhibit any significant
performance fluctuations as a batch processing is executed in the same the way
as single file runs. By its construction, the compiled pipeline can process only
one file at a time and thus if batch of files is submitted to it, successive files are
not taken into processing until previous ones are finished. For the same reason,

there aren’t any problems with lack of memory resources.

The second XPipe tested, was a mid-size pipeline of 31 Java and 1 XSLT
XComponent. Pipe was used for processing of a sample UBL Order, generating
standard business response according to UBL Op65 schema. UBL (Universal

Business Language) is a set of standardized XML business documents for

185 /230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

automated business interoperation. The sample purchase files were of size 7

KB, 50 KB and 100 KB.

Single XComp P’Xbi P/X Batch XComp P’Xbi P/X

Small 92s 381s 414% Small 100s 422s 422 %
Mid 115s 406s 353 % Mid 123s 433s 352 %
Large 139s 440s 317% Large 147s 470s 320%

il “Tlhi 1.
Small Mid Larga
File size

Fig. 9.9 Transformation performance of mid-size pipeline

In this test, the compiled pipeline again proved 3 to 4 times faster and the
relative difference was again greater in small-size file runs as the actual useful
processing time shortened in comparison with the fairly stable overhead time. In
contrast with the previous test, the batch run processing times weren’t
immensely different from those of the single run. This is caused by the small
size of files passed through the pipeline. In the previous case, the files were of
sizes in order of hundreds of bytes, in this case, they were in sizes of order of
tens of kilobytes. Because of that, the EJB architecture didn’t consume such
huge amounts of memory as in the previous case and the EJB server didn’t get

to a state of congestion.

The last XPipe tested, was a large-size pipeline of 87 Java XComponents. The
large XPipe implemented partial conversion of a bill file from ccML (XML
mark-up used for OpenOffice documents) to LexML (Legislation Mark-up
Language). The sample bill files were of size 20 KB, 100 KB and 200 KB.

186/230

Scheduling and Optimising XML Pipeline Processing

Single XComp P’Xbi P/X

Small 144s 151.4s 1051 %
Mid 29.0 s 169.2s 583 %
Large 454 s 1922s 423 %
o
545 150 aj liall H j— [XCompiler
I*JCD H I """" H _____ H = «PropelXbi
r= r r M I rn

Chapter 9: XCompiler

Batch XComp P’Xbi P/X

Small 150s 1734 s 1156%
Mid 30.1s 1948 s 647 %
Large 46.2s 2215 479 %
~2D1
el 20 ; I jo—
£S 150 mm | I m | I I [XCompiler
AVE 100__ -]/J rrrrrrrrrrrrrrrrrr Jql [wPropelXbi

H «U r-e~FWr

small Mid Large

Fig. 9.10 Transformation performance of large-size pipeline

Similar to the previous tests, the execution of the compiled pipeline proved
faster. In this case, the performance difference was even greater, with large files
being processed by the compiled pipeline 4 times faster and small files even 10
times faster than by PropelXbi. Again, as in the previous test, the batch-
processing scenario gave worse results for PropelXbi, due to contention of the

EJB’s for memory and processing time.

9.3.2 Processing Pattern Analysis
In this subsection, we look on the reasons of the poor performance of PropelXbi
and assert observations about PropelXbi’s performance in different conditions,

namely in single and batch runs.

Processing Pattern Analysis

In order to examine the transformation performance of PropelXbi, we remind
you how we defined document transformation phases in section 2.1, as we will
decompose the document transformation into such stages. These transformation
stages are shown on the following figure, which depicts the decomposition of

the document transformation in a pipeline, consisting of two XComponents.

187/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

XComponent 1 XComponent 2
e b e e >
IN ouT
Pre-proc Core-proc Post-proc Pre-proc Core-proc Post-proc
Loading document Passing document to Saving document
from disk next component to disk

Fig. 9.11 Document transformation stages

The first step in the document transformation is loading the document from disk
or acquiring it from any other storage, which serves as source of the documents
to process. When it’s loaded, it is passed to the XComponent, in which
processing takes three phases. The first phase is the Pre-processing phase where
preliminary actions take place. In case of PropelXbi and compiled pipelines,
these preliminary actions are for example, acquiring runnable XComponent
code, loading required libraries, setting XComponent parameters and checking
pre-conditions. Unlike in the compiled pipelines, PropelXbi carries out one
extra action, which is the extraction of the actual document from the received
JMS message. The second phase is Core-processing phase which is the
execution of the actual transformation which changes the content of the
document. The last phase of in-component processing is the Post-processing
phase in which the output of the document is further processed, post-conditions
are optionally checked and in the case of PropelXbi, an output JMS message is
assembled, which carries the transformed document to the next component. Pre-
processing and Post-processing are considered to be maintenance stages, as the
actual transformation is carried out only in Core-processing stage. Following the
processing in one component, the resulting document is either passed to the next

component, or saved to disk, if there aren’t any other transformations needed.

When we look on the performance data with these stages in mind, we can

instantly see the performance impediments in PropelXbi and their cause.

188/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

PropelXbi - single run

200 1

180

160

140 - O maint
120 Iproc
100

80 0O comm

60

0O I+s

20

small small small mid mid mid large large large
small mid large small mid large small mid large

XCompiler - single run

200 1

ol 160
F@ 140 0 maint

5 120 B proc
100
80 0O comm

0 I+s

small small small mid mid mid large large large

small mid large small mid large small mid large

Fig. 9.12 PropelXbi and XCompiler transformation stages in single run

189/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

PropelXbi - single run

90% -
80%
70% —a O maint
60% = proc
50%
40% " 0O comm
30% . O l+s
20% -

0% ml 1 1 1 1T —3+= - L- J -1

small small small mid mid mid large large large

maanc B

small mid large small mid large small mid large

XCompiler - single run

100% -l
90%
80%
70% O maint
E 60% I proc
50% 4-
40% 4_ 0O comm
30% O I+s
20%
10%
0%
small small small mid mid mid large large large
small mid large small mid large small mid large

Fig. 9.13 Ratio of PropelXbi and XCompiler transformation stages in single run

190/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

In graphs Fig. 9.12 and Fig. 9.13, the Pre-processing and Post-processing stages
were bundled into the Maintenance category, Core-processing is called by the
simple term Processing and the time spent in passing documents from one
component to another is in the Communication category. A special category is
given to time spent by loading documents in the pipe and saving them to the
disk. Each column represents the result for given pipeline and a sample

document run through it.

The first thing, which can be seen from the acquired results is the immense
amount of time spent by PropelXbi on doing maintenance work, which is
accounting for around 80 % of all the processing time. This is due to the
different architectures of PropelXbi and compiled pipelines. In the compiled
pipeline, when a document is handed to an XComponent to process, the
transforming Java class is loaded into memory or simply invoked if it was
loaded to memory already. In PropelXbi, though, the receiving Message Driven
Bean uses RMI to call another EJB called the Executive, and requests the
appropriate XComponent. The Executive then passes back the transformation
code and the MDB executes it. As another maintenance operation, the MDB
extracts the document from the received JMS message before the execution of
the XComponent and then, after the execution, it creates a new JMS message
and incorporates the transformed document in it. All these three processes
prolong the Pre-processing and Post-processing stages. In contrast, in the
compiled pipeline, documents are passed directly and no additional document-
related processing needs to take place. This results in most of the processing
time being spent on actual useful transformation, which is demonstrated by the

high ratio of time spent in Core-processing by the compiled pipelines.

The second aspect, which can be observed in our performance data, is the
efficiency of the JMS communication system. In PropelXbi, documents are
passed between XComponents by wrapping them in a JMS message and placing
then in a processing queue, from where they are picked up by the MDB, which
executes the code of the successive component. In the case of compiled

pipelines, documents are either kept in memory and passed to the following

191 /230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

components directly, or if transforming code doesn’t allow saving its output to a
memory a temporal file is used to save intermediate results. As shown in the
graphs, communication in both devices contributes with less than 1 % to the

overall processing time and thus proves to be very efficient.

Analysis of slow-down in batch runs

In batch runs, where multiple documents are submitted to a processing pipeline
at once, PropelXbi shows to be even more inefficient than in single runs. The
cause of this inefficiency is PropelXbi’s architecture. When multiple documents
are in PropelXbi’s pipeline, multiple EJB’s attempt to process inserted
documents and contend for processing and memory resources. This contention
leads to time delays and less effective use of allocated resources. Furthermore,
as the EJB’s require large amounts of memory, the more EJBs that are running,
the less they are efficient, as they quickly use all available memory. In such
case, an EJB has to use only limited amount of memory, which is allocated to it
and performs less efficient than it would if it had the ideal quantity of memory.
In compiled pipelines, there isn’t any corresponding problem with multiple
documents, as they were designed to process only one document at a time and
don’t use EJB technology. Following figure depicts the mentioned aspect of

EJB contention.

192/230

Scheduling and Optimising XML Pipeline Processing

PropelXbi - batch run

350 n
¢a 300
1 250
I 200
m 150
3> 100
8 50
0
small small small mid mid mid large
small mid large small mid large small
PropelXbi - batch run
100%
g 80%
W
| 60%
1 40%
a
1 20%
0%
small small small mid mid mid large
small mid large small mid large small

large
mid

large
mid

Chapter 9: XCompiler

0O maint
m proc
0O comm
O I+s
large
large
O maint
m proc
0O comm
O I+s
large
large

Fig. 9.14 Proportion of PropelXbi transformation stages in batch run

Fig. 9.14 clearly shows that in the case of large pipes, the communication stage

grew significantly. In PropelXbi, the number of EJB’s is fixed and thus when

there are more documents than EJB’s, these documents which can’t be

processed at the moment are placed in a queue, where they wait for next EJB

which becomes free. This idle waiting causes growth of the communication

stage. In the case of a small pipeline, the communication delay didn’t play an

important role, as PropelXbi managed to process submitted documents before

the next ones were submitted and thus resource contention didn’t occur. As

193/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

processed documents in this pipeline were of large size, the saving and loading

stage became longer than in the other cases.

The exceptional length of the processing time of the mid-size document in a
small pipeline (5 minutes 42 seconds) led to an interesting observation. It seems
that when we increase the size of documents, PropelXbi at some stage reaches a
point of congestion, after which its performance declines with significantly
higher rate. To test this behaviour, we used 5, 10 and 15 stage pipelines based
on the small pipeline, used in first test. Through these pipes, we run batches of
20 files of sizes 50KB, 100KB, 150KB ... to 600KB. The following figure

shows the average processing times pre document we obtained.

Fig. 9.15 Change of average processing times with respect to file size in batch

runs

Note: Maximal available memory used in these tests was 512 MB.

Fig. 9.15 shows that the congestion point for longer pipelines lies between 450
KB and 500 KB and from the first test we know, that the congestion of the small
pipe is located between 600 KB and 800 KB. PropelXbi gets to a congestion
point when the majority of available memory is used for EJB’s and documents
in being transformed. In such a situation, processing suffers by lack of available
memory and competing for scarce memory resources causes overhead, which

hinders performance in a significant scale. The obtained results show an

194/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

interesting fact that the location of this congestion point doesn’t depend on the
size of pipeline, but on the size of the files being processed and maximum

amount of the available memory.

The independency on the pipeline size is a result of PropelXbi’s architecture.
There is a fixed number of EJB’s, which can be allocated and even if the
number XComponents in a pipeline is greater, only that number of EJB’s is
loaded to memory. As number of EJB’s is fixed, the only other thing which can
consume available memory is the data being processed. Because of that, the
location of congestion point depends on the size and number of files being in
PropelXbi at the same time and amount of memory available. In shorter
pipelines, transforming the engine manages to process the documents faster and
so there are fewer documents in the pipeline at one time and thus less memory is
used. This results in shifting the congestion point to the higher sizes as in the
case of pipeline consisting of 5 components. With a higher limit of maximum

available memory, the congestion point would shift to greater file sizes as well.

9.3.3 Conclusion and Improvement Suggestions

The performed tests showed that the performance of compiled pipelines is
superior to the performance of current PropelXbi transformation engine. In
single file runs, the compiled pipelines performed 3 to 5 times faster,
occasionally even 10 times faster. In batch runs, where multiple documents
were processed at the same time, the performance difference was even greater
with the compiled pipelines being 3 to 6 times faster, in one case reaching an

exceptional 35 times faster execution.

The cause of the inefficiency of PropelXbi transformation engine was identified
to be its architecture built on Enterprise Java Beans. It shows that use of EJB’s
is counterproductive as their maintenance takes an average of 19 times more
time (in a single run) than the execution of the actual document transformation.
In batch runs, the maintenance cost rises to an even worse ration of an average
of 57 times the time of processing. As can be expected, in a case of small

document sizes, ratio of time spend by maintenance and the time of actual

195/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

transformation is considerably higher, as the transformation time is small
compared to the maintenance time which stays rather stable irrespective of the

document size.

The architecture based on EJB’s was developed with objective that Message
Driven EJB’s (MDB’s) would automatically allocate themselves to parts of the
pipeline, where their work is most needed. Furthermore, if the MDB pool was
clustered over more servers, the work could be physically distributed over more
machines and thanks to that, processed in parallel. Unfortunately, it shows that
the overhead associated with their maintenance is too big compared with the
transformation work they are supposed to do, and impedes all potential
advantages they could bring. It is possible that EJB architecture would bring
some benefit if the MDB pool was spread over several machines, but performed
tests suggest, that the maintenance overhead would override this performance

gain as well.

As performance is not the only criterion when examining the quality of a
system, we look on other features of PropelXbi and XCompiler as well. The
following table overviews features and qualities of PropelXbi and the compiled

pipelines execution runtime.

Features XCompiler PropelXbi
Java technology J2SE J2EE
Communication system Direct calls JMS, RMI
Speed High Low
Required memory Small Large
Stable performance Yes No
Monitoring _" Yes
Exception notification _* Yes
Simultaneous processing — Yes
Innate distributability — Yes

Tab. 9.3 Feature comparison of XCompiler and PropelXbi

Note: *this feature can be easily implemented.

196/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

The table first records our finding that compiled pipelines achieve superior
speed of execution compared to PropelXbi. As another recorded feature, the
memory footprint and requirements are observed. The execution of compiled
pipelines requires only plain JVM, setting small a memory requirement,
whereas PropelXbi needs the whole J2EE application server running for its
functioning. As the XCompiler transforms one document at a time, with
increased number and size of submitted documents, its processing time
increases linearly. In contrast, as shown in previous analysis, in PropelXbi,
increasing the number and size of submitted documents does not result in
linearly increased processing time. After a certain point is reached, the

execution time of transformations in PropelXbi increases super-linearly.

The current compiled pipeline execution runtime does not provide monitoring
events and exception notification in a way, which could be used by other
applications. However, it does provide this information by printing it on the
screen. As such information is available, if there was a need to provide these
features to other applications, they could be easily implemented by providing
event notifications in addition to current visual presentation. We already
mentioned several times, that the XCompiler was not designed to allow
processing of multiple documents at the same time and thus it does not have the
feature of simultaneous processing. Even though, PropelXbi can process several
documents at the same time, it showed that simultaneous processing decreases
its performance and doesn’t bring any advantage. The last mentioned feature is
intrinsic distributability. J2EE architecture was designed with vision of
distributed EJB pools in mind and thus PropelXbi innately provides this feature.
In case of XCompiler, distributed processing can be implemented with help of

Grid-technologies, which implementation is topic of next chapter 10.

Improvement suggestions

Our suggestion is to keep the current infrastructure for the development of
XPipes and XComponents and instead of the current EJB-based transformation
engine, use a different one, based on plain Java class invocation (for example

compiled pipelines execution runtime). In that way, the advantages of both are

197/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

attained. The current XPipe development environment would provide easy
construction and maintainability of pipelines and a plain Java transformation

engine would provide good transformation speed.

There are several possibilities to acquire such a transformation engine. One
option is to compile the pipelines before execution using XCompiler and use a
script or a direct Java call to start compiled pipeline execution runtime. In the
current state, execution runtime provided by XCompiler doesn’t provide three
facets, which are present in the current EJB solution. They are: monitoring
information, error and exception handling and the possibility to submit multiple
documents at the same time. More precisely, monitoring and error handling is
present in the current compiled pipe runtime, as all the necessary monitoring
and exception information is written to screen, but can’t be reasonably used by
other Java applications. This can easily be changed to allow such usability,
though. The compiled pipeline runtime was not designed to process multiple
documents at the same and thus doesn’t allow it. If such feature was needed, an
extended version could be written, which would create multiple instances of the
runtime, while examining available memory at the same time, so that exceptions
caused by lack of memory resources wouldn’t occur. Our discussion of potential
modifications of current XCompiler code has led us to a second option, which is
taking the current XCompiler as a base and extending it so that it provides

additional features and/or better integrates with other code used in PropelXbi.

The other option would be to write a new engine, which would use the same
concept as XCompiler, which is a simple Java class invocation. In that case,
documents could be passed between individual XComponents in the same way
as in the XCompiler, which is by saving them in memory and passing them
directly to successive components without the need of writing them to disk.
Optional writing to disk could be used as well though, as a security matter
against unexpected crashes of execution system. As such an engine would be
integral part of PropelXbi, it would not need to observe the limitations set on
XCompiler, like for instance that all generated code needs to be Java class or

jar. Without that limitation, Jython and an XSLT code could be kept in its

198/230

Scheduling and Optimising XML Pipeline Processing Chapter 9: XCompiler

original form and appropriate processors could be used to execute them, which

would result in more effective execution.

If there was a strong need to keep the current EJB architecture, in spite of its
vast inefficiency, modification in document submission would be another
option. Tests have shown that multiple documents present in the execution
engine at one time cause its slow-down and thus a throttling device would
improve its performance. A throttle would be placed in front of PropelXbi’s
input and would hold submitted documents, so that there is only one document
being processed at one time. It seems counterintuitive to delay work, which
needs to be done, but tests have shown that delay caused by concurrent
processing of multiple documents is many times longer than processing time
itself. Because of that, letting only one document in, at a time would result in a
shorter overall transformation time of the whole batch of documents compared

to the situation if they were submitted all at once.

199/230

Scheduling and Optimising XML Pipeline Processing Chapter 10: Distributed XML processing

Chapter 10

Distributed XML processing

200/230

Scheduling and Optimising XML Pipeline Processing Chapter 10: Distributed XML processing

10 Distributed XML processing

To examine how the concept of parallel processing can be utilised for PropelXbi
and XML document processing, we implemented a distributed version of the
document processing system. First, in 10.1 we present the distributed processing
system we assembled. Then, in 10.2 we list a set of questions designed to
evaluate the usefulness of the parallel processing system used. Then, in 10.3 we
draw theoretical solutions to our questions and in 10.4 we show the results we
got from real measured data and discuss the differences with the theoretical
solutions. In enclosing section 10.5 we provide a conclusion about efficacy of

the use of parallel processing for document transformations.

10.1 Distributed processing system

We’ve decided to use compiled pipelines, created by the XCompiler from the
previous chapter, and assembled a distributed system which allows
simultaneous use of multiple computers for transformation of a large number of
documents. As there are many already existing packages which take care of
work management in distributed environments (as reviewed in chapter 7.3), we
decided to use one of them. Namely we chose to use publicly available package
Condor 6.6.2. The structure of the implemented processing system is shown on
Fig. 9.16

201 /230

Scheduling and Optimising XML Pipeline Processing Chapter 10: Distributed XML processing

One machine was selected as a Master and was used for document submission
and management of work distribution to client machines. The Condor service on
client machines received documents from the Master and submitted them to the
appropriate compiled pipelines according to additional instructions received
from the Master. When the processing of a document finished on a client
machine, the resulting document was sent to the Master and client waited for

further documents to process.

Our distributed processing system consisted of one Master machine with
Condor and the submitting scripts and twenty Client machines with Condor and
identical file structures of compiled pipelines. All the machines had Pentium 4
2.2GHz processors, 256 MB RAM and all were connected through a local
network. We could have used PropelXbi as a transformation device on client
machines as well. The only difference in context of this chapter is that compiled

pipelines perform the document transformation faster.

202 /230

Scheduling and Optimising XML Pipeline Processing Chapter 10: Distributed XML processing

10.2 Questions we were asking
By assembling distributed processing system, we decided to investigate three
important questions, which arise when contemplating utilisation of distributed

processing.

1) What is the efficiency of distributed processing? Given the time of serial
processing, what would be the processing time with different numbers of

processors?

2) s there a limit after which adding more processors is not beneficial? Can

we identify that limit?

3) Given a workload and a desired processing time, how many processors

would we need to achieve desired processing time?

10.3 Theoretical solution
Parallel processing has been studied since the nineteen-sixties and thus we can

base our analysis on previous findings.

10.3.1 Parallel processing time

Concerning our first question about efficiency of parallel processing, Gupta and
Kumar (Gupta & Kumar 1993) give following formula stating what is the
parallel processing time, with relation to the number of processors and time of

the sequential processing.

Tp is the parallel execution time, i.e. time from the start of a parallel

computation to the moment the last processor finishes execution. W is the
problem size measured as the number of operations needed to solve the

problem. The serial execution time TS (time to process given problem) is

203 /230

Scheduling and Optimising XML Pipeline Processing Chapter 10: Distributed XML processing

determined as Ts=1tV where € is a machine dependent constant, p is the
number of processors and TO{W,p) is the total parallel overhead. TO is the sum
total of all overhead incurred due to parallel processing by all processors and
can be expressed as T0 = pTp-Ts. The total parallel overhead is a function of

problem size and the number of processors.

For our case, we change (10.1) so that it more naturally reflects the components

of total processing time.

T W,
= nTs | ro(W,p)
P (102)

n
E Ts+h(n’P)

Tp =
In our context, the problem size is equivalent to a number of processed
documents n multiplied by an average sequential processing time TS (the
average time needed to process one document). The total parallel overhead
divided by the number of processors is replaced by the overhead function
h(n,p). The first term on the right hand side represents ideal processing time
and the second term represents the additional parallel processing overhead. In
our study we are interested in predicting parallel processing time for a group of
similar documents of the same size and thus we will not consider the overhead
function to be dependent on the size of the document. As the size of the
document would be given it would be reflected in overhead function only as

additional constant.

To be perfectly exact, we infer that the first fraction of the equation should be

ceiled as it expresses how much time is used by useful document processing of

n documents on p processors. The ceiling function of x (noted as |~x~) is the

smallest integer greater than or equal to x. It’s easy to see that if we have for

example 6 processors and 10 documents, the total time spent by document

processing would be rx.i t, =2Ts and not BwTs=12TS. The equation given by

204 /230

Scheduling and Optimising XML Pipeline Processing Chapter 10: Distributed XML processing

Gupta and Kumar is meant for systems with a high number of processors and
large problem sizes, in which case such a difference is not as significant. In our
case though, where number of processors is likely to be small, we shouldn’t

discount it and final form of formula for parallel execution then is:

Ip

T = : Ts+h(n,p) (10.3)

The overhead function is unique to each parallel system (i.e. parallel algorithm
and parallel architecture). Parallel execution time for various numbers of

processors can be predicted once the form of overhead function is determined.
For example, if we assume that the overhead is linearly dependent on the

number of processors and the number of documents, we can express the

overhead function as:
h(n,p) =cm+cpp+cc (10.4)

where Cn, cp and cC are constants. For such an overhead function with
coefficients cn=2.5,c =2,cc=10 and average serial processing time Ts=10,

the parallel processing time can be graphed as following:

205/230

Scheduling and Optimising XML Pipeline Processing Chapter 10: Distributed XML processing

— 1 processor

— 2 processors
— 3 processors
— 4 processors

— 5 processors

20 40 60 00 100

Number of documents, n

Fig. 9.17 Theoretical parallel processing time with respect to number of

documents

So, if it took 105 to process one document sequentially and the overhead

function of our parallel system was h(n,p) =2.5«+2/>+10, then the

processing of 100 documents on 3 processors would take

T = 120- 10+2.5*100 + 2*3 + 10 = 6065 compared to 10005 which it would

take if the same number of documents were processed sequentially.

Fig. 9.17 shows that the speedup we gain, decreases with increasing number of
processors. This is in accord with common behaviour of parallel systems,
described for example in (Gustafson 1988; Gupta & Kumar 1993). The

consequence of this decrease is investigated by our next question.
10.3.2 Maximal number of beneficial processors

As the number of processors increases, the parallel processing time for fixed

number of documents reduces, but with decreasing speed. At the same time the

206/230

Scheduling and Optimising XML Pipeline Processing Chapter 10: Distributed XML processing

overhead increases as shown in (Gupta & Kumar 1993)2. At some point, the
parallel processing time starts increasing again as overhead grows faster than
the additional computation power offered by increasing the number of
processors. After this point, it is not beneficial to add more processors. This
behaviour is shown on the following graph, depicting the decrease of parallel
processing time with respect to the number of processors. The equation

coefficients used for figure Fig. 9.18 are the same as those used in Fig. 9.17.

AV
o — 400 documents
1000 — 300 documents
33
65 — 200 documents
« : — - — 100 documents

TOO

Fig. 9.18 Theoretical parallel processing time with respect to number of

processors

When using the maximal number of beneficial processors, pmm, the parallel
processing time is at its lowest value and therefore pmex can be obtained as a

solution of the differential equation

0P~ (105)
dp '

2 Gupta and Kumar state that such point exist for parallel systems where T0 >©(/?).

Overhead function h{n,p) equalsto TO/P and thus such point exists for systems with h of

at least linear order.

207 1 230

Scheduling and Optimising XML Pipeline Processing Chapter 10: Distributed XML processing

Unfortunately, derivation of the ceiling function in the first term of the

expression for Tp can’t be expressed analytically. We have to reach for an

approximation by omitting the ceiling function from the expression. After such

modification, we can express the maximum number of beneficial processors as

(10.6)

When the overhead function is linear and of the form h(n,p) = cmn+ cpp + cc,

expression (10.6) simplifies to

As this value of $>iax is valid for approximated Tp, the values for p in vicinity
of should be checked to see which value of p is the right value for non-

approximated function of the parallel processing time.

Fig. 9.19 Detail of non-approximated function of parallel processing time

208 /230

Scheduling and Optimising XML Pipeline Processing Chapter 10: Distributed XML processing

If we take the parallel system from our previous example, the approximated

maximal number of beneficial processors for 100 documents is
Ax =VI00*10/2 =22.36. From Fig. 9.19 showing detail of the non-

approximated function of parallel processing time for 100 documents, we can

see that the correct pmaiis 20.

10.3.3 Required number of processors to achieve desired

execution time
The last question we were asking is: What is the necessary number of

processors to achieve desired parallel processing time for given number of

documents (preg)?

A graph, like Fig. 9.18, can be used for a first rough estimation of what is the

minimal required number of processors. To get the exact value of p g we have
to extract it from equation (10.3). Again, as it isn’t possible to extract p /& from

the ceiling function, we have to use an approximation by omitting the ceiling of

the first fraction. To be able to express pI we have to know the form of the

overhead function as it can also be dependent on the number of processors.

For the linear overhead function of form h(n,p) = cn+ cpp + cc, where ¢n, cp

and cc are constants, we can extract p 1&g from (10.3) as

Tp-c,n—cc-yfD

10.8
2c. (10.8)

req

where D determines whether the desired execution time is achievable or not. If
D is non-negative, then the given execution time can be achieved, otherwise it

cannot. D is given by the equation:

209/230

Scheduling and Optimising XML Pipeline Processing Chapter 10: Distributed XML processing

D = TP2+ (-2cc-2cm)TP + crih2+ 2¢,,ncc-4 cpnTs + cc

(10.9)

To give an example, we take the parallel system from the previous illustration
and ask how many processors we would need to have 100 documents processed
in atime of 500,y. D equals 49600, which is non-negative and thus it signifies

that such a time can be reached. Using the calculated D , we get

Preg = A(500 —2.5 *100—10 —\/49600) /(2 *2) =[4.32] = 5. This means that we

need at least 5 processors to have 100 documents processed in a time of at most
500 seconds. The exact value of the parallel processing time of our system for
100 documents and 5 processors is 470 seconds. For 4 processors, it is 518

seconds. This demonstrates that formula we have devised is correct.

To have an idea of how many processors we would need for various

combinations of the desired time and number of documents, we can graph p 1§

with respect to the desired time.

Fig. 9.20 shows how many processors we would need to process the given

number of documents in a time less than or equal to the given processing time.

210/230

Scheduling and Optimising XML Pipeline Processing Chapter 10: Distributed XML processing

It shows that with a shorter desired processing time, the number of required

processors grows significantly.

10.4 Actual performance results

To verify validity of formulas devised in previous section, we carried out
extensive performance tests on system described in 10.1. In our test, we
measured execution times of batches of documents sent to be executed on

different numbers of processors.

The following figure shows the measured parallel processing times.

Processing time w.r.t. no of processed documents

1 proc
— 2 proc
3 proc
4 proc
5 proc
7 proc
— 10 proc
15 proc
— 20 proc

Number of documents

Fig. 9.21 The measured parallel processing times with respect to the number of

documents

Note: Large size version ofFig. 9.21 can befound inAppendix C asFig. C.1

The highest line in Fig. 9.21 shows the processing time for the sequential
processing of the given number of documents. The other lines are the processing
times of executions when different numbers of processing machines are
available. It shows that in accord with the predicted performance, the speed of
decrease of processing time lessens with higher number of processors. E.g. the
difference between the processing on 15 and 20 machines is negligible

compared to difference between 1 and 2 processors. In contrast with the

211/230

Scheduling and Optimising XML Pipeline Processing Chapter 10: Distributed XML processing

theoretical prediction, real processing times don’t exhibit “steps” which are

caused by the ceiling function in the theoretical run.

The next figure shows how the measured processing times relate to the number

of processors on which the documents were processed.

Processing time w.r.t. number of processors

— 1ldoc
10 docs
20 docs
-w- 30 docs
—*—4Q docs
— 50 docs

10 15 20

Number of processors

Fig. 9.22 Measured parallel processing time with respect to number of

processors

Note: Large size version ofFig. 9.22 can befound inAppendix C as Fig. C.2

Fig. 9.22 shows, again, that the measured data confirm the devised formulas for
the times of parallel processing. In this graph, the decrease of gain that we get
from adding more processors is even more visible than in Fig. 9.21. The data we
got doesn’t show any performance knee, that is, when the processing time starts
to grow again. We did not get to the high number of processors necessary for
this effect. Nevertheless, in real time scenarios, we don’t expect the number of

available processors to be considerably higher in any case.

Important characteristic of parallel systems are the overhead functions. The

overhead in the system we measured is depicted in the next two graphs.

212/230

Scheduling and Optimising XML Pipeline Processing Chapter 10: Distributed XML processing

Processing overhead h(n,p) w.r.t. number of documents

200 -
—2 proc

—3 proc
4 proc
5 proc
—7 proc
—10 proc
—15 proc
—20 proc

m o

Number of documents

Fig. 9.23 Processing overhead with respect to number of documents

Note: Large size version ofFig. 9.23 can befound inAppendix C asFig. C.3

Fig. 9.24 Processing overhead with respect to number of processors

Note: Large size version ofFig. 9.24 can befound inAppendix C as Fig. C.4

The displayed overhead was calculated as the difference between the measured
parallel processing time and the ideal time, i.e. the processing time of the

parallel system without any additional overhead.
As predicted, it shows that the overhead function is dependent on the number of

processors as well as on the number of documents. The measured runs of the

overhead exhibit uneven growth and have some noise superimposed. We

213/230

Scheduling and Optimising XML Pipeline Processing Chapter 10: Distributed XML processing

assume that these irregularities were caused by stochastic behaviour of the

interconnecting LAN and Condor work distribution mechanism.

In general, the overhead grows with the increasing number of documents and
lessens with the increasing number of processors. However, Fig. 9.24 shows
that the overhead decreases until the number of processors is seven, after which
it is higher again. We ascribe this behaviour to Condor’s inability to utilise the
higher number of available machines as efficiently as smaller numbers. This can
be seen from the detailed views of individual runs, as shown in the following

figures.

Processing time line, 50 docs, 3 proc

O Distribution a Execution

0 100 200 300 400 500 600

Time [s]

Processing time line, 50 docs, 10 proc

O Distribution a Execution

Fig. 9.25 Processing timelines for run on 3 and 10 processors

214/230

Scheduling and Optimising XML Pipeline Processing Chapter 10: Distributed XML processing

The timelines show the development of the processing of 50 documents on a
system with three and a system with ten available machines. Each line shows
the processing of one document. It starts when the document was submitted for
processing, continues, with the next part denoting how long it took before the
document started to be processed and the final section of the line displays the
length of the actual document transformation. It can be seen that, in a system
with three processors, Condor managed to distribute the documents so that their
processing happened fairly simultaneously. On the contrary, in case of a ten
processors system, Condor didn’t achieve simultaneous execution on all the

available machines, and thus in incurred higher idle time and overhead.

10.5 Conclusion

To test how the concept of distributed computing is utilisable for PropelXbi, we
have implemented a Grid-based distributed version of PropelXbi. Our tests have
shown that it is possible to utilise the concept of distributed computing for
increasing the performance of document transformation by PropelXbi. As
expected, the distributed document processing system behaves in the same way
as other parallel processing systems. An important feature of such behaviour is
the decreasing gain which we get from adding more processors and thus there is
a maximum number of beneficial processors that actually bring you any real
advantage. This number of processors, along with the theoretical prediction of
the parallel processing time, should be considered when deciding whether to use

a distributed system.

In this chapter, we proposed formulas which can be used for the prediction of
total parallel processing time, maximal number of beneficial processors and the
required number of processors to achieve the desired processing time of a given
number of documents. These formulas can be used for deciding about the
effectiveness of employing distributed processing for increasing the

performance of a document processing system.

215/230

Scheduling and Optimising XML Pipeline Processing Chapter 11: Conclusion and Future Work

Chapter 11

Conclusion and Future Work

216/230

Scheduling and Optimising XML Pipeline Processing Chapter 11: Conclusion and Future Work

11 Conclusion and Future Work
In this chapter, we first summarise major findings of this thesis in 11.1 and then

we indicate the directions of potential future work in 11.2.

11.1 Conclusion

In this thesis, we first reviewed the relevant architectures and enhancement
techniques used in parallel processing and we found that all of these are already
present in an appropriate form in PropelXbi. These enhancements are pipeline
processing, instruction pre-fetch, caching, data forwarding and vector pipeline

chaining.

Next, we presented the Jackson Inversion, which comes with concept of
compilation of processing components. It shows that such a compilation is
beneficial only when the component’s processing time is short. When the

processing time is short then the incurred loss of parallelism is negligible.

The subsequently reviewed concept of TupleSpaces offers a way of expanding
PropelXbi from a single machine to distributed computing. However, the goal
of distributed computing can be reached more conveniently by using Grid

technologies.

The next topic, Project JXTA, comes with an inter-machine communication
mechanism which is independent of the machines’ software and hardware. Yet,
in PropelXbi, there already is a communication system based on JMS and its

advantages outweigh those offered by JXTA.

Grid computing technologies, which were next looked at, provide a way to
distribute document processing on multiple machines so that the documents can
be processed in parallel. This results in increased performance of the processing
system. We devised an architecture for the distributed version of PropelXbi

which builds on Grid technologies and uses their advantages.

217/230

Scheduling and Optimising XML Pipeline Processing Chapter 11: Conclusion and Future Work

After examining the relevant techniques with potential to streamline
PropelXbi’s performance, we implemented two enhancements which had the
highest potential to improve PropelXbi’s performance. The first was an Off-line
XComponent compiler and J2SE-based compact version of PropelXbi runtime
(compiled pipelines), which was built on the concept of Jackson Inversion.
Tests showed that the compact version of PropelXbi runtime achieves
significantly better performance than the original J2EE version. The second
implemented enhancement was a Grid-based distributed version of PropelXbi.
Tests showed that the distributed processing can be used for streamlining
PropelXbi’s performance and that the distributed version follows the same laws
as other standard parallel processing systems. Furthermore, it demonstrated that
expansion from single machine processing to distributed computing can be
conveniently achieved without the need to alter the current runtime code of

PropelXbi in any way.

The importance of this work lies in the identification of significant
enhancements for increasing the efficiency of PropelXbi. In addition, the
identified enhancements can also be used in the design of other similar large-
scale document processing systems. Our testing has demonstrated that
considerable improvements in performance can be achieved by utilising J2SE
technology and implementing the concepts of component compilation and
distributed processing. The enhancement implementations run from 3 to 5 times
faster than the current version of PropelXbi. Once or twice it actually occurred

that the processing was 10 to 35 times faster.

11.2 Future Work

This work presented the implementations of two enhancements. Future work
can be directed in the further development and exploration of the already
implemented improvements and implementation of those which weren’t

implemented yet.

Concerning the subject of distributed computing, other Grid scheduling systems

can be inspected (e.g. N1 Grid Engine, OpenPBS) regarding efficiency and

218/230

Scheduling and Optimising XML Pipeline Processing Chapter 11: Conclusion and Future Work

convenience of their use. In addition, further examination may be focused on the
prediction of their performance under different conditions (e.g. different number

of processors, sizes of available memory, different processing speeds etc.).

As a second suggested direction of work, an off-line XComponent compiler can
be further developed so that it provides supplementary features present in the
current PropelXbi (e.g. monitoring capabilities, support for Scatter/Gather

components etc.).

A final suggestion is to implement an on-line XCompiler, which would use
online information about the current run of document processing and would
compile XComponents according to it so that the overall speed of processing is

increased.

219/230

Scheduling and Optimising XML Pipeline Processing References

References

220/ 230

Scheduling and Optimising XML Pipeline Processing References

References

Aberdeen Group (2002), Sun's Grid Computing Solutions Outdistance the Competition, May
2002. Retrieved: 25 September 2003, from
http://wwws.sun.com/software/gridware/sge_aberdeen.pdf.

Aloisio, G., Cafaro, M., Epicoco, I., Fiore, S. & Williams, R., The Grid Resource Broker.
Retrieved: 25 September 2003, from http://sara.unile.it/grb/grb.html.

Aloisio, G., Cafaro, M., Epicoco, I., Fiore, S. & Williams, R., Grid Resource Broker User Manual.
Retrieved: 25 September 2003, from
http://sara.unile.it/grb/grbusermanual.doc.

Altair Grid Technologies (2003a), OpenPBS. Retrieved: 8 August 2003, from
http://www.openpbs.org/.

Altair Grid Technologies (2003b), PBS Pro Home. Retrieved: 8 August 2003, from
http://www.pbspro.com/.

AMWAT, The AppLeS Master/Worker Application Template. Retrieved: 3 October 2003, from
http://grail.sdsc.edu/projects/amwat/.

Avaki Corporation (2003a), Avaki : Home. Retrieved: 19 March 2003, from
http://www.avaki.com/.

Avaki Corporation (2003b), Avaki Comprehensive Grid 3.0 Data Sheet, January 2003.
Retrieved: 19 March 2003, from
http://www.avaki.com/global/pdf/avakicompgrid30data.html.

BEA (2002a), Distributed Computing with BEA WebLogic Server, 15 September 2002.
Retrieved: 7 April 2003, from
http://www.bea.com/content/news_events/white_papers/BEA_WL_Ser
ver_DistrlbutedComputing_wp.pdf.

BEA (2002b), 'Data Integration’, in Introducing WebLogic Integration, June 2002. Retrieved: 7
April 2003, from
http://edocs.bea.com/wli/docs70/overview/dataint.htm.

BEA (2003a), Achieving Scalability and High Availability for E-Business, 27 March 2003.
Retrieved: 7 April 2003, from
http://www.bea.com/content/news_events/white_papers/BEA_WL_Ser
ver_Clustering_wp.pdf.

BEA (2003b), 'WebLogic Server Services', in Introduction to WebLogic Server and WebLogic
Express, 12 February 2003, pp. 2-4 - 2-8. Retrieved: 7 April 2003,
from http://edocs.bea.com/wis/docs81/pdf/intro.pdf.

BEA (2003c), ‘'Load Balancing in a Cluster’, in Using WebLogic Server Clusters, 11 March 2003,
pp. 4-5 - 4-16. Retrieved: 7 April 2003, from
http//edocs. bea ,com/wls/docs81/pdf/cluster. pdf.

Bent, J. & Thaln, D. (2002), Condor Tutorial, July 2002. Retrieved: 31 March 2003, from
http ://www. cs. wise, ed u/condor/tutorials/condor-hpdcl 1. ppt.

221 /230

http://wwws.sun.com/software/gridware/sge_aberdeen.pdf
http://sara.unile.it/grb/grb.html
http://sara.unile.it/grb/grbusermanual.doc
http://www.openpbs.org/
http://www.pbspro.com/
http://grail.sdsc.edu/projects/amwat/
http://www.avaki.com/
http://www.avaki.com/global/pdf/avakicompgrid30data.html
http://www.bea.com/content/news_events/whlte_papers/BEA_WL_Ser
http://edocs.bea.com/wli/docs70/overview/dataint.htm
http://www.bea.com/content/news_events/white_papers/BEA_WL_Ser
http://edocs.bea.com/wls/docs81/pdf/intro.pdf

Scheduling and Optimising XML Pipeline Processing References

Borgstorm, R. S. (2000), A Cost-Benefit Approach to Resource Allocation in Scalable
Metacomputers, Doctor of Philosophy, The Johns Hopkins University.
Retrieved: 18 August 2003, from
http://www.cnds.jhu.edu/pub/papers/ryan-thesis.pdf.

Bosak, J. (1996), 'DSSSL Online in context’, in DSSSL Online Application Profile, 16 August
1996. Retrieved: 13 September 2004, from
http://www.ibibllo.org/pub/sun-
info/standards/dsssl/dssslo/do960816. htm.

Capello, P. (2003a), JANET. Retrieved: 5 September 2003, from
http://www.cs.ucsb.edu/projects/janet/.

Capello, P. (2003b), 'Janet's Abstract Distributed Service Component’, in Proceedings of the
15th IASTED International Conference on Parallel and Distributed
Computing and Systems, Marina del Rey, California, USA, pp. 751 -
756. Retrieved: 5 November 2003, from
http://www.cs.ucsb.edu/~cappello/papers/03pcds.pdf.

Carriero, N. & Gelernter, D. (1989), 'Linda in context’, Communications of the ACM, vol. 32, no.
4, pp. 444-458. Retrieved: 10 February 2003, from
http://www.cs.cornell.edu/Courses/cs614/2003SP/papers/CG89.pdf.

Chapman, B. M., Sundaram, B. &Thyagaraja, K. K (2002), EZ-Grid: Integrated Resource
Brokerage Services for Computational Grids. Retrieved: 20 August
2003, from http://www.cs.uh.edu/~ezgrid/EZ-GridAbstract.pdf.

CNDS, The Frugal System. Retrieved: 18 August 2003, from
http://www.cnds.jhu.edu/research/metacomputing/frugal/.

Cocoon (2003), The Apache Cocoon Project. Retrieved: 28 January 2003, from
http://cocoon.apache.org/.

Collab.Net (2003a), General JXTA FAQ. Retrieved: 25 February 2003, from
http://www.jxta.org/project/www/docs/DomainFAQ.html.

Collab.Net (2003b), Project JXTA Homepage. Retrieved: 25 February 2003, from
http://www.jxta.org/.

Collab.Net (2003c), ProjectjxtaSpaces. Retrieved: 11 February 2003, from
http://jxtaspaces.jxta.org/.

Commerce One, XCBL-Index. Retrieved: 20 April 2004, from http://www.xcbl.org/.

Condor, The Condor Project Homepage. Retrieved: 25 March 2003, from
http://www.cs.wisc.edu/condor/.

Condor Team (2003a), Condor Version 6.4.7 Manual, 7 February 2003. Retrieved: 25 March
2003, from http://www.es.wise.edu/condor/manual/v6.4/condor-
V6_4-Manual.pdf.

Condor Team (2003b), 'Frequently Asked Questions (FAQ)', in Condor Version 6.4.7 Manual, 7
February 2003. Retrieved: 25 March 2003, from

2221230

http://www.cnds.jhu.edu/pub/papers/ryan-thesis.pdf
http://www.ibibllo.org/pub/sun-
http://www.cs.ucsb.edu/projects/janet/
http://www.cs.ucsb.edu/~cappello/papers/03pcds.pdf
http://www.cs.cornell.edu/Courses/cs614/2003SP/papers/CG89.pdf
http://www.cs.uh.edu/~ezgrid/EZ-GridAbstract.pdf
http://www.cnds.jhu.edu/research/metacomputing/frugal/
http://cocoon.apache.org/
http://www.jxta.org/project/www/docs/DomainFAQ.html
http://www.jxta.org/
http://jxtaspaces.jxta.org/
http://www.xcbl.org/
http://www.cs.wisc.edu/condor/
http://www.es.wise.edu/condor/manual/v6.4/condor-

Scheduling and Optimising XML Pipeline Processing References

http://www.cs.wisc.edU/condor/manual/v6.4/7_Frequently_Asked.htnn

Condor-G, Condor versus Condor-G - what's the difference? Retrieved: 25 March 2003, from
http://www.cs.wisc.edu/condor/condorg/versusG.html.

Contivo (2001), Contivo product brochure, 2001. Retrieved: 07 February 2003, from
http://www.contivo.com/about/brochure.pdf.

CoverPages-TS (2002), The Cover Pages website. Technology Reports: Tuple Spaces and XML
Spaces, (Last update: 11 October 2002). Retrieved: 10 February 2003,
from http://xml.coverpages.org/tupleSpaces.html.

CSEP (1995), Computational Science Education Project. Computer Architecture, 1995.
Retrieved: 12 November 2002, from
http://www.phy.ornl.gov/csep/ca/ca.html.

cXML, cXML homepage. Retrieved: 15 May 2004, from http://www.cxml.org/.

D.1.B. (2002), e-Business Enabler D.1.BH Retrieved: 28 January 2003, from
http://www.dib.net/eng/pro/pro_xml_04.asp.

Dail, H., UCSD GrADS Page. Retrieved: 3 October 2003, from http://gcl.ucsd.edu/~grads/.

DataConcert (2003), DataConcert | Technology. Retrieved: 28 January 2003, from
http://www.dataconcert.com/technology.asp.

Dongarra, J. (2003), CS 594 Spring 2003 Lecture 3: Overview of High-Performance Computing.
Retrieved: 20 April 2004, from
http://www.cs.utk.edu/~dongarra/WEB-PAGES/SPRING-
2003/lect03.pdf.

Duncan, R. (1990), 'A survey of parallel computer architectures', IEEE Computer, vol. 23, no.
2, pp.- 5-16. Retrieved: 20 April 2004, from
http://csdl.computer.org/dl/mags/co/1990/02/r2005.pdf.

ebXML, ebXML - Enabling A Global Electronic Market. Retrieved: 11 April 2003, from
http://www.ebxml.org/.

EZ-Grid, EZ-Grid - Introduction. Retrieved: 20 August 2003, from
http://www.cs.uh.edu/~ezgrid/.

FIX Protocol (2004), The FIX protocol Organization. Retrieved: 20 April 2004, from
http://www.fixprotocol.org/.

Foster, 1. (2002), The Challenges of Grid Computing, 4 March 2002. Retrieved: 25 March 2003,
from http://www.cs.wisc.edu/condor/presentations/PC-
2002/foster.ppt.

Foster, 1. & Kesselman, C. (eds.) (1999), The GRID: Blueprint for a New Computing
Infrastructure, Morgan Kaufman Publishers, Inc., San Fracisco,
California, USA.

223 /230

http://www.cs.wisc.edU/condor/manual/v6.4/7_Frequently_Asked.htnn
http://www.cs.wisc.edu/condor/condorg/versusG.html
http://www.contivo.com/about/brochure.pdf
http://xml.coverpages.org/tupleSpaces.html
http://www.phy.ornl.gov/csep/ca/ca.html
http://www.cxml.org/
http://www.dib.net/eng/pro/pro_xml_04.asp
http://gcl.ucsd.edu/~grads/
http://www.dataconcert.com/technology.asp
http://www.cs.utk.edu/~dongarra/WEB-PAGES/SPRING-
http://csdl.computer.org/dl/mags/co/1990/02/r2005.pdf
http://www.ebxml.org/
http://www.cs.uh.edu/~ezgrid/
http://www.fixprotocol.org/
http://www.cs.wisc.edu/condor/presentations/PC-

Scheduling and Optimising XML Pipeline Processing References

Foster, 1. & Kesselman, C. (2001), Grid Computing. Retrieved: 24 March 2003, from
http://wwwinfo.cern.ch/seminars/2001/2001-OtherFormats/t-
010117.pdf.

Foster, 1., Kesselman, C., Nick, J. M. & Tuecke, S. (2002a), 'Grid Services for Distributed
System Integration’, Computer, vol. 35, no. 6, pp. 37-46. Retrieved:
24 March 2003, from http://www.globus.org/research/papers/ieee-cs-
2.pdf.

Foster, 1., Kesselman, C., Nick, J. M. & Tuecke, S. (2002b), The Physiology of the Grid, 22 June
2002. Retrieved: 20 February 2003, from
http://www.globus.org/research/papers/ogsa.pdf.

Foster, 1., Kesselman, C. & Tuecke, S. (2001), 'The Anatomy of the Grid', International Journal
of Supercomputer Applications, vol. 15.
http://www.globus.org/research/papers/anatomy.pdf.

Fox, G. C., Williams, R. D. & Messina, P. C. (eds.) (1994), Parallel Computing Works!, Morgan
Kaufman Publishers, Inc., San Francisco, California, USA.

Fox, J. (2003), Semantic Information Management (SIM), 28 October 2003. Retrieved: 20 April
2004, from http://www.slmc-
inc.org/archlve0304/metadata/presentations/fox/fox_frame.htm.

Frey, J. (2002), Condor-G: An Update. Retrieved: 25 March 2003, from
http://www.cs.wisc.edu/condor/presentations/PC-2002/jfrey.ppt.

GigaSpaces Technologies (2002a), GigaSpaces Cluster, March 2002. Retrieved: 10 February
2003, from
http://www.gigaspaces.com/download/GSClusterWhitePaper.pdf.

GigaSpaces Technologies (2002b), GigaSpaces Platform, 25 February 2002. Retrieved: 10
February 2003, from
http://www.gigaspaces.com/download/GigaSpacesWhitePaper.pdf.

GigaSpaces Technologies (2002c), GigaSpaces Platform Product Overview. Retrieved: 10
February 2003, from
http://www.gigaspaces.com/download/GlgaSpacesPlatformProductOve
rview.pdf.

Globus Project (2001), Introduction to Grid Computing and the Globus Toolkit, 12 October
2001. Retrieved: 5 March 2003, from
http://www.globus.org/training/grids-and-globus-
toolkit/IntroToGridsAndGlobusToolkit.ppt.

Globus Project (2002), Globus Toolkit 3.0 FAQ, (Last update: 19 November 2002). Retrieved:
24 March 2003, from http://www.globus.org/toolkit/gt3-fag.html.

Gong, L. (2001a), 'IXTA: A Network Programming Environment', IEEE Internet Computing, vol.
5, no. 3, pp. 88-95. Retrieved: 25 February 2003, from
http://www.jxta.org/project/www/docs/mdejxta-paper.pdf.

224/230

http://wwwinfo.cern.ch/seminars/2001/2001-OtherFormats/t-
http://www.globus.org/research/papers/ieee-cs-
http://www.globus.org/research/papers/ogsa.pdf
http://www.globus.org/research/papers/anatomy.pdf
http://www.slmc-
http://www.cs.wisc.edu/condor/presentations/PC-2002/jfrey.ppt
http://www.gigaspaces.com/download/GSCIusterWhitePaper.pdf
http://www.gigaspaces.com/download/GigaSpacesWhitePaper.pdf
http://www.gigaspaces.com/download/GlgaSpacesPlatformProductOve
http://www.globus.org/training/grids-and-globus-
http://www.globus.org/toolkit/gt3-faq.html
http://www.jxta.org/project/www/docs/mdejxta-paper.pdf

Scheduling and Optimising XML Pipeline Processing References

Gong, L. (2001b), Project JXTA: A Technology Overview, 29 October 2009. Retrieved: 25
February 2003, from
http://www.jxta.org/project/www/docs/jxtaview_01nov02.pdf.

GRAIL, GRAIL Project page. Retrieved: 3 October 2003, from
http://grail.sdsc.edu/main_pages/projects.html.

Gupta, A. & Kumar, V. (1993), 'Performance Properties of Large Scale Parallel Systems',
Journal of Parallel and Distributed Computing, vol. 19, no. 3, pp. 234-
244. Retrieved: 5 April 2004, from http://www-
users.cs.umn.edu/~kumar/papers/performance.ps.

Gustafson, J. L. (1988), 'Reevaluating Amdahl's Law', Communications of the ACM, vol. 31, no.
5, pp- 532 - 533. Retrieved: 2 December 2002, from
http://www.scl.ameslab.gOv/PublicatiOns/Gus/AmdahisLaw/Amdahls.p
df.

Ibbett, R. N. &Topham, N. P. (1989), Architecture of High Performance Computers, Macmillan
Education Ltd, London, Great Britain.

IBM, IBM TSpaces Programmer’s Guide. Retrieved: 17 February 2003, from
http://www.almaden.ibm.com/cs/TSpaces/html/ProgrGuide.html.

IBM, IBM TSpaces User's Guide. Retrieved: 17 February 2003, from
http://www.almaden.ibm.com/cs/TSpaces/html/UserGuide.html.

IBM (2003), 'What is TSpaces?' in TSpaces. Retrieved: 10 February 2003, from
http://www.almaden.ibm.com/cs/TSpaces/intro.html.

Innovations Softwaretechnologie GmbH (2004), visual rules. Retrieved: 19 April 2004, from
http://www.visual-rules.de/en/pdf/en_visual_rules.pdf.

ISDA (2004), FpML: The XML Standard for Swaps, Derivatives and Structured Products.
Retrieved: 20 April 2004, from http://www.fpml.org/.

ISO (2004), 1SO 15022 format homepage, (Last update: 16 June 2004). Retrieved: 20 April
2004, from http://www.isol5022.org/.

iWay Software (2003), iWay XML Transformation Engine (iXTE). Retrieved: 28 January 2003,
from
http://www.iwaysoftware.com/products/xmlitransformationserver.html.

Jacob, B. (2003), Grid computing: What are the key components?, June 2003. Retrieved: 12
March 2003, from
ftp://www6.software.ibm.com/software/developer/library/gr-
overview.pdf.

JBoss, JBoss :: Professional Open Source. Retrieved: 22 April 2003, from
http://www.jboss.org/.

Joergensen, M. (2001), XSLTC Documentation, 13 December 2001. Retrieved: 16 September
2004, from http://xml.apache.org/xalan-j/xsltc/.

225/230

http://www.jxta.org/project/www/docs/jxtaview_01nov02.pdf
http://grail.sdsc.edu/main_pages/projects.html
http://www-
http://www.scl.ameslab.g0v/Publicati0ns/Gus/AmdahlsLaw/Amdahls.p
http://www.almaden.ibm.com/cs/TSpaces/html/ProgrGuide.html
http://www.almaden.ibm.com/cs/TSpaces/html/UserGuide.html
http://www.almaden.ibm.com/cs/TSpaces/intro.html
http://www.visual-rules.de/en/pdf/en_visual_rules.pdf
http://www.fpml.org/
http://www.isol5022.org/
http://www.iwaysoftware.com/products/xmltransformationserver.html
ftp://www6.software.ibm.com/software/developer/library/gr-
http://www.jboss.org/
http://xml.apache.org/xalan-j/xsltc/

Scheduling and Optimising XML Pipeline Processing References

jythonc, Compiling Python Source to Real Java Classes. Retrieved: 16 September 2004, from
http://www.jython.org/docs/jythonc.html.

Kaiser, T., An Overview of Parallel Computing Scalable Architectures and their Software.
Retrieved: 20 April 2004, from
http://www.navo.hpc.mil/pet/Video/Courses/SDSC/PDF/sdsc_swl.pdf.

Karora (2003), XMLConnector Overview. Retrieved: 29 January 2003, from
http://www.karora.com/xmlconnector/xmlconnoview.htm.

Krauter, K., Buyya, R. & Maheswaran, M. (2002), ‘A Taxonomy and Survey of Grid Resource
Management Systems', Software: Practice & Experience, vol. 32, no.
2, pp. 135 - 164. Retrieved: 12 March 2003, from
http://choices.cs.uiuc.edu/2k/papers/Internal/related/grid/grid-
taxonomy.pdf.

Le, T. T. & Huu, T. C. (1997), Advances in Parallel Computing For the Year 2000 and Beyond.
Retrieved: 20 April 2004, from http://www.vacets.org/vtic97/ttle.htm.

Legion (2001), Legion: A Worldwide Virtual Computer, (Last update: 20 June 2001). Retrieved:
19 March 2003, from http://legion.virginia.edu/.

Lehman, T. J. (2002), 'Current Status of TSpaces at IBM — from the horse's mouth’, TSpaces
discussion list, 29 August 2002. Retrieved: 10 February 2003, from
http: //www. topica.com/lists/tspaces/read/message. html?sort=d&mid=
905132325&start=112.

Lehman, T. J., Cozzi, A., Xiong, Y., Gottschalk, J., Vasudevan, V., Landis, S., Davis, P., Khavar,
B. & Bowman, P. (2001), 'Hitting the distributed computing sweet spot
with TSpaces', Computer Networks, vol. 35, no. 4, pp. 457 - 472.
Retrieved: 10 February 2003, from
http://www.almaden.ibm.com/cs/TSpaces/papers/ComputerNetworks.
pdf.

Lehman, T. J., McLaughry, S. W. & Wyckoff, P. (1999), 'T Spaces: The Next Wave', in
Proceedings of the 32nd Hawaii International Conference on System
Sciences, Hawaii, USA. Retrieved: 10 February 2003, from
http://www.almaden.ibm.eom/cs/TSpaces/papers/Cluster.ps.Z.

Liu, H., Weng, S. & Sun, W. (2001), Cache, Matrix Multiplication, and Vector. Retrieved: 21
June 2004, from
http://www.cs.umd.edu/class/fall2001/cmsc411/projOol/cache/matrix.
html.

Livny, M. (2002), Welcome and Condor Project Overview. Retrieved: 25 March 2003, from
http://www.cs.wisc.edu/condor/presentations/PC-2002/miron.ppt.

Natrajan, A., Humphrey, M. A. &Grimshaw, A. S. (2001), 'Grids: Harnessing Geographically-
Separated Resources in a Multi-Organisational Context’, in Proceedings
of the 15th Annual Symposium on High Performance Computing
Systems and Applications, Ontario, Canada. Retrieved: 20 March 2003,
from http://legion.virginia.edu/papers/HPCSO1.pdf.

OAG (2003), Open Applications Group. Retrieved: 5 February 2003, from
http://www.openapplications.org.

226/230

http://www.jython.org/docs/jythonc.html
http://www.navo.hpc.mil/pet/Video/Courses/SDSC/PDF/sdsc_swl.pdf
http://www.karora.com/xmlconnector/xmlconnoview.htm
http://choices.cs.uiuc.edu/2k/papers/Internal/related/grid/grid-
http://www.vacets.org/vtic97/ttle.htm
http://legion.virginia.edu/
http://www.almaden.ibm.com/cs/TSpaces/papers/ComputerNetworks
http://www.almaden.ibm.eom/cs/TSpaces/papers/Cluster.ps.Z
http://www.cs.umd.edu/class/fall2001/cmsc411/proj01/cache/matrix
http://www.cs.wisc.edu/condor/presentations/PC-2002/miron.ppt
http://legion.virginia.edu/papers/HPCS01.pdf
http://www.openapplications.org

Scheduling and Optimising XML Pipeline Processing References

OASIS (2003), OASIS Universal Business Language TC. Retrieved: 29 May 2003, from
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ubl.

OGSI-WG (2003), Open Grid Services Infrastructure (OGSI) Version 1.0, 13 March 2003.
Retrieved: 21 March 2003, from http://www.gridforum.org/ogsi-
wg/drafts/draft-ggf-ogsi-gridservice-26_2003-03-13.pdf.

Ourusoff, N. (2003), Tutorial on JSP & JSD. Retrieved: 12 December 2002, from
http://cisx2.uma.maine.edu/NickTemp/JSP8JSDLec/jsd.html.

PerCurrence (2000), Core PerXML Technology. Retrieved: 28 January 2003, from
http://www.percurrence.com/products/xsifag.html.

Plachy, O. (1997), Parallel architectures, 4 April 1997. Retrieved: 20 April 2004, from
http://zikova.cvut.cz/parallel/diplom/node4.html.iso-8859-I.

Platform Computing (2003a), Platform Computing - Products. Retrieved: 25 September 2003,
from http://www.platform.com/products/.

Platform Computing (2003b), Platform JobScheduler. Retrieved: 25 September 2003, from
http://www.platform.com/PDFs/datasheets/PIt_JobScheduler_DS.pdf.

Platform Computing (2003c), Platform LSF. Retrieved: 25 September 2003, from
http://www.platform.com/PDFs/datasheets/Plt_LSF_DS.pdf.

Platform Computing (2003d), Platform Software and Services. Retrieved: 25 September 2003,
from
http://www.platform.com/pdfs/datasheets/PIt_Products_Overview.pdf.

Prabhu, G. M. (2003), 'Principle of Locality', in Computer Architecture Tutorial. Retrieved: 20
June 2004, from
http://www.cs.iastate.edu/~prabhu/Tutorial/CACHE/pr_locality.html.

Propylon (2003), PropelXbi Product Data Sheet. Retrieved: 29 May 2003, from
http://www.propylon.com/products/datasheets/propelxbi-
datasheet.pdf.

Quin, L. (2004), 'Frequently Asked Questions', in What is XSL?, 8 July 2004. Retrieved: 13
September 2004, from http://www.w3.org/Style/XSL/WhatlsXSL.html.

Quovadx (2003), Ruple. Retrieved: 11 February 2003, from
http://www.roguewave.com/developer/tac/ruple/.

Redmond, T. & McGrath, S. (2002), XPipe. Retrieved: 27 January 2003, from
http://www.propylon.com/news/events/barcelona02.ppt.

RosettaNet (2004), PIPs. Retrieved: 20 April 2004, from
http://www.rosettanet.org/RosettaNet/Rooms/DisplayPages/Layoutlnlit
ial?Container=com.webridge.entity.Entity%5BOID%5B279B86B8022C
D411841F00C04F689339%5D%5D.

227 /230

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ubl
http://www.gridforum.org/ogsi-
http://cisx2.uma.maine.edu/NickTemp/JSP8JSDLec/jsd.html
http://www.percurrence.com/products/xslfaq.html
http://zikova.cvut.cz/parallel/diplom/node4.html.iso-8859-l
http://www.platform.com/products/
http://www.platform.com/PDFs/datasheets/Plt_JobScheduler_DS.pdf
http://www.platform.com/PDFs/datasheets/Plt_LSF_DS.pdf
http://www.platform.com/pdfs/datasheets/Plt_Products_Overview.pdf
http://www.cs.iastate.edu/~prabhu/Tutorial/CACHE/pr_locality.html
http://www.propylon.com/products/datasheets/propelxbi-
http://www.w3.org/Style/XSL/WhatIsXSL.html
http://www.roguewave.com/developer/tac/ruple/
http://www.propylon.com/news/events/barcelona02.ppt
http://www.rosettanet.org/RosettaNet/Rooms/DisplayPages/LayoutInlt

Scheduling and Optimising XML Pipeline Processing References

SAP, SAP INFO IDOC. Retrieved: 20 April 2004, from
http://www.sap.info/public/en/glossary.php4/list/Word-
38053d4a8777d94a6_glossary/l.

SAX (2003), SAX. Retrieved: 29 May 2003, from http://www.saxproject.org/.

SETI@Home, SETI@home: Search for Extraterrestrial Intelligence at home. Retrieved: 10
February 2003, from http://setlathome.ssl.berkeley.edu/.

Shalom, N. (2002a), Are You Ready for GRIDS? Retrieved: 10 February 2003, from
http://www.j-spaces.com/download/l1JUG_GRIDS.pdf.

Shalom, N. (2002b), JavaSpaces. Retrieved: 10 February 2003, from http://www.j-
spaces .com/down load/1JUG_Javas paces.pdf.

Strain, E. (2003), esa://Tuple Spaces, 11 July 2002. Retrieved: 10 February 2003, from
http://earl.strain.at/space/Tuple-t-Spaces.

Sun Microsystems, Java System Message Queue General FAQs. Retrieved, from

http://wwws.sun.com/software/products/message_queue/faqs_messa

ge_queue.html.

Sun Microsystems, Project JXTA. Retrieved: 25 February 2003, from
http://wwws.sun.com/software/jxta/.

Sun Microsystems (2001a), How Sun Grid Engine, Enterprise Edition 5.3 Works, November
2001. Retrieved: 26 September 2003, from
http://wwws.sun.com/software/gridware/sgeee53/wp-sgeee/wp-
sgeee.pdf.

Sun Microsystems (2001b), Maximizing Computing Resources: Sun Grid Engine, Enterprise
Edition Software, December 2001. Retrieved: 26 September 2003,
from http://wwws.sun.com/software/gridware/sgeee53/sgeee.pdf.

Sun Microsystems (2001c), Project JXTA: An Open, Innovative Collaboration, 25 April 2001.
Retrieved: 25 February 2003, from
http://www.jxta.org/project/www/docs/Openlnnovative.pdf.

Sun Microsystems (2001d), Project JXTA: Java Programmer's Guide. Retrieved: 25 February
2003, from http://www.jxta.org/docs/jxtaproggulde_final.pdf.

Sun Microsystems (2002a), Distributed Resource Management: Sun Grid Engine Software, April

2002. Retrieved: 26 September 2003, from
http://wwws.sun.com/software/gridware/ds-gridware/sge.pdf.

Sun Microsystems (2002b), Endorsed Standards Override Mechanism. Retrieved: 17
September 2004, from
http://java.sun.eom/j2se/l.4.2/docs/guide/standards/index.html.

Sun Microsystems (2002c), Grid Computing - optimizing the performances and resources of
your team., June 2002. Retrieved: 25 September 2003, from
http://wwws.sun.com/software/grid/Grid-brochure.pdf.

2281230

http://www.sap.info/public/en/glossary.php4/list/Word-
http://www.saxproject.org/
http://setlathome.ssl.berkeley.edu/
http://www.j-spaces.com/download/IJUG_GRIDS.pdf
http://www.j-
http://earl.strain.at/space/Tuple-t-Spaces
http://wwws.sun.com/software/products/message_queue/faqs_messa
http://wwws.sun.com/software/jxta/
http://wwws.sun.com/software/gridware/sgeee53/wp-sgeee/wp-
http://wwws.sun.com/software/gridware/sgeee53/sgeee.pdf
http://www.jxta.org/project/www/docs/OpenInnovative.pdf
http://www.jxta.org/docs/jxtaproggulde_final.pdf
http://wwws.sun.com/software/gridware/ds-gridware/sge.pdf
http://java.sun.eom/j2se/l.4.2/docs/guide/standards/index.html
http://wwws.sun.com/software/grid/Grid-brochure.pdf

Scheduling and Optimising XML Pipeline Processing References

Sun Microsystems (2002d), JavaSpaces Service Specification, April 2002. Retrieved: 10
February 2003, from
http://wwws.sun.com/software/jini/specs/jsl_2_I.pdf.

Sun Microsystems (2002e), Project IJXTA Technology, September 2002. Retrieved: 25 February
2003, from http://wwws.sun.com/software/jxta/JXTAS5.pdf.

Sun Microsystems (2002f), Sun Cluster Grid Architecture, May 2002. Retrieved: 25 September
2003, from
http://wwws.sun.com/software/grid/SunClusterGridArchitecture.pdf.

Sun Microsystems (2003a), JavaSpaces Technology. Retrieved: 10 February 2003, from
http://java.sun.com/products/javaspaces/.

Sun Microsystems (2003b), JXTA v2.0 Protocols Specification. Retrieved: 25 March 2003, from
http ://spec.jxta.org/vl.0/docbook/IXTAProtocols.pdf.

Sun Microsystems (2004), J2EE FAQ, (Last update: 5 June 2003). Retrieved: 25 June 2004,
from http://java.sun.com/j2ee/faq.html.

Sutcliffe, A. (1988), Jackson System Development, Prentice Hall International (UK) Ltd.

Traversat, B., Abdelaziz, M., Duigou, M., Hughly, J.-C., Pouyoul, E. & Yeager, B. (2002), Project
JXTA Virtual Network, 5 February 2002. Retrieved: 25 February 2003,
from
http://www.jxta.org/project/www/docs/IXTAprotocols_01nov02.pdf.

Tvrdik, P. (2002), 'Analyza slozitosti paralelnich algoritmu’, in Paralelni systémy a algoritmy,
vol. 2, Vydavatelstvi CVUT, Prague, Czech Republic, pp. 6-15.

Unicorn (2003), Semantic Information Management. Retrieved: 20 April 2004, from
http://www.unicorn.com/semantics/sim.htm.

Verbeke, J., Nadgir, N., Ruetsch, G. & Sharpov, |., Framework for Peer-to-Peer Distributed
Computing in a Heterogeneous, Decentralized Environment. Retrieved:
25 February 2003, from
http://www.jxta.org/project/www/docs/mdejxta-paper.pdf.

Voicu, R. (2004), Introduction, Overview, Parallel Architectures, 7 January 2004. Retrieved: 20
April 2004, from http://www.comp.nus.edu.sg/~cs4231/cs4231-
lecO1.pdf.

W3C (1999), XSL Transformations (XSLT) Version 1.0, 19 November 1999. Retrieved: 29 May
2003, from http://www.w3.0rg/TR/xslt.

W3C (2000), 'CDATA Sections', in Extensible Markup Language (XML) 1.0 (Second Edition), 6
October 2000. Retrieved: 16 September 2004, from
http://www.w3org/TR/2000/REC-xmI-20001006.

W3C (2002), Document Object Model (DOM) homepage. Retrieved: 28 January 2003, from
http://www.w3.0rg/DOM/.

2291/ 230

http://wwws.sun.com/software/jini/specs/jsl_2_l.pdf
http://wwws.sun.com/software/jxta/JXTA5.pdf
http://wwws.sun.com/software/grid/SunClusterGridArchitecture.pdf
http://java.sun.com/products/javaspaces/
http://java.sun.com/j2ee/faq.html
http://www.jxta.org/project/www/docs/JXTAprotocols_01nov02.pdf
http://www.unicorn.com/semantlcs/sim.htm
http://www.jxta.org/project/www/docs/mdejxta-paper.pdf
http://www.comp.nus.edu.sg/~cs4231/cs4231-
http://www.w3.org/TR/xslt
http://www.w3org/TR/2000/REC-xml-20001006
http://www.w3.org/DOM/

Scheduling and Optimising XML Pipeline Processing References

Weissman, J. B. (2002), Research Summary - November 2002, November 2002. Retrieved: 20
April 2004, from http://www-users.cs.umn.edu/~jon/res_stmt.pdf.

Wyckoff, P., McLaughry, S. W., Lehman, T. J. & Ford, D. A. (1998), T Spaces', IBM Systems
Journal, vol. 37, no. 3, pp. 454-474. Retrieved: 10 February 2003,
from http://www.research.ibm.com/journal/sj/373/wyckoff.html.

Xbeans (2003), Xbeans. Retrieved: 28 January 2003, from http://www.xbeans.org.

Zhao, B. Y. (1998), TupleSpaces Revisited: Linda to TSpaces, 13 July 1998. Retrieved: 10
February 2003, from
http://www.cs.berkeley.edu/~ravenben/research/tuplespace/tuplespac
e.PPT.

230/230

http://www-users.cs.umn.edu/~jon/res_stmt.pdf
http://www.research.ibm.com/journal/sj/373/wyckoff.html
http://www.xbeans.org
http://www.cs.berkeley.edu/~ravenben/research/tuplespace/tuplespac

Scheduling and Optimising XML Pipeline Processing Appendices

Appendices

Scheduling and Optimising XML Pipeline Processing Appendix A: Efficacy of SDMP-Scatter/Gather approach

Appendix A

Efficacy of SDMP-

Scatter/Gather approach

Scheduling and Optimising XML Pipeline Processing Appendix A: Efficacy of SDMP-Scatter/Gather approach

Appendix A. Efficacy of SDMP-Scatter/Gather approach

In this appendix, we study the execution time of transformations when using the
Scatter / Gather approach and point out the implications about the efficacy of its
use. Furthermore we introduce formulas for respective gain and maximal

number of beneficial processors.

To express the time of completion of the transformation in SDMP-

Scatter/Gather system we developed following formula:

r r an
tOVP-s,g (n) = + (n,k)

Equ. 1 Time of completion of SDMP - scatter/gather scenario

A execution time depending on size of input
t,.{K) time spent by doing maintenance operations (pre- and post-processing

stage). In this case, it’s scatter and gather stage.

n size of input

P parallel (scatterable) part of input (%)

s (1-p) serial (in-scatterable) part of input (%)
K number of scattered segments

Note: k <pmm Where pnax is number of processors available to be added

The time taken for the transformation of any input of size n is determined as the
sum of the longer of the times for processing the serial and the parallel parts and
time spent on the maintenance operations which is the same regardless of ratio
between parallel and serial parts. The completion time for processing the serial
part depends on the portion of input, which needs to be processed serially and
the size of the input. The timespan for the processing of the parallel part again
depends on the portion of input to process, but as this part of the document is

scattered into k parts, the input that is actually processed is k times smaller. We

Scheduling and Optimising XML Pipeline Processing Appendix A: Efficacy of SDMP-Scatter/Gather approach

assume, that the maintenance time tm is dependent on the size of input and the

number of segments into which it divides the scatterable part of the document.

We presume, that in most cases, we can neglect tm as it doesn’t considerably

contribute to the total time of processing. The equation then simplifies to

To give an example of the use of this formula, let’s say that we have 100KB
document: 60% of which is parallelizable; normal processing of a 100KB

document takes 10 seconds; and the time function is linear. The time function

then is t(n) = n, and if we use two additional processors the total
\"

100KB

execution time equals

flood_s-0.6’\

¢(L00AI?) = max fi (iooab -0.4),N

= max (—— \QOKB-A @109 5 -°-65

voo/Cs
=max(10-0.4,100.3) = 4

The execution time decreases to 4 seconds, but as can be seen from equation
above it can’t ever decrease more, as now the processing time for the serial part

determines the result.

To see how much we gained by using the SDMP approach we define gain as a

new variable G% stating how much less time the transformation takes in system

A comparedto B .

% =1-~ =~ (A 1)

For example, when the transformation takes three times less in

system A (tA = 100) compared to B (tB=300) the gainis G% =1-J" =66%.

Scheduling and Optimising XML Pipeline Processing Appendix A: Efficacy of SDMP-Scatter/Gather approach

In the literature about parallel processing, there is another variable used. This

variable s is the speed-up which states how much faster the new approach is

(Gustafson 1988; Tvrdik 2002). It is defined by sw=—, what equals

SyB=—— . In our example s% =| =3 i.e. the transformation in system A is
| ~G% ‘3

three times faster.

In the following text, indices of G will be omitted when the meaning of the

symbol is apparent from the context.

The time of completion can be then expressed using the variables defined above

as follows:

To express gain earned by employing the SDMP-s/g approach compared with
the SDSP approach we use previously defined Equ 1 and derive following

formula:

f f W
max t(ns)+t\n"~ +t,,,(ﬂ,k)

Gmi 1 ()

Equ. 2 General SDMP-s/g / SDSP gain definition

When we omit the maintenance cost (which can be done when the parallelizable

part of the document is reasonably large) we get:

max, t(m) +tyn~
I

Scheduling and Optimising XML Pipeline Processing Appendix A: Efficacy of SDMP-Scatter/Gather approach

Applied to the example of 100KB document we used earlier in the text, the gain

when using two additional processors is

max (/(«m0.4)+t(n-0-6/2)) = = =
Isosr t(n) 10

In many cases, the time function can be expressed as t(n) =erf . It means that the

completion time is given by the power m of the input size multiplied by an
arbitrary constant c. The actual time function may be more complicated, but we

believe that for many cases this approximation is sufficient.

For t(n) =erf we can express the gain as:

f A\
max c(ns)m,c\ n cn max SmE
G=1 ¢ =1— \
cn cn

=1- max STf

It says, in short, that the gain increases until the processing time of one parallel
portion of the data is less than or equal to the processing time of the serial part.
After this point of saturation, the gain stays constant as the time of completion is

limited by the time of processing the serial part.

The maximal gain is upper-bounded by the size of the serial part and its value

can be obtained from examining the limit case when the number of documents

grows to infinity. As gain is G=1-max sm-" its limit case is

v K y
G =)imG=1- s”. This corresponds to the situation when the processing time of
the parallel parts diminishes to zero and the only data to process is the serial
part. The maximal gain in our example is Gnax=1-0.4 =0.6 =60%, which again

shows that in the example that we used earlier, the obtained gain is the maximal

possible and the higher gain can’t be achieved by adding more processors.

\

Scheduling and Optimising XML Pipeline Processing Appendix A: Efficacy of SDMP-Scatter/Gather approach

When the execution time of the parallel parts reaches the execution time of the
serial part we get to saturation point, which indicates the maximal number of

beneficial processors knX whose addition brings any gain. Every added
processor after this number doesn’t bring any gain and only increases

maintenance time.

As saturation occurs when the time of processing of the parallel part catches up

with the time of processing of the serial part, we infer that kna can be obtained

from the equality of these two times:

In the last step of our derivation, we applied ceiling function to the right hand

side of the equation as value of ¢na must be an integer.

In our previous example,p is 0.6 and s is 0.4. This tells us straight away that

the maximal number of beneficial processors is kna=[0.6/0.4] =[T.5] = 2.

The interesting point is that knm is independent of the order of the function (m)

and its multiplicative constant (c). Therefore, the maximal number of beneficial
processors stays the same when the time function (processing algorithm)

changes.

There can be a case when processing of the serial part has a different speed from
the processing of the parallel parts, e.g. the serial part can be just copied to the
output without any further processing. In this case, we introduce two different

time functions ts(n) =csn" (for the serial part) and tp(n) =cpnm (for the parallel
parts). We furthermore set ¢ =cp as the processing speed of the whole document

and the processing speed of its parallel parts is usually the same (the algorithm

Vi

Scheduling and Optimising XML Pipeline Processing Appendix A: Efficacy of SDMP-Scatter/Gather approach

usually doesn’t change). With those additions, we derive expression for gain as

following:
max c.(ra)' ,cp\n j max c
G=1- =1 V
cpn C,,n
.m
cpn I’l’laXVC ,E-
-1 P
Cpn
/ \
=1- max
ep K'y

This shows that, as the time of processing the serial part decreases (less time is
spent on serial part), the gain increases and the point of saturation shifts to

larger numbers.

The maximal number of beneficial processors is then changed to

The maximal gain changes, accordingly, to

To illustrate this situation, when the speed of processing of the serial part differs
from the execution time of the processing of the parallel part, we use the earlier
example of 100KB document with 60% of parallelizable content. Let’s say that
the serial part of the document is just copied and thus its processing time is ten

times shorter (processing of 100KB would take 1 second). The constant of the

VI

Scheduling and Optimising XML Pipeline Processing Appendix A: Efficacy of SDMP-Scatter/Gather approach

processing of the serial part is C5=1/1000 and for the parallel processing the

constant ¢P=10/100KB. The gain is then

max”1/1000-1000-0.4,10/10001000~
G=1-
10/1000-1000
max(l 0.4,10-0.3) _
10

=1-10'0-3=0,7 =70%
10

As processing of the serial part takes a shorter time now, it is the parallel
processing time which prevails and the gain is raised to seventy percent. The

maximal gain also rises to

finax = 1 - —s—I I/mKﬁgM 0.96 = 96%
10/10

and the maximal number of beneficial processors rises to

lIQ1ICC<B 06
J 11200KB 0.4

This demonstrates the earlier observation that with decreasing time spent on the
serial part, KX becomes greater and, in the limit case where the serial part is

omitted completely (S=0), KB grows to infinity.

The equations we introduced in this chapter give very important information
about the gain that can be obtained and the maximal number of beneficial

processors. It leads to the following three conclusions.

1) The higher the order of the time function (m), the greater the savings

that are achieved by using the scatter/gather approach.

Scheduling and Optimising XML Pipeline Processing Appendix A: Efficacy of SDMP-Scatter/Gather approach

/ m\

This follows from the gain definition. We expressed gain as 1-max s-A
v My

When the number of processors is less than ¢nmax the parallel portion dominates
f

and the expression is 1’k\ The fraction ’a is less than one, hence with a

higher order of the time function it is powered by a higher exponent, thus it

results in a smaller number by which the value one is reduced. This fact is

demonstrated by the following graphs, which show the gain and the speed-up

for documents with different amounts of parallelizable portions and for the time

functions t(ri) =cn, t(n) =cnl and t(n) =cn3.

Gain, t(n)=c*n Speed-up, t(n)=c-n

— p=0.9
—p=10
— p=0.8
— p=0.7
—p=06

lBI Tl 6Il ib

9 1 i 2 "]
Nur%er of added processors

A 5 6 7 B
of added processors

Fig. A.l Gain and Speed-up for t(n)=cn

Gain, t(n)=c,nA2 Speed-up, 1(n~c*nA2

— p=0.9
—p=10
—p=08
—p=07
— p=0.6

1 3 4 5 6 7 8 9 10
Number of added processors processors

Fig. A.2 Gain and Speed-up for t(n)=cn

Scheduling and Optimising XML Pipeline Processing Appendix A: Efficacy of SDMP-Scatter/Gather approach

1000-

0.9 900-
0.8 BOO-
07 700- — p=09
0-6 600- — p=1.0
05- 500 _ p:0 8
04 400: _ p=0.7
03- 300- —p=06
02 200-
01 100-

00 1™2" 3 L"6*i''T' G

| 7'"8 9 1 o T 4 -5 6 7 8 '<T 1
Number of added processors Number of added processors

3
Fig. A.3 Gain and Speed-up for t(n)=cn

The difference in gain increase for the different orders of the time function can
be clearly seen in the graphs, above. In practice, the first two cases, i.e. with

linear and quadratic time functions, are the most common.

2) Number of processors bringing gain is limited and independent of order
of time function

As can also be seen from the above graphs, there is a point of saturation after

which adding processors does not bring any gain because the processing time of

the whole document is set by the processing time of the serial part (which stays

constant for any number of processors).

For the time function expressed as t(n) =CNM, this number is

When the speed of the serial and parallel parts varies, and is set by the

coefficients CS and CP, then kn& is given by:

Xl

Scheduling and Optimising XML Pipeline Processing Appendix A: Efficacy of SDMP-Scatter/Gather approach

3) Gain from parallelization can not ever be grater than 1—-s'

This corresponds to the situation where the processing time of the parallel parts
diminishes to zero andthe onlydata toprocess isthe serial part. It is
theoreticallythe greatest achievable gain.This gain can’tbe ever reached: at
first, because we never have an infinite number of processors; and, secondly,

because the maintenance overhead would outweigh the obtained gain.

Another way to look at this conclusion is to state that the speed-up cannot ever

1 c
be greater than =— . A variation of this statement is known as Amdahl’s

Ccs CsS

cP
law in area of parallel processing (Gustafson 1988).

O

All previous calculations were performed for time functions in the form

t(n) =cnm. If, for any reason, a more precise expression of the time function is

needed, then we lose the advantage of having the gain independent of the
document size. This does not limit the possibility of evaluating the convenience

of the scatter/gather approach, though.

In this case, it is necessary to use the general gain definition, Equ. 2

t{ri)
and we need to display the gain as dependent on the size of the document for

different numbers of processors. Example graphs for the time functions

t(n) =log(n) and t(n) =nlog(n) follow:

Xl

Scheduling and Optimising XML Pipeline Processing Appendix A: Efficacy of SDMP-Scatter/Gather approach

These two graphs demonstrate that scatter/gather delivers gain for both of these

time functions, but with decreasing efficiency with growing size of input.

In cases where the parallelizable part of a document is small or adding another
processor earns just a small or no gain, the amount of time spent on
maintenance should be taken into consideration. The time spent on
communication and processing overhead might outweigh the gain earned by

employing more processors.

Xni

Scheduling and Optimising XML Pipeline Processing Appendix A: Efficacy of SDMP-Scatter/Gather approach

We can conclude our examination into following five points:

1)

2)

3)

4)

5)

The higher the order of the time function, the bigger savings achieved by

using the scatter/gather approach

p

The gain of scatter/gather approach is G =1- max smAk,—. for t(n) =c-nm
\% /

and the time of completion is t =max

The maximum number of beneficial processors is expressed by kmn=

When time of serial part processing is ts{n) =cs-nm and time of parallel part

*M =c, " then k= P Y
Iep s

When c¢s=cp =c, knm is independent of the order of the time function and its

multiplicative constant.

The gain cannot ever be greater than 1-— <. The speed-up can’t ever be

cp

Q
greater than —— for t(n) =c-n™

The convenience of the scatter/gather approach for transformations when

t(n) a cm can be easily seen from the graph of the gain with respect to the

size ofthe input

XV

Scheduling and Optimising XML Pipeline Processing Appendix B: Efficacy of MDMP-bulk aware processing

Appendix B
Efficacy of MDMP-bulk aware

processing

XV

Scheduling and Optimising XML Pipeline Processing Appendix B: Efficacy of MDMP-bulk aware processing

Appendix B. Efficacy of MDMP-bulk aware processing

In this part, we study the execution time of the transformations of MDMP-bulk
aware processing and introduce formulae expressing gain obtained by using this

approach.

We express the time of completion of the transformation in MDSP-bulk aware
approach as a sum of the timespans of the pre-processing, core-processing and

post-processing stages:
t(x) = tpeex) + tAK(X) + o (x)

Where jc is the number of documents in a batch and tpetaoetps are the times of
completion of the pre-, core- and post-processing stages. Again, we consider the
processed documents to be a group of ‘average documents’ as defined in section

2.5.

As mentioned in chapter 2, the time savings in the MDSP-batch aware approach
are achieved by minimising the pre- and post-processing stage. This is reflected

in how tpK(x) and tps (x) are defined.

When the pre- and post-processing stages can be executed just once for the
whole batch (e.g. opening and closing internet connection), then we define

tpe(x) and tmlx) as constants:

tpre(X) = Cpre

tposi M = CpOst

In other cases, there is an additional small amount of work to be done for every
document that is part of the pre- and post-processing stages (e.g. loading and

saving a file to disk). We then define the time functions as follows:

Scheduling and Optimising XML Pipeline Processing Appendix B: Efficacy of MDMP-bulk aware processing

This states that work spent on pre- and post-processing is linearly dependent on

the number of documents being processed. The constants Cp&and CpM2 are

usually very small. The core-processing stage does not change when processing

multiple documents.

Using previous definitions, we define gain of the MDSP-bulk aware approach

as:

G (X) _ ~ tMDSP-ba(*)

(x) MDSP-baa (1)

The definition of gain G is the same as in (A.l). It states how much less time

the transformation takes in new system compared to the old one.

When we combine tpe and tpd to tm the expression simplifies to

C | tm{x)+xt(nre{|) XAQHW
*C,(D+>(> *(,,,0)+Uri)

xt{1)

where tm(x) = tpe(x) +tps(x) and tag(x) are times of completion of the processing
stages when processing x average documents of size n. The variable t(x) is the

time of completion of the whole transformation.

This equation shows apparent fact that the amount of gain we get is determined

by the difference of times of the completion of x pre- and post-processing

XVII

Scheduling and Optimising XML Pipeline Processing Appendix B: Efficacy of MDMP-bulk aware processing

stages of the SDSP system and the pre- and post-processing stages of the MDSP
system when processing * documents. In other words, as we reduce the

overhead of the maintenance stages the gain is increased.

It also shows that if the time of completion of the core-processing stage is
significantly greater than the maintenance time, then the whole gain approaches

zero and is negligible.

To illustrate the given formula for gain, let’s consider the following example.
Suppose we process * documents of average size 100KB. Their processing
consists of loading them from the disk, downloading the appropriate DTD’s to
validate them, transforming them and saving them back to disk again. The pre-
processing stage consists of loading the files from disk, which takes an average

0.2 seconds per file and downloading the DTD which takes 4 seconds.

tpre(X) = °-2 -X + 4 -

The core-processing is the actual transformation which takes 10 seconds on

average and so core-processing time function is teore(x) = 10-x. Finally, the post-

processing stage is saving the documents to disk, what again takes 0.2 seconds

per file. tposl(x) =0.2-x.

The maintenance time, which comprises the pre- and post-processing stages, can

then be expressed as tm(x) = tpK(x)+tpsl (x) =4 +0.4 *x and the total execution time

as i(x) =tae(x) +f, (x) = 10+ 4 + 0.4x = 14+ 0.4x

The gain of the batch aware processing can be then expressed as:

For 10 documents, the gain evaluates to 25%, for 50 documents to 27% and for

100 documents to 27.5%.

XV

Scheduling and Optimising XML Pipeline Processing Appendix B: Efficacy of MDMP-bulk aware processing

Finally, the MDSP - batch aware gain formula shows the maximum gain that

can be obtained. It can’t be calculated in general for because dependence
of tm on x isn’t known, but we presume that in most cases tjx) can be

expressed, or sufficiently approximated as:

tm(x) =cm+cniX

The gain then simplifies to:

¢ _ xtmay- tm(x) x(cm+Cnd)-(cm+cwX) (x -1)c,, _
Xt(1) Xt(1) xt{1)

_Cn X-I
11) X

The maximum gain then is:

Grax = limG = limSs-— = lim-5=-fl--1 = .
N 1(1) * 1(1) X) 1)

where CM is the length of the join (shared) section of the transformation and i(l)

is the length of the whole transformation of one average document (which

contains CM as part of it).

This fraction in fact expresses the percentage amount of the joint section of the
transformation in comparison to the length of the whole transformation. This
joint section would theoretically diminish if the number of documents were

infinite.

Similar to the SDMP-Scatter/Gather approach, this maximal gain cannot ever be

reached, because there is never an infinite number of documents to process.

In the example we used earlier, tm was expressed in the form i,,(x) =4+0.4-x.

The constant CM is 4 and the time of processing one document i(l) =14.4. The

XIX

Scheduling and Optimising XML Pipeline Processing Appendix B: Efficacy of MDMP-bulk aware processing

. . C 4 ’
|| - —_——— = 0. = .8%. n
maximum %alll then evaluates to 6’ A)t 0.278 =27.8%. It’s a{/)pare t

na<:t(\ 14.4
that the gain obtained for 100 documents (27.5%) could not be raised much

higher by increasing the number of processed documents.

The dependence of the amount of the gain on the joint segment size is
demonstrated by the following graph. It shows that the larger the joint section is,

compared to the whole transformation, the bigger the time savings are.

Gain MDSP-bulk aware, t(x)=cm+constant-x

— cm=50%
— cm=30%
— cm=10%

The time function t(x) is considered constant in this graph. This shows the gain

processing of an average document with the linear time function.
Alternatively, the two following graphs demonstrate the dependence of the gain

achieved for individual input documents on the properties of the documents,

namely, the order of the time function and the size of the document.

XX

Scheduling and Optimising XML Pipeline Processing Appendix B: Efficacy of MDMP-bulk aware processing

Gain MDSP-bulk aware, t(x)=cm+cn-x
cm=6,c=1/32000

— n=100'000
— n=200'000
— n=300'000

Gain MDSP-bulk aware, t(x)=cm+(c-n)A2-x
cm=6,c=1/32000

— n=100'000
— n=200'000
— n=300"000

Fig. B.l Gain in MDSP-bulk aware scenario

These two graphs demonstrate two other facts about the MDSP-bulk aware

approach.

Firstly, when the size of the document increases, the obtained gain lessens as the
ration of the joined section and the whole transformation reduces towards zero.
Secondly, the higher the order of the time function is, the smaller the gain
obtained. This is implied by the increased time of completion with the higher
order of time function and consequential diminution of the ratio of the joined

section and the whole transformation.

XX1

Scheduling and Optimising XML Pipeline Processing Appendix B: Efficacy of MDMP-bulk aware processing

Our findings can be summarised in the following seven points:

1) The greater the joined (shared) section is, the greater the time savings are
2) The greater the size of document is, the lesser the time savings are

3) The higher order of the time function is, the lesser the time savings are

When the time function of the pre- and post-processing stages can be expressed

as tpre(x)+tps(x) =tjx) = om+cnix the following 3 points (4,5,6) are valid:

4) The gain is:

t(l) X

or

where t{J) is the time of processing of one average document and ¢, is the time

of completion ofit’s joined (shared) section.

5) The maximum gai.n is szé)

6) Because the gain function is always in the forme” ™", the shape of the

function is always the same, only the upper limit of reachable gain changes

for different time functions.

Therefore, the percentage of the gain reached by processing a certain number of
documents is always the same irrespective of the time function.
The following table shows how much of the possible gain is obtained when

processing at least x documents:

XXu

Scheduling and Optimising XML Pipeline Processing Appendix B: Efficacy of MDMP-bulk aware processing

No of documents > % ofpossible gain reached

3 66%
4 75%
10 90%
20 95%

7) The general gain expression for tn(x) is

Q Xtmd) -t m(x)
xt(1)

XXNi

Scheduling and Optimising XML Pipeline Processing Appendix C: Selected Parallel Processing Graphs

Appendix C
Selected Parallel Processing

Graphs

XXIV

Scheduling and Optimising XML Pipeline Processing Appendix C: Selected Parallel Processing Graphs

Appendix C. Selected Parallel Processing Graphs

This appendix contains large versions of selected figures that are referred to in

the text.

u U u

u diiori f1 () wu nn 0

R n n n n n cL Q I(l

CL CL Q. Q. 4. CL ¢p in oo

'I' c™M co in cM
in
4)
B
in
U
u
o
Q
O
C
g
>
E
Q
C
"m
In
o
u
o

cM cD co cm

[s] Quii) BuisseaoJd

Fig. C.1 The measured parallel processing times with respect to the number of

documents (Fig. 9.21)

XXV

Scheduling and Optimising XML Pipeline Processing Appendix C: Selected Parallel Processing Graphs

Fig. C.2 Measured parallel processing time with respect to number of processors

(Fig. 9.22)

XXVI

Scheduling and Optimising XML Pipeline Processing Appendix C: Selected Parallel Processing Graphs

Fig. C.3 Processing overhead with respect to number of documents (Fig. 9.23)

XXVII

Scheduling and Optimising XML Pipeline Processing Appendix C: Selected Parallel Processing Graphs

Fig. C.4 Processing overhead with respect to number of processors (Fig. 9.24)

XXVvni

