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Abstract

The hyp er exponential growth o f Internet routing tables will soon exceed the capabilities o f  

existing hardware adding to increased costs and significant degradation in routing 

performance.
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Chapter 1 -  Introduction

Papers suggest that the primary reason for designing IPv6 was because the current version of 

IP was beginning to exhaust its address space, but is the address limitation o f IPv4 really an 

issue any more? With the introduction o f Network Address Translation and other life 

extending techniques, the demand for legitimate IP addresses has been significantly reduced.

Both LAN and WAN technologies have changed dramatically since the introduction o f IPv4 

over twenty years ago and as a result so too have applications. We now want to deliver voice 

and video and other real time applications across the Internet. These applications require and 

demand a certain quality o f service (QOS). This was to be one o f the built-in features of 

IPv6. QOS, however, is also natively supported by ATM, while on a legacy LAN QOS is 

supported by the RSVP protocol. Likewise, mobile IP is supported in both IPv4 and IPv6. 

Has IPv6 really got anything to offer when compared to the “workaround” solutions and 

protocols that can be used with IPv4?

Many articles, both subjective and objective, have been written comparing the two protocols. 

Huston (2003) presents a rather interesting article that compares IPv6 features to those of 

IPv4. There is, however, no doubt that an altruistic approach by everyone to embrace IPv6 

would be immensely beneficial to the entire Internet community. Undoubtedly many will 

also feel that the upheaval involved in upgrading to IPv6 would not be justified. But has IPv6 

got much more to offer other than an abundance o f addresses, QOS and mobility?

For as long as I can remember the Internet has always being running out o f address space and 

absolute address depletion was only around the comer. No matter when a paper was 

published, or what new procedures, policies and protocols were in place, complete address 

depletion always seemed immanent. It’s a bit like the proverbial frog always jumping half of 

his remaining distance and never actually getting there. So is the IPv4 address depletion just 

like our frog? In many respects IPv4 addresses are just like our frog and we will never 

actually run out o f addresses and the sky will never fall in on the Internet from this regard. 

Although we will never be able to tell for certain, it does seem that the predictions about
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eventual address depletion were probably correct. We have never run out o f  address space 

simply because plenty was done about it in a timely manner.

In the early nineties Internet scaling issues were studied and RFC 1287 was produced in 

December 1991. This RFC identified four major issues regarding scalability. These were:

• The Internet will run out o f  certain classes o f  IP network addresses, e.g., B addresses.

• The Internet will run out o f  the 32-bit IP address space altogether, as the space is 

currently subdivided and managed.

• The total number o f IP network numbers will grow to the point where reasonable 

routing algorithms will not be able to perform routing based upon network numbers.

• There will be a need fo r  more than one route from a source to a destination, to permit 

variation in TOS and policy conformance.

A number of solutions were produced on foot of this RFC. NAT was introduced as a short 

term solution to eventual address depletion. Classless Interdomain Domain Routing (CIDR) 

and BGP4 were introduced to curb the excessive growth in advertised routes. A new IP 

protocol IPv6 was also produced that could “apparently” solve all the critical issues raised in 

RFC 1287, while, at the same time introducing many new enhancements. It will be shown 

later, however, that IPv6 must have left the party early as we are still left with the problem o f 

exponential growth of advertised routes on the Internet, although this time the cause of the 

problem is quite different to what it was in the nineties.

Martin Me Court
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Figure 1 Active BGP Entries (www.potaroo.net)

Figure 1 above shows a graph o f active BGP entries plotted against time. This graph is taken 

from data collected on the BGP routers in AS 1221. BGP data is collected on an hourly basis 

and is publicly available on the website www.potaroo.net. As can be seen from the graph the 

number o f advertised routes is growing at an alarming rate. Reference to figure 2 below puts 

this exponential growth into perspective by showing a plot o f the number o f increased routes 

in the past twelve months (27 August 2004 to 27 August 2005).

$ * p - 0 4  Oct-04 How-84 D*c-04 J»n-05 flb-ISHtr-IS 0pi*-05Mag-#5 Jun-05 Jul-05 Aug-03
Bat«

Figure 2 Active BGP Entries 2004-2005 (www.potaroo.net)

Martin Me Court 2005
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As can be seen, in the past twelve months alone, the number o f routes advertised has 

increased from about 175,000 to over 215,000.

So what impact will this growth have on us if left unabated? Does it mean that we are 

running out o f  address space yet again? The growth in routing table size can only be loosely 

linked to the increased consumption o f IP addresses as more and more people and businesses 

“get connected”. The real problems here are manifold.

In the first place, can routing hardware keep up the pace? Li [1] predicts that the 

“hyperexponential growth o f routing tables will eventually outgrow M oore’s law”. M oore’s 

law, although 40 years old still holds true today even for routers. Loosely put, Moore’s law 

states that hardware performance will double about every eighteen months. If  this 

hyperexponential growth continues not only will costs be driven up, but the impact on 

performance will also be immense. For example, how long will it take for routers to 

converge? How long will it take for a router to index through its routing tables for a 

particular network? This can only be bad news as more and more users embrace VOIP and 

other such delay sensitive applications. Even most home users now pump data into the 

Internet at DSL rates making real time multimedia applications a normal occurrence on most 

domestic computers.

And what about IPv6 with its massive address space? Items like domestic appliances can 

now be connected to the Internet and controlled remotely from a web browser. With an 

almost limitless amount o f available addresses in IPv6, will this new protocol be part o f  the 

problem or part of the solution?

But what exactly is causing the exponential growth of BGP routes? Was CIDR not 

introduced as part o f the solution to curb such growth? Referring back to figure 1 we can see 

that CIDR had a very positive impact on growth rates between 1994 and 1998. A straight 

linear increase can be seen between these years. However, from 1998 onward the exponential 

increase resumes yet again.

As mentioned previously, a small part o f  the problem is the increased uptake in Internet 

connections by end users and, no doubt, the associated increase in the number o f ISPs. The
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Potaroo website [2], makes available all sorts o f data pertaining to BGP statistics. Figure 3 

shows a very interesting graph that plots the average number o f addresses advertised by each 

BGP announcement. As is clearly evident from the graph, the address span for each 

advertisement continues to decrease. For example in 2000, on average, each BGP 

advertisement represented just over 15,000 addresses. Today each BGP advertisement on 

average represents less than 7000 addresses. One can easily infer from this that an increase in 

address consumption will cause an increase in BGP advertisements beyond the control o f 

CIDR route aggregation. As will be explained in detail later, the main benefit of CIDR is to 

allow the aggregation o f subnets into just one route advertisement. So, for example, all 

subnets beginning with 193.1.x.x will be advertised as just one route under network 193.1.0.0. 

Therefore, one would expect the opposite of what is shown in figure 2, that is, a larger address 

span meaning that each route advertisement represents a larger number o f addresses.

j n  . .  ii i kliUiEll

Figure 3 Average Span of B G P  Advertisements (www.potaroo.net)

Evidently this is not the case. Each route advertisement represents fewer and fewer addresses 

which means that much more specific routes (networks with a longer subnet prefix) are now 

being advertised. Apart from increased table size, the impact of such specific advertisements 

is an increase in “the rate o f dynamic path recomputations that occur in the wake of

Martin Me Court 2005
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announcements and withdrawals” as these more specific networks go up and down, Huston 

(2001). This again begs the question as to whether the Internet hardware will be able to 

support this increased strain.

In an article written by Borthic (2001), the author states that we were quite fortunate that the 

Dot Com bubble burst when it did, as the Internet infrastructure simply just couldn’t have 

handled such explosive growth.

IM M t

I  M M .

!

Figure 4 Specific Prefix Advertisements (www.potaroo.net)

Looking at figure 4 above we can see the exponential growth o f specific prefix 

advertisements. What this graph shows is that at present there are almost 140,000 specific 

network advertisements that could be, but are not, being advertised under their own larger 

aggregate address.

So what are the reasons for specific advertisements, and why can’t CIDR aggregate these 

smaller specific advertisements into significantly fewer but larger aggregate route 

advertisements?

Martin Me Court
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There are many causes for specific advertisements. For example, if a business connects to an 

ISP and is allocated a block o f addresses under the ISP’s own aggregate address block, then in 

the event that the business should move to another ISP, this address block would move with 

the business. This would leave a hole in the original ISP’s addresses and would also cause the 

new ISP to advertise an address block not within its own aggregate address range.

This type of address is referred to as a Provider Independent Address (PIA). There are two 

main advantages for subscribers using PIA. In the first place there is no need for site 

renumbering, the benefits o f this are obvious. Secondly, because the address block is not part 

o f the ISP’s address block, then it must be advertised as a specific route. The advantage o f 

advertising a specific route is that routers will always select this path in preference to a path 

that advertises an aggregate announcement.

The main reason, however, for more specific advertisements is the use o f multihoming. 

Multihoming is the practice o f  networks connecting to more than one ISP. The main 

advantages o f multihoming are resilience, load balancing and traffic engineering. When a site 

is multihomed, for instance, to two ISPs, it will have a separate address block allocated by 

each ISP. However, in the event that a connection to one o f the ISPs should fail, then the 

other ISP will have to advertise the address block belonging to the failed connection. This 

address block will essentially punch a hole in the ISP’s routing advertisement since again it is 

not part of the ISP’s own address space and therefore can not be aggregated. This is looked at 

in greater detail in subsequent chapters.

This dissertation therefore sets out to examine route scaling techniques that can and are being 

used to curb the growth o f route advertisements in BGP tables. Since multihoming has been 

identified as the main cause for the exponential growth o f more specific route advertisements, 

the main focus will be on multihoming techniques. Given that, however, IPv6 was developed 

mainly out of address and route scaling necessity, a particular emphasis will be placed on 

IPv6.
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Chapter 2- IPv6 Format

In order to folly understand and appreciate the arguments set out in this dissertation, it is 

essential to first look at the detail o f the IPv6 protocol. IPv6 was designed as an evolutionary 

step from IPv4 as opposed to a complete upgrade and revamp. The header itself is actually a 

streamlined version of the IPv4 header and is specified in RPC 2460.

The frame format is shown below in figure 5.

Version Traffic Class Flow Label

Payload Length Next Header Hop Lim it

Source Address

Destination Address

--------------------------------------------------  32 bits  ►

Figure 5 IP v 6  Header format

From looking at figure 5, the most obvious changes are the size o f the addresses, the removal 

o f the fragment fields and the introduction of a flow label.

In IPv4 the minimum header length is 20 bytes but can be extended up to 60 bytes by adding 

on options in 32 bit quantities. IPv6, on the other hand, has a fixed length header o f 40 bytes. 

Even though this is twice as long as an IPv4 header, 32 o f these bytes are for source and 

destination addresses, leaving only 8 bytes for general header information.
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With IPv4 the header length is variable and is used to indicate whether or not options have 

been included. The header length cannot exceed 60 bytes in total. This in itself limits the 

development o f new protocols. With IPv6, on the other hand, an endless amount of new 

protocols can be catered for through the use o f the Next Header field which is explained later.

The designers o f IPv6 were able to remove the fragment fields, namely ID, FLAGS, and 

OFFSET because with IPv6 only the end nodes can actually fragment the datagram. Enroute 

routers can not fragment an IPv6 datagram as in IPv4. Hosts must determine the path MTU 

through a procedure known as Path MTU Discovery. This procedure is quite straight forward 

in that a host sends a large datagram to a remote host. Since routers can not fragment an IPv6 

datagram, the first router along the path that discovers fragmentation is required will send an 

ICMP error message back to the source indicating that fragmentation is required. If a host 

needs to fragment a datagram, the “Next Header” field is used to indicate this; as will be 

described later. In IPv4, if the datagram is not fragmented, the fragment fields still need to be 

included and processed.

Field Descriptions 

Version

The version field is functionally identical to that used in IPv4. This 4-bit field indicates the 

version number of the IP datagram and will contain a value o f 6i0.

Traffic Class

This 1-byte field supersedes IPv4’s Type o f Service field. This field is used for Differentiated 

Services (Diffserv) on the Internet and is used to give priority to certain types o f data. It 

allows for the handling of real time data and is described in RFC 2474. This field is the same 

as the newer DS field used in IPv4.

Flow Label

This 20-bit field allows for the labelling of datagrams that are required to be handled in the 

same way. This means that routers along the path don’t have to examine the headers o f 

subsequent packets belonging to the same flow. A flow is considered to be the labelling of 

packets that require non default quality o f service and special handling.
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Payload Length

This 2-byte field indicates the length o f the payload in bytes. Because this field is 16 bits 

long, the maximum payload is 64 KB. Unlike IPv4, however, the payload length does not 

include the header but does include extension headers. The payload therefore begins 

immediately after the destination address.

V alue D escription

0 Hop by Hop option

1 ICMPv4 support

2 IGMPv4 support

4 IP in IP

6 TCP

8 EGP

9 IGP

17 UDP

41 IPv6

43 Routing header

44 Fragmentation header

45 IDRP

46 RSVP

50 Encrypted security payload header

51 Authentication header

58 ICMPv6

59 No Next Header for IPv6

60 Destination Options header

88 EIGRP

89 OSPF

108 IP payload compression protocol

115 Layer 2 tunnelling Protocol

132 Stream Control Transmission Protocol

134-254 Unassigned

255 Reserved

Table 1 Next Header values

Martin Me Court 2005
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Next Header

This field indicates the payload type. If  the IPv6 datagram is carrying a TCP or UDP 

payload, the next header field will contain the value 6 or 17 respectively just like IPv4. If 

options are present in the header, this will be indicated with an appropriate value in the next 

header field. These values are listed in Table 1 above.

Hop Limit

This 1-byte field is similar to the Time-to-Live (TTL) field in IPv4. The difference, however, 

is that this field contains the number of hops remaining for this datagram and not the time left 

in seconds. Each router along the path will decrement this value by one.

Source Address

This 16-byte field contains the IP address o f the source host.

Destination Address

This 16-byte field will normally contain the destination IP address o f the remote host with the 

exception of the presence of a Routing Extension Header, in which case it will contain the 

address of the next hop.

Martin Me Court
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Extension Headers

When dealing with IPv4, the presence o f an options field is indicated by the value in the 

header length field. With IPv6 the Next Header field is used to indicate the presence of 

options. I f  no options are included then the Next Header field will normally contain the 

number 6 for TCP, 17 for UDP, or any other value just as with IPv4. These payloads will 

immediately follow the destination address. The current IPv6 specification (RFC 2460) 

defines the following six extension headers.

• Hop-by- Hop Options Header

• Routing Header

• Fragment Header

• Destination Options Header

• Authentication Header

• Encrypted Security Payload Header

The Hop-by Hop options header and the Destination options header carry a variable number 

o f type-length-value (TLV) encoded options, which adhere to the following format.

Option type Option data length Option data

Figure 6 TLV Format

Option Type: 8-bit identifier o f the type o f option

Option Data Length: 8-bit unsigned integer, indicating the length of the data field in

octets.

Option Data: Variable length field and carrying type specific data.

There can be zero, one, or more extension headers, with each extension header being

identified by the Next Header field in the preceding header as shown in Figure 7.

Martin Me Court 2005

14



Route Scaling and Multihoming M.Sc in Computing

IPv6 header
Next header=TCP TCP header & data

Value=6

IPv6 header Routing header
Next header=Routing Next header=TCP TCP header & data

Value=43 Value=6

IPv6 header Routing header Fragment header
Next header=Routing Next header=Fragment Next header =TCP TCP header & data

Value=43 Value=44 Value=6

Figure 7 Use of Extension headers

Extension headers are only examined by the host whose address is indicated in the destination 

address field. The exception to this is when the extension header is a Hop-by-Hop header, in 

which case the information it carries must be examined and processed by every node along 

the path of the datagram. Extension headers must be processed in the order they appear in the 

datagram. Where there is more than one extension header the following header order should 

be used.

1. IPv6 header

2. Hop-by-Hop header

3. Destination options header

4. Routing header

5. Fragment header

6. Authentication header

7. Encapsulating Security Payload header

8. Destination Options header

9. Upper Layer header.

Martin Me Court
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Hop-by-Hop Options Header

This header contains data that must be examined by every node along the path of the 

datagram. In IPv4 a router has to examine some of the upper layer data in order to determine 

whether or not it needs to examine the datagram. This is quite inefficient. With IPv6, 

however, the absence o f a Hop-by-Hop extension header means that the router does not have 

to process router specific information and can pass the datagram directly on to the next hop. 

The format o f this header is shown below.

Next header Header extension 
length

Option type Option data length

Option data
TLV fields

Figure 8 Hop-by-Hop Options header

Next header:

Header extension length: 

Option type/length/data:

This 8-bit field identifies the type o f header that follows the 

Hop-by-Hop options header, for example TCP (6), UDP (17), or 

another type o f extension header.

This is the length o f the Hop-by-Hop options header in 8-octet 

units and does not include the first 8 octets.

These fields contain information that routers at each hop along 

the path o f the packet need to process.

Routing Header

A source host uses this field to define a path that the datagram must take. In this case the 

destination IP address is not that of the ultimate destination host, but that o f the next node that 

must be visited. The format of the options header is shown in figure 9 below.

Mar t in  M e  C o u r t
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Next header
Header extension 

length

Routing type Segments left

Address 1

Address 2

I i i
i i i

Final address

Figure 9 Routing header

Next header:

Header extension length: 

Routing type:

Segments left:

Address fields:

This 8-bit field identifies the type o f header that follows the 

Hop-by-Hop options header, for example TCP (6), UDP (17), or 

another type o f extension header.

This is the length o f the Hop-by-Hop options header in 8-octet 

units and does not include the first 8 octets.

This 8-bit field indicates the type o f routing header. At the 

moment only routing type 0 has been defined.

This 8-bit field indicates the number o f nodes left to be visited 

before arriving at the final destination. This directly 

corresponds to the number of address fields after the “Segment 

Left” field.

These fields specify the address o f the remaining nodes that 

must be visited.

Fragment Header

Unlike IPv4, fragmentation does not occur at the routers along the packet path. Instead, an 

IPv6 host uses Path MTU Discovery as previously described to determine the appropriate 

packet size and fragments if  necessary. Fragmentation occurs only at the source host.

The Fragment header is shown in figure 10.

Martin Me Court 2005
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Next header Reserved

Fragment offset Reserved M Flag

Identification

Figure 10 Fragment Header

Next header: This 8-bit field identifies the type o f header that follows the

Hop-by-Hop options header, for example TCP (6), UDP (17), or 

another type of extension header.

Reserved: This 8-bit field is not used.

Fragment offset: As in IPv4, this 13-bit field indicates the offset in 8-byte

units o f the data in this packet from the start o f the original data.

Reserved: This 2-bit field is not used and is set to zero.

M Flag: This 1-bit field indicates whether this is the last fragment or

if  more fragments follow.

Identification: This 32-bit field has the same functionality as in IPv4. All

fragments belonging to same original packet will have the same 

identification.

Destination Options Header

This field carries optional information that only destination hosts need examine. The header 

format is shown below in figure 11.

Next header
Header extension 

length

Option type Option data length

Option data
TLV fields

Figure 11 Destination Options Header

Martin Me Court
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Next header: This 8-bit field identifies the type o f header that follows the

Hop-by-Hop options header, for example TCP (6), UDP (17), or 

another type o f extension header.

Header Ext Length: This 8-bit field indicates the length o f the options header in 8-

byte units, but not including the first 8 bytes.

Options: This variable length field is used in the same way as the hop-by-

hop options header discussed earlier.

The above extension headers are described in RFC 2460.

Martin Me Court
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IPv6 Addressing

The IPv6 addressing architecture (RFC3513) is in fact a radical deviation from the IPv4 

address architecture that we are familiar with. The most obvious change is that IPv6 uses a 

128 bit address as opposed to IPv4’s 32 bit addressing scheme, thus yielding a significant 

increase in address space. To put this in perspective, consider each IP address as being 

represented by a distance o f 1mm, then, there are sufficient IPv6 addresses to span the 

circumference o f the Galaxy several times. Extending the address space in this way also 

allows for routing table optimisation, which will be looked at later.

The general format for IPv6 addresses is shown in figure 12.

Subnet prefix Interface ID

Figure 12 IPv6 address format

IPv6 Address Types

Broadcast addressing is no longer supported in IPv6 and is replaced with multicast addressing 

instead. The supported categories are listed below.

Unicast

As in IPv4, the unicast address is the individual address o f a specific interface. However, 

multiple interfaces on the same node can have the same unicast address. This is used for load 

balancing across multiple interfaces.

Multicast

As in IPv4, multiple nodes can share the same address. A packet sent to the multicast address 

is received by all nodes identified by that address.
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Anycast

Anycast is new in IPv6, and is an identifier for a set o f  interfaces belonging to different nodes. 

A packet sent to an anycast address will be received only by one node and will generally be 

the node closest to the source. Consider, for example, an organisation’s WAN that has more 

than one router with access to the Internet. All o f these routers could be identified by the 

same anycast address. A host could then be configured with the anycast address as its default 

gateway. A packet sent to this address will be received by the router that is closest, in routing 

terms, to the source host.

Address Notation

An IPv6 128 bit address is represented in hexadecimal format. Each group o f four 

hexadecimal characters are separated by a colon as shown below:

21ad:e53f:9b00:f019:0240:05ff:eo85:812b

While this syntax does look rather cumbersome, many addresses will contain a large number 

o f zeros. Using zero compression, contiguous zeros can be replaced by a double colon, for 

example, the following address:-

fe80:0000:0000:0000:0240:05ff:e085:812b

Can be replaced by:-

fe80::0240:05ff:e085:812b

Caution must be taken to ensure that zero compression only occurs in one place as a host uses 

the lull 128 bit address. For example the following address:-

fe80:0000:0000:0000:0240:05ff:0000:812b

can not be abbreviated as fe80::0240:05ff::812b since the host will not know how many zeros 

to insert between each double colon.
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However, leading zeros can be compressed so that the above address can now be represented 

as:-

fe80:0:0:0:0:0240:05ff:0:812b or fe80::0240:05ff:0:812b 

Text Representation o f Address P re fix

IPv6 uses CIDR notation in a manner similar to that used in IPv4 for indicating the subnet 

prefix. In IPv6 the length of the prefix is written as the number of bits, in decimal, preceded 

by a slash, that is, IP v6  address/pre fix  length.

For example fe80:0:0:0:0:0240:05ff:0:812b/10 means that the leftmost 10 bits are the subnet 

prefix and can also be written as fe80::/10 to indicate the subnet address.

Format Prefixes

Format prefixes are prefixes that are used to identify special address types. RFC3513 “IP 

Addressing Architecture” which obsoletes RFC2373 specifies the following assigned 

prefixes.

Address Type Binary Prefix IPv6 Notation

Unspecified 0000...0 (128 bits) ::/128

Loopback 000... 1 (128 bits) "1/128

Multicast 11111111 ff00::/8

Link-local unicast 1111111010 fe80::/10

Site-local unicast 1111111011 fec0::/10

Global unicast (everything else)

Table 2 Assigned prefixes

As can be seen from table 2, there is no reserved space for an anycast address. Anycast 

addresses are taken from the unicast address space. Interfaces using anycast addressing must 

be configured so that they know this address is an anycast address.
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Unspecified

The unspecified address o f all zeros may not be assigned to a host. A typical use for this 

address is during auto configuration where the host does not yet know its own IP address.

Loopback

The loopback address is used for testing the protocol stack as in IPv4’s 127.0.0.1. This 

address may not be assigned to an interface. Any packet received by a host with this 

destination address will be discarded.

Multicast

The multicast address has already been explained. All multicast addresses must begin with 

ffDO.

Link-local unicast

In IPv6 a link refers to a network segment or subnet. A link-local unicast address is an 

address that is unique to that subnet/segment only. Link-local addresses cannot be forwarded 

by routers and, as a result, cannot connect to other networks. They are used on single 

segment Ians only.

Site-local unicast

In IPv6 a site refers to an autonomous network. Site-local addresses can be routed within an 

autonomous network but routers must not forward these packets out onto the Internet.

The format for Link-local and Site-local addresses is shown in figure 13.

Link-local address

1111 1110 10 
(fe80) 0 Interface ID

10 bits 

Site-local address

54 bits 64 bits

1111 111011 
(fe80) 0 Subnet ID Interface ID

10 bits 38 bits 16 bits 64 bits

Figure 13 Link & Site local address format
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Global unicast

This is a globally unique address. It was formerly known as “Aggregatable Global Unicast 

Address” but has been slightly redefined in RFC3587 in August 2003 with the focus being on 

routing optimisation. All unicast addresses except those beginning with binary 000 must 

adhere to the format shown in figure 14 below.

n bits 64 -  n bits 64 bits

Global routing prefix Subnet ID Interface ID

Figure 14 Global Unicast address format

The global routing prefix is designed to be structured hierarchically by the Regional Internet 

Registries and is the value assigned to a site. The subnet field is designed to be structured 

hierarchically by the site administrators and identifies a subnet within a site. The interface ID 

must be constructed in Modified EUI64 format. Such an address is constructed from the hosts 

MAC address in the following manner:-

First the hex digits Oxfffe are inserted into the middle o f the MAC address between bytes 

three and four. The second low order bit of the first byte o f the MAC address, called the 

universal/local bit, is inverted. This is best explained by example.

The MAC address of my PC is 00-40-05-85-81-2b. To construct the Modified EUI-64 ID, we 

take this address and insert fffe between bytes three and four. The address now becomes 

00-40-05-ff-fe-85-81-2b. We must now invert the second low order bit of the first byte. The 

first byte in this case is 0x00 so this now becomes 0x02. The 64 bit interface ID now looks as 

follows:- 02-40-05-ff-fe-85-81-2b.

While looking at Global Unicast addressing it is best to look at the way in which IPv6 

addresses are to be allocated.
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IP v6  Address A llocation

Figure 15 shows the IPv6 address allocation hierarchy. LANA allocate address space to the 

Regional Internet Registries. Our RIR in Europe is RIPE NCC (Reseaux IP Europeens 

Network Coordination Centre). The RIRs in turn allocate address space to the Local Internet 

Registries (LIR). LIRs are essentially ISPs. Some o f the main LIRs in Ireland include 

Eircom, Esat Net, HEAnet and UUnet to name but a few. An up to date list can be found on 

the RIPE website [3].

Figure 15 Address allocation hierarchy [RIPE]

Recommendations on IPv6 Address Allocations to Sites

Unlike IPv4, variable length subnet masking is not used, which means that for global unicast 

addresses, the host ID will always be 64 bits long using the Modified EUI-64 format. 

RFC3177 sets out the recommendations to the addressing registries (APNIC, ARIN AND 

RIPE-NCC) on polices for assigning IPv6 addresses.

The recommendation sets out that a /48 bit prefix be allocated in the general case. This means 

that if an organisation has been assigned a /48 prefix that it can further subnet the network 

into 2 16 subnets. Interestingly, the recommendation also proposes that this prefix be allocated 

to homes. This does seem wasteful but there is good justification. At present, all global
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unicast addresses begin with 001 in the first three bits, therefore there are 45 bits rem aining in 

the prefix. That is to say, the num ber o f  available /48 prefixes is 245 which approximately 

equals 35 trillion. Another reason for this is to do with site renumbering. During site 

renumbering from one prefix to another the whole process is greatly complicated if  the 

prefixes have different lengths. Site renum bering and route optim isation w ill be looked at 

later.

A  /64 prefix is to be issued to a site when it is known that only one subnet is needed. A /128 

prefix will be assigned when it is absolutely known that one and only one device is being 

used.

In the case o f  a very large organisation multiple /48 prefixes or smaller can be allocated. I f  an 

ISP can show that it has plans to make 200 /48 assignments to other organisations w ithin two 

years then it can be allocated /32 prefix. [4]

Address Assignm ent exam ples

At the moment, for global unicast addressing, IANA is issuing 2001 :: / l6 to the RIRs. 

Therefore all addresses issued to RIPE, ARIN, APNIC, etc., will begin w ith 2001. RIPE have 

been allocated the following addresses:

2001:0600::/23 

2001:0800::/23

2001:1400-/23 up to and including 2001:3A00::/23, but excluding 2001:1800::/23 

2001:4000::/23

Referring back to figure 14 it can be seen that R IPE can now  further allocate up to 41 bits to 

ISPs. So, for example, RIPE has allocated 2001:0bb0::/32 to Eircom and HEAnet has been 

allocated the following:

2001:0770::/35

2001:0770:2000-/35

2001:0770:4000-/34

2001:0770:8000-/33

HEAnet in turn are allocating /48 prefixes to Universities and Institutes o f  Technology.
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Chapter 3 -  Border Gateway Protocol

In order to gain an appreciation o f  route optim isation and related issues, it is first necessary to 

provide a background on the Border Gateway Protocol (BGP). It is not intended to provide a 

detailed outline o f  BGP, but rather to highlight the features o f  BGP that are relevant to this 

discussion. The w orking details o f  BGP4 are defined in RFC1771.

Observing figure 16 above, it is obvious that every router in Enterprise A  needs to know the 

route to every other router within that enterprise. The larger the enterprise, the larger the 

routing tables w ill be. Enterprise A  m ay never need to communicate with enterprise B, 

however, should enterprise A  need to communicate w ith enterprise B, then routers in both 

enterprises would need to know how to reach each other. The m ore enterprises connected to 

the Internet therefore, the larger the routing tables will be. This situation is very undesirable 

for the following reasons. Firstly all routers would require massive m em ory to support the 

huge amount o f  routing entries. Secondly, all routers would require substantial processing 

power in order to index through their massive routing tables. Thirdly, convergence would 

take an inordinate am ount o f  time due to the large am ount o f  routers involved.

Observing figure 16 again, it can be seen that only one router from each enterprise is 

connected to the outside world. We will call this the border router. It would make more 

sense that the border routers in each enterprise know  about each other’s existence. These
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border routers can summarise all o f  the networks in their ow n enterprise (autonomous system) 

in to one Supem et therefore, significantly reducing the size o f  the routing table. Routers 

within an Autonom ous System (AS) will run  an Interior Gateway Protocol (IGP) like RIP or 

OSPF. An IGP router only exchanges routing tables w ith other IGP routers w ithin the same 

AS. The border routers, on the other hand, will use an External Gateway Protocol (EGP). 

EGP routers summarise the routes belonging to their ow n AS. These route summaries are 

then advertised to other EGP routers.

Enterprise D Enterprise C

Internet

Enterprise BEnterprise A

Figure 17 Internet Backbone

From figure 17 above it can be seen that only four networks now need to be advertised as 

opposed to a m inim um  o f  forty networks (each enterprise has ten networks) w ithout using an 

exterior gateway protocol.

The EGP that is used is BGP4. A t the moment, as is evident from  figure 21, there are nearly 

200,000 routes advertised b y  BGP routers. BGP needs to be quite scaleable. To achieve this 

level o f  scalability BGP uses routing policies called attributes. These attributes are explained 

below. Refer to Cisco on-line [5] for more detailed explanations.
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Lo ca l Preference

Figure 18 below  shows an autonomous system with two exit/entry points. The Local 

Preference, which is advertised throughout an AS, is used to select the preferred exit point 

from the local AS.

Figure 18 Local Preference

Since router D has the highest local preference it will be used to route packets from AS 100 to 

AS 200.

In the figure above routers A  and B are said to be internal peers, as are routers C and D. 

Routers A and C, on the other hand, are external peers, as are routers B and D. Although all 

routers are configured using the same BGP4 protocol, internal peers are considered as using 

internal BGP (iBGP) while external peers are considered as using external BGP (eBGP)

M u lti-E x it D iscrim in ato r (M E D )

This attribute is used to suggest to routers in an external AS w hich entry point to use to gain 

access to the local AS. It can be thought o f  as the opposite or reverse o f  the local preference 

attribute.
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O rig in  A ttrib u te

This attribute indicates how BGP learned about a particular route. It has three possible 

values:

•  IGP- The router learned this route from another BGP within the same AS.

• EGP- The router learned about this router from another BGP in a different AS.

• Incomplete- The origin o f  the route is unknown.

A S Path A ttrib u te

Every autonomous system connected to the Internet m ust use a unique AS num ber which is 

issued by  IANA.

Figure 19 AS Path Attribute

In figure 19 above it can be seen that a num ber o f  ASes m ust be traversed in order to get from 

network 193.1.40.0/24 to network 200.100.10.0/24. So, the AS Path Attribute, for example, 

could be {100,500,400}.

N ext Hop A ttrib u te .

This attribute specifies the address that is used to reach the advertising router. In figure 20 

router A advertises network 195.60.10.0/24 with a next hop address o f  193.1.40.1
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Figure 20 Next Hop Attribute

Com m unity A ttrib u te

The com m unity attribute groups destinations into groups called communities to which 

preferences can be applied. Predefined community attributes are:-

• No Export Do not advertise this route to EBGP peers

• No Advertise Do not advertise this route to any peer

• Internet Advertise this route to the entire Internet community

The above attributes are what make BGP4 the ideal routing protocol for the Internet 

backbone. Looking again at figure 19, for example, AS 500 can be considered as a transit 

network in that it can be used to carry packets from  AS 100 to AS400. However, this could be 

a corporate netw ork that m ay not w ish to carry packets for another corporation. BGP4 allows 

routers to be configured to act as transit provider for other ASes or even a selection o f  ASes 

but not for others. BGP4 can also be used for load balancing as in figure 20 and for route 

filtering as is dem onstrated later.
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Chapter 4 - Route Scaling Techniques in IPv4

Chapter 2 outlined the IPv6 addressing scheme. The main driving force behind the 

introduction o f  IPv6 was to introduce a larger address space and to provide route optimisation 

for routing tables on the Internet. This chapter looks at existing m ethods put in place with 

IPv4 to alleviate routing and address problems.

Route Scaling

Figure 21 below  shows a historical track o f BGP entries on AS1221. This router has a 

default-free routing table w hich essentially means that it can see all routes advertised on the 

Internet. This graph and other related data are updated daily on Potaroo website [6]

D«t«

Figure 21 Active BGP entries Aug 2004 [potaroo.net]

It can be seen that from 1988 to the first quarter o f  1994 routing table sizes were growing at 

an exponential rate. The obvious reason for such growth was that the Internet was sim ply 

becoming m ore and more popular. This popularity could largely be attributed to 

developments in email and web browsing technology. However, there was also a very valid
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technical reason behind this growth w hich was largely to do with the inefficiencies o f  the 

addressing scheme at that time.

Pre-1992 there were essentially three network sizes. The Class A  netw ork supported 16.7 

million hosts. The Class B network supported 65,536 and the Class C network supported 256 

hosts. A  typical network at the time (1000 to 2000 hosts) did not fit easily into any o f  the 

three networks. To issue a Class B address was com pletely wasteful so the alternative was to 

issue multiple Class C addresses. The assignm ent o f  m ultiple Class C networks combined 

with the rapid growth in the Internet meant that routing tables were going to grow so large 

that firstly, the existing m em ory and hardware in routers w ouldn’t be able to cope, secondly 

the convergence time would significantly increase, and thirdly, the address space would 

eventually run out. It was apparent that this situation could not continue to go unchecked.

Classless Interdom ain  Routing (C ID R )

In June 1992, RFC1338 “Supernetting: an Address Assignm ent and Aggregation S tra tegy” 

was published. Its focus was not on the eventual demise o f  addresses, but on the m ore 

immediate problem o f  route scalability.

The proposed solution was “to hierarchically allocate fu tu re  IP address assignment, by 

delegating control o f  segments o f  the IP  address space to the various network service 

providers. ” The main goal was to allocate an address block to an ISP, who in turn would 

further allocate addresses from  this block to their clients. The ISP could then advertise just 

one aggregate route for all client networks derived from  the same block. This, o f  course, took 

some time to implement as new routing protocols were also required in order to support 

Supemetting. RFC1338 was soon to be replaced by RFC1519 “Classless Inter-Domain 

Routing (CIDR) ” in 1993.

From figure 21 it can be seen that the com bination o f  CIDR and hierarchical routing did 

indeed stem the rapid growth o f  routing table entries on the Internet. From 1994 to 1998 there 

is almost a linear, as opposed to exponential growth. Routers could now  easily cope w ith this 

growth as advances were made in router hardware and memory. However, the pattern o f
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exponential growth resumes again in 1998. A ccording to H uston (2001), the main 

contributing factor to this exponential growth rate is site multihoming.

R oute A ggregation

M ultihoming is when an end-user network, or even indeed an ISP is connected to more than 

one outside network. This practice multiplies the num ber o f  routes advertised on the Internet, 

disrupts the CIDR address hierarchy, and punches holes in the route aggregation process. The 

m ain benefit to customers and ISPs, however, is resilience and load balancing. Figure 22 

helps to illustrate this.

ISP aggregates all 
routes and ju s t 

advertises route A 
onto the Internet

A 1 A 2  A 3  A  4 A 5

Figure 22 Route Aggregation

In the illustration above the ISP assigns networks A .l through A.5 to its clients. The ISP then 

aggregates and summarises these routes into ju st one advertisem ent that it pushes out onto the 

Internet. A ny return packet on the Internet with a destination address beginning w ith “A ” is 

then sent to the ISP router.

Closer to home, HEAnet, w hich is a service provider for the Universities and Institutes o f  

Technology has been assigned 193.1.0.0/16 from RIPE. This w ay only one aggregated route 

needs to be advertised on behalf o f  all third level organisations. In turn the Institutes, for 

example, have been assigned a /21 prefix from this address space. DKIT has been assigned 

193.1.40.0/21, which gives DKIT eight Class C networks from  193.1.40.0 to 193.1.40.7 

inclusive. A ll o f  these networks can be aggregated in to just one route (193.1.40.0/21). From
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this it can be seen that CIDR and route aggregation have the potential to significantly reduce 

the size o f  routing tables on the Internet.

M ultihom ing

As mentioned earlier CIDR did indeed curb the exponential growth o f  routing tables and this 

was the case for a few years until ISPs and end users started m ultihom ing their networks. The 

effect is illustrated in figure 23 below.

A.1 A.2 A.3 A.4 A.5 B.1 B.2 B.3 B.4 B.5

Figure 23 Multihoming

From the diagram it can be seen that network A.5 is m ultihom ed w ith ISP A  and ISP B. At 

least one o f  the ISPs w ill now have to advertise an additional route, which is outside o f  their 

own contiguous scope. However, this additional route is already part o f  another ISP’s 

aggregate prefix that is already being advertised. This is referred to as a more specific prefix. 

This additional route advertisement essentially punches a hole in the contiguous routing 

advertisement o f  the ISP. It is obvious therefore that m ultihom ing can have a very serious 

and detrimental impact on the num ber o f  routes advertised.

Referring to Potaroo.net [6]; o f  the present 215,000 bgp routing entries on the Internet, a 

staggering 62% or 133,000 o f  these entries are specific advertisements. A specific 

advertisement is an advertisement that is associated with a sub-span o f  address space o f  

another advertisement. For example, in figure 23, netw ork A.5 will be advertised by  ISP A 

under the Supemet o f  ‘A ’. ISP B, on the other hand, w ill have to advertise the m ore specific 

network o f  A.5 in addition to its own aggregate advertisem ent for Supem et B.
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CIDR and route aggregation did indeed work well for a few years but are no longer able to 

slow down the growth o f  route table entries. I f  the issues around m ultihom ing were 

addressed, then perhaps the growth rate o f  routing tables could be curbed. These issues are 

examined in the next section.

Ex istin g  M ultihom ing Techniques

End user sites have good reasons to use multihoming, w hich include redundancy, load sharing 

and performance. This option has been made even more attractive by the opening up o f 

Telecom markets. The practice w ill continue to grow until there is some disincentive for the 

end user not to do so. W hat is needed is a m ethod that w ill support multihom ing without 

having a m ajor impact on the growth o f  BGP routing entries. RFC 2260 “Scaleable Support 

fo r  M ulti-homed M ulti-provider C onnectivity’’ describes various m ulti-hom ing methods that 

can be used with both IPv4 and IPv6. These methods are sum m arised below.

Auto Route Injection BGP-4 [RFC2260]

ISP A  ISP B

Figure 24 shows an enterprise netw ork w ith two border routers. Each router is connected to a 

different ISP. Each ISP allocates a subnet o f  its own address prefix to each site, so that site A 

will have prefix A and site B w ill have prefix B. Under normal conditions (both ISPs are up) 

each o f  the enterprise’s border routers will only advertise the appropriate prefix. For 

example, border router A  advertises prefix A, while border router B advertises prefix B. 

Networks A  and B are advertised under the aggregate prefix associated w ith each ISP so that 

there is no increase in route advertisements on the Internet. Should a link to one o f  the ISPs
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fail, the other border router will advertise the prefix associated w ith the failed link. For 

example, suppose ISP B goes down. Border router A  w ill advertise reachability to the 

address prefix allocated by ISP B. This w ill increase the size o f  the BGP tables on the 

Internet since ISP A  is now advertising an address prefix outside o f  its own aggregate prefix. 

However, this will only occur during an “ISP down” scenario. In fact the probability o f  all 

multihomed sites loosing a connection to one o f  their ISPs at the same time is quite small. 

Therefore the resulting increase in advertised routes using the above m echanism  will only be 

a fraction o f  the total num ber o f  m ultihom ed sites.

The above scenario depends firstly on the ability o f  the border routers to determine that the 

connection to the other ISP has failed and, secondly, that the address prefix o f  the other 

network is known. BGP4 provides a solution to this through the use o f  peering. Peering is 

the association between adjacent BGP routers. W hen BGP is running betw een two or more 

routers that belong to the same AS, it is referred to as internal BGP (iBGP). W hen BGP is 

running between two routers belonging to different ASes then it is referred to as external BGP 

(eBGP).

Non Direct eBGP Peering BGP-4 [RFC2260]

ISP A ISP B

Figure 25 Indirect Peering

Another solution that can potentially eliminate the advertisement o f  additional routes is shown 

in figure 25.

M artin M e C ourt

37

2005



R oute Scaling and M ultihom ing M .Sc in C om puting

In figure 25 both border routers m aintain peering w ith both ISPs. B order router A  advertises 

prefix A to ISP A and prefix B to ISP B. Likewise Border router B advertises prefix B to ISP 

B and prefix A  to ISP A. Under norm al “up” conditions, packets on the Internet destined for 

hosts w ith prefix A are handled by ISP A. Likewise, ISP B handles packets destined for 

prefix B. In the event that the link between ISP B and Border router B fails, ISP B will still 

receive prefix B packets since it is still advertising the larger aggregate prefix o f  B. However, 

when prefix B packets are received, ISP B will encapsulate the packets and forward them to 

Border router A. Reachability is still m aintained w ithout the overhead o f  additional route 

advertisements. The drawback o f  this configuration is that packets w ill be using non-optimal 

routes.

Solution 3 Provider Independent Addressing [RFC1518]

Another recom m ended m ethod is for a m ultihom ed enterprise to use provider independent 

addressing. This allows an enterprise to summarise all reachable addresses w ithin the 

enterprise into one prefix. The problem  with this solution is that the upstream  providers will 

now need to advertise an address prefix which is not associated with their ow n address space. 

Despite these obvious problem s this is the m ost com m only used m ethod for multihoming.

Solution 4 Prefix Filtering [RFC1518]

There are o f  course other recom m ended solutions, but prefix filtering is the solution with the 

greatest potential impact. ISPs and netw ork operators are advised to configure their routers to 

filter out certain IP addresses. Routers should not advertise routes to the addresses specified 

in  table 3.

Default/broadcast 0.0.0.0/8

Loopback address 127.0.0.0/8

Private addresses 10.0.0.0/8 172.16.0.0/12

192.168.0.0/16

Class D&E 224.0.0.0/3

Auto-configuration 169.254.0.0/16

Test network 192.0.2.0/24

Exchange points 192.41.177.0/24 192.157.69.0/24 

198.32.0.0/16 206.220.243.0/24

IA N A  reserved 128.0 .0 .0 /16

Table 3 Reserved Addresses
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For example 127.0.0.0/8 is a loopback address and is used for testing the protocol stack on an 

IP host. The network 192.168.0.0/16 is used behind NAT routers and again should not be 

advertised onto the global Internet. Operators can also filter prefixes o f  length greater than 

/24, and prefixes greater than /16 for Class B addresses. In order to reduce the size o f  BGP 

tables the RIRs issue guidelines for prefix filtering. Table 4 below  summarises the filtering 

recommendations issued by RIPE [7].

IPv4 CIDR block Smallest RIPE NCC Allocation Smallest RIPE NCC

62/8 /19 /19
80/8 /20 /20
81/8 /20 /20
82/8 /20 /20
83/8 /21 /21
84/8 /21 /21
85/8 /21 /21
86/8 /21 /21
87/8 /21 /21
88/8 /21 /21
193/8 /19 /29
194/8 /19 /29
195/8 /19 129

196.200/13 /20 124
212/8 /19 /19
213/8 /19 /19
217/8 /20 /20

Table 4 RIPE Guidelines for Filtered Prefixes

The table shows, for example, that RIPE can issue 193.1.0.0/19 to an ISP. In fact this is the 

allocation to HEAnet (HEAnet have /16 as the allocation was pre 1994). The ISP, HEAnet in 

this case, can then allocate a portion o f  this address space to its clients. In the case o f  

HEAnet, DKIT are assigned 193.1.40.0/21.

Table 4 shows, however, that the ISP should not allocate a prefix length longer than /29 in 

this part o f  the address space. In other words, other netw ork operators m ay filter an 

advertisement from any network beginning with 193.0.0.0/8 and having a prefix length 

greater than /29, such a netw ork would then becom e unreachable.

If  these guidelines are strictly adhered to, then the size o f  BGP tables w ill not only be 

significantly reduced, but the growth rate o f  the tables w ill also be stemmed. In a paper 

published by  Bellovin et a l.[8], it is shown that not all BGP routers are using filtering to the 

extent outlined above. On the Telstra BGP router there were almost 6,000 entries o f  prefix
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length greater than /24. Also i f  filter rules were to be applied for Class A and C addresses as 

recommended by the RIRs (table 4 only shows RIPE recom m endations) a further 16,000 BGP 

entries would be removed from the Telstra BGP router. Unfortunately this paper is now more 

than three years old, so it is im portant to draw on current information. Up to date BGP table 

information is available from  Potaroo [2], The Telstra router in the “default free” zone is the 

router that will be used throughout this text for various measurements.

Looking at today’s figures for Telstra [6]; there are 29,844 routes o f  prefix length greater than 

/24. That is just over 17% o f  all BGP entries. This figure, however, doesn’t take into account 

that some prefixes are allowed to be greater than /24, for example, as in table 4 above. 

Looking again at the Telstra BGP report [6]; what is interesting is the num ber o f  /32 

addresses. A staggering 12,624 or 7.28% o f total BGP entries have /32 prefixes.

If  stringent filtering were to be applied, then would that not render m any parts o f  the Internet 

unreachable? N ot necessarily. For example, i f  HEAnet w ere to allocate a /30 prefix in the

193.0.0.0/8 address space and if  such a site was m ultihomed, then the likelihood is that the /30 

will be filtered by other network operators. However, reachability to the /30 netw ork would 

still by advertised through the larger prefix o f  /19. Bellovin et al. [8], suggest that worst 

case, a filtered prefix would be covered by  another aggregate prefix leaving only about 0.3% 

o f  the address space uncovered by  other prefixes. This theory is not conclusive and more 

testing would be required. A n example m ight better illustrate the issues raised. Figure 26 

shows a small sample o f  the BGP routing table taken form  the Telstra default free router.

This portion o f  the routing table illustrates very w ell all the issues raised in the previous 

paragraphs. The left hand column indicates the destination network. It is clear from  this 

section o f the table that there are different networks that have same AS path. Using RW hois

[9] and searching for address 139.191.0.0 it can be seen that this address is assigned to MCI 

EM EA in Europe. In fact the address assigned by  RIPE to M CI is 139.191.0.0/16. It is 

possible that the addresses listed in figure 26 could be advertised under the aggregate

139.191.0.0/16. By examining the BGP entries for M CI assigned addresses, there are 653 

advertised routes, 115 o f  which could be potentially w ithdraw n and advertised under a larger 

aggregate, thus leading to a 17.6% reduction in advertised routes. It is im portant to note that
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the above aggregation possibility does not take into account issues such as traffic engineering 

requirements or policies local to MCI.

Network Next Hop Metric LocPrf Weight Path

1 3 9 . 1 9 1 . 0 . 0 / 1 8 2 0 2 . 6 4 . 2 1 9 . 1 9 3 55 0 4 6 3 7 701 702 i

*  i 134  . 1 5 9 . 1 2 7 . 2 4 8 0 55 0 46 3 7 701 7 0 2  i

* >  139 . 1 9 1 . 0 . 0 2 0 2 . 8 4 . 2 1 9 . 1 9 3 55 0 46 3 7 7 0 1 7 0 2  i

*  i 1 3 4 . 1 5 9 . 1 2 7 . 2 4 8 0 55 0 46 3 7 7 0 1 702  i

* >  1 3 9 . 1 9 1 . 6 4 . 0 / 1 9 2 0 2 . 8 4 . 2 1 9 . 1 9 3 55 0 4 6 3 7 7 0 1 7 0 2  i

* i 1 3 4 . 1 5 9 . 1 2 7 . 2 4 8 0 55 0 46 3 7 701 702  i

*>  1 3 9 . 1 9 1 . 9 6 . 0 / 2 0 2 0 2 . 8 4 . 2 1 9 . 1 9 3 55 0 4 6 3 7 701 7 0 2  i

* i 1 3 4 . 1 5 9 . 1 2 7 . 2 4 8 0 55 0 4 6 3 7 701 702  i

* >  1 3 9 . 1 9 1 . 1 1 2 . 0 / 2 0 2 0 2 . 8 4 . 2 1 9 . 1 9 3 55 0 4 6 3 7 5 5 1 1 2 6 1 1  i

* i 13 4  . 1 5 9 . 1 2 7 . 2 4 8 0 55 0 4 6 3 7 5 5 1 1 26 1 1  i

*> 1 3 9 . 1 9 1 . 1 2 6 . 0 / 2 0 2 0 2 . 8 4 . 2 1 9 . 1 9 3 55 0 4 6 3 7 701 702  i

* i 1 3 4 . 1 5 9 . 1 2 7 . 2 4 8 0 55 0 46 3 7 701 702  i

*> 1 3 9 . 1 9 1 . 1 4 4 . 0 / 2 1 2 0 2 . 8 4 . 2 1 9 . 1 9 3 55 0 46 3 7 701 702  i

* i 1 3 4 . 1 5 9 . 1 2 7 . 2 4 8 0 55 0 46 3 7 701 7 0 2  i

*> 1 3 9 . 1 9 1 . 1 5 2 . 0 / 2 1 2 0 2 . 8 4 . 2 1 9 . 1 9 3 55 0 46 3 7 1 2 3 9 12 9 9  7 6 6  766 7 6 6  76 6  766 i

* i 134  . 1 5 9 . 1 2 7 . 2 4 8 0 55 0 46 3 7 1 2 3 9 12 9 9  766  766 7 6 6  76 6  766 i

*> 1 3 9 . 1 9 1 . 1 6 0 . 0 / 2 0 2 0 2 . 8 4 . 2 1 9 . 1 9 3 55 0 46 3 7 701 702  i

* i 13 4  . 1 5 9  . 1 2 7 . 2 4 8 0 55 0 4 6 3 7 701 7 02  i

*> 1 3 9 . 1 9 1 . 1 7 6 . 0 / 2 1 2 0 2 . 8 4 . 2 1 9 . 1 9 3 55 0 46 3 7 7 0 1 70 2  i

* i 134  . 1 5 9  . 1 2 7 . 2 4 8 0 55 0 46 3 7 7 0 1 702  i
*> 1 3 9 . 1 9 1 . 1 8 4 . 0 / 2 1 2 0 2 . 8 4 . 2 1 9 . 1 9 3 55 0 4 6 3 7 3 5 4 9 68 0  68 0  680 680  680  680
680  ?
* i 1 3 4 . 1 5 9 . 1 2 7 . 2 4 8 0 55 0 4 6 3 7 35 4 9 680  68 0  680 680 680  680
680  ?

*> 1 3 9 . 1 9 1 . 1 9 2 . 0 / 2 0 2 0 2 . 8 4 . 2 1 9 . 1 9 3 55 0 4 6 3 7 70 1 702  i

* i 1 3 4 . 1 5 9 . 1 2 7 . 2 4 8 0 55 0 4 6 3 7 70 1 7 0 2  i

*>  1 3 9 . 1 9 1 . 2 0 8 . 0 / 2 0 2 0 2 . 8 4 . 2 1 9 . 1 9 3 55 0 46 3 7 701 702  i

* i 1 3 4 . 1 5 9 . 1 2 7 . 2 4 8 0 55 0 4 6 3 7 701 7 0 2  i

* >  1 3 9 . 1 9 1 . 2 2 4 . 0 / 1 9 2 0 2 . 8 4 . 2 1 9 . 1 9 3 55 0 4 6 3 7 701 7 0 2  i

Figure 26 Portion of BGP routing table

Address Space Fragmentation

M ultihoming is not the only reason for increased growth in the BGP routing tables. Suppose, 

for example, that a custom er changes ISP and takes w ith them their previously assigned 

address prefix space. This is desirable from  the customers point o f  view  as it means that the 

site would not need to be completely renum bered, which can be both expensive and time 

^consuming. B y taking their address space w ith them, they leave behind a hole in the 

contiguous address space o f  their former ISP, not only that, but now  the new ISP m ust
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advertise connectivity to a network that is not covered under its ow n prefix, w hich in turn 

adds to the BGP table size in  the default-free zone. Handing back addresses to thè original 

ISP would solve this problem , however, this m eans that the enterprise would have to 

completely renumber. A n alternative solution to this is to use NAT which w ill be looked at 

shortly.

Network Address Translation also offers some interesting and practical ways for reducing the 

num ber o f  routes advertised b y  m ultihom ed sites. The next chapter presents a b rie f overview 

o f  NAT itself and then discusses how NAT can be used on m ultihom ed sites.
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Chapter 5 - Address Scaling Techniques in IPv4

By the m id nineties it was very clear that the growth rate o f  the Internet would eventually 

deplete all o f  the available IPv4 address space. The previous chapter examined issues relating 

to route scaling as a result o f  this growth. This chapter focuses on the m ore obvious issue 

relating to Internet growth, w hich is the eventual depletion o f  the IPv4 address space. Moves 

were already afoot to design and introduce a new IP protocol, w hich is now known as IPv6. 

A more immediate solution, however, was required in order to retard the consum ption rate o f 

IPv4 addresses. The next section describes m ultihom ing w ith NAT. A b rief introduction to 

NAT is provided below.

Network Address Translation

Network Address Translation or NAT was first outlined in RFC 1631 and subsequently 

updated by RFC 3022. The main concept behind NAT was sim ply to extend the lifetime o f 

the IPv4 address space w ithout replacing IPv4 itself. Since NAT has been around for some 

time now, only a b rie f overview will be outlined in this section so that issues concerning NAT 

and multihoming will be better understood.

NAT is simply a service that a router provides by translating a private IP address into a public 

IP address. Every IP host on the Internet m ust have a unique publicly assigned address. No 

two hosts on the Internet can have the same address. This is referred to as a ‘public address’. 

A ‘private address’, on the other hand, is an address that is only used within a private network 

and cannot be transmitted out on the Internet. In the past, if  a private network was required to 

connect to the Internet, then renumbering o f  the network to publicly assigned IP addresses 

was essential. W ith NAT, however, renum bering is not required, instead, NAT translates the 

internal private addresses into external public addresses as shown in figure 27 below.

The figure shows a private network with internal private addresses using 192.168.2.0/24. The 

host 192.168.2.2 wishes to communicate w ith 200.100.10.1, the source and destination 

addresses are therefore 192.168.2.2 and 200.100.10.1 respectively. The NAT device, 

however, replaces or translates the source address o f  192.168.2.2 with the public address 

195.60.10.1 and keeps a record o f  this translation in  its N A T table. W hen the host on the
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remote network sends a packet back to the originating host it will use the destination address 

195.60.10.1.

Figure 27 Network Address Translation

Upon receiving the packet on its return path, the NAT device w ill search its table and translate 

the address 195.60.10.1 into 192.168.2.2 and then forward the packet to this host.

NAT can be configured so that a pool o f  internal private addresses can be translated into a 

pool o f  publicly assigned addresses on a one to one basis. This does not mean, however, that 

the num ber o f  public addresses m ust be the same as the num ber o f  private addresses as not all 

internal hosts, as a general rule, w ill w ish to connect to the Internet at the same time. Using 

N etwork Address Protocol Translation (NAPT) m any hosts can be translated into the same 

public address at the same time. NAPT works by translating both the protocol port number 

and IP address. Referring to figure 27 again, assume that host 200.100.10.1 is a web server. 

W hen host 192.168.2.2 initiates a TCP session w ith the W EB server it w ill use the well 

known port num ber o f  80 as the destination port. The operating system  in host 192.168.2.2 

w ill assign a source port greater than 1023. L et’s assume that the operating system  assigns 

port number 1025 as the source port to the packet. The originating packet will now  have a 

source IP address and TCP port num ber o f  192.168.2.2 and 1025 respectively. The 

destination IP address and TCP port num ber will be 200.100.10.1 and 80 respectively. The 

NAT device w ill now  translate the source IP address into 195.60.10.1 as before but w ill also
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translate the source TCP port number, for example, into 1500. The NAT device w ill keep a 

record o f  this translation in its NAT table as show n in figure 28. W hen the Web server 

replies, the destination address and TCP port num ber will be 195.60.10.1 and 1500 

respectively.

Inside host IP address Original TCP source port Public IP address TCP source port

192.168.2.2 1025 195.60.10.1 1500

192.168.2.3 1025 195.60.10.1 1501

192.168.2.4 1030 195.60.10.1 1502

192.168.2.5 1026 195.60.10.1 1503

Figure 28 NAT Table

As can be seen from figure 28, all inside hosts can communicate sim ultaneously w ith the 

outside world using the same public IP address. The translation table keeps track o f  which 

port was assigned to which host. So, for example, when the NAT device receives a return 

packet from the Internet, the destination address and TCP port num ber o f  195.60.10.1 and 

1502 respectively w ill be translated into 192.168.2.4 and 1030. To the end host, this is a 

completely transparent process.

The obvious advantages o f  NAT are the conservation o f  address space. In the above example 

it can be seen that an entire network o f  hosts can communicate on the Internet by  using a 

single publicly assigned IP address. The other advantage is security. The NAT device acts as 

a sort o f  firewall by  not advertising the original source address on the Internet. The furthest, 

therefore, that anyone could hack into is the NAT device itself.

But NAT is not w ithout its drawbacks. NAT only alters the IP address in the IP header and in 

the case o f  NAPT (for the rest o f  the discussion NAT will refer to both NAT & NAPT unless 

otherwise stated), the port number in the TCP header. If, however, the payload portion o f  a 

packet carries addressing information also, then NAT will not be able to translate this as the 

payload portion o f  a packet is not examined and as such the “end to end” identity is lost. RFC 

3027 provides a detailed list o f  some o f the applications that have difficulties using N A T and 

will not be looked at in this discussion.
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Chapter 6 - Multihoming with NAT

In order for multihoming to w ork with NAT, it is important that NAT can translate both the 

source and destination IP address. To illustrate this observe figure 29 below.

Inside private IP address

Figure 29 Bidirectional NAT

The network on the left has both private and public IP address assignments. To simplify 

matters, assume that host A has already connected to host B. W hen host A wishes to transmit 

packets to host B, the IP packet w ill have a source IP address o f  172.16.16.5 and a destination 

IP address o f  say 192.168.1.5. W hen router R1 receives this packet it w ill search through its 

NAT table for the entry 172.16.16.5 in order to determine the corresponding public address is 

for this entry. Router R1 will now change the source address o f  the packet to the 

corresponding public IP address. In this case, for example, we will say that the public address 

is 193.1.40.5.

In the case where host A has never com m unicated outside o f  its own network before, then the 

router will create an entry for the source private IP address and assign it a corresponding 

public IP address, Cisco (1997). Next the router will search its translation table for the private 

destination IP address, which in this case is 192.168.1.5. There w ill already be a 

corresponding entry in the translation table o f  R1 since host A had previously established 

communication w ith host B. The NAT router will, therefore, change the destination IP 

address to 195.65.10.5.

To summarise, when the IP packet is on its way from host A to R1, the source and destination 

IP addresses are 172.16.16.5 and 192.168.1.5 respectively, that is, both addresses are private
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IP addresses. However, as the packet leaves R1 on its w ay to host B, the source and 

destination addresses will be 193.1.40.5 and 195.65.10.5 respectively.

W hen host B wishes to return a packet to host A it w ill use only public IP addresses. The 

source and destination IP addresses will be 195.65.10.5 and 193.1.40.5 respectively. W hen 

router R1 receives this packet it w ill look up its translation table for the private address entry 

corresponding to 195.65.10.5, which in this case will be 192.168.1.5. Next router R1 will 

look up its translation table fo r the corresponding entry o f  193.1.40.5, w hich in this case w ill 

be 172.16.16.5. R1 will assign this as the destination address in the packet. The new source 

and destination addresses will now be 192.168.1.5 and 172.16.16.5 respectively.

To summarise, only private source and destination addresses are used by hosts behind a NAT 

device. Packets entering the enterprise’s NAT router from  the outside will only have public 

source and destination IP addressees.

DNS with Bidirectional NAT

The above technique is also used for DNS queries and responses. Assume for example that 

Host A issues a DNS query to translate the DNS name o f  Host B into an IP address. I f  the 

DNS response comes back from  outside the enterprise, the NAT router R1 will look up its 

translation table to check if  it already has an entry for this pubic IP address. I f  it has, then it 

w ill replace this public address with its corresponding private address entry from the table, for 

example 192.168.1.5 as in the previous examples. W hen Host A wishes to communicate with 

Host B it w ill use 192.168.1.5 as the destination address and translation takes place as already 

described above. If, however, there is no entry in the N A T router’s table, then a new private 

address will be assigned from  its pool.

Externally Originated Connection

The following section describes how a host using a public IP address on the outside can 

communicate w ith a host that is using a private IP address behind a NAT device, Cisco 

(1997). Observe figure 30 below.
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Inside public IP address 192.168.2 0/24
21517 90 0/24

Figure 30 Multihoming with NAT and DNS

Assume that Host B wishes to communicate w ith Host A. Host B will send a DNS query to 

its own DNS server (195.65.10.10), which in turn  w ill query the .com server to establish the 

authoritative server for “enterprise.com” . The authoritative server w ill respond w ith two 

addresses, for example 193.168.1.10 and 215.17.90.10. The DNS server for H ost B 

(195.65.10.10) will now send a query to one o f  these addresses, say 193.168.1.10. This query 

will then be forwarded to R l. W hen R1 receives the packet it will look in its translation table 

for a private address corresponding to the entry for 193.168.1.10. In this case it w ill be

172.16.16.10. R l will therefore change the destination address to 172.16.16.10. The NAT 

router R l now looks at the source address o f  the DNS query, which is 195.65.10.10. The 

router will look in its routing table for a private address corresponding to the entry

195.65.10.10. I f  there is no such entry then it w ill assign an address from its private address 

pool, in this case, 192.168.1.10. The DNS query is now  forw arded to the “enterprise.com ” 

DNS server with a source address o f  192.168.1.10 and a destination address o f  172.16.16.10.

W hen the DNS server receives the query it w ill generate a response indicating the IP address 

o f  Host, A which in this case is 172.16.16.5. This response is now  forwarded to R l. The 

router will now look up its translation table for a public address corresponding to the entry for

172.16.16.10. which in this case is 193.168.1.10 and will change the source address o f  the
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DNS response to this public address. The router will also look in its translation table for the 

public address corresponding to the entry for 192.168.1.10. In this case the public address is

195.65.10.10. The destination address o f  the DNS response is changed to 195.65.10.10. So 

now the DNS response has a source address o f  193.68.1.10 and a destination address o f

195.65.10.10. The NAT router will also have to change the entry in the DNS response.

Remember that the entry in the DNS response will have an IP address o f  172.16.16.5 for Host 

A. Again the NAT router, R1 will look up its table for a public address entry corresponding 

to the private address entry for 172.16.16.5. I f  there is no such entry then it w ill allocate a 

public address from  its public address pool 193.168.1.0, le t’s say 193.168.1.5. The NAT 

device will now change the entry in the DNS response from 172.16.16.5 for Host A  to 

193.168.1.5. This response is now returned to the DNS server for “rem ote.com ” which in 

turn will forward it to Host B. Host B now can communicate w ith Host A using the public 

address 193.168.1.5. Translation o f  addresses at router R1 will now take place as previously 

outlined.

As can be seen from  the above example even though a host in an enterprise is using NAT, an 

outside host can still initiate communications with that host.

Conclusion

The BGP m ethods described in chapter four and RFC2260 (Scalable support fo r  M ulti-hom ed  

M ulti-provider Connectivity) can now be com bined w ith the above NAT methods. 

Unfortunately, this solution still doesn’t address the issues o f  injecting m ore specific prefixes 

into the “default free” zone. This m ethod does overcom e some o f the shortcomings 

associated w ith the m ethods described in RFC2260. For example, because the enterprise is 

connected to multiple ISPs it w ill have m ultiple address prefixes. Site renum bering w ill be 

required should the enterprise wish to change any o f  its ISPs. An enterprise using NAT in 

this w ay can change ISP w ithout the need for renumbering. All that w ill be required is for the 

internal public address pool on the NAT router to be reconfigured.
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From an enterprise’s point o f  view, provider independent addressing could be used. This w ay 

the address prefix stays w ith the customer. This is good news for the custom er but it still 

means that the ISP is advertising and address prefix outside o f  its ow n contiguous address 

space. In addition, the use o f  Provider Independent addresses is discouraged by  IANA and 

the RIRs.
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Chapter 7 - Financial Incentives for Route Aggregation

Previous chapters have examined how multihoming can punch holes in the routing tables o f  

routers in the “default free zone” and the methods that can be used to reduce the need for 

routers having to advertise more specific routes. M ultihoming, however, is not the only

reason w hy m ore specific networks are advertised. Part o f  the problem  is also to do with site 

renumbering.

Take, for example, a site that has been allocated a certain num ber o f  IP addresses. Should 

additional addresses be required by that site in the future, it is conceivable that the next 

contiguous block o f  addresses would have already been assigned to another site. In its 

simplest form a new block o f  non-contiguous addresses can be allocated to the site. The main 

disadvantage w ith this scheme is that now  an additional route has to be advertised which 

effectively breaches the route aggregation policy. We have seen that NAT can be used to 

good effect in this scenario.

Another m ethod would be to simply allocate the site a new block o f  contiguous addresses that 

would satisfy the entire site’s requirements. This is good for the Internet as a whole, in that 

no additional routes need to be advertised. On the other hand it is bad news for the site as the 

entire site now has to be renumbered which w ill obviously involve dow n time, disruption and 

no doubt will have some financial implications as well.

A third m ethod would be for the ISP to reserve a block o f  contiguous addresses that would 

satisfy both the immediate and future requirements o f  the site. This w ay  a site would not need 

to renum ber if  additional addresses are required, nor would additional routes need to be 

advertised. The drawback with this scheme is that these reserved addresses m ay never be 

used and would therefore be effectively wasted. This, however, is the m ethod used by RIPE. 

RIPE allocate a /19 prefix and reserve the next contiguous /19 addresses effectively creating a 

/18 prefix, i.e., in the binary numbering scheme the binary bit to the left has twice the 

significance o f  the bit to its right. Therefore two consecutive allocations o f  /1 9 addresses is 

the same a /1 8 allocation.
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This address allocation policy is an actual over simplification o f  w hat’s actually used by 

RIPE. RIPE in fact use the notion o f  an “Assignm ent W indow ” to allocate additional 

addresses when required. M ore information regarding R IPE ’s address allocation policy can 

be found in the document RIPE-324 [10].

Bellovin et al. (1997) pu t forward the notion o f sites having to pay  for additional route 

advertisements is put forward. I can certainly agree with their motives here. For example, as 

explained in the first m ethod outlined above, if  additional addresses are required then site 

renumbering is essential. This way the site puts up with the inconvenience o f  renumbering 

but the Internet on the whole is unaffected.

In their document the idea o f  “Bilateral Agreements” is pu t forward for charging for route 

advertisements. Consider, for example, figure 31 below.

In the above diagram B advertises to C the availability o f  A  and offers to forward transit 

traffic from C to A. C in turn, advertises the availability o f  A to D and so on. In the best case 

scenario all o f  these routes could be aggregated into just one route, if  not, then separate 

networks need to be advertised. D m ight be aware o f  A  as a result o f  the advertisem ent from 

C. However, D might choose to use E to get to A even though that particular route might not 

have been advertised. The document refers to this as a “Pull” route. In either case only the 

end user benefits and the cost o f  additional advertisements is incurred by  the routers along the 

path. The idea, therefore, is to have an agreem ent between peers. A  financial fee is then 

agreed between the parties.
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Basically the bottom line in their proposal is quite simple. That is, i f  a site chooses to cause 

more routes to be advertised then there should be a financial cost involved. This would 

certainly be an incentive for sites to think tw ice about, for instance renum bering or advertising 

an additional route. Larger corporates on the other hand could feel that the cost implications 

might well be justified and would be prepared to pay the price. In terms o f  better route 

selection as in figure 31, then the decision would be based on whether a site would be happy 

to have basic connectivity as in the connection between site A  and site D, or whether a more 

optimal route between sites A and D is desirable. Once again the costs involved m ight be 

worth it for some o f the larger corporates.

Really what is needed is a new approach to route fragmentation. IPv6 because o f  its huge 

address space can resolve the issue o f  contiguous addresses being reserved for future use for 

each site. This couldn’t possibly be a problem  given the address space involved, i.e., we 

could still assign a unique IP address to each grain o f  sand on the planet and still have billions 

o f  unused addresses. But again the large amount o f  IPv6 addresses doesn’t necessarily m ean 

that the problem o f exponential growth o f  route advertisements is going to go away.

The next chapter looks at what IPv6 has to offer in terms o f  scalable routing in the Internet, 

again w ith particular emphasis on multihoming.
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Chapter 8 - Multihoming in IPv6

The methods described thus far can all be used with IPv6. Note, however, that the 

multihoming techniques illustrated here are m ore o f  a function or feature o f  BGP4 than IPv4 

itself. There are still two main drawbacks w ith using m ultihom ing in a non NAT 

environment. The first drawback is the lack o f  scalability, i.e., every m ultihom ed site injects 

at least another route into the default free zone. The second drawback is transport layer 

survivability. For example, i f  a local host is com m unicating w ith a rem ote host over a 

multihomed link, then, should that link fail, the other m ultihom ed link will be used in its 

place. This means that routing changes have to occur, which would inevitably result in 

indeterminate delays that in turn could cause transport layer sessions to time out.

IPv6 meets the need for expanded address space, increased security and better mobility, 

however, it does not, in its present form, m eet the needs o f  better scalability in m ultihom ed 

environments. This does not mean, however, that IPv6 w on’t be  part o f  the solution for 

scalable routing and multihom ing in the future. Indeed multihom ing issues were never even a 

requirement to be addressed by  IPv6. Again, in terms o f  addressing, the large address space 

offered by IPv6 could be considered as a cure for the sym ptom  only and not really a cure for 

the problem itself. The addressing structure in IPv6 isn ’t radically different form  that o f 

Ipv4. It still holds on to the network and host semantic. Perhaps a radical departure from this 

structure could be helpful. This will be looked at shortly w hen discussing “locator/identity” 

in IP addressing.

Another part o f  the solution could be in the w ay addresses are allocated. Because IPv6 is still 

in its early deploym ent stage it m ight be possible to change the w ay that addresses are 

allocated. Because IPv6 is such an extensible protocol it might be possible to make some 

changes at this early stage w ithout having a significant impact on existing or future users.

Let’s take, for example, a new address allocation policy. One o f  the nice features o f  the IPv6 

addressing scheme is that it is very m uch hierarchical and indeed very aggregatable. For 

example the new addressing architecture has a global routing prefix. Because o f  its early 

deployment couldn’t we say, for instance, that RIPE would have a particular set o f  prefixes
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(as they do) from  which subnets could be allocated. In theory this could m ean that Ireland 

could be allocated one or more consecutive prefixes and that all routes within Ireland can be 

aggregated into one route. A  corporate on the other hand m ight w ish to be m ultihom ed with 

an Irish and British ISP. This still might not inject additional routes into the system since all 

European ISPs are allocated from the same “Global routing prefix”. In theory this could have 

also worked w ith IPv4 bu t you need to rem em ber that CIDR was introduced “after the horse 

had bolted” and an address allocation policy had already been in place based on classful 

addressing. W ith this solution we can pu t the new policy in place before the problem  are 

arises. Admittedly this is an over simplification that on its own m ay not w ork but it should at 

least form part o f  the solution.

The IETF recognise that IPv6 presents new opportunities to tackle the m ultihom ing issue in 

new ways not possible w ith IPv4. Although no new protocols o r solutions have yet been 

produced, a new IETF W orking Group (W G) has been set up. The m ain objective o f  the 

w orking group is to seek “alternative approaches with better scaling properties. Specifically, 

the WG will prefer multihoming solutions that tend to minimise adverse impacts on the end- 

to-end routing system and limit the number o f  prefixes that need to be advertised in the 

Default-Free Zone (DFZ) ", Documents produced b y  the working group can be obtained o the 

IETF website [11], RFC 3582 sets out the goals for IPv6 Site-M ultihoming Architectures.

One issue being looked at, at the mom ent is the split between identity and locator. Let’s take 

a real world example for the moment. W hen conventional postal m ail is addressed to a 

person, the address comprises two main parts, the person’s name (identity) and the person’s 

location (locator). A person’s identity w ill never change, their name will always be the same. 

However, as we all know, a person’s address can change. On the other hand, in the IP world, 

a host’s identity is its locator and vice versa. A  host’s identity and its location are actually 

combined into a single protocol element, the IP address. The assum ption here is that the 

network topology is static. As long as the topology rem ains static there is no issue. Today, 

however, this is not the case. M obile telephony is a key example. A mobile user is free to 

roam  without ever having to change the mobile number. In this case the identity remains 

fixed while the locator changes as the user moves from  cell to cell. This is also the case w ith 

mobile IP hosts on wireless networks. In m obile IP, a host is allocated a static “Home 

Address” . As a host moves around and out o f  its hom e locality a “Care o f  A ddress” (Co A) is
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used. This CoA can be likened to a forwarding address used in the conventional postal 

system. M obile IPv6 protocol is specified in RFC3775.

The Interesting point here is that mobile IP is not radically different to multihoming, in terms 

o f  addressing issues. For example, when a m ultihom ed link fails and another link is selected, 

then the address associated with the new link m ust be used. The ability to dynamically 

change locators while m aintaining a constant identifier is com m on to both scenarios. Huston 

2005 investigates this possibility o f  using some features o f  M lPv6 for multihoming.

In a mobile scenario a fixed Home Address (HoA) is used. The H oA  w ill act as both the 

identity and the locator for the host as long as the host remains attached to its hom e network. 

W hen a host moves from  its home network to a foreign network, the host w ill adapt a new IP 

address that is part o f  the foreign network. This address is referred to as the Care o f  Address 

(CoA). The host m ust now inform an agent on its hom e network o f  the new CoA. In this 

situation, the HoA acts as the identity and the CoA acts as the locator. The HoA will always 

be used by  a rem ote host to communicate w ith a m obile host. The agent on the hom e network 

acts as a forwarding agent for the mobile host so that all packets addressed to the HoA will be 

forwarded to the CoA when the mobile host is not attached to its hom e network.

This same principle could also be used in a m ultihom ed environment. In this situation one o f  

the m ultihom ed addresses is used as the HoA. This address w ill continue to be used for as 

long as the associated m ultihomed link remains up. Should this link fail then one o f  the other 

multihom ed addresses can be used as a CoA.

Identity/Locator Split.

One o f the issues w ith multihoming is the inability o f  a remote node to realise that it is 

communicating w ith a m ultihomed host. Although a m ultihom ed host will have m ore than 

one IP address, only one address can by used in any one com m unication session. All 

communications betw een a local m ultihom ed host and a remote host m ust pass through the 

ISP associated with the chosen address prefix. I f  prefix A is selected, then all traffic m ust be 

routed through ISP A. However, in the event that the link betw een the local m ultihom ed host 

and ISP A fails, reachability to the netw ork will still be advertised under ISP A ’s larger prefix 

advertisement. This means that the remote host w ill not be aware o f  the link failure and will
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still forward packets to ISP A. These packets, however, will be dropped upon reaching ISP 

A.

Another concern is the address that a m ultihom ed host uses to establish a connection w ith a 

remote host? I f  prefix A  is selected and the local router forwards the packet to ISP B, then it 

is most likely that these packets w ill be dropped b y  ISP B ’s ingress filters. Ingress filters or 

“Reverse Path Forwarding Filters” are used by  ISPs as a m eans o f  m itigating IP address 

spoofing. In the example above ISP B ’s router will see a packet with a prefix o f  A  arriving at 

its interface. If  this is a genuine packet then the router will have an entry in its table linking 

this address w ith that particular interface. I f  there is no such association then the packet will 

be dropped because it suggests that the IP address is being spoofed. M iller [12] provides a 

brief tutorial on ingress filtering.

Again the problem  is that there is no separation between identity and location. The ideal 

solution is to separate identity and locator. In the ideal world this w ould m ean that a 

m ultihomed host will always be addressed by  a fixed and constant identity but that the locator 

can be dynam ically changed as m ultihom ed links go up and down. This solution would 

indeed be very scalable since no additional routes would be advertised. H ouston (2001) 

explores such possibilities.

In his document, Houston puts forward the idea o f  introducing a new protocol elem ent into 

the TCP/IP stack. This new element w ould present a fixed end point identity to the upper 

layer protocols. The presentation to the lower stack elements w ould be in the form  o f  a 

locator, which can change as the m ultihom ed links go up and down. Houston also explores 

the possibility o f  modifying an existing protocol element and even perhaps modifying DNS 

services to allow rem ote sites determine w hich specific address to use.
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Chapter 9 - Comparison of Multihoming Techniques

Auto R oute Injection

Chapter 4 presented a number o f  m ethods that can be used to support scalable multihoming. 

Auto route injection as proposed in RFC 2260 was briefly outlined. One problem  with this 

approach is to do with prefix filtering.

ISP A ISP B

Assume as in figure 32, that ISPs A  and B have been assigned a /19 prefix from  appropriate 

RIRs. Both ISPs could in turn assign a /25 prefix from their larger address prefixes to the 

enterprise network. Border router A  w ill advertise the 725 Sub prefix A ’ to ISP A. Likewise 

border router B will advertise 725 Sub prefix B ’ to ISP B. Neither ISP w ill advertise the /25 

prefixes since these networks w ill be advertised under the larger /19 prefix. As outlined in 

chapter 4, however, border router A  will advertise 725 Sub prefix B ’ in the event that the link 

to ISP B fails. N ot only does this introduce an additional advertisem ent into the default free 

zone bu t it is also likely that routers will filter this larger prefix as per the guidelines outlined 

in chapter 4. This means that any rem ote host that was communicating with the enterprise 

using the 725 Sub prefix B ’ would loose that connection since this route would have been 

filtered out. Using this configuration, therefore, would suggest that m ultihom ing can’t offer 

any benefits in terms o f  resilience but would still offer load balancing and traffic engineering.

M artin M e C ourt

58

2005



R oute Scaling and M ultihom ing M .Sc in C om puting

This, however, is not strictly the case. Referring back to figure 26, it is quite evident that 

stringent filtering rules are not being applied. It is therefore m ost likely that the 725 Sub 

prefix B ’ would not be filtered and that this network would rem ain reachable.

On the other hand, in the docum ent by  Bellovin et al. 2001, it was calculated that only about 

0.3% o f  routes would be deemed as unreachable if  recom m ended filtering rules were applied. 

This, however, needs to be taken in context. The calculations in that document can not really 

be applied here because specific prefixes advertised as a result o f  m ultihom ing are different to 

specific prefixes advertised as a result o f  corporate traffic policies. In order to explain this we 

will assume, for example, that there is a filter rule that will block any prefix larger than /18 in 

address range 139.191.0.0. This means, therefore, that an advertisem ent for 139.191.152.0/21 

will be blocked. Such a filer will not present a problem, however, since reachability would 

still be advertised through 139.191.0.0/18.

The outcome is quite different w hen this addressing scheme is applied in a m ultihomed 

environment as shown in figure 33.

ISP A ISP B
139 191 .O 0/18

Figure 33 BGP Link Failure

ISP A w ill advertise reachability to 139.191.152.0/21 when the link betw een ISP B and 

border router B fails. Because this is a m ore specific route than 139.191.0.0/18, remote 

routers will select ISP A as the optim um  route. Filter rules as described above, however, will 

prevent this route from being advertised on the default free zone. Therefore, all packets 

destined for 139.191.152.0/21 will follow the route advertised by  ISP B under the larger
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prefix advertisement o f  139.191.0.0. Network 139.191.152.0/21 w ill rem ain unreachable, 

therefore, since the link between ISP B and border router B has failed.

Non D irect Peering

Auto route injection can therefore be somewhat unreliable and is largely dependant upon the 

absence o f  filtering rules. It is w orth noting, however, that stringent filtering rules are not 

being applied as is evident from the portion o f  the BGP routing table shown in figure 26.

The non direct peering option specified in the same RFC (RFC 2260) is a m arked 

improvement on Auto route injection. The m ost significant benefit is that it doesn’t cause any 

more additional routes to be advertised into the default free zone. There are, however, three 

significant disadvantages that are worth mentioning. Firstly, as w ith auto route injection, 

significant additional loading is placed on the other router. As in the previous scenario, when 

the link to ISP B fails, border router A will be used to route traffic into and out o f  the 

enterprise in such a way that it w ill assume part o f  the w orkload o f  border router B. However, 

since border router A is not advertising a new prefix to ISP the filtering issues previously 

outlined are o f  no consequence.

The second disadvantage w ith this configuration is that ISP B will continue to advertise prefix 

B under its own larger address prefix. Therefore all traffic destined for border router B is still 

directed to ISP B, which is now  a non optimal route since ISP B m ust now  forward the traffic 

to border router A. The optimal route, in this case, for prefix B traffic is actually through ISP 

A. However, since border router A does not advertise prefix B to ISP A, all prefix B traffic 

w ill go through ISP B.

The third disadvantage with non direct peering is that resilience is only maintained in the 

event o f  a link failure between the border router and its ISP. Should ISP B, for example, 

suffer from a catastrophic failure, then all prefix B hosts would be completely unreachable 

since ISP B will no longer be a position to advertise prefix B routes. This is not the case with 

auto route injection as ISP A  will advertise prefix B routes. On the other hand, the probability 

o f  an ISP experiencing a catastrophic failure is extrem ely small.
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N etw ork A ddress Translation

The NAT solution put forward by Cisco and summarised in  chapter 6 has a little bit m ore to 

offer. The obvious advantages are the conservation o f  address space and the fact that an 

enterprise is free to change ISPs w ithout ever having to renumber. The only address that 

would need to be changed is the outside address on the border router.

Another important feature o f  multihom ing with NAT is that it can be used with both auto 

route injection and non direct peering. The significant difference, however, is that the entire 

enterprise network can be allocated addresses from one internal private IP address block. In 

the previous m ethod the enterprise numbering was based on prefixes assigned by  each ISP. 

This means that all hosts w ould either have multiple IP addresses, i.e., an address assignment 

from each ISP that the enterprise is m ultihom ed to, or each part o f  the enterprise has a 

different IP numbering scheme based on the host’s proxim ity to a border router. For example 

hosts in figure 33 that are closest to border router A would have a prefix A  assignment and 

hosts closer to border router B would have a prefix B assignment. NAT alleviates this 

complexity by allowing a single addressing scheme to be used.

The outside public address o f  each border router still has to be assigned by  the ISP that the 

router connects to. This m eans that the disadvantages associated w ith non direct peering still 

apply. However, using N A T with non direct peering is m ore immune to  catastrophic ISP 

failure. Again, assuming that, for instance, ISP B experiences a complete failure then prefix 

B would be unreachable as previously explained. W ith NAT, however, an alternative default 

gateway can automatically be selected by  the hosts on the enterprise. This would now  route 

all packets that previously w ould have been using ISP B to ISPA. This is made possible by 

the fact that all hosts in the enterprise belong to the same netw ork so that border routers A and 

B are also on the same IP network. W ithout NAT, the border routers will be on different IP 

networks.

NAT, however, does have its limitations and these are outlined in RFC 3027. As expected 

there are solutions for m ost o f  the complications that arise w ith NAT. This is evident from 

the fact that large organisations including Local G overnm ent make w idespread use o f  NAT.
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Every County Council in Ireland, for example, is allocated IP address blocks from the

10.0.0.0/8 address space.

W ith the prolific use o f  VOIP applications concerns could arise regarding the ability o f 

outside hosts initiating VOIP calls to hosts that are behind a NAT device. Common 

applications that use NAT require the inside host to establish a connection to an external host. 

For example a web client behind a NAT device establishes the connection to an outside web 

server. The translation address assignment is made on the outgoing data so that the 

destination address on return packets can be translated back into private addresses as they 

enter the router.

The issue becom es a little bit m ore complicated when a rem ote host wishes to establish a 

connection w ith a local host that is behind a NAT device. Since private addresses are not 

revealed by  the NAT host remote devices have no means for establishing the local host’s IP 

address. Cisco has addressed this issue in  an article entitled ‘Enabling Enterprise 

M ultihoming with Cisco IO S N A T ’ which has already been outlined in  chapter 6.

M any articles have been written about VOIP and NAT traversal. Suffice it say that there are 

plenty o f  solutions at hand. These solutions are also being driven to a large extent by  the fact 

that m ore and m ore domestic users are now using DSL broadband. One o f  the m ajor 

advantages o f  using DSL broadband is the ability to use VOIP, but m ost DSL modems 

incorporate NAT. Juniper Networks in  a white paper entitled ‘H osted N A T  Traversal Unlocks 

VOIP Service Provider O fferings’ describe how  rem ote hosts can initiate VOIP call to hosts 

using private IP addresses behind a NAT device. This solution makes use o f  a ‘Session 

Border Controller’ which is placed behind the edge router at the VOIP service provider’s site. 

The semantics o f  any solution, however, are not important here. The main issue is that there 

is no longer any concern about establishing a VOIP call to a host behind NAT device or 

firewall.

Financial Incentives for R oute A ggregation

O f all the options presented this is the least favourable. This is m erely a cure for the symptom 

and not a cure for the cause. A t first glance the idea o f  imposing a charge or penalty does 

seem to be attractive. M aking this option work, however, is another thing. In their document,
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Rekhter et al. suggest “Bilateral agreem ents” betw een ISP’s where a fee is agreed upon. This 

fee w ould then presum ably be passed on to the end user. The m ain issue w ith this is how 

m uch should that fee be?, and w ould there be any level o f  global consistency? Closer to 

home, for example, there could be significant disparity betw een ISPs in  the Republic and in 

the North o f  Ireland. This could well encourage users to make m ultihom ed connections with 

two different ISPs, one in the north and the other in the south.

The other concern w ith this proposition is that i f  the financial fee is set too low then it could 

well encourage users to multihome. In other parts o f  the world while the fee m ight be set too 

high, m ultinationals could simply feel the return on investm ent is w orth it and that resilience 

is necessary at any cost.

The notion o f  such fees also raises the age old argum ent o f  inform ation rich and information 

poor societies. A t the end o f  the day there is nothing w rong w ith m ultihom ing and its use 

should not be discouraged just because technical solutions for its associated scaling issues are 

difficult to address. Just as w e are not going to solve the green house effect by  increasing fuel 

prices, we are not going to solve route scaling issues by  im posing additional charges. We 

need to look at the root o f  the problem  and find a cure for that cause.

M ultihom ing in IPv6

Unfortunately IPv6 has no m ore multihoming capabilities than IPv4 and although the BGP 

solutions described in this docum ent w ill also w ork w ith IPv6, the exponential growth in BGP 

tables will still continue. The problem  could even be exacerbated as a result o f  the almost 

endless amount o f  IPv6 addresses available. Prevention is always better than cure and IPv6 

presents us w ith the opportunity to address m ultihom ing capabilities in advance o f  its 

widespread deploym ent throughout the Internet.

Potential areas where IPv6 could be m odified to support m ultihom ing are addressed by 

Houston in RFC 4177 and some o f  these w ere outlined in chapter 8. Houston likens 

multihoming to mobile IP. For example, when a mobile host moves out o f  its hom e network 

a new ‘care o f  address’ is used. The same is also true when a m ultihom ed site looses one o f  

its connections. W hen this happens a new prefix  needs to be advertised. It would make sense
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therefore that Mobile IP should be modified or adopted for multihoming. Houston, however, 

acknowledges that there are issues with this. For example, when a mobile node moves aw ay 

from  its home location it w ill register its new ‘care o f  address’ (CoA) with an agent on its 

hom e network. The home agent w ill pass traffic addressed to the node’s ‘Home A ddress’ 

(HoA) to the new CoA thus m aintaining an uninterrupted link. The mobile node can also 

optionally pass its new CoA directly to the remote node that it was communicating with. The 

remote node needs to be able to validate that this inform ation is indeed coming from  the 

original mobile node and not some ‘spoofed’ node. To this end, the rem ote node will pass 

two different secrets to both the HoA and the new CoA. I f  the m obile node receives both 

secrets then this verifies to the rem ote node that the mobile host is authentic. In order to 

prevent playback attacks and man-in-the- middle attacks, such an association w ill tim e out 

after seven minutes. In a m ultihom ed environment this binding needs to be indefinite or at 

least last as long as it takes for the failed link to be restored.

Houston explores other alternatives where IPv6 could be modified to accommodate 

multihoming. A ll suggestions however raise security concerns and are well docum ented in 

his paper.
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Conclusion

This paper examined issues relating to route scaling w ithin BGP routing tables in the 

Internet’s ‘default free zone’, or backbone. The exponential growth in  route entries is 

contributed to by  both  IP address fragmentation and ‘specific route advertisem ents’ as a 

result o f  multihoming. The later being the m ost significant contributor to BGP table growth.

The IPv6 protocol was examined in detail w ith particular emphasis being placed on its 

addressing architecture. Unfortunately m ultihom ing support was never a design specification 

for this new protocol. This does not mean, however, that IPv6 w on’t be part o f  the solution in 

curbing the exponential growth o f  routing tables. The fact that IPv6 hasn’t yet seen 

widespread deployment throughout the Internet m eans that m odifications are possible w ithout 

significant disruption.

Current solutions and practises were examined and their strengths and weaknesses 

highlighted. As is evident from the graph shown in figure 21, either these solutions are not 

being employed, or are simply not working, as we continue to observe an alarm ing growth 

rate in the num ber o f  routes being advertised.

The problem o f  route scaling today is as significant as the shortage o f  IP address space was in 

the eighties. No doubt a solution will be found and this w ill be in the form  o f  a m odification 

to the IPv6 protocol stack.
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