
The Application of Architectural and Design

Patterns in Enterprise Systems

By

Seamus Kelly

Dissertation submitted to

Sligo Institute of Technology

in partial fulfilment of the requirements for the

M.Sc. in Computing

September 2005

Dr. Kate O’Dubhchair

Project Supervisor

ABSTRACT.. V

CHAPTER 1: INTRODUCTION... 1

1.1 Background...1
1.1.1 Enterprise Applications.. 1
1.1.2 Design Patterns... 1
1.1.3 Java 2 Enterprise Edition (J2EE)..2
1.1.4 J2EE Technologies...2

1.2 Aim s ..6
1.3 What this project is n o t 7
1.4 Development and Production Environm ent ...8
1.5 Su m m a r y ... 9

CHAPTER 2: LITERATURE REVIEW.. II

2.1 Patterns ..11
2.2 P attern Catalogues..11

2.2.1 Gang o f Four Patterns... 12
2.2.2 Sun's Core J2EE Patterns... 14
2.2.3 Other Enterprise Pattern Catalogues.................................. 17

2.3 Architectures for Web Appi jcations ..18
2.3.1 JSP Model 1 Architecture... 19
2.3.2 Model- View-Controller Architecture..19

2.4 Patterns and Fram ew orks... 22
2.4.1 The Struts Framework...22
2.4.2 JDeveloper 23
2.4.3 Oracle Application Development Framework 24

2.5 M odel Driven Architecture (M D A) 27
2.5.1 What is M DA? .. 27
2.5.2 Agile MDA...29

2.6 OptimalJ and M D A ...29
2.6.1 OptimalJ Models.. 30
2.6.2 OptimaU Patterns.. 31
2.6.3 OptimalJ Application.. 34

2.1 JD ev e lo p e r a n d M D A .. 34
2.8 Archetype P atterns...35

2.8.1 Archetype Pattern Catalogue...35
2.8.2 Money Archetype Pattern................................... 36
2.8.3 Archetype Patterns and MDA ...37

2.9 S u m m ary ...38

CHAPTER 3: DEFINING THE DEMONSTRATION APPLICATION.................................39

3.1 The Problem Sta tem en t ...39
3.2 U se Cases .. 40
3.3 The Entity M o del ..42
3.4 Su m m a r y .. 42

CHAPTER 4: TEACHING EJBS AND PATTERNS..43

4.1 EJB COMPONENTS... 43
4.1.1 Naming convention.. 44

4.2 Session B e a n s .. 44
4.2.1 Stateless Session Beans.. 44
4.2.2 Remote and Local Clients... 49
4.2.3 The EJBObject.. 50
4.2.4 The Deployment descriptor... 50

ACKNOWLEDGEMENTS... IV

4.2.5 Stateful Session Beans...............................
4.3 E n t i t y B e a n s ..

4.3.1 Bean Managed Persistence (BMP)
4.3.2 Refactor with Patterns..............................
4.3.3 Primary Key Block Generator Pattern....
4.3.4 Data Access Object Pattern..................... .
4.3.5 Container Managed Persistence (CMP) .
4.3.6 EJB Query Language (EJB Q L)..............
4.3.7 Remote Method Calls................................
4.3.8 Transfer Object Pattern............................
4.3.9 Session Facade Pattern.............................
4.3.10 Service Locator Pattern............................

4.4 M e s s a g e -D r iv e n B e a n s (MDBS)
4.4.1 Service A cti vat or Pattern..........................

4.5 S u m m a ry ...

CHAPTER 5: THE APPLICATIONS.

5.1 The M essage Pr o d u c er -..
5.2 The M ain Applica tio n ...
5.3 The M o d e l

5.3.1 The Message Consumer...................
5.3.2 Container Managed Relationships (CMRs).,
5.3.3 The Portfolio as a Stateful Session Bean.....

5.4 The Controller ...
5.5 The Vie w ..

5.5.1 Composite View pattern
5.5.2 Value List Handler pattern............................

5.6 The W ireless Clien t ...
5.7 Su m m a r y ..

CHAPTER: 6 CONCLUSIONS...........................

6.1 A i m s ..
6 .2 D e p l o y m e n t ..
6.3 Ar e a s o f Fu r th er R e s e a r c h ..

6.3.1 The Application as a Learning Tool..
6.3.2 OptimaU and Archetype Patterns......
6.3.3 Wireless Clients...................................

6.4 Su m m a r y ..

REFERENCES.

.51

. 54
54

.59

. 60

.61

.62

. 66
66

. 68

.68
69

 69
 70
 70

 71

 71
 71
 72
 72
 73
 77
 78
 80
 80
 81
 81
 83

 84

.84

.85

.86

.86

.86

.87

.87

,88

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

CHAPTER 4 CODE.

CHAPTER 5 CODE.

CONFIGURATION FILES....

WIRELESS CLIENT.............

OPTIMALJ APPLICATION..

..91

118

143

152

154

..2
12
17
18

19
21
25
26
28
30
30
32

33
37
38
41
42
45
46
47
48
52
53
55
56
64
65
67
68

72
73
76
77

J2EE Components..
GoF Pattern Catalogue...
Core J2EE Pattern Catalogue
Simple JSP Application... .
JSP Model 1 Architecture..

Model-View-Controller Architecture....................................
Oracle ADF Layers..
ADF Pattern Catalogue..
Model-Driven Architecture..

OptimalJ MDA...
OptimalJ Models...
OptimalJ Patterns...
OptimalJ Core J2EE Patterns...
Money Archetype Pattern..
Archetype Patterns and MDA...
Use Case Diagrams...
Entity Model..
CompanyTO and Company Entity..
CompanyListerRemote and CompanyListerRemoteHome
CompanyListerLocal and CompanyListerLocalHome......

CompanyListerBean ..
AccountRemote and AccountRemoteHome.......................
AccountBean..
BmpCompanyRemote and BmpCompanyRemoteHome...
BmpCompanyBean..
CompanyRemote and CompanyRemoteHome...................
CompanyBean..
Remote Method Calls..
CompanySessionFacadeEJB..
PriceWatchMessageDrivenEJB....................................

Player-Game Entities...
PlayerGameSessionFacadeEJB...

PortfolioEJB..

Acknowledgements

I would like to thank my supervisor, Dr. Kate O ’Dubhchair, for undertaking the

supervision of this project. Having changed direction in her career, it required a return to

her roots to take on this work and I very much appreciate her doing so. Her experience,

advice, attention to detail and encouragement were invaluable throughout.

I would like to thank my wife, Carmel, for her support throughout the duration of the

project, without Avhich this work would not have been completed. Her support, as in life,

has been unbending. The many household chores and gardening jobs, which have been

long-fingered dining this work, will now be completed.

I would like to thank Damien, Sinead and Claire for everything they have taught me and

for the pleasure and happiness they have brought to my life. They have grown into fine

young citizens in spite o f my worst attempts at parenting.

I would like to thank the many students and colleagues, teaching and non-teaching, that I

have had the pleasure to work with over many years. Their enthusiasm has kept alive my

interest in teaching. A special word o f thanks is due to two hard working members of the

technical staff in the Computing Department in DkiT, Brigid Conlon and Maura Ryan and

also to Mary McKenna in the administrative section.

iv

Abstract

This thesis investigates the use of various J2EE technologies and the application o f best

practice in the use of these technologies. It uses the knowledge gained in this investigation

to develop a demonstration application designed for use in the teaching o f these

technologies. The demonstration application is designed to lead students from the

development o f standalone components to the development and integration of composite

components in a complete working application. The learning experience is enhanced as

students must identify design faults at various stages of development, and attempt

solutions, before being introduced to design patterns that resolve the faults. In this way

students get a real appreciation o f the benefits o f the patterns. Various exercises are

identified throughout the thesis to re-inforce the learning.

Java 2 Enterprise Edition (J2EE) is a specification from Sun Microsystems for developing

multi-tiered distributed applications. J2EE covers a wide range of technologies that are

applied across various tiers in an n-tiered architecture. Learning to use these various

technologies is not a trivial task and there is a strong demand for experienced J2EE

developers.

“J2EE requires significant knowledge and is not for the faint-hearted. Enterprise

platforms are inherently complex, slowing down advanced Java developers and creating a

barrier to entry fo r many mainstream developers. There is a critical shortage o f advanced

Java developers, and especially Java developers with expertise in Enterprise Java Beans

(ETBs)". [1] John Crupi, Distinguished Engineer, Chief Java Architect, Sun Microsystems,

Frank Baerveldt, Director o f Software Architecture, Compuware Corporation.

“Implementing Sun Microsystems’ Core J2EE Patterns”, 2005

However, learning to use the various J2EE technologies is no guarantee that these

technologies will be used to apply good design practice. By applying architectural and

design patterns, developers learn from the experiences of experts.

“Learning to design comes from experience and from sharing knowledge on best practices

and bad practices". [2] Deepak Alur, John Crupi and Dan Malks.

Core J2EE Patterns (Best Practices and Design Strategies) 2nd Edition (Prentice Hall,

2003).

v

Chapter 1: Introduction

This chapter gives background information on enterprise systems, design patterns and

J2EE technologies and it outlines the aims o f the thesis. It also indicates some topics not

included in the dissertation.

1.1 Background

Before outlining the aims of the thesis, some background information on the technologies,

and the terminology used to describe these technologies, is presented.

1.1.1 Enterprise Applications

Examples of enterprise systems include payroll, shipping tracking, insurance, accounting,

foreign exchange trading, etc. Enterprise applications usually involve a large volume of

persistent data that is accessed concurrently by a large number of users and usually require

a large number o f user interface screens. Not all enterprise applications are large, but they

usually provide a lot o f value to the enterprise. [4] Martin Fowler, Patterns o f Enterprise

Application Architecture, (Addison-Wesley, 2003).

1.1.2 Design Patterns

In the introduction to the classic text book, Design Patterns: Elements o f Reusable Object-

Oriented Software, by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides

(also known as the Gang o f Four, or GoF), the authors state:

“One thing expert designers know not to do is to solve every problem from first principles.

Rather, they reuse solutions that have worked for them in the past. When they find a good

solution, they use it again and again. Such experience is what makes them experts.” [5]

The study of patterns is the study o f these “good solutions” which were arrived at by

experts. By studying the solutions o f experts, developers can stand on the shoulders of

these experts and do not have to re-invent the wheel. [3]

The GoF patterns are general purpose patterns that arise in software solutions in many

different problem domains. Many of these patterns therefore arise in enterprise systems.

In addition to the GoF patterns, there are many patterns that arise in the context of

enterprise applications. This project therefore uses patterns from the GoF catalogue as

well as patterns that are specific to enterprise applications.

1

1.1.3 Java 2 Enterprise Edition (J2EE)

The J2EE platform uses a multi-tiered distributed application model. Application logic is

divided into components according to function, and the various application components

that make up a J2EE application may be installed on different machines, depending on the

tier to which the application component belongs [6], Client-tier components run on the

client machine. The client machine could be a PC running a web browser or a Java client,

or it could be a mobile device. Web-tier components and business-tier components run on

the J2EE server and the DBMS runs on the database server. In fact the web-tier and

business-tier components may be spread across several machines. In a development

environment all three tiers may be installed on a single machine. The development

environment for this project implements the various tiers on a single machine. The

following diagram illustrates a typical J2EE architecture.

Client Machine J2EE Server Machine Database Machine

Web Browser

Wireless Browser

Java Client < = >

Web Container

Servlets
Java Server Pages

f t

EJB Container

Session Beans
Entity Beans

Message-Driven Beans

Figure 1: J2EE Components

1.1.4 J2EE Technologies

J2EE application servers must provide containers that allow developers to build and deploy

web applications and Enterprise Java Beans. A web container is responsible for handling

the life-cycle o f web components (Servlets and Java Server Pages). An Enterprise Java

Bean (EJB) container manages the life-cycle o f EJBs and is responsible for creating,

pooling and destroying beans in order to best manage resources. The EJB container may

also handle object persistence, security management and transaction management. J2EE

servers are also responsible for providing the various other technologies that make up the

2

J2EE specification. This project uses the Oracle Application Server Container for J2EE

(OC4J lOg, vlO.1.2). This container supports J2EE 1.3 technologies and some of these

technologies are listed below.

1.1.4.1 Servlet API v2.3

Servlets are platform-independent, server-side Java components used to extend the

capabilities o f a web server. A Servlet class extends the HttpServlet class and may be used

to parse incoming requests, execute business logic, update databases and render a response

in a web browser. However, a Servlet is normally used in a J2EE application to act as a

Front Controller [2] in a Model-View-Controller (MVC) architecture [7] to process all

requests from a client and to control the flow o f the application. The Servlet API also

provides the facility to define filters and listeners. Filters may be used to intercept a

request in order to perform some pre-processing before accepting or rejecting the request,

or to intercept a response to perform some post-processing before returning the response to

the client. This facility is used to implement the Intercepting Filter pattern. [2] Listeners

may be used to monitor and to react to events in a Servlet's life-cycle, e.g. Servlet creation

and destruction, session creation and destruction, etc.

1.1.4.2 Java Server Pages (JSP) v1.3

JSPs are a server-side technology based on Java Servlets. A JSP is actually compiled into

a Servlet before deployment to a web container. JSPs use a combination of HyperText

Markup Language (HTML), Wireless Markup Language (WML), extensible Markup

Language (XML), Java scriptlets and custom tags to render a response in a browser. JSPs

are often used in conjunction with JavaBean components, i.e. Java classes that conform to

the JavaBeans specification [8] (not to be confused with Enterprise Java Beans). Like a

Servlet, a JSP may be used to parse incoming requests, execute business logic, update

databases and render a response in a web browser. However, in a J2EE application JSPs

are normally used to interact with the user by accepting input and by displaying

information. JSPs usually form the view in a Model-View-Controller (MVC) architecture.

[7]

1.1.4.3 Java Database Connectivity API (JDBC) v2.0

JDBC allows Java programmers to connect to a database and to query and update the

database using the Structured Query Language (SQL). The J2EE server must provide an

implementation o f the DataSource interface to allow developers to connect to the database.

J2EE servers also provide an implementation of the ConnectionPoolDataSource interface

to provide connection pooling. JDBC is a platform and vendor independent API. JDBC

3

may be used to implement the Data Access Object pattern [2] to encapsulate the SQL

implementation details and to provide a uniform interface to allow access to the database.

The Java Naming and Directory Interface API is used to locate the various data sources.

1.1.4.4 Java Message Service (JMS) v1.0.2b

The JMS API allows J2EE components to communicate asynchronously using either

queues (also known as point-to-point messaging) where messages are sent to a single

consumer, or topics (also known as publish/subscribe messaging) where messages are

broadcast to all registered listeners.

1.1.4.5 Enterprise Java Beans (EJBs) v2.0

EJBs are a major topic with a steep learning curve. As EJBs are the most difficult J2EE

technology to master, the emphasis in this project is on this technology. A brief

introduction is given here, as EJBs are covered in detail in Chapter 4. There are three

types of EJB: session, entity and message-driven beans.

(i) Session beans are responsible for managing processes. The most common type of

session bean is a stateless session bean, i.e. a bean that does not maintain any client

state. Stateless session beans are used extensively to implement the Session Fagade

pattern [2], Stateful session beans, on the other hand, do maintain client state and

this state is maintained across several client requests.

(ii) Entity beans are used for object persistence. This persistence may be managed by

the container. This type of entity bean is called a Container Managed Persistent

(CMP) bean and relieves the developer from the overhead of reading, writing and

updating the database. In addition, the container is responsible for managing

transactions and security. Bean Managed Persistent (BMP) beans require the

developer to write the code to read, write and update the database, possibly using

JDBC. The Data Access Object (DAO) [2] pattern may be used in conjunction with

BMP beans.

(iii) Message-Driven Beans are stateless, server-side components for processing

asynchronous JMS messages. A MDB can consume and process hundreds of

messages concurrently as numerous instances o f the MDB can execute concurrently.

The MDB may consume messages from queues or topics, and based on the message

received, may access other EJBs, e.g. an MDB may use an entity bean to update a

database. MDBs may be used to implement the Service Activator pattern [2],

4

In order to implement an EJB, it is necessary to create four components. These

components are

(i) a component interface, i.e. a Java interface that acts as the client’s view o f the bean.

(ii) a home interface, i.e. a Java interface that provides the client with methods to create,

locate and remove beans, i.e. lifecycle methods of the bean.

(iii) a bean class, i.e. a Java class that implements the business methods required by the

client.

(iv) a deployment descriptor fde, i.e. an XML file that describes the various components

o f the EJB. A single deployment descriptor can hold the entries for several beans.

In addition to these components, an entity bean may also require a Primary Key class. A

MDB does not have component interfaces.

The component interface represents the client’s view o f the bean. The client may be a

remote client, i.e. residing on a dilferent machine, meaning that the bean must expose a

remote interface, or the client may be a local client, i.e. the client is co-located with the

bean in the same container, meaning that the bean must expose a local interface. In fact a

bean may expose both a remote interface and a local interface, i.e. the bean may have

remote and local clients.

1.1.4.6 Java Naming and Directory Interface (JNDI) v1.2.1

A J2EE application uses many resources, e.g. data sources to access a database; home

interfaces for the creation and location o f EJBs; queues and topics for messaging services,

etc. A J2EE server provides a service to store and locate these resources in a directory

structure. The JNDI API provides a uniform way to locate and access these resources

across a network. As it can be an expensive overhead constantly looking up the same

resources, the Service Locator pattern [2] may be used to provide an efficient lookup

mechanism by caching resources that have previously been retrieved. In this way the

resources may be retrieved from the cache, thus avoiding the lookup overhead.

1.1.4.7 Java Connector Architecture (JCA) v1.0

Although most enterprise systems use relational database technology for data persistence,

many J2EE applications are required to access legacy systems and other external systems.

JCA provides connectivity with other types of external system.

5

1.1.4.8 Java Transaction API (JTA) v1.0.1b

JTA provides the J2EE developer with the facility to manage database transactions

programmatically. In addition to using JTA to handle programmatic transaction

management, J2EE provides for declarative transaction management in the deployment

descriptor file, i.e. an XML file used to describe various resources used in a J2EE

application.

1.2 Aims

The M.Sc. in Computing, which forms part o f the Higher Education Staff Development

Network programme in the Institutes o f Technology, is designed for teaching and support

staff in the areas o f computing and technology. This programme is designed to facilitate

staff to pursue further study at postgraduate level to advance their knowledge and skills in

new and developing subject areas to enable them to become more effective in their

teaching, research and support activities. [55]

As a lecturer in computing in Dundalk Institute o f Technology, the author is charged with

delivering courses on Enterprise Systems Development and Patterns for Enterprise

Systems to fourth year students in the B.Sc. (Hons.) in Internet Technologies (Level 8)

starting in September 2005.

W ith advances in technology the software systems being developed today are becoming

more and more sophisticated requiring a deep knowledge and understanding o f the

underlying technologies. As the use of J2EE is clearly a demanding topic [1], the teaching

o f this technology presents many challenges.

There are a number o f approaches to teaching design patterns, whether these are general

purpose patterns or J2EE patterns. One approach is to examine each pattern in a catalogue

in isolation, explain its use and provide a programming implementation of the pattern.

Another approach is to implement a solution to a particular problem using a large variety

o f patterns. According to Eric Gamma [3], there is a danger in each of these approaches.

He suggests that one should not simply enumerate each pattern in a catalogue and he also

warns against trying to apply as many patterns as possible in an application. He

recommends creating a real world application and, by understanding the solution and the

short-comings of the solution, he recommends refactoring the solution by applying

appropriate patterns.

6

The aims o f this project are therefore:

(i) To gain a good working knowledge o f the J2EE platform in general and EJB

technology in particular.

(ii) To gain a good understanding of best practice in applying J2EE technology for the

development o f enterprise systems through the use of patterns.

(iii) To ease the learning curve o f students studying these technologies by using

appropriate tools to ease the development and understanding of the technologies.

(iv) To share the knowledge and experience gained dining the research for this thesis

with students in order to enhance their knowledge and learning experience.

In order to achieve this, a demonstration application for use in the teaching o f J2EE and

J2EE patterns is developed. As components for the application are developed, students are

encouraged to identify problems with the design and to propose revised solutions before

appropriate patterns are introduced to refactor the solution. The application is

(a) large enough to require a range o f J2EE technologies and patterns for its solution.

(b) small enough to allow students to fully understand the problem and the solution.

(c) sufficiently interesting to engage the students.

(d) developed using an architecture that allows the seamless addition of wireless clients

thereby increasing the students’ appreciation o f the benefits o f the architecture used.

1.3 What this project is not

This project is not about the merits or otherwise of the J2EE platform nor is it about a

comparison o f J2EE and .NET technologies. J2EE is used as the platform for this project

as the author is currently engaged in teaching various Java technologies and J2EE is a

natural progression in this area. Is the J2EE platform suitable for developing enterprise

systems? Suffice to say that eBay, the online auction company, chose the J2EE platform

for version 3.0 of its software. A case study on the implementation of this software is

available at [9], As eBay can handle up to one billion hits per day [10], it can be assumed

that a good knowledge o f J2EE technologies and knowledge o f best practice in the use of

these technologies would be a useful skill for any student of computing.

This project is not about a comparison of the various J2EE servers available nor is it about

a comparison of the various Integrated Development Environments (IDEs) available for

developing J2EE applications. Clearly certain decisions have been made regarding the

tools used, but these decisions have been influenced by various factors, e.g. the

7

development and production environment available in Dundalk Institute o f Technology,

the cost o f the tools used (all tools used were available without any outlay on cost), the

availability o f these tools for use by students, etc.

There are various Object-Relational tools that may be used in conjunction with J2EE, e.g.

Java Data Objects (JDOs) [11], Hibernate [12], Toplink [13] and POJOs (Plain Old Java

Objects) [14], Duncan Mills, Oracle Corporation, “The Rise o f the POJO”, July 2005.

These technologies may be used instead o f entity beans for database operations. It is not

the intention o f this project to compare any o f these technologies, nor to recommend any

technology in preference to another. As this project is about J2EE technologies, entity

beans are used for object persistence.

This project is not about how students coped with learning the technologies, as the author

does not yet have experience of teaching J2EE technologies (apart from simple web

applications using Servlets and JSPs). During delivery o f the above mentioned courses,

feedback from students on the mode of delivery and the effectiveness o f using the

application will be obtained. Therefore, a follow on from this project would be a study

into the success o f using the application as a learning tool.

1.4 Development and Production Environment

There are many different J2EE servers available, e.g. JBoss[15], WebLogic[16], OC4J

[17], etc. There arc also many different integrated development environment (IDEs)

available for developing and deploying J2EE applications, e.g. JBuilder[18], NetBeans

[19], JDeveloper [20], The tools used for this project were influenced by a number of

factors.

(i) A desire to get a very good understanding o f J2EE technologies.

(ii) A desire to get a very good understanding o f J2EE patterns.

(iii) The need to use tools that would run on a fairly basic PC.

(iv) The need to use tools that would be freely available to students.

(v) The requirement that the completed application would be deployed to DklT’s Oracle

Application Server accessing an Oracle database.

(vi) A desire to use development tools that would make application development easier

once the earlier requirements were satisfied.

In order to get a good understanding o f the various J2EE technologies, it is planned to

initially develop the J2EE components for the demonstration application using only a

8

simple text editor to write all components and all deployment descriptors. It is planned to

use Oracle’s standalone OC4J 10G (v9.0.4) J2EE server, accessing a database developed

with MySQL v4.1.7 [21], These tools run on a fairly basic PC and are freely available for

download.

Having used the basic tools to learn the various J2EE technologies, Oracle’s JDeveloper

IDE will be used to develop the project’s demonstration application and to explore the use

o f various J2EE patterns with this tool. The database used will be Oracle’s Database lOg.

These tools are also freely available but require a PC with a fairly high specification

(Pentium III, 512 MB RAM, 1.5GB hard drive). For the wireless client, Oracle’s

JDeveloper Wireless Extension (JWE) will be used together with OpenWave SDK v6.2.2.

[57]

In addition, it is intended to obtain a 30-day trial version o f Compuware’s OptimalJ [22] to

examine the various patterns generated by this tool when used to automatically generate a

simple data maintenance J2EE application from a domain class diagram.

It is intended that the final application will access DklT’s Oracle database and will be

deployed on DklT’s Oracle Application Server.

1.5 Summary

This thesis is inspired by a desire to provide students with the tools necessary to develop

J2EE applications by sharing the knowledge and experience of experts in a maimer that

will enhance the learning experience. Before this knowledge and experience can be shared

with students it is necessary to research and investigate the J2EE technologies and best

practice in the application o f these technologies. Having researched and investigated J2EE

technologies and J2EE patterns, a demonstration application will be developed using

Oracle’s JDeveloper IDE. This IDE provides a wide range of facilities for developing

components through the use of wizards, visual tools, reverse engineering of database

tables, etc., or through a combination of these.

The following is an outline of the remaining chapters o f the dissertation.

Chapter 2 reviews the literature on design patterns and architectures for J2EE applications.

In Chapter 3 the demonstration application is introduced. Chapter 4 provides an in-depth

examination o f EJBs and related patterns in the format they would be used in the

classroom. In Chapter 5 the demonstration application is developed. This consists of a

9

Java application that acts as an outside agent sending messages to the main application.

The main application is developed using components and patterns already developed in

Chapter 4, as well as introducing new components and patterns. Chapter 5 also examines

the patterns used to implement MVC and describes the view, including the wireless client.

Chapter 6 examines how the aims were achieved and indicates iuture areas o f research.

10

Chapter 2 : Literature Review

This chapter discusses various pattern catalogues and also examines various development

tools with in-built support for J2EE patterns. It also explores various other types of pattern

including archetype patterns.

2.1 Patterns

The use o f patterns became popular in the building and construction industry based on the

original architectural patterns book, A Pattern Language: Towns/Buildings/Construction

by Christopher Alexander, (Oxford University Press, 1977). Alexander defined a pattern

as follows. “Each pattern is a three part rule, which expresses a relation between a

certain context, a problem and a solution. ” He further stated that “Each pattern describes

a problem which occurs over and over again in our environment, and then describes the

core o f the solution to that problem, in such a way that you can use this solution a million

times over, without ever doing it the same way twice [23] Although Alexander was

referring to problems and their solutions in the building environment, his comments apply

equally to object-oriented design patterns. [5]

Patterns became popular in the software community with the publication o f the GoF book

in 1995. Anyone with experience in software development will get a feeling o f deja vu

when she first studies software design patterns. This is because these problems arise in

many projects and many developers have provided their own solutions to these problems.

[5]

It is important to note that the authors did not invent the various patterns but rather they

recognised recurring designs in numerous projects, identified and documented them.

Patterns also provide a vocabulary, which improves communication between architects and

designers. A designer who does not rely on patterns must expend more effort to

communicate a particular design. [2]

2.2 Pattern Catalogues

There are a number o f pattern catalogues available including general purpose design

patterns, patterns for enterprise systems and patterns that are specific to J2EE.

11

2 .2.1 Gang of Four Patterns

The GoF provided a catalogue o f 23 patterns and categorized them as shown below. [5]

Although this pattern catalogue was published in 1995, there is still a very strong demand

for courses in these patterns. N ot only do these patterns help improve design but they also

help people learn object-oriented thinking. [3]

Creational Structural Behavioral

Factory Method Adapter (class) Interpreter

Abstract Factory Adapter (object) Template Method

Builder Bridge Chain of Responsibility

Prototype Composite Command

Singleton Decorator Iterator

Fafade Mediator

Flyweight Memento

Proxy Observer

State

Strategy

Visitor

Figure 2 : GoF Pattern Catalogue

The GoF also indicated how to describe patterns. They suggested that, although graphical

notations were important in describing a design (Object-Modelling Technique, OMT [25]

was the modeling language used at the time o f publication), it was also important to record

decisions, alternatives, trade-offs and concrete examples to describe the design. They

suggested the following template. [5]

12

Pattern Name and

Classification

A good name is vital to succinctly describe the pattern.

Intent What design problem does the pattern address?

Also Known As Other well known names, i f any.

Motivation A scenario describing a design problem solved by the pattern.

Applicability Examples of poor designs that the pattern can address.

Structure A graphical representation.

Participants Classes and / or objects participating in the pattern.

Collaborations How the participants collaborate to fulfill responsibilities.

Consequences What are the trade-offs and results of using the pattern?

Implementation Hints and techniques for implementing the pattern.

Sample Code Code fragments to illustrate implementation (C++ and Smalltalk

at the time o f publication).

Known Uses Examples of the pattern found in real systems.

Related Patterns Other patterns that should be used with this one.

As these patterns solve real-world design problems, an experienced developer without any

exposure to the GoF pattern catalogue could actually guess the purpose o f some of the

patterns from their names. Many developers are already using their own versions of

documented patterns and strategies without even being aware o f it. [5] Whether it is the

simple but elegant Singleton pattern (used to ensure only a single instance o f a class), one

o f the Factory patterns (used for runtime instantiation of objects), the Facade pattern (used

to hide the complexity o f a system by providing clients with a simple interface to the

system), the Command pattern (used to encapsulate a request as an object to handle the

request) or the Iterator pattern (used to traverse a collection o f objects), it is difficult to

imagine any non-trivial software project that would not benefit from the use o f some of

these patterns. Most developers will have devised their own solutions to these problems

and it is interesting to compare one’s own solutions with those in the catalogue. It is not

the intention to reproduce these patterns in this dissertation as they are well catalogued in

the text. However, as these patterns are intended to solve general purpose software

problems, it is inevitable that some o f these patterns will surface in enterprise applications.

The GoF patterns that surface in J2EE applications are explained as they arise throughout

the dissertation.

13

Eric Gamma advises against trying to fit as many patterns as possible into a solution and

that, where possible, solutions should be kept simple. He suggests that the real benefit of

patterns comes from “feeling the pain” o f a poor design and that a pattern is only

appreciated when one has felt this design pain. He suggests that “throwing patterns into a

design” is the wrong way to teach patterns and they should only be added to a solution

following a good understanding o f the problem they resolve. “Because o f this I really like

to use patterns after the fact, refactoring to patterns”. [3]

Following the publication o f the GoF book, research mto patterns became popular with

research into areas such as tools for automating the patterns (converting the design patterns

into code) as well as research into new candidate patterns. The primary sources of this

research are to be found at [26, 27, 28], The hillside [26] web site organises and maintains

details o f the various PLoP (Programming Languages o f Patterns) conferences that take

place around the world each year, e.g. PLoP, EuroPlop, KoalaPLoP, Mensore PLoP,

SugarLoaf PLoP, Viking PLoP and ChiliPLoP. The ChiliPlop 2003 conference, a

conference dedicated to “hot topics”, had a discussion theme o f “Enterprise Patterns” .

2.2.2 Sun’s Core J2EE Patterns

With the advent o f the J2EE technologies the developers at the Sun Java Centre [29]

realized that it was important to provide developers with, not just the knowledge of how to

use the various J2EE technologies, but also the knowledge of how to use the technologies

well. A blueprint was drawn up on best practices in the use o f J2EE. The blueprint was

based on the experience o f the Sim developers working on a large number o f projects and

also on the feedback o f customers. This blueprint resulted in the presentation o f a

catalogue o f J2EE patterns at the JavaOne conference in June 2000. Following this

presentation, a catalogue o f 15 patterns was published in the text book Core J2EE Patterns,

First Edition [30], This publication received an overwhelming response from architects

and developers and resulted in further work on the patterns culminating in the publication

o f the second edition of the Core J2EE [2] book with 23 patterns. In addition to the

patterns, the book contains a section on design considerations and bad practices and

introduces various J2EE refactorings to improve design. Refactoring, first introduced by

Martin Fowler, identifies a problem, offers motivation for improving the problem and

suggests the means for doing so. [31]

As the focus o f this project is on J2EE technologies, the focus is on Sun’s Core J2EE

patterns, although some patterns not mentioned in Core J2EE are taken from other sources.

These patterns are explained as they arise. It is not the intention to reproduce the Core

14

J2EE catalogue here, but a very brief description o f each pattern is given, as these patterns

are mentioned throughout the dissertation. The authors divided the patterns in their

catalogue into three layers: presentation, business and integration (also know as data

access) layers. A brief description follows:

Core J2EE Patterns Description

Presentation Laver

Intercepting Filter Used to intercept a request before it is processed or a

response before it is sent, This pattern may be

implemented by writing a class that implements the

Filter interface which is part of the Servlet API.

Front Controller Used to provide a centralized point o f access for all

requests. This pattern is usually implemented as a

single Servlet and forms the “controller” part o f the

MVC architecture. [71

Context Object Used to encapsulate platform specific objects, e.g.

request, response objects. May be implemented using a

simple HashMap.

Application Controller Used to centralize action and view management. Used

in Jakarta Struts framework [35] as part o f the MVC

architecture

View Helper Used to separate a view from processing logic (as in

MVC)

Composite View Used to form a page as a composite o f other pages

using various include directives, e.g. header, footer,

menu, body, etc.

Service To Worker Used to centralize control and to handle request

processing logic before dispatching to a view. This

pattern is a composition of several other patterns (Front

Controller, Application Controller and View Helper).

Dispatcher View Used when a view is required to handle a request and to

generate a response as well as performing simple

business processing. Sometimes used to provide a

simple testing facility, but o f limited use.

15

Business Laver

Business Delegate Used to encapsulate the complexity o f remote lookup,

exception handling and to provide the client with a

clean interface to business services.

Service Locator Used to locate and cache various services using JNDI

(e.g. data sources, home interfaces, queues and topics,

etc.).

Session Facade Used to provide efficient access to the services o f one

or more EJBs. This pattern provides a coarse grained

interface to the EJB(s). One of the most widely used

patterns in J2EE. Implemented using a stateless

Session Bean.

Application Service Used to provide use-case logic that applies across

several cooperating components by providing clients

with an interface to those services. Reduces the

business logic in Session Facades.

Business Object Used to separate business state and behaviour from the

rest o f the application. Used when an application uses a

conceptual domain model with sophisticated business

logic and relationships. May use POJOs with DAO or

JDO for persistence or may use entity beans.

Composite Entity Used to implement the conceptual domain model using

CMP entity beans for persistence. Relationships

between the beans are implemented using local

references.

Transfer Object Used to provide efficient transfer o f data across a

network. Usually used in conjunction with a Session

Fa$ade pattern to provide coarse grained access to the

services o f one or more EJBs.

Transfer Object Assembler Used to build an application model as a composite of

Transfer Objects and to provide the client with this

model.

Value List Handler Used to provide clients with an efficient searching and

iteration mechanism over a large set o f results by

caching the results on the server side and only sending

part o f the list across the network.

16

Integration Layer

Data Access Object Used to encapsulate data access code (e.g. SQL calls)

and to provide a uniform interface to persistent data.

May use the JDBC API to access relational data.

Service Activator Used to provide asynchronous access to business

services (e.g. POJOs, EJBs). Usually implemented as a

Message-Driven Bean.

Domain Store Used to separate the persistence mechanism from the

object model. Used to avoid the use o f entity beans or

when the application is required to run outside a J2EE

server.

Web Service Broker Used to expose Web Services using XML and web

protocols.

Figure 3 : Core J2EE Pattern Catalogue

The above patterns do not usually occur in isolation and the authors offer various different

strategies for applying the patterns, e.g. The Command and Controller strategy for

implementing Front Controller. Many o f these patterns, and the strategies for using them,

involve the use of GoF patterns, e.g. Session Fa9ade is just a special type o f Facade; the

Command and Controller strategy may use GoF’s Command, Factory and Singleton

patterns; DAO may use Factory Method or Abstract Factory, etc,

2.2.3 Other Enterprise Pattern Catalogues

Other well known enterprise catalogues include Fowler’s catalogue [4] and

TheServeSide.com [32] catalogue. Fowler’s catalogue includes some of the Core J2EE

patterns, e.g. Front Controller, Application Controller, Data Transfer Object, Remote

Facade (Business Delegate), Domain Store. However, as Fowler’s patterns are not applied

to any particular platform, e. g. his patterns do not use EJBs, many o f the patterns in his

catalogue are about object persistence as the pattern names suggest, e.g. Active Record,

Association Table Mapping, Lazy Load, Repository, Row Data Gateway, etc.

TheServerSide.com is an online community for enterprise Java architects and developers.

It provides news, articles, interviews and a discussion forum on enterprise development

and design patterns. A pattern catalogue evolved and this catalogue was published as a

text book, EJB Design Pattern by Floyd Marinescu, (Wiley, 2002). [33] Many of these

patterns are similar to Sun’s Core J2EE patterns and also make use o f some o f GoF’s

17

patterns as their names suggest, e.g. Session Facade, EJB Command, Data Transfer

Object, EJBHomeFactory, Business Delegate. Marinescu also provides various patterns

and strategies for persistence and transaction management, e.g. JDBC for Reading, Data

Access Command Beans, Primary Key Generation strategies. TheServerSide.com site

provides a forum for developers to discuss existing patterns, provide alternative strategies

for implementing those patterns as well as presenting their own candidate patterns. In

[10], John Crupi suggests that what is now required for the pattern repository on

TheServerSide is to set up a review process to look at the various patterns and perhaps

bring those patterns to a wider community.

2.3 Architectures for Web Applications

The simplest Java-based web applications consist o f a series o f JSPs with all presentation

logic, control logic, business logic and data access code embedded in the JSPs as shown in

the diagram below. A large amount o f code is duplicated in many of the JSPs. This type

o f application becomes a maintenance nightmare when even the smallest changes take

place, e.g. a change to a single database table, could involve a change to every JSP that

accesses that table. Two well known architectures are used to solve some o f the problems

associated with this type o f solution.

Figure 4 : Simple JSP Application

18

2.3.1 JSP Model 1 Architecture

Early Java-based web applications used a Model 1 architecture as illustrated in the diagram

below. A Model 1 architecture consists of a browser directly accessing JSPs, with the JSPs

accessing JavaBeans that represent the application model. The next view to display is

determined by links selected in the current page. Control in a Model 1 application is

decentralised, as the current page determines the next page to display. In addition, each

JSP or Servlet processes its own input parameters, i.e. request parameters. In this model a

JSP mixes presentation code (HTML), control logic and business logic (Java code), i.e. the

view and controller are mixed in each JSP. As indicated in Sun’s Blueprints for web-tier

design, this architecture quickly breaks down when used with larger applications. [7]

Figure 5 : JSP Model 1 Architecture

2.3.2 Model-View-Controller Architecture

The Model-View-Controller (MVC) paradigm was originally used to build user interfaces

in Smalltalk-80 and is cited in early literature, “A Cookbook for Using the Model-View-

Controller User Interface Paradigm in Smalltalk-80”, G. E. Krasner and S. T. Pope,

(JOOP, Vol 1, no 3, August/ September, 1988), but has since been much more widely

used. [34] The model represents the data in an application, the view represents a client’s

view o f the data and the controller interacts between the user and the view. The data

element is developed independently o f the view, i.e. the data should be unaware of how or

where it will be displayed. This separation o f the data and the view allows various

different views o f the same data. Any changes to the data should be reflected in a change

to the view(s). A variation on MVC is the Document-View paradigm used in Microsoft

19

Visual Studio where the view and the controller are both represented in the view and the

model is represented in the Document.

The MVC architecture, when applied to web applications, is sometimes called the Model 2

architecture. Except for the smallest applications, MVC is the recommended architecture

for developing interactive web applications. [7] MVC separates an interactive application

into three separate modules.

1. The model maintains the application’s data representation and business logic.

2. The view provides for data presentation and user input.

3. The controller is used as a central point o f access for all requests and it controls the

flow o f the application.

The MVC design pattern provides many benefits. MVC allows for separate development

o f the business layer, data access layer and the presentation layer. This allows developers

with different skills to work on the layer appropriate to their skills. It also allows

developers with different levels of experience to work at a level appropriate to that

experience, e.g. a junior programmer may be introduced to a project by developing views

o f data gathered in another layer and made available through a well defined interface.

MVC centralizes control and makes it easier to add new data sources or new views to an

application. [7] These benefits are illustrated in the application developed for this project,

e. g. a wireless client is seamlessly integrated into the application without any changes to

the other layers of the application.

There are a variety o f strategies for implementing the MVC architecture. In its simplest

form, a Front Controller (usually a single Servlet) is used to handle all requests from the

client. All client requests are directed to the Front Controller. To ensure that clients do not

attempt to directly access JSPs, a simple strategy is to place all JSPs in a folder below the

WEB-INF folder of the web module. These JSPs cannot be directly accessed by clients.

This means that each JSP does not have to contain code to limit access. [2]

Requests to the Front Controller could originate in an ordinary web browser running in a

PC or requests could originate in a wireless device. Irrespective o f the source o f the

request, the Front Controller passes the request to some Request Handler object which may

communicate with various other resources (e.g. EJBs to access the database), to handle the

request. The Front Controller then passes the requested information to a JSP to render the

information to the client. Depending on the origin o f the request, control is passed to the

20

appropriate JSP to display the results in a web browser or in a mobile device. Although a

single controller may be used for web browser and wireless clients, to allow for different

protocols that may arise in new devices, a separate controller could be added for each new

type o f device. [7] The following diagram illustrates how the MVC architecture may be

used in a web application to process requests from a client originating in a web browser or

in a wireless device. The controller will forward control to the appropriate JSP depending

on the type o f device used. This means that the only difference between the code written

for a web browser and a wireless device is the code in the JSPs.

Figure 6 : Model-View-Controller Architecture

1. The client, using a web browser or a wireless device, sends a request.

2. The controller (possibly a Servlet) selects the appropriate object to handle the

request. This object may be a Command [5] object created using a Factory [5]

object.

3. The request handler communicates with the database (e.g. using an entity EJB, a

DAO [2], etc.) to obtain the requested data from the database.

21

4. The controller dispatches control to the appropriate JSP (e.g. a JSP using HTML to

render the view in a web browser or a JSP using WML to render the view in a

wireless device) to display the requested information.

5. The information is displayed in the client’s device.

The MVC architecture may be implemented in a J2EE application by using a variety of

design patterns and by employing a variety o f strategies. One such strategy is known as

the Command and Controller strategy [2}. An implementation of this strategy is illustrated

in project’s application and is shown in Appendix B. Some o f the patterns used include

GoF’s Singleton, Command, Factory [5] and Core J2EE’s Front Controller and Context

Object [2], This strategy also uses Token Synchronizer [2] to avoid duplicate request

submissions.

2.4 Patterns and Frameworks

A lot o f effort is required from individual developers to write applications using various

patterns and strategies, and this effort also requires a lot of repetitive work, as the same

patterns are re-applied using different strategies. A number o f different frameworks and

IDEs implement various patterns and strategies to relieve the developer from the repetitive

work o f developing the various patterns and thus allowing the developer to focus on

implementing the business logic o f the application.

2.4.1 The Struts Framework

One framework that attempts to reduce the effort in building web applications is the

Jakarta Struts framework from the Apache organization. The Struts framework encourages

application architectures based on the MVC architecture and provides a template for the

separation o f model, view and controller. The Struts framework provides its own

Controller component, known as the ActionServlet, and integrates with other technologies

to provide the Model and the View. For the model. Struts can interact with standard data

access technologies, like JDBC, EJB, as well as most third-party packages like Hibernate

[12], iBatis [36], or Object Relational Bridge [37], For the view, Struts works well with

JSP and other presentation technologies. Struts uses an XML configuration file, struts-

config.xml, to initialize its resources. These resources include ActionForms to collect

input from users, ActionMappings to direct input to server-side Actions (Command classes

[5]) and ActionForwards to select output pages. [35]

In employing an ActionServlet as the Front Controller and an Action class as the

Command Handler, the Struts framework is an application o f the Front Controller pattern,

22

using the Command and Controller strategy. [2] Struts also uses the Synchronizer Token

[2] to prevent duplicate request submissions from a client. There are a number of

situations when a duplicate request can occur, e.g. a user refreshes a page or a user presses

the Back button and then re-submits the request. The Action class maintains the actual

token. An example o f Synchronizer Token is shown in Appendix B.

It is not recommended that the Struts framework be used for all web applications. For

small applications with just a handful of pages, it is recommended to use a Model 1

architecture. [35]

So popular is the Struts framework that many different IDEs, including JDeveloper and

OptimalJ, use it to implement the MVC architecture.

2.4.2 JDeveloper

Oracle JDeveloper lOg (v. 10.1.2) is an integrated development environment (IDE) for

building J2EE applications. JDeveloper supports the complete development life cycle with

integrated features for modelling, coding, debugging, testing, profiling, tuning and

deploying applications. JDeveloper comes with a built-in application server, OC4J lOg (v.

10.1.2). JDeveloper should work with most SQL-compliant database servers (although the

author encountered problems with MySQL), but it is certified to work with DB2 [38] and

Microsoft SQL Server[39] as well as Oracle databases. In addition to deploying J2EE

applications to Oracle Application Servers, JDeveloper is certified to deploy to WebLogic

[40] and JBoss [41] servers.

JDeveloper comes bundled with the Struts framework to implement the MVC architecture,

though the developer has a choice o f using this framework or not. As Oracle wanted a

single environment that would adapt to any developer [42], JDeveloper provides the

developer with a variety o f templates for developing J2EE applications. When the

developer chooses a particular template, the technologies, e.g. JSP, EJB, Struts, etc.,

named in that template are made available to the developer.

JDeveloper may be used for developing Java 2 Standard Edition (J2SE) applications as

well as J2EE applications. Using JDeveloper, a developer may develop an application

using a visual tool to design the application using UML diagrams (Use Case, Class and

Activity diagrams), EJB diagrams, Entity (database) diagrams, Java class diagrams, Web

Service diagrams and Business Component (ADF) diagrams. The diagrams may then be

used to generate code. Code and diagrams are synchronized as any change to the model is

23

reflected in the code, or vice versa. JDeveloper may be used to reverse engineer CMP

entity beans from existing database tables. This technique is used in the project’s

application.

As indicated in the JDeveloper Documentation, JDeveloper facilitates the use o f J2EE

patterns by providing the facility to generate an application that uses the MVC architecture

and also allows for easy addition o f the following J2EE patterns.

1. The Session Facade pattern centralizes complex interactions between lower-level

EJBs (often entity beans). It provides clients with a simpler interface to the business

services of the application.

2. The Data Transfer Object (aka Transfer Object [2]) pattern provides better

maintainability by separating use cases from the object model, allows for reuse of

entity beans across different applications, and increases performance when the

attributes from multiple entity beans can be passed to the client with a single call.

3. The Business Delegate [2] pattern decouples clients and business services, hiding

the underlying implementation details of the business service. This pattern is

implemented by the data control, which is represented in JDeveloper by the Data

Control Palette.

O f course, in order to use these patterns with JDeveloper, it is necessary to understand the

patterns. In addition to these patterns, a developer with knowledge of patterns can apply

additional J2EE patterns as appropriate, although there is no specific facility for this. As a

tool for teaching J2EE technologies and patterns, JDeveloper could be used to develop an

application and then through refactoring, appropriate patterns could be added, as

recommended by Gamma [3], This is the approach used for the application developed for

this project.

JDeveloper also allows for the addition o f extensions to the IDE by providing a facility to

add third party tools to the IDE, e.g. JUnit [44],

2.4.3 Oracle Application Development Framework

JDeveloper also includes the Application Development Framework (ADF). ADF

simplifies J2EE development by minimizing the need to write code that implements J2EE

design patterns. ADF is a set o f libraries that runs on standard J2EE application servers,

not just Oracle application servers. Its job is to reduce a lot o f the complexity in building a

J2EE application and help developers focus on the business logic. [42]

24

ADF uses the Struts framework to implement the MVC architecture and is based on four

layers:

1. The View layer provides the user interface to the application.

2. The Controller layer controls the flow of the application.

3. The Model layer provides an abstraction layer on top o f the Business Services layer,

enabling the View and Controller layers to work with different implementations of

Business Services in a consistent way.

4. The Business Services layer provides access to data from various sources and

handles business logic.

The following diagram illustrates these layers.

Figure 7 : Oracle ADF Layers

ADF implements many o f the patterns from Sim’s J2EE Design Pattern catalogue and adds

some others o f its own as shown below and described in “ADF Business Components

J2EE Design Pattern Catalogue”, Steve Muench, ADF Development Team (June, 2005).

[45]

25

ADF Pattern Description, or Also Known As

MVC Implemented using Struts

Interface/Implementation

Separation

ADF Business Components enforce a logical separation

of the client’s view (via Java interfeces) and the business

tier implementation o f those interfaces.

Service Locator Service Locator [2[

Inversion o f Control ADF components contain a number o f easy-to-override

methods that the framework invokes at the appropriate

time. The developer may override these methods without

being concerned when the methods will be called.

Dependency Injection All ADF components are configured in external metadata

(data about data) configuration files. The framework

automatically injects dependent objects (e.g. view objects

into service components or entity objects into view rows

at runtime) at runtime.

Active Record Active Record [4]

Data Access Object Data Access Object [21

Session Facade Session Facade [21

Value Object Transfer Object (21

Page-By-Page Iterator Value List Handler [21

Fast-Lane Reader Allows for efficient access to read-only data by

retrieving only the required fields using JDBC instead of

entity beans. The developer need only write the required

SQL statements in an XML file.

Front Controller Front Controller [21

(Bean) Factory Allows for runtime instantiation of beans based on XML

configuration files and through Factory [5| classes.

Entity Facade Provides a restricted view o f data and behaviour o f one

or more entity objects.

Value Messenger Used to keep client Value Objects in synch with business

entity data. Client attribute changes are updated in the

entity objects, and changes to entity objects are updated

in client Value Objects.

Figure 8 : ADF Pattern Catalogue

26

The fact that JDeveloper provides such a variety o f development templates as well as the

ADF, means that there is a steep learning curve in learning to use the IDE. However, it

allows developers with various skill levels to apply those skills in the most appropriate

manner without being restricted to any particular template. Also, by initially focusing on a

single template, students can quickly develop an application and then refactor the solution

by the application of appropriate patterns.

2.5 Model Driven Architecture (MDA)

2.5.1 What is MDA?

The Object Management Group (OMG) [46] launched an initiative known as Model

Driven Architecture (MDA) in 2001 [47], MDA is a software architecture based on

modelling at different layers. OMG provides the following definitions in its specification

for MDA [47]

“A model o f a system is a description or specification of that system and its environment

for some certain purpose. A model is often presented as a combination o f drawings and

text. The text may be in a modeling language or in a natural language” .

“MDA is an approach to system development, which increases the power o f models in that

work. It is model-driven because it provides a means for using models to direct the course

o f understanding, design, construction, deployment, operation, maintenance and

modification”.

“The architecture o f a system is a specification of the parts and connectors o f the system

and the rules for the interactions o f the parts using the connectors. The Model-Driven

Architecture prescribes certain kinds o f models to be used, how those models may be

prepared and the relationships o f the different kinds of models.”

“A platform is a set o f subsystems and technologies that provide a coherent set of

functionality through interfaces and specified usage patterns, which any application

supported by that platform can use without concern for the details o f how the functionality

provided by the platform is implemented.”

27

The following definitions are provided in Enterprise Patterns and MDA (Building Better

software with Archetype Patterns and UML) by Jim Arlow and Ila Neustadt, (Addison-

Wesley, 2004). [48]

“An analysis class represents a crisp abstraction in the problem domain and maps onto

real-world business concepts” .

“A design class is a class whose specification is complete to such a degree that it may be

implemented. It incorporates features from both the problem domain and the solution

domain (implementation technology)”.

This means that an analysis class is independent o f any programming language, technology

or platform that may be used in the implementation o f the class. A design class on the

other hand, uses knowledge o f its implementation environment (e.g. J2EE, .NET, etc.) to

describe its solution.

MDA involves developing a Platform Independent Model (PIM) o f an application’s

business fiinctions. This model is usually developed using the Unified Modelling

Language (UML) and describes analysis classes and the associations between them, i.e. the

PIM is developed without knowledge o f any technologies that will be used in the

development o f the application. The MDA approach, and the standards that support it,

allow the same model specifying a system’s functionality to be realized on multiple

platforms and provide for system evolution as platform technologies come and go. [47]

An MDA-enabled tool transforms the PIM into a Platform Specific Model (PSM) for the

target platform. The target platform could be, for example, J2EE or .NET. The tool would

then generate an implementation of the model in a specific language, e.g. Java or C#. The

PIM would remain stable and could be used with another MDA enabled-tool to transform

the model to a different PSM and a different programming language. In this way the PIM

is not subject to change when the technology changes. When an MDA-enabled tool is

available, the PIM is said to be an executable model.

map generate

Figure 9 : Model-Driven Architecture

28

2.5.2 Agile MDA

The reliance of MDA on developing a PIM to drive the development would seem to imply

that MDA is only suited for traditional “heavy” development methodologies. It is not the

intention to enter the debate of Agile Development versus Heavy Methodologies. The

reader is referred to [49] for a comparative study.

W ith an appropriate MDA-enabled tool, MDA may also be used for agile development.

An executable model, because it is executable, can be constructed, run, tested and modified

in short incremental, iterative cycles. Agile MDA is based on the notion that code and

executable models are operationally the same, so the principles o f the Agile Alliance [51]

(testing first, immediate execution, moving from analysis to implementation in short

cycles), can be applied to models. An executable model, because it is executable, can be

constructed, run, tested and modified in short incremental, iterative cycles. “Agile MDA”,

Stephen J. Mellor, Project Technology, Inc. [50]

2.6 OptimalJ and MDA

OptimalJ [22] is an MDA-enabled tool that adds a pattern-driven development paradigm

on top o f the MDA concepts. [1] OptimalJ sits on top o f NetBeans [19] and incorporates

the Struts Framework and also DreamWeaver [52] for generating web content. OptimalJ

uses a variety o f pattern types, including Sim’s Core J2EE patterns, to generate fidly

working applications from a PIM. OptimalJ also supports agile development by making it

easy to quickly do some modelling, and then run the JSP-based application to test the

model [1],

29

2.6.1 OptimalJ Models

OptimalJ considers three different model layers, the Domain Model (i.e. the PIM), the

Application Model (i.e. the PSM) and the Code Model.

Domain Model
Z >

Application Model
z >

Code Model

PIM PSM

Figure 10 : OptimalJ MDA

Each model layer consists of a number o f models as illustrated in the following diagram.

Domain Model

N

Application Model Code Model

Class Model ZZ> EJB Model zz> EJBs
Service Model DBMS Model V Java Classes

Web Model SQL
JSP
XML

Figure 11: OptimalJ Models

2.6.1.1 The Domain Model (PIM)

The Domain Model is a UML model describing the business domain without any specific

technology or platform detail. This normally consists o f a class model and a service

model. [1]

1. The Class Model in OptimalJ captures the static structure o f a system. The main

elements of this model are the domain classes and their associations. This model

may be used to generate a complete working application.

2. The Service Model captures behavioral information in the form of domain views and

domain services. The Service Model is used to generate EJB session components in

the business logic model and web components in the Web Model. At code level,

this results in the generation o f session beans, JSPs, and other related code. Service

operations become methods on the session bean and web actions in the web tier.

30

From an EJB perspective, domain services may be considered as placeholders at

domain model level for EJB session components in the business logic model, and

session beans at code level.

2.6.1.2 The Application Model (PSM)

The Application Model defines a speci fication for the application based on the

technologies used. This model provides a logical overview o f the various layers, e.g. the

business layer (EJB Model), the database layer (DBMS Model) and the presentation layer

(Web Model) The Application Model consists o f various XML meta-data (i.e. data about

data) configuration files and diagrammatic models that form the specification for the

system to be developed. [1]

1. The EJB Model provides a framework to make the domain model's data available in

a distributed environment in order to deal with transactions, security and persistence.

The EJB components consist of entity components, data schemas, and other EJB-

related components.

2. The DBMS Model in OptimalJ is relational. This model consists of various XML

files as well as an entity diagram showing the various tables derived from the Class

Model. This entity diagram shows the primary keys and foreign keys generated by

OptimalJ representing the various constraints.

3. The web model contains data schemas which are used by web components to

exchange data with the EJB layer and to exchange data with the user. [1]

2.6.1.3 The Code Model

The Code Model is easy to understand as it consists of the actual code generated for the

application. This code consists o f various EJBs and Java classes (the business layer), SQL

scripts for generating database tables (the database layer) and the JSPs (the presentation

files) as well as various deployment descriptors (XML files) required to configure J2EE

applications ready for deployment. [1]

2.6.2 OptimalJ Patterns

The only effort required by the developer to generate a simple data maintenance

application with a facility to insert, update and delete database rows is to create the

Domain Class Model. OptimalJ generates the other models. This type of tool is

particularly useful for developing data-centric applications. [42]

31

Crupi and Baerveldt [1] in their paper describe OptimalJ, the various patterns used to

transform the models as well as the Core J2EE patterns implemented by OptimalJ. After

defining the Domain Model, OptimalJ uses its pattern-driven generator to rapidly create an

application according to Sun’s Core J2EE patterns. Patterns are also used to create the

implementation classes in the presentation, business logic and persistency layers. The

following diagram illustrates these patterns.

Transformation
Patterns

Technology
Patterns

Implementation
Patterns

cT
Domain
Patterns

t

Application
Patterns

t
Functional
Patterns

Figure 12 : OptimalJ Patterns

ln >
Code

Patterns

t

2.6.2.1 Transformation Patterns

Transformation patterns are used to transform elements from one model to elements in a

lower level model as shown in the diagram. There are two types o f Transformation

pattern.

(i) Technology patterns are used to transform the Domain Model to a platform specific

technology. As OptimalJ uses the J2EE specification, the Technology Patterns used

are J2EE patterns. Technology patterns do not generate any code.

(ii) Implementation Patterns are used to transform application specifications, in the form

of XML files, to the actual code used in the Code Model. These patterns are used to

determine the actual Java classes required to implement each EJB (e.g. home and

remote interfaces, the bean class, Primary Key class, etc.). The implementation

patterns generate code based on Sun’s Core J2EE Patterns, adhering to the de facto

design standard. [1]

32

2.6.2.2 Functional Patterns

Functional patterns are used to increase developer productivity by re-using parts o f a

model at a single model level.

(i) Domain patterns are UML models that can be re-used (sometimes with

modifications) in different applications, e.g. a Customer class used in one Domain

Model could be re-used in another application, or two domain models could be

combined to form a new model in a different application.

(ii) Application patterns allow the re-use o f artifacts from the Application Model of one

application in other applications.

(iii) Code patterns are simply code templates that can be re-used, the most common types

being implementations o f various GoF patterns 11].

2.6.2.3 OptimalJ J2EE Patterns

The Core J2EE patterns implemented in OptimalJ and certified to conform to Sun’s

Blueprints [1] are as follows:

Core J2EE Patterns Implemented in OptimalJ using

Presentation Layer

Intercepting Filter Struts

Front Controller Struts

View Helper Struts

Composite View JSP templates and includes

Service To Worker Struts

Business Layer

Business Delegate Business Facade

Service Locator Helper class

Session Facade Business Facade

Transfer Object DataClass

Object Assembler Compound DataClass

Value List Handler Page Iterator

Composite Entity Composite Entity Bean

Integration Layer

Data Access Object DAO

Service Activator Message-Driven Bean

Figure 13: OptimalJ Core J2EE Patterns

33

“The way in which OptimalJ makes use of patterns is impressive. Although the patterns

are not directly visible to the end user, they make the generated code easy to understand.

All patterns in the reviewed version o f OptimalJ are implemented correctly in compliance

with Sim’s Core J2EE Pattern Catalogue”. [1]

2.6.3 OptimalJ Application

In order to get a better understanding of OptimalJ, the patterns used and models generated,

a 30-day trial version o f OptimalJ Professional Edition was obtained. As part o f the

application developed for this project, a fully working application implementing the

maintenance use cases (insert, update delete) for a number o f related tables was generated

from a simple Domain Class model. Sample screen shots are shown in Appendix F.

2.7 JDeveloper and MDA

Oracle’s position on the MDA approach to application development is that it can only be

effective if it enables code-oriented developers to work seamlessly with those that prefer

visual representation. JDeveloper vlO. 1.2 supports the UML Class, Use Case and Activity

diagrams. UML Sequence diagrams will be supported in vlO.1.3. These diagrams permit

an application to be expressed in a technology independent way. The Class diagram may

be used to develop a PIM. In addition, JDeveloper supports a set o f technology focused

modellers (Java, EJB, Entity, Business Component, Web Service models) to express the

detailed application design, i.e. a PSM. A “MDA style o f working” is supported by

capabilities for linking and transforming between the PIM and the PSM. The PSM is

transformed into code to produce Java classes, EJB components, etc. However,

JDeveloper does not provide for complete application development based on a PIM.

In a statement o f direction, Oracle has stated that full implementation o f MDA in

JDeveloper will be provided by allowing third party extensions to JDeveloper. [54] Oracle

and Softeam have collaborated to produce Objecteering which works with JDeveloper to

provide an MDA-enabled tool for generating working J2EE applications from UML

diagrams. Objecteering has not been examined in this project.

34

2.8 Archetype Patterns

Just as design patterns are a recurring theme in many applications, at a higher level of

abstraction, many business concepts (e.g. customer, product, order, etc.) occur in many

business domains, possibly with variations in the concepts across different domains, e.g. a

“customer” in the health sector is a variation o f a “customer” in the education sector. [48]

The following definitions are given by Arlow and Neustadt. [48]

“A business archetype is primordial thing that occurs consistently and universally in

business domains and business software systems”.

“A business archetype pattern is defined as a collaboration between business archetypes

that occurs consistently and universally in business environments and software systems'’.

Archetypes are at a higher level of abstraction than normal analysis classes, as archetypes

are concerned with the recognition and capture o f universal concepts, whereas analysis

classes are not necessarily concerned with universality. In order to address the issue of

universality, Arlow and Neustadt introduce the principle o f variation: different domains

often seem to require different models of the same thing. This means that a single

archetype may generate one or more analysis classes, e.g. a single Customer archetype

may generate several different analysis classes for Customer depending on the problem

domain. Arlow and Neustadt suggest two ways in which an archetype may be varied.

(i) Some new features may be added

(ii) Optional features may be omitted.

In order to deal with this variation the core semantics o f an archetype must remain fixed

for every variant o f the stereotype. Arlow and Neustadt introduce the stereotype «o» to

indicate that a feature is optional and may be omitted without violating the core semantics

o f the archetype.

2.8.1 Archetype Pattern Catalogue

Arlow and Neustadt have produced a catalogue of archetype patterns which includes Party,

PartyRelationship, Customer Relationship Management, Product, Inventory, Order,

Quantity, Money, and Rule archetype patterns. Each pattern consists o f certain essential

parts required to form a consistent pattern, and several optional parts that may be omitted

to suit a particular problem domain. According to Seve Vinosky, Chief Engineer of

35

Product Innovation, IONA Technologies, “the patterns presented here have the potential

to impact business applications in the same way the Gang o f Four patterns have impacted

general software development'. [53]

The following is an incomplete example taken from the work o f Arlow and Neustadt. The

diagram illustrates an incomplete Money Archetype Pattern which consists o f several

archetypes with optional attributes, optional operations and an optional relationship. This

simple example illustrates how, in attempting to capture universal concepts that apply to a

variety of domains, even a simple archetype pattern becomes quite complicated.

2.8.2 Money Archetype Pattern

The following definitions are given in [48],

“Money is an official or commonly accepted medium of exchange that can be used to buy

goods and services”.

“The Metric archetype represents a standard o f measurement” .

“The Quantity archetype represents an amount measured in some Metric”.

“The Locale archetype represents a general notion o f place, location, or context”.

“The Currency archetype represents a Metric or standard o f value for measuring Money”,

“The Money archetype represents an amount o f a specific Currency. This Currency is

accepted in one or more Locales”.

By omitting some, or all, of the optional features, or by adding new features, different

analysis classes for the Money archetype could be created.

36

«archetype»
Payment

«o» dateMade: TimeDate
«o» dateReceived: TimeDate
«o» dateDue: TimeDate
«o» dateCleared: TimeDate

«o» get Pay m en tMethodt): PaymentMethod

7

paidBy
«archetype»

PaymentMethod
«0 »

0..< 0..1

«archetype»
Money [

I
getCurrency(): Currency

«archetype»
Quantity

«archetype»
Currency

name: String
definition: String
alphabeticCode: String
«o» numericCode: String
majorUnitSymbol: String
«o» minorUnitSymbol: String
«o» ratioOtMinorUnitToMajorUnit: Real:
«o» introductionDate: TimeDate
«o» expirationDate: TimeDate

getName(): String
getSymbolO'- String
getDefinitionQ: String
getLocales(): Locale[]

amount: Real

getAmount(): Real

^ 0 ,

_\Jzl 1

i>
«singleton»
«archetype»

Metric

o

acceptedln locales
► «archetype»

Locale

0..* 1..*
identifier: String
name: String
«o» description: String

Figure 14: Money Archetype Pattern

2.8.3 Archetype Patterns and MDA

Instead o f creating a PIM from scratch, i f an archetype pattern catalogue is available, it is

easier to adapt an archetype pattern from the catalogue to create the PIM. By omitting

some or all o f the optional features, or by adding new features, a suitable Platform

Independent Model can be created with, or imported into, an MDA-enabled tool such as

37

OptimalJ. The following diagram illustrates how archetype patterns may be adapted and

fed into an MDA-enabled tool such as OptimalJ. [48]

Business
Archetype
Patterns

PSM generate Code

Figure 15: Archetype Patterns and MDA

2.9 Summary

Initial investigation into various design pattern catalogues and into architectures for web

applications lead to an investigation o f the integration o f these patterns and architectures

into various development tools, including an MDA-enabled tool. The incorporation of

patterns into development tools is a clear vote o f confidence in the benefits o f these

patterns.

The availability o f sophisticated development tools means that experienced J2EE

developers can quickly develop and test components and integrate and deploy these

components to produce reliable applications. The ability to adapt Archetype Patterns and

to feed these patterns into MDA-enabled tools further increases productivity. This ability

to quickly develop reliable J2EE applications should mean an increase in the use of J2EE

technologies and an increase in the demand for experienced J2EE developers.

Chapter 3 introduces the application that will be used to teach the various J2EE

technologies and J2EE patterns. This application is used throughout the remainder o f the

dissertation.

38

Chapter 3: Defining the Demonstration Application

To provide students with a good learning experience, an application is required that will

bring the student through the development o f the application starting with standalone

components, progressing to more complicated components and finally to the integration of

these components. Throughout the development o f the application it is important that

students arc encouraged to recognise design faults and invited to propose solutions to these

design faults. It is only when students have a good grasp o f the design issues that patterns

are introduced as a possible alternative to the students’ own solutions. For this to succeed

it is important that the application is sufficiently interesting to engage the students for the

duration o f the course. The following application meets these requirements.

3.1 The Problem Statement

A business lecturer requires an application that she will use as part of a course on stock

exchange trading. She requires the application to allow a large group o f students (up to

350), known as players, to trade for short periods, e.g. the duration o f a class period. At

the beginning o f each trading session each player is given the same starting balance, e.g.

€50,000. During the session players may purchase or sell shares at the current share price

assuming they have sufficient funds. It is assumed that the buying and selling prices are

the same. At the end o f each session all stock is sold at the current share price and each

student’s profit or loss for the session is calculated. A league table is maintained showing

the profit or loss for each game played. The league table should be maintained over

several sessions. A player should be able to view the league table, in descending order of

profit, at any time as well as her own list of games.

As the trading sessions are short, the application is required to simulate changes to the

share prices at short intervals, e.g. every 60 seconds. A player should be able to view the

current share prices at any time. A player should also be able to view the content o f her

portfolio at any time.

A record o f all players, including codename, password, last name, first name and

department should be maintained by the system, but it is not necessary to maintain the

players’ trading record. Players are required to login to gain access to the system. Players

should have the facility to register their details, amend their details and delete their details.

39

A record should be kept o f all companies including symbol, name, share price, highest

price and lowest price.

The league table should hold the player, the closing balance and the date and time of each

game played.

A facility should also be provided to allow a player to login using a mobile device and to

view the share prices as well as details o f her own games.

3.2 Use Cases

It should be remembered that the purpose o f this project is to teach students various J2EE

technologies and various J2EE patterns. In particular, the emphasis is on EJB components

and related patterns as well as on the architecture for the application, i.e. the emphasis will

be on the model and controller modules and not on the view module. Therefore, it is not

intended to develop a full production application. Rather it is the intention to use this

application to introduce various J2EE technologies and then to improve the design by

introducing various J2EE patterns.

With this in mind the following use cases are developed.

40

News System

Figure 16: Use Case Diagrams

41

3.3 The Entity Model

Figure 17: Entity Model

The database for the application is quite simple. As the purpose o f the application is to

teach students about EJB components and related patterns, a single standalone table such

as COMPANY is ideal for introducing session beans that read database tables and for

introducing patterns such as Data Access Object. It is also ideal for introducing Container

Managed Persistence (CMP) entity beans. The simple one-to-many relationship between

PLAYER and GAME is ideal for introducing Container Managed Relationships.

For this application numeric primary keys are used for each o f the tables. These keys have

no meaning outside the context o f the database, i.e. the keys do not represent real world

values such as a student’s identification number or a company’s symbol. This decision has

implications for the strategy developed later in the project for generating primary keys.

3.4 Summary

As a tool for teaching J2EE technologies and patterns, the requirements are deliberately

quite simple. They do however require the use of all the EJB components that a student

will need to learn. They also require the use of quite a few general purpose patterns as

well as J2EE patterns.

Chapter 4 develops some of the required EJB components and related patterns. As the

components are developed a number o f exercises for students are identified. These

exercises are highlighted in the text in blue. At various points in the development, design

flaws arise. Students arc asked to identify these flaws and to attempt to provide solutions

to eliminate the flaws. Only when the students have attempted to resolve the design flaws

will appropriate patterns be introduced. These points in the development are also

highlighted in the text, this time in red.

42

Chapter 4: Teaching EJBs and Patterns

It should be remembered that the purpose o f developing the application for this project is

not to provide a fully working production application. The purpose of this application is to

provide students with examples that will help them to understand the various J2EE

technologies. As the various examples are explored, problems in the solutions will arise.

In line with Eric Gamma’s thoughts on teaching patterns |3], various GoF patterns and

J2EE patterns will be applied to refactor the solution when the student recognises and

understands the problems.

Before creating the application a number o f EJB components are developed. These

components have been carefully chosen to allow students to build up a variety of

components starting with simple standalone components that are fully unit-tested using

remote clients. Gradually more complicated components are introduced.

4.1 EJB components

In order to implement an EJB, it is necessary to create four components. These

components are

(i) a component interface, i.e. a Java interface that acts as the client’s view o f the bean.

(ii) a home interface, i.e. a Java interface that provides the client with methods to create,

locate and remove beans, i.e. lifecycle methods o f the bean.

(iii) a bean class, i.e. the class that implements the business methods required by the

client.

(iv) a deployment descriptor file, i.e. an XML file that describes the various components.

The component interface represents the client’s view o f the bean. The client may be a

remote client i.e. residing in a different container, meaning that the bean must expose a

remote interface, or the client may be a local client (i.e. the client is co-located with the

bean in the same container) meaning that the bean must expose a local interface. In fact a

bean may expose both a remote interface and a local interface, i.e. the bean may have

remote and local clients.

43

4.1.1 Naming convention

In order to clearly distinguish between remote and local interfaces, the following naming

convention is used throughout this project. In order to write an EJB to represent an

account, the following names are used.

AccountRemote The remote interface (remote client’s view).

AccountRemoteHome The remote home interface (remote client’s lifecycle

methods).

AccountLocal The local interface (local client’s view)

AccountLocalHortie The local home interface (local client’s lifecycle methods).

AccountBean The business class (the class that performs the business

methods required by the client).

AccountEJB The collective name of the above components and the name

used by JNDI to identify the bean

As local interfaces were only introduced in EJB v2.0, all interfaces prior to EJB 2.0 were

remote. By convention the word “remote” was not used in the interface names, i.e. the

remote interface was referred to as Account and the home interface as AccountHomc. As

this could lead to confusion, the above naming convention is used throughout this project.

There are three types o f Enterprise Java Beans.

(i) Session Beans

(ii) Entity Beans

(iii) Message Driven Beans

4.2 Session Beans

Session beans come in two flavours, stateless session beans and stateful session beans.

4.2.1 Stateless Session Beans

The simplest type o f EJB is a stateless session bean. A stateless session bean does not

maintain any client state. When a client calls a method on a bean the container provides a

bean from a pool. When the method completes, the bean is returned to the pool. The

client only has access to the bean for the duration o f the method call. (Actually, a client

never has direct access to a bean, as will be explained shortly). If the same client calls

another method on a bean the container again provides a bean from the pool. This may be

a different bean and so it is not possible to maintain client state between method calls.

44

A stateless session bean, CompanyListerEJB, was developed to illustrate the features of a

stateless session bean (Appendix A). This bean is used to read data from a single table,

Company, in the project’s database. Normally entity beans are used for data access,

however a light-weight session bean is ideal for providing read-only access to a database.

A simple utility class, CompanyTO (Transfer Object), was developed to transport the data

from the database to the client. The real significance o f using a class like CompanyTO for

transporting data across a network will be explored later. The following diagram

illustrates the attributes of CompanyTO and the fields o f Company Entity object.

Set/get methods not shown. Company entity diagram

«business»
:-.CompanyTO

COMPANY

long companyld
String symbol
String name
double sharePrice
double high
double low

COMPANYID
SYMBOL
NAME
SHAREPRICE
HIGH
LOW

0 y

Figure 18: CompanyTO and Company Entity

The CompanyListerEJB was developed with remote and local interfaces to allow remote

clients and local clients to invoke the services o f the EJB. Examination of the various

interfaces shows that the pnly difference between the code for remote and local interfaces

is that remote methods must throw a java.rmi. Remote Exception.

Recall that the home interfaces (remote and local) are for creating and locating EJBs, and

component interfaces (remote and local) represent the client’s view o f the EJB. The

following diagrams illustrate the inheritance hierarchy of the various components in

CompanyListerEJB. Examination of the home interfaces reveals a single method, createO.

The createO method o f an EJB has a different meaning for different types o f beans. A

stateless session may have only a single createO method and this method has no

arguments. With stateless session beans the createO method is used by the client to gain

access to a bean.

45

The component interfaces (remote and local) expose the services o f the EJB to the client,

i.e. the methods that clients may call on the EJB. Examination of these interfaces reveals

two methods, one to get a collection of companies and the other to get the share price of a

company.

in terface »
:: Remote

Note: No
methods.

«interfaces
"EJBObject

EJBHome getEJBHome()
Handle getHandleQ
Object getPrimaryKey()
boolean isldentical(EJBObject obj
void remove()

«interface»
::EJBHome

HomeHandle getHomeHandle
EJBMetaData getEJBMetaData
void remove(Handle handle)
void remove(Object primaryKey

«interface»
::CompanyListerRemote

«interface»
::Com pany ListerRemoteHome

Collection getCompanies() CompanyListerRemote create(
double getSharePriceBySymbol(String symbol)

Figure 19: CompanyListerRemote and CompanyListerRemoteHome

CompanyListerRemote extends, but does
not implement, EJBObject. As
CompanyListerRemote is an interface, a
class must be provided to implement this
interface. This means that a class must
be provided to implement all the methods
in EJBObject and all the methods in
CompanyListerRemote. There are no
methods in the Remote interface.

The business methods in
CompanyListerRemote represent the
remote client’s view o f the bean, i.e.
these are the business services provided
for the client.

CompanyListerRemoteHome
extends, but does not implement,
EJBHome. As
CompanyListerRemoteHome is an
interface, a class must be provided
to implement this interface. This
means that a class must be provided
to implement all the methods in
EJBHome and all the methods in
CompanyViewerRemoteHome.

A remote client must obtain a
reference to the remote home
interface using JNDI. This home
interface is then used to obtain the
remote interface. The client then
uses this remote reference to call the
business methods on the bean.

46

The bean provider must write the CompanyListerRemote interface and the

CompanyListerRemoteHome interface.

The following class diagrams illustrate the hierarchy for the CompanyListerLocal and the

CompanyListerLocalHome interfaces. It should be noted that these interfaces do not

extend the Remote interface.

Figure 20: CompanyListerLocal and CompanyListerLocalHome

The bean provider must write the code for the CompanyListerLocal interface and for the

CompanyListerLocalHome interface.

A client will normally call the following methods:

(i) the createO method on the local home or the remote home interface

(ii) the getCompaniesO method on the remote or local interface.

(iii) the getSharePriceBySymbolO on the remote or local interface.

A client may also call the removeO method on the local home or remote home interface.

This call simply invalidates the reference to the component and has no effect on the bean.

Recall, the container maintains the beans in a pool and the client has no role to play in the

creation or destruction of stateless session beans.

It is now necessary to provide an implementation o f the business methods. This is done in

the CompanyListerBean class. The following diagram illustrates the inheritance hierarchy

of the CompanyListerBean class.

47

«business»
"CompanyListerBean

void EJBActivateQ
void EJBPassivate()
void EJBRemove()
setSessionContext(SessionContext ctx)
void ejbCreateQ
Collection getCompanies()
double getSharePriceBySymbol(String symbol)

CompanyListerBean implements the
SessionBean interface. This means
that the Bean Provider must write
methods to implement the 4 methods
in SessionBean (there are no methods
in the EnterpriseBean interface or the
Serializable interface). These 4
methods are known as “callback
methods”. These methods are not
called directly by the client, but are
called by the container at certain
points during the life cycle o f the
bean. These methods will be
explained as they arise. For a
stateless session bean, the methods
EJBActivateO and EJBPassivateO arc
never called by the container. Empty
implementations must however be
provided as the bean must implement
all the methods in the interface.

In addition to the callback methods,
the Bean Provider must also
implement an ejbCreateO method for
each createO method in the home
interface. Stateless session beans are
permitted only one createO method
and this must be a “no argument”
method. This means that one “no
argument” ejbCreateO method must
be implemented in the bean.

The two business methods that were
previously declared in the remote
interface must also be implemented.
These business methods provide the
services for which the bean was
created in the first place.

Figure 21: CompanyListerBean

It should be noted that there is nothing in the code to indicate that the session bean is

stateless. The bean provider must implement all the methods in the CompanyListerBean

class. Students should carefully study the implementation o f the various methods in the

bean class. It is a useful exercise to place println() statements in the various callback

methods to see them being called by the container. ejbActivateO and ejbPassivateO are

never called. The business methods use JNDI to look up the data source, use the data

source to obtain a connection to the database and then use SQL to access the Company

table. Students should have a good understanding o f how and where the data source is

48

defined (data-sources.xml). The following extract illustrates how the bean accesses the

data source.

Context ctx = new InitialContextO ;
DataSource ds = (DataSource) ctx.lookup ("jdbc/sharesDS");
Connection con = ds.getConnectionO ;
String query = "SELECT SharePrice FROM Company WHERE Symbol = T ;
stmt = con.prepareStatement(query);
stmt.setString(1, symbol) ;
rs = stmt.executeQueryO ;

As well as examining the code for the EJB, students should also pay particular attention to

the contents o f the ejb-jar.xml configuration file that describes the various EJBs. This file

is available in Appendix D and will be referred to regularly. It should be noted that there is

nothing in the Java code for the EJB to indicate that the bean is a stateless session bean. It

is only in the deployment descriptor that the bean is defined as stateless.

As an exercise, students should implement additional business methods in the EJB.

4.2.2 Remote and Local Clients

A simple remote Java client, CompanyListerClient, is used to test the EJB. The following

code extract illustrates how a remote client uses JNDI to gain access to the EJB.

Context context = new InitialContextO ;
CompanyListerRemoteHome

CompanyListerRemoteHome = (CompanyListerRemoteHome)
PortableRemoteObject.narrow(context.lookup("CompanyListerEJB"),

CompanyListerRemoteHome.class);
CompanyListerRemote CompanyListerRemote = companyListerRemoteHome.createO ;
double sharePrice = companyListerRemote.getSharePriceBySymbolf'lona");

The steps are as follows:

1. Use JNDI to obtain a reference to the remote home interface.

2. Call the createO method on the remote home interface to obtain a reference to the

remote component.

3. Use the remote interface to call the business methods.

Web components may be deployed in the same J2EE server as the EJB, meaning that they

may act as local clients to the EJB, or web components may be deployed in a different

server and act as remote clients. In order to illustrate local clients, a simple servlet,

CompanyListerR.emoteClientServlet.java, was developed to display the companies in a

web page. A simple Java Server Page, CompanyListerRemoteClientJSP.jsp was also

49

developed to display the same details. These examples use JNDI to perform a local lookup

on the EJB to access its services, as shown.

Context context = new InitialContextO .
CompanyListerLocalHome home = (CompanyListerLocalHome)

context.lookup("java:comp/env/ejb/CompanyListerEJB“) ;
CompanyListerLocal local = home.createO I
companies = local.getCompaniesO ;

These examples are shown in Appendix A. It is clear from these simple examples that

1. a Servlet is not suitable for rendering output to a web page.

2. A JSP is not suitable for implementing large amounts o f Java scriptlet code.

Students should carefully study the web. xml file (Appendix C) for the Servlet entry.

Particular attention should be paid to the <ejb-local-ref> entry.

4.2.3 The EJBObject

CompanyListerRemote and CompanyListerRemoteHome are interfaces and therefore a

class must be developed that implements these interfaces. One might suspect that

CompanyViewerBean is the class that implements these interfaces as it implements all the

methods declared in the two interfaces. However, it is clear from the class diagram and the

code that CompanyViewerBean implements the SessionBean interface. So who

implements the remote interface and the remote home interface? The answer is that the

container implements these interfaces. This means that the container creates a class to

implement these two interfaces and instantiates an object of this class. This object is

known as the EJBObject. When a client obtains a reference to a remote interface, it is not

a reference to the actual bean, but rather a reference to this EJBObject. The client NEVER

gains access to the actual bean. The client invokes methods on the EJBObject and the

EJBObject in turn calls these methods on the actual bean.

4.2.4 The Deployment descriptor

All beans used in an application must be described in an ejb-jar.xml file (Appendix C) in

the section for enterprise beans. Students should carefully study the entries in this file for

each EJB. Most o f the fields are self-explanatory. It is only in this file that a distinction is

made between stateless and stateful session beans. The deployment descriptor may be

written by hand. However, this is tedious and error-prone, and most J2EE IDEs generate

this xml file from the EJB.

50

4.2.5 Stateful Session Beans

A stateful session bean maintains client state for the duration of the client’s conversation

with the server. The standard example used to illustrate a stateful session bean is a

shopping basket. The basket remains alive throughout the client’s shopping experience

with the particular web site. A stateful session bean is not persistent, i.e. its data remains

in memory and is not persisted to a secondary storage device. If an application requires the

bean to be persisted (e.g. if a shopping basket is required to survive a server crash), then a

stateful session bean would not be suitable.

To illustrate a stateful session bean, a very simple AccountEJB bean is developed. This

EJB maintains the balance o f a player’s account during a single session o f buying shares in

a trading simulation game. This example assumes remote clients only. The bean, residing

in the container in the J2EE server, maintains state between various method calls from the

client. This example does not make use of the database.

The following class diagram illustrates the inheritance hierarchy o f the AccountRemote

interface and the AccountRemoteHome interface. The business methods available to

remote clients are, as usual, the methods shown in the remote interface. In this case there

are methods to get and set the balance and a method to make a purchase o f a quantity of

shares. There are two createO methods in the remote home interface. The fact that a

session bean has more than one createO method, or has a create() method with arguments,

means that the bean must be stateful.

51

Figure 22: AccountRemote and AccountRemoteHome

The following diagram illustrates the inheritance hierarchy of the AccountBean class. The

container may passivate (put to sleep) the bean during periods o f inactivity to conserve

resources. Prior to passivating the bean, the container calls the ejbPassivateO method to

provide an opportunity for the bean provider to nullify any non-serializable object

references (e.g. a datasource connection). Prior to re-activating the bean the container calls

ejbActivateO to provide an opportunity to restore any object references nullified during

passivation. The container will serialise and restore any member data that is serializable

(e.g. balance) and so no action is needed by the bean provider in this case.

Unlike stateless session beans which are allowed only one createO method, a stateful

session bean may have several createO methods and these methods may have arguments to

initialise the attributes o f the bean. There must be an ejbCreateO method to match each

createO method in the home interface. When the client calls a createO method on a stateful

session bean, the corresponding ejbCreateO method in the bean is called. When the client

calls a removeO method, the bean is destroyed.

52

«interface»
"Serializable

«interface®
: Enter priseBean

«interface»
:SessionBean

void ejbActivate()
void ejbPassivate
void ejbRemove()
setSessionContext(SessionContext ctx)zx A reference to the

SessionContext
should be stored in
an attribute of the
bean.

« business®
"AccountBean

double balance
SessionContext context
void ejbCreateQ
void ejbCreate(double aBalance)
void ejbActivateQ
void ejbPassivate
void ejbRemove()
void setSessionContext(SessionContext ctx)
double getBalance()
void setBalance(double balance)
public booleanMakePurchase(double sharePrice, int quantity^)

Figure 23: AccountBean

The ejbRemoveO method is normally called by the container when the client invokes the

removeO method on the remote interface. However, if the bean is asleep (i.e. if it has been

passivated) when the removeO method is called, then the container does not call the

ejbRemoveO method. This means that if there is any clean-up code that needs to be called

before the bean is destroyed, it should be placed in ejbPassivateQ as well as in

53

ejbRemoveO- A simple remote Java client was created to test the EJB. The full listing of

AccountRemoteClient is shown in Appendix A.

4.3 Entity Beans

There are 2 types of entity beans, Bean Managed Persistent (BMP) and Container

Managed Persistent (CMP) beans. Unlike session beans, entity beans are persisted to

secondary storage. In most cases the secondary storage is a relational database but it could

be any data source. An entity bean may be thought o f as an in-memory object that

represents a row in a database table. It is the responsibility of the container to ensure that

the state o f this in-memory object is synchronized with the state o f the row in the database

table. This means that the container must provide some form o f object-to-relational

mapping. This mapping is vendor specific. Entity beans give the developer the benefit of

using object-oriented techniques while working with relational data. The container

handles noncurrency issues when several clients attempt to access the same entity bean.

4.3.1 Bean Managed Persistence (BMP)

With BMP beans the persistence is managed by the bean itself, i.e. the bean provider must

write all the data access code. This code may be written using JDBC. There arc a number

o f callback methods that are called by the container to ensure that the bean and its

corresponding database row remain consistent. The following example,

BmpCompanyEJB, illustrates a BMP entity bean where the bean represents a row in the

Company table used earlier. In addition to the usual components for an EJB, an entity

bean also has a Primary Key class to represent the primary key in the database table. This

key may be a field in the table or it may consist o f composite fields from the table. For this

example a column in the table, COMPANYID, is used as the primary key.

The home interfaces may have several createO methods. The createO methods o f entity

bean are completely different from the createO methods of session beans. Recall that

stateless session beans are created and stored in a pool by the container and the client has

no control over this creation process. The container provides a bean from the pool when

the client invokes a method on the bean. When a client calls one o f the createO methods of

a stateful session bean, an actual EJB is created and its component interface is returned to

the client. When a client calls one o f the createO methods of an entity bean, a new row is

inserted in the corresponding database table and the primary key of the entity is returned to

the client.

54

Figure 24: BmpCompanyRemote and BmpCompanyRemoteHome

55

«interface#
"Serializable

«interface»
"EnterpriseBean

~7y
«interface»

:: Entity Bean

void ejbStore()
void ejbLoadf)
void ejbRemove()
void ejbActivateQ
ejbPassivateQ
void setEntityContext(EntityContext aCtx)
void unsetEntityContextQ

I
!

____________________ i______________________
((business#

::BmpCompanyBean

EntityContext context
Long companyld
Long symbol
etc., other attributes shown
Long getCompanyldf)
void setCompanyld(Long companyld)
String getSymbolQ
void setSymbol(String symbol)
etc., other set/get methods not shown
Long ejbCreate(Long companyld, String symbol, etc.)
void ejbPostCreate(Long companyld, String symbol, etc.)
void ejbStoreQ
void ejbLoad()
void ejbRemoveO
void ejbActivateQ
void ejbPassivateQ
void setEntityContext(EntityContext ctx)
void unsetEntityContextQ _

Figure 25: BmpCompanyBean

56

ejbCreateO Each create method in the remote home interface must have a

corresponding ejbCreateO method in the bean. When the client

calls a createO method on the remote home interface, the

corresponding ejbCreateO method is called and causes a new row

to be added to the table.

ejbPostCreateO Each createO method in the remote home interface must have a

corresponding ejbPostCreateO method. This method is called

immediately after the creation o f the bean. This provides an

opportunity to carry out additional initialization.

ejbPassivateO

ejbActivateO

These methods are called by the container when the bean is

passivated or activated. This provides an opportunity to perform

proper clean up before a bean is passivated and an opportunity to

restore values when the bean is activated.

ejbRemoveO Called when the client calls removeO on the remote interface.

This method removes the row from the table.

ejbStoreO Called by the container to update the state o f the row in the table

when the state o f the in-memory bean is changed.

ejbLoadO Called by the container to update the state o f the in-memory bean

when the row in the table is changed.

set methods These methods update the fields in the bean. The container then

calls ejbStoreO to update the row in the table..

get methods These methods retrieve the values o f the fields in the bean. These

are the same values as the fields in the row in the table

Finder methods These methods use SELECT statements to obtain details from the

table. The methods may return a single entity or a collection of

entities. The names are self-explanatory.

setEntityContextO This method is called immediately after the creation o f the bean.

This method should always be used to store the value o f the

EntityContext as this is the only opportunity to gain access to the

EntityContext.

Constructor The constructor should always be left empty, or omitted

altogether. All initialization should be carried out in the

ejbCreateO or ejbPostCreateO methods.

getConnectionO This is a utility method used to obtain a connection to the

database.

57

This EJB was developed with local and remote interfaces to allow for local and remote

clients. Examination o f the BmpCompanyBean class shows that the bean class has

attributes that match the fields o f the COMPANY table. The component interfaces

(remote and local) have methods to set all the fields (with the exception of the primary key

field) and get methods to access the fields. The home interfaces (remote and local) have

methods to createO and find entity beans. The create methods have the effect o f inserting

rows in the company table.

The container calls the various callback methods (the names o f these methods begin with

“ejb”) to synchronise the in-memory EJB with the corresponding row in the database. It is

the responsibility of the bean provider to implement each of these methods and students

should pay particular attention to these implementations. As an exercise, students should

implement some o f these methods themselves. Each o f these methods uses JNDI to obtain

a reference to the Datasource and then uses this Datasource to obtain a connection object.

The methods then use JDBC to carry out die database operations. When the operation is

completed the Connection object is released. The set methods are used to update the fields

in the database and the get methods are used to retrieve the fields.

Particular attention should be paid to the setEntityContext() method and ejbLoadO method.

Just as stateful session beans should store a reference to the SessionContext in an attribute,

entity beans should always store the EntityContext reference in an attribute. The only

opportunity to gain access to the EntityContext is in the setEntityContextO method. The

EntityContext is the key that allows communication with the container, and it should

always be stored as an attribute in the bean class. The ejbLoad() method illustrates a very

important use o f the EntityContext, i.e. to obtain the primary key. If the EntityContext is

not saved then there is no way for this method to know which entity should be loaded.

Students should examine the code for these methods and should be encouraged to think

about the efficiency of JNDI lookup for each call to getConnectionO- They should

consider possible improvements. The problem will be addressed when the Service Locator

pattern is implemented later in the project.

In order to test the EJB a remote client, BmpCompanyRemoteClient, is used (Appendix

A). As usual, the remote client obtains a reference to the remote home interface using a

JNDI remote lookup. Unlike session beans, the createO method is not used to obtain a

reference to the remote interface. The createO method for an entity bean has the effect o f

58

adding a new row to the database table. In order to obtain a remote reference to the EJB,

the findByPrimaryKeyO method is used. It is important that students note the return type

o f the findByPrimaryKeyO method as shown in the home interface (the return type is

BmpCompanyRemote, i.e. a reference to the remote interface) and the return type of the

findByPrimaryKeyO method as implemented in the BmpCompanyBean class (the return

type is Long, i.e. the type of the primary key). The bean provider uses a SELECT

statement to verify the existence o f the row in the table and returns the primary key. The

container uses this primary key to return a remote reference to the client. The client then

uses this reference to call the business methods on the EJB. The return values of ftndAHO

are used in the same way. The return value o f findAHO in BmpCompanyBean is a

Collection o f primary keys. The container uses these primary keys to return remote

references to the various companies. The client then uses these remote references to call

the various methods.

4.3.2 Refactor with Patterns

As this dissertation is concerned with giving the student a valuable learning experience by

recognizing poor designs and inviting improvements to the design, students are now

invited to nominate the problems with the current design and attempt solutions at

improving the design. The student should fairly quickly recognise two problems but may

require more time to investigate a third problem.

The problems are as follows:

(i) The client supplies the primary key when adding a new company to the database.

This is clearly unsatisfactory. The student should propose possible solutions to this

problem. A possible solution is to provide a Primary Key Generator pattern.

(ii) BmpCompanyBean has lots o f JDBC code, meaning that the bean provider is also

responsible for all the data access code. It also means that any changes to the

database require changes to the bean code. In fact, if the relational database were

replaced with on object-oriented database, the bean code would have to be

completely rewritten. Good practice dictates that the bean code and the data access

code should be de-coupled. Again the student should recognise the problem and

should again propose possible solutions. A possible solution to this problem is to

introduce a Data Access Object pattern.

(iii) The less obvious problem concerns the use o f remote method calls and the overhead

this entails. Students should be encouraged to think about this and should try to

understand what the problem is. Any student who can correctly identify the problem

59

should be encouraged to devise a strategy to solve the problem. A solution is

provided later in the project.

4.3.3 Primary Key Block Generator Pattern

J2EE applications that access relational databases must be able to generate primary keys.

Different databases have various ways to generate primary keys ranging from the auto

numbering feature o f some databases to the sequence generator o f Oracle. With some

databases it is not possible to retrieve this key after it has been generated. It is essential in

J2EE applications to be able to retrieve this key. Most Java based applications rely on a

Java object to generate keys on request.

The PK Block Generator Pattern used in the example (Appendix A) is based on an

implementation in J2EE Design Patterns by Crawford William, Kaplan Jonathan,

(O’Reilly Press, 2003). [56] This class makes use o f the sequence feature o f Oracle. It

works as follows. The first request for a primary key retrieves the initial sequence number

10010 from the database. The PK generator then issues keys based on this number as

follows. The initial sequence number is multiplied by the block size (10 in this case), so

the first 10 primary keys generated are:

100100, 100101, 100102, 100103, 100104, 100105, 100106, 100107, 100108, 100109

The block is now exhausted so the next number in the sequence, 10011, is retrieved from

the database, multiplied by 10, and the next 10 primary keys generated are:

100110, 100111, 100112, 100113, 100114, 100115, 100116, 100117, 100118, 100119

I f the server is stopped for any reason the block is lost and so, on restart, the block begins

with the next sequence number. This means that there may be gaps in the primary keys.

For this reason, as was mentioned earlier, each table in the database has a numeric primary

key which has no meaning outside the context of the database. It is merely a number for

retrieving rows from a table and has no real world meaning, such as a social security

number. It also means that the same generator may be used to generate keys for the

different tables, as gaps in the keys have no real significance. Any time a new row is

added to any table, the method getNextPKO is called. The developer may now forget

about primary keys and get on with the business of developing the application. The

primary key class in this example is implemented as a GoF Singleton [5]. If a database is

60

used that does not have a sequence feature then it is merely a case o f modifying the Java

class to use a different strategy for generating keys. No other part o f the application is

affected.

As an exercise, students should investigate alternate primary key generators.

4.3.4 Data Access Object Pattern

A Java class, CompanyDao (Appendix A) is developed to provide the services a client

would expect when accessing the Company table. This class uses JNDI to locate the data

source and provides finder methods findByPrimaryKey, fmdAll() and findBySymbolO as

well as methods to add, amend and delete companies. As an exercise, students should add

additional methods. Each method obtains a connection object to connect to the database

and uses appropriate SQL statements to access the data in the tables. At the end o f each

method the connection is released to free resources. The addO method uses the primary

key generator previously discussed to generate the primary keys.

It should be noted that the various methods throw DaoExceptions. The DaoException

class is shown in Appendix A. This means that clients o f CompanyDao are not aware that

the data is coming from a relational database. The DAO provides a uniform interface to

clients irrespective of the actual data source. Clients do not catch SQL exceptions but

rather DaoExceptions. I f for some reason the application were to take its data from a non­

relational data source, e.g. an object-oriented database, it would be necessary to re-write

the CompanyDao class, but the new class would still throw DaoExceptions, so no change

would be required in client.

The CompanyDao class uses an object o f the simple class CompanyTO (Appendix A) to

transfer data to and from the database. This simple class, called a Transfer Object class,

has much greater significance than one might expect. Students should be encouraged to

think about the significance o f this object. The significance will be explained later.

To improve efficiency, a variation on a GoF Factory [5] class (Appendix A) is provided to

create Dao objects as required. As each new Dao is created it is cached and available for

future use. A Hashset is used for caching the DAOs. As an exercise, students should write

additional DAO classes, e.g. PlayerDao, GameDao. The GameDao is required later in the

application.

61

To test the DAO class anew BMP EJB, BmpCompanyPattemsEJB, was developed as

shown (Appendix A). As can be seen in the code for BmpCompanyP at terns Bean, the

methods are now much simpler and no reference is made to the data source and no SQL

calls are made. The data access code has been de-coupled from the EJB.

4.3.5 Container Managed Persistence (CMP)

Having developed a BMP entity bean, the benefits o f CMP beans will shortly become

obvious to students. With BMP entity beans the bean provider has to write all the data

access code. Sometimes BMP is used to provide greater flexibility over data access, but

generally CMP is preferable and involves much less work for the bean provider. The

following example, CompanyEJB, uses a CMP bean to provide the same functionality as

the previous BMP example but with some additional finder methods. This EJB was

developed with remote and local interfaces to allow for remote and local clients. The class

diagram below illustrates the remote interface and the remote home interface o f the CMP

bean. Everything is exactly the same as in the diagram for the BMP bean, except of

course, the name o f the various components. The major difference arises in the

implementation o f the actual bean class (Appendix A).

Students should carefully examine the CompanyBean class and the following points should

be noted.

1. The attributes (companyld, symbol, etc.) do not appear in the bean class. The attributes

are implied from the set / get methods.

2. The set / get methods are all abstract so no implementations are provided.

3. No data access code appears in the class.

4. No finder implementations appear in the code.

The container provides the implementation o f all these methods that were previously

written by the bean provider, hence the name Container Managed Persistence.

It is very important that students become familiar with the entries in cjb-jar.xml for

CompanyEJB as well as the entries in orion-ejb-jar.xml (a vendor specific file to provide

mapping from the EJB implied attributes to the fields in the database). These files are

shown in Appendix C.

As was mentioned earlier, it is necessary to map the abstract schema to the actual database

table. How this mapping is performed is vendor specific. Most J2EE servers have a

62

vendor specific file which holds these mappings. Most IDEs will create this file

automatically but sometimes modifications may have to be made. W ith OC4J the name of

this file is orion-ejb-jar.xml. Students should carefully study the mappings in this file.

Without the use o f an IDE, this file must be created manually.

The following diagrams illustrate the inheritance hierarchy o f the CompanyRemote and the

CompanyRcmoteHome interfaces and o f the Company Bean class.

63

Figure 26: CompanyRemote and CompanyRemoteHome

64

« bus in ess »
::CompanyBean

EntityContext context
abstract Long getCompanyldQ
abstract void setCompanyld(Long companyld)
abstract String getSymbol()
abstract void setSymbol(String symbol)
etc., other set/get methods not shown
Long ejbCreate(Long companyld, String symbol, etc.)
void ejbPostCreate(Long companyld, String symbol, etc.)
void ejbStore()
void ejbLoadQ
void ejbRemoveQ
void ejbActivateO
void ejbPassivateO
void setEntityContext(EntityContext ctx)
void unsetEntityContext()

Figure 27: CompanyBean

65

4.3.6 EJB Query Language (EJB QL)

EJB QL is a declarative query language similar to SQL but is designed to work with the

abstract persistence schema o f entity beans and provides a mechanism for persistence that

is independent o f the type o f data source used, i.e. EJB QL works with relational and non­

relational databases. The developer need not concern herself with the type o f data source.

In order to provide the container with the information it needs to manage the persistence of

the bean, certain information must be included in the ejb-jar.xml file (Appendix C).

It is important that students study the EJB QL code added to the ejb-jar.xml file. Anyone

familiar with SQL will recognise the similarity, e.g. some o f statements used by the finder

methods are shown below:

1. findAIIO

select object(c) from CompanyEJB c

2. FindCompaniesWithNameLikeO

select object(c) from CompanyEJB c where c.name like '%Bank%'

3. FindCompanlesWithSharePriceLessThan(double price)

select object(c) from CompanyEJB c where c.shareprice < 71

The third select statement illustrates a paramaterised query

Note: The findByPrimaryKeyO method does not appear in the ejb-jar.xml file as the

container has sufficient information to carry out this operation.

The remote client used to test the CompanyEJB is CompanyRemoteClient and is shown in

Appendix A.

As an exercise, students should provide additional finder methods.

4.3.7 Remote Method Calls

It is now time to address the problem mentioned earlier regarding the overhead o f using

remote calls. In particular, this problem will be examined in the context o f calling the

finder method, findAIIO, that returns a collection o f remote interface references. All the

companies in the Company table are returned to the remote client by this call. This could

involve hundreds o f companies. For each company, the remote client calls each o f the get

methods (getSymbolQ, getSharePriceO, etc.). The whole point o f RMI and remote calls is

66

to hide the complexity o f accessing remote objects across a network from the client.

However, it is important that students think about, and understand, the implications of

these remote calls.

J2EE does a very good job o f hiding the underlying complexity o f remote calls. From the

client’s point o f view, when the client calls a remote method it appears that the client is

talking directly to the remote object. The following diagram illustrates what is actually

going on in the background. The client calls the method getSymbolO on a “stub” object

that looks like the remote object. However this method is now passed across the network

where it is intercepted by the EJBObject. The EJBObject now calls the method on the

actual bean. The reply to the client goes back via the EJBObject, across the network to the

stub which passes the reply to the client.

Client Machine J2EE Server

Figure 28: Remote Method Calls

This “fine-grained” access to the remote object is clearly very expensive. Each single call

involves the above scenario. In the remote client application there are 5 remote calls for

each company, and when multiplied by the number o f companies, yields the total number

of remote calls. So this simple remote client could be making hundreds of trips across the

network to display the company details. Students were invited earlier to identify the

problem and propose a solution. A strategy for solving this problem is to use a Transfer

Object [2] (aka Data Transfer Object) pattern together with a Session Fa9ade [2] pattern.

67

4.3.8 Transfer Object Pattern

The CompanyTO class has already been used to transfer data across the network in the

CompanyListerEJB. The idea is to package the required data into a simple Java class and

then to pass an object of this class, or a collection o f objects, to the remote client. This

provides the client with “coarse-grained” access to the required data. When the client

receives the object, or collection of objects, it may then display the data, or whatever,

without further trips across the network. It should o f course be pointed out that the

Transfer Object is not synchronised with the underlying data, so subsequent changes to the

data on the server side arc not reflected in the Transfer Object, and vice versa.

4.3.9 Session Fagade Pattern

«session bean»
CompanySessionFacadeEJB

{Stateless} ejb/local/CompanyEJB

+ addCompany(String symbol, String name,
+ addCompanytCompanyTO to) : long {Rem
+ amendCompanyfCompanyTO to) : void {R
+ dclcteCompany(CompanyTO to) : void {R
+ getCompany(long companyld): Company
+ getCompanyBySymbol(String symbol): C

+ createO : CompanySessionFacadeEJB

«entity bean»
CompanyEJB

{Container Managed)

+ companyld : Long { CmpFi
+ high : Double {CmpField,
+ low : Double {CmpField, L
+ name : String {CmpField,
+ shareprice : Double {CmpF
+ symbol : String {CmpField}

+ createO : CompanyEJB {L
+ create(Long companyld,
+ findAIIO '• Collection {Local
+ findByPrimaryKey(Long pr
+ findCompaniesWithName
+ findCompaniesWithPriceL
+ findCompanyBySymbol(St

Figure 29: CompanySessionFacadeEJB

It is now accepted practice that remote clients do not communicate directly with entity

beans. Entity beans should be created with just a local interface and a local home

interface. A stateless session bean with a local reference to the entity bean (this means that

the session bean and the entity bean must reside in the same container) should be created to

provide the required services to the client. The Session Facade [2] should provide a

remote interface and a remote home interface to allow remote clients to communicate with

it. The J2EE Session Fatjade pattern (Facade is o f course a GoF pattern [5]) is used to

provide the business services to implement a use case, or more likely, a number o f related

use cases for the client. When the remote client requires data from the database, the

Session Facade, communicating locally with the entity bean, stores the data in a Transfer

Object (or in a collection o f Transfer Objects) and sends this data across the network to the

68

remote client. Students should carefully study the code for the interfaces and the bean

class of CompanySessionFacadeE JB (Appendix A). In particular they should pay attention

to how the Session Fa9ade uses JNDI to obtain a local reference to the entity bean. It

should also be noted that the addCompanyO method uses the primary key generator

developed earlier.

Now a remote client simply uses JNDI to locate the remote home interface o f the Session

Fa$ade, calls the create!) method to obtain a remote reference to the Session Facade and

then invokes the methods provided. The client has a much simpler interface and does not

need any knowledge o f how to invoke methods on the entity bean.

As an exercise, students should now provide a Session Facade together with a

CompanyTO object to solve the problem of remote method calls when using the BMP

entity bean that was developed earlier.

4.3.10 Service Locator Pattern

Each o f the methods in CompanySessionFacadeBean (Appendix A) uses JNDI to look up

the local home interface and then uses this interface to obtain a local reference to

CompanyEJB. Using JNDI to continually look up home interfaces has a certain overhead.

Students were invited earlier to identify this problem. Instead o f looking up the home

interface each time it is required, i f the home interface is cached the first time it is obtained

then further lookups are not be necessary. An implementation o f Service Locator Pattern

is given in ServiceLocator.java (Appendix A) for caching home interfaces. As an exercise

students should now modify this class to cache data sources to solve the problem of

multiple lookups identified earlier. A different HashMap may be used for different types

o f resources, e.g. data sources, queues, queue connection factories, etc. Now when any

client requires a resource, instead of doing a JNDI lookup, a call is made on the Service

Locator to obtain the resource. Service Locator is implemented as a GoF Singleton [5],

As a further exercise, students should now replace all earlier calls to JNDI for home

interfaces and data sources with a call to the Service Locator.

4.4 Message-Driven Beans (MDBs)

Message-Driven Beans which were introduced in EJB v2.0 are stateless server-side

components for processing asynchronous JMS messages. As a MDB does not have clients

in the way that other EJBs do, there is no client view, so a MDB consists o f a single bean

class. To illustrate the use o f MDBs a simple MDB called SimpleMessagcDrivenEJB is

69

developed. This MDB acts as a consumer o f messages sent by some other application.

The MDB illustrates how to initialize a queue to receive messages, how to read the

messages and how to close all resources when finished. The example illustrates the MDB

reading three types of message: a text message, a MapMessage and an ObjectMcssage.

The example simply prints the contents o f the various messages. To illustrate the use of

the MDB a simple Java application was created to act as a message producer. This

application illustrate how to initialize the queue for sending messages, sends the three

different types o f messages and finally closes all resources. Students should carefully

study the entries for the MDB in the ejb-jar.xml, orion-ejb-jar.xml files and also in the

global file jms . xml (Appendix C).

4.4.1 Service Activator Pattern

MDBs as implemented in EJB v2.0 arc examples o f the Service Activator Pattern [2],

Prior to EJB 2.0, developers had to develop their own Service Activator Patterns by

implementing JMS listeners.

4.5 Summary

This chapter provides extensive coverage o f EJB components required by the application

and reflects how these components would be developed in a class situation. It also

indicates where students are expected to recognise the need for patterns, where they

attempt solutions and where they are introduced to various patterns. Various exercises arc

also identified.

Chapter 5 develops the application that is used as a teaching tool using components and

patterns already developed in this chapter together with additional components and

patterns developed in Chapter 5. As in Chapter 4, the various exercises identified in

Chapter 5 arc again highlighted in blue. The points in the development where students arc

asked to identify design flaws are again highlighted in red.

70

Chapter 5: The Applications

The project uses two applications. The first application acts as message producer, sending

messages which are consumed by the main application.

5.1 The Message Producer

The first application (Appendix B) is a Java application called SharePriceNews that acts as

a producer for sending messages to an MDB in the main application. A utility class,

MyRandomGeneratorO, was developed to generate random numbers as required by the

application. The Java application performs the following tasks:

1. It reads the companies from the database into an ArrayList using the stateless

session bean, CompanyListerEJB, developed and tested earlier.

2. It randomly selects a number of these companies. The selected companies will have

their share prices updated by the second application.

3. It randomly selects the number o f times the selected companies will have their share

prices updated.

4. It randomly selects the trend (i.e. up or down) for the share price for each of the

selected companies.

5. It randomly selects the percentage change in the share price for each o f the selected

companies.

6. It stores the primary key and the percentage change in the share price for each o f the

selected companies in an ArrayList.

7. It places the ArrayList in a message queue waiting for a consumer to read the share

price changes.

Steps 2 to 7 are repeated at regular time intervals, e.g. every 60 seconds.

5.2 The Main Application

The main application, which reads and processes the messages from the first application,

uses a MVC architecture and the model, view and controller are developed in this chapter.

71

5.3 The Model

The model is the main focus o f the application as this is where the various EJB

components are required. The components and patterns developed in chapter 4 are used

here. Additional components and patterns are also developed.

5.3.1 The Message Consumer

The PriceWatchMessageDrivenEJB (Appendix B) acts as a message consumer and reads

the messages sent to the message queue by the message producer Java application

developed in chapter 5. This MDB maintains a local reference to the CMP entity bean,

CompanyEJB, developed earlier as shown in the diagram (these beans reside in the same

container). As the MDB reads each message consisting o f a collection o f share price

changes for different companies, the MDB uses the Service Locator to obtain the home

interface for each company in the collection. The findByPrimaryKeyO method is called on

the home interface to obtain a local interface to the appropriate CompanyEJB. The

setSharePriceO method is called on the local interface to update the share price for the

company. In this way the different randomly selected companies have their share prices

updated.

«message driven bean»
PriceWatchMessageDrivenBean

ejb/local/CompanyEJB

«entity bean»
CompanyEJB

{Container Managed}

+ companyld : Long { CmpFi
+ high : Double {CmpField,
+ low : Double {CmpField, L
+ name : String {CmpField,
+ shareprice : Double {CmpF
+ sym bol: String {CmpField}

+ createO : CompanyEJB {L
+ create(Long companyld,
+ findAIIO : Collection {Local
+ findByPrimaryKey(Long pr
+ findCompaniesWithName
+ findCompaniesiA/ithPriceL
+ findCompanyBySymbol(St

Figure 30: PriceWatchMessageDrivenEJB

72

5.3.2 Container Managed Relationships (CMRs)

In EJB 1.0 the only type of interfaces available were remote interfaces, meaning that the

only clients allowed were remote clients. EJB 2.0 introduced the idea of local interfaces.

The main driving force behind the introduction o f local interfaces was to allow

relationships between beans in the server. The types of relationships permitted are:

(i) one-to-one

(ii) one-to-many

(iii) many-to-many

These relationships may be implemented in one direction only (A knows about B, B does

not know about A) or they may be implemented in both directions (A knows about B. B

knows about A). The Session Facades already developed have a one-to-one relationship

with the corresponding EJB. The Session Fagade knows (i.e. has a local reference to) its

corresponding EJB, but the EJB knows nothing about the Session Fagade.

In order to illustrate relationships, the two related tables in the database, Player and Game,

are used. The entity relationship diagram for these two tables is shown below.

Figure 31: Player-Game Entities

For this example the player bean will know about all the games she has played and each

game will know the player associated with it, i.e. the relationship will be implemented in

both directions. The two EJBs representing these tables are PlayerEJB and GameEJB

(Appendix B). Each o f these EJBs has a local interface, a local home interface and a bean

class. The local interfaces (i.e. the local client’s view) of the 2 EJBs are shown below to

illustrate how the relationship is implemented.

73

public interface Playerlocal extends EJBLocalObject
{

Long getPlayeridO;
String getCodenameO;
void setCodename(String codename);
String getPasswordO;
void setPassword(String password);
String getLastnameO;
void setLastname(String lastname);
String getFirstnameQ;
void setFirstname(String firstname);
String getDepartmentO;
void setDepartment(String department);

Collection getGameEJB_playerid();
void setGameEJB_playerid(Collection gameEJB_playerid);

}

public interface GameLocal extends EJBLocaiObject
{

Long getGameid();
Double getBalanceO;
void setBalance(Double balance);
Timestamp getPeriodO;
void setPeriod(Timestamp period);

PlayerLocal getPlayerEJB_playerid();
void setPlayerEJB_playerid(PlayerLocal playerEJB_playerid);

}

Unlike the relational database world, in the object-oriented world there is no concept of a

foreign key. This means that the foreign key field, Playerid in the Game table, will not

feature in the corresponding EJB. In the 0 0 world, a player maintains a collection of

references to games and a game maintains aTeferenceto a player. CMP entity beans do

not have attributes corresponding to the fields in the database tables. Rather the set / get

methods indicate the attributes. Examining the code above shows that a player has a

collection of games and a game has a player.

A useful feature of JDveleoper is the ability to generate CMP beans based on tables in a

database. This feature was used to generate PlayerEJB and GamcEJB from the two tables,

PLAYER and GAME. This has the effect o f creating foe PlayerEJB and foe GameEJB

CPM entity beans with the appropriate references in place. Students should closely

examine the GameLocal (i.e. local interlace)Tile. The get and set methods indicate the

fields o f the GAME table (i.e. gameid, etc.) There is no get / set method for the foreign

key, PLAYERID. Instead there is a set / get method for the PlayerLocal interface,

indicating foe GameEJB has a local reference (i.e. knows about) the PlayerEJB. Also the

PlayerLocal (i.e. local interface file) has set / get methods indicating the fields of foe

PLAYER table (i.e. Playerid, etc.) This file also has get / set methods for a Collection of

local interfaces for the GameEJB. This is foe many side of the relationship. This is an

These methods
indicate the
nature o f foe
relationship

74

example o f a Composite Entity [2]. Students should carefully examine the entries in the

ejb-jar.xml for GameEJB and PlayerEJB (Appendix C). Considering GameEJB first, each

o f the persistent fields are shown as well as the primary key field. The EJB QL statement

for the findAll() method is also shown. Looking now at the PlayerEJB entry, the various

persistent fields o f PLAYER as well as the primary key are shown. Again the EJB QL

statement is automatically generated for the findAHO method. A number o f additional

finder methods required by the application have also been added. As an exercise, students

should develop further finder methods. There is nothing new in entries for PlayerEJB and

GameEJB. However, in the relationships section of the ejb-jar.xml, the one-to-many

relationship is shown. As it makes sense to delete all the games belonging to player when

the player is deleted, students should be made aware o f the “cascade-delete” entry that was

added to the “many” side in the relationship entry. Students should also closely examine

the entries in orion-ejb-jar.xml for PlayerEJB and GameEJB.

As Player knows about Game (get/set methods) and Game knows about Player (get/set

methods), it is clear that this is a bi-directional implementation o f the relationship. I f a

unidirectional implementation is required then the get/set methods are omitted from the

appropriate interface.

In order to allow remote clients to access these two EJBs, a new Session Fa5ade,

PlayerGameSessionFacade, was created as shown in the diagram. This Session Fagade has

a local reference to PlayerEJB and to GameEJB. As usual, the Service Locator is used to

obtain a reference to the home interfaces. The Session Facade has various methods to add

players and games. Instead o f writing a Transfer Object for each o f these entity beans,

JDeveloper was used to automatically generate these objects (called Data Transfer Objects

in JDeveloper). Students should closely examine these DTOs. As well as the ordinary

attributes representing the fields in the tables, GameLocalDTO has a reference to a

PlayerLocalDTO, and PlayerDTO has a collection o f GameDTOs. This is a standard

object-oriented implementation o f a one-to-many bi-directional relationship. When

passing DTOs across the network it is possible to pass a player together with the player’s

games, i.e. this is an example o f a Composite Transfer Object [2],

Remote clients wishing to use the PlayerEJB or GameEJB do so by invoking methods on

this session fagade. The services available to remote clients are shown in the diagram and

also in the code in Appendix B. This session fagade pattern is fully tested as shown in

Appendix B

75

ejb/tocal/PlayerEJB

«session beans
PlayerGameSessionFacadeEJB

{Stateless}

- aortedGames : Collection {Readonly, Rem

+ addGame(Double balance, Timestamp
+ addGame(Double balance, Timestamp
+ addGame(GameLocalDTO d to) : Long
+ addPllayer(String codename, String pa
+ addPlayer(PlayerLocalDTO d to) : Long
+ amendPlayer(PlayerLocalDTO dto) : vo
+ deletePlayer(PlayerLocalDTO d to): voi
+ deleteGame(GameLoca!DTO dto) : voi
+ getGame(Long primaryKey): GameLocal
+ getPlayedJLong primaryKey) :PlayerLoeal
+ getPlayer(String codename, String pasawor
+ getPloyerfSlrmg codonamc): Player!,ocn!D
+ eetPlavcrGamcslLona priinarvKcv): Plavo

+ create() : PlayerGameSessionFacadeE

\ ejb/local/GameEJB

«entity beans
PlayerEJB

{Container Managed}

GameEJB-PlayerEJB

PlayerEJB may have many GameEJB

1 *

«entity bean»
GamerEJB

{Container Managed}

+ codename : String {CmpFi
+ departm ent: String {CmpF
+ flrstname : String {CmpFie
+ gameEJB_playerid : Colle
+ lastname: String {CmpFiel
+ password:String {CmpFiel
+ playerid : Long {CmpField,

+ balance : Double{CmpFiel
+ gameid : Long {CmpField,
+ period : Timestamp {Cmp
+ playerEJB_playerld : Play

GameEJB may have one PlayerEJB

+ createO : GamerEJB {Loc
+ create! Long gameid) : Ga
+ findAIIO : Collection {Local
+ findByPrimaryKey(Long pr+ create(): PlayerEJB {Loca

+ create(): Long playerid, S
+ findAIIO : Collection {Local
+ findByCodeName(String c
+ findByCodeNamePasswor
+ find By PrimaryKey (Long pr

Figure 32: PlayerGameSessionFacadeEJB

The various business methods that have been developed for the Session Fa?ade are much

more complicated as the relationship between player and game is now part o f the equation.

Students will need to carefully examine each o f these methods to get a good understanding

o f how to handle the relationship. Each of the methods of PlayerGameSessionFacade has

been fully tested in the remote Java client, PlayerGameSessionFacadeClient, As an

exercise, students should add additional methods to PlayerGameSessionFacade.

76

5.3.3 The Portfolio as a Stateful Session Bean

«entity bean*
Com panyE JB

{Container Managed}

+ companyld : Long { CmpFi
+ high : Double {CmpReld,
+ low : Double {CmpField, L
+ name : String {CmpReld,
+ shareprlce :Double {CmpF
+ sym bol: String {CmpField}

+ createO : CompanyEJB {L
+ create(Long companyld,
+ findAIIO : Collection {Local
+ find By PrimaryKey (Long pr
+ findCompaniesWithName
+ findCompaniesWithPriceL
+ findCompanyBySymbol(St

centity bean*
PlayerEJB

{Container Managed}

+ codename : String {CmpFi
+ departm ent: String {CmpF
+ firstname : String {CmpFie
+ gameEJB_playerid : Colle
+ lastname: String {CmpFiel
+ password: String {CmpFiel
+ playerid : Long {CmpField,

+ create(): PlayerEJB {Loca
+ create(Long playerid, Stri
+ findAIIO : Collection {Local
+ findByCodeName(String c
+ AndByCodeNamePasswor
+ findByPrimaryKey(Long pr

ej b/1 oca 1/Compan yE JB «session bean*
PortfolioEJB

{Stateful}

ejb/loca 1/PI ayerEJB

*

+ balance : Double {Remote
+ folios : Collection {ReadO
+ playerid : Long {Remote}

+ purchaseShares(FolioTO f
+ sellAIISharesO : void {Rem
+ sellShares(int foliold, long

+ createO : PortfolioEJB { H
+ createfLong playerid, dou

«
:+ i / i

ej b/1 ocal /GameEJB |
' ii

ii
»

♦
GameEJB-PlayerEJB

PlayerEJB may have many GameEJB

1 *

«entity bean*
Gamer EJB

{Container Managed}

+ balance : Double{CmpFiel
+ gameid : Long {CmpField,
+ period : Timestamp {Cmp
+ playerEJB_playerid : Play

w

GameEJB may have one PlayerEJB

+ createO : GamerEJB {Loc
+ create(Long gam eid): Ga
+ findAIIO : Collection {Local
+ findByPrimaryKey(Long pr

Figure 33: PortfolioEJB

As a player buys and sells shares, a record o f the player’s portfolio must be maintained.

This information could be stored in the database using a CMP entity bean. For this

application a stateful session bean, PortfolioEJB, is used. As an exercise, students should

investigate other strategies for implementing the portfolio.

When a player logs into the system a stateful session bean, PortfolioEJB, is created as

shown Appendix B. This bean maintains a collection o f the various investments made by

the player. The details o f each investment are shown in the Transfer Object class FolioTO

77

(Appendix B). The FolioTO class holds the foliold, companyld, symbol, purchase price

and the quantity of shares. At the end of the game, all the player’s shares are sold at the

current share price and the profit / loss is calculated. The details o f the player’s game

(GAMEID, BALANCE, PERIOD, PLAYERID) are then written to the GAME table. The

PortfolioEJB requires a local reference to CompanyEJB (to obtain current share prices), to

PlayerEJB (to link the game to the player) and to GameEJB (to write to the Game table) as

shown in the diagram.

5.4 The Controller

The Struts Framework could be used to implement the controller and to dispatch control to

the various JSPs. However, as the intention is to teach students the value o f patterns and

how to use the patterns, the controller module is implemented using various patterns. Up

to this point, the teaching method employed was to follow Gamma’s advice [3] and let the

student understand the problem with a particular solution before refactoring with

appropriate patterns. However, any students studying EJBs should already be familiar

with writing web applications using Servlets and JSPs. Certainly the target audience for

this particular course will have this experience. These students should therefore be able to

identify problems with using a Model 1 architecture so the approach to developing the

controller module is to apply patterns from the start.

The strategy used to develop the controller is the Command and Controller Strategy [2]

and the implemented version o f this strategy employs the FrontController [2] pattern as

well as a version o f GoF’s Command [5] and Factory [5] and Singleton [5] patterns. The

FrontController is implemented as a Servlet as shown in Appendix B. All requests to the

application are directed to this servlet. Students should carefully examine the web. xml

file (Appendix C) and the mapping applied to this Servlet.

The FrontController reads the value o f the “command” passed as a request attribute. It

also detects the type o f browser (wireless or ordinary) that issued the command. A simple

naming strategy is used for directing control to the appropriate command handler to

execute the command.

Command CommandHandler

Login LoginCommand

Register RegisterCommand

etc

78

The command (Login, Register, etc.) is passed to the FrontController as a request

parameter, i.e. as a String. The FrontController passes this String to the CommandFactory.

The CommandFactory instantiates the appropriate command handler object (e.g.

LoginCommand, RegisterCommand, etc.). These command handler objects carry out the

command by invoking appropriate methods on the PlayerGameSessionFacadeEJB. As the

web container and the EJB container can reside in the same J2EE server, the command

handlers could use local references to the session facade. However, as much o f this project

has involved the use o f remote calls, remote references are used. This allows the flexibility

o f moving the web tier to a different server. A sample command handler is shown in

Appendix B, together with the CommandFactory class

The command handler returns the name o f the next page, e.g. Login.jsp, to the

FrontController. As FrontController has already detected the type of browser, control is

now passed to Loginjsp for ordinary browsers or to w_Login.jsp for wireless browsers.

The only difference between handling a wireless device is in the code for the JSPs. This

demonstrates the value o f using the Model-View-Controller architecture.

As an exercise, students should develop additional use cases. This involves adding new

methods to the Session Fa?ade (or to a new Session Facade) if the methods do not already

exist. For each use case a new Command Handler and one or more pages are also

required. This has the benefit o f demonstrating to students the ease with which additional

use cases can be added to the application because o f the architecture adopted.

Students should now identify a problem with the parameters passed to the various

command handlers. As an exercise, students could research the Context Object [2] pattern

and use it to encapsulate the protocol specific parameters (e.g. request parameters). The

simplest implementation o f this pattern involves the use of a HashMap to store the various

parameters. Instead o f passing HttpServletRequest objects to the various command

handlers, this Context Object could be passed, The command handlers would then be

protocol free and could be tested using simple Java clients.

As part of the controller module, a Synchronizer Token [2] has been used to prevent

duplicate form submissions. The implementation o f Token is shown in Appendix B. The

use o f this token can be seen in FrontController.java and in BuySharesCommand.java.

79

5.5 The View

As was mentioned at the outset, this project is focused on the J2EE components and

patterns involved in the model and, and to a lesser extent, in the controller modules. Less

time was devoted to developing the view. The view is used to illustrate the various

components developed but it is not the intention to develop a full production application

with a sophisticated user interface. Although pages were developed for all use cases, only

a few o f pages are shown in Appendix B. However, as students may wish to improve the

user interface, it is important that pages are developed in a way that makes it easy to

provide a uniform look and feel across all pages. Solution: Use a Composite View pattern

[2]

5.5.1 Composite View pattern

A simple view was developed manually with each page consisting of:

1. A banner

2. A menu

3. The main page

4. A footer

As each new use case is developed, a new page (or pages) is developed. Each new page

developed simply requires the development of the main page element. All pages

automatically include the banner, menu and footer. Adding a new menu item is a simple

matter of adding a new line to the header page.

An obvious problem arises in the view when a player chooses the option to display the

league table, i.e. the details of all games played. As there is a large number of games, this

view requires a lot o f scrolling to view the entire table. Usually when a player views the

league table (s)he will wish to view the top o f the table only and not the entire list of

games. The method getSortedGamesO in PlayerGameSessionFacade uses the entity bean

method, findAIIO, to return a collection o f games. Students should identify the problem

with this approach and should identify a more efficient way o f obtaining the data and

returning it to the client in manageable amounts as required. A possible solution is to

introduce the Value List Handler pattern.

80

5.5.2 Value List Handler pattern

Although this pattern is not part o f the presentation tier, it is included at this point as the

problem requiring solution manifests itself at this point. As with all the patterns used

throughout the project, this pattern is only introduced when the students become aware of

the problem.

The idea behind this pattern is to obtain the requested data from the database and to cache

this data on the server side. The information is then sent to the client in manageable

chunks. There are a number o f strategies for developing the value list handler. The

strategy used here involves using the Value List Handler Session Fa9ade strategy. This

involves using a stateful session bean as the Session Fa9ade. Clearly the bean must be

stateful i f the data is to be cached. As this operation on the database involves read only

access, the light-weight Data Access Object, GameDao, together with the light-weight

transfer object. GameTO, arc used. These classes were developed earlier in the project.

The EJB developed is called ValueListHandlerSessionFacadeEJB and is shown in

Appendix B. This EJB has two create methods. The default createO method sets the

number o f games returned to the player at 20. The other createO method allows the player

to specify the number of games returned. There are just three business methods available

to the player, one to return the complete list, one to return the number o f sublists available

and one to return any sublist. The code for ValueListHandlerSessionFacadcEJB and the

code to test it are shown in Appendix B.

5.6 The Wireless Client

A simple wireless client was developed to illustrate the benefit of the architecture used in

the application. A sample JSP is shown in Appendix B All requests, irrespective o f their

origin, are directed to the front controller. When the first request from a client reaches the

front controller, the controller detects if the request comes from a wireless browser or an

ordinary browser. This code is shown below.

81

Locale locale = request.getLocaleO ; ResourceBundle messages ;
String header = request.getHeader("User-Agent") ;
if (header.indexOf("IVIozilla") == -1)
{

session.setAttributefdevice", "w ire less');
messages = ResourceBundle.getBundle("sk.sharesapp.resources.w_MyResources” , locale);

}
else
{

session.setAttribute(“device", "p c ");
messages = ResourceBundle.getBundleC'sk.sharesapp.resources.MyResources", locale);

}

Irrespective of the origin o f the request, the controller hands control to the appropriate

command handler to handle the request. The command handler returns the name o f the

next page to the lfont controller. The controller then directs control to the appropriate

page, i.e. a JSP to handle the display in an ordinary browser or a JSP to handle the display

in a wireless device. The code below illustrates this.

if (device.equalsC'wireless'1))
page = "w_" + page ;

For example, if control is directed to a page to show the list of companies, e.g.

ViewCompanies.jsp, control will go to ViewCompanies.jsp for an ordinary browser or to

w_ViewCompanies.jsp for a wireless device. Apart from the code in the JSPs, there is no

difference between handling a request from an ordinary browser or a wireless browser.

The additional code above referring to a ResourceBundle is used as follows. A separate

resource file for all supported languages must be provided (only the English language file

has been provided for this application). The naming convention for these files is as

follows: MyResources.java (default locale), MyResources lf.java (France),

MyResources de.java (Germany), M yResourceszh.java (China), etc. These files contain

all messages, prompts, etc. in the supported languages. The FrontController detects the

current locale, and based on the locale selects the appropriate resource file. Examination

o f various JSP files, e.g. Fleader.jsp, illustrates the use o f this feature (the feature has not

been implemented in all pages).

In addition to the resource files for various languages, separate resource files are used for

the wireless client, as clearly prompts, messages etc. must be kept short.

In order to add the wireless client to the application, Oracle’s 1 Developer Wireless

Extension, JWE, was added to JDeveloper. The OpenWave SDK 6.2.2 SDK [57] was used

82

to provide a mobile emulator. The screens used for the wireless client are shown in

Appendix D.

As an exercise, students should implement additional use cases for the wireless client.

5.7 Summary

In this chapter the applications that form the basis of the teaching tool were developed. As

in the previous chapter, this chapter reflects how the various components and patterns

would be developed in a class situation. It also indicates where students are expected to

recognise the need for patterns and where they attempt solutions. Various exercises are

also identified. These points are highlighted in the text.

The Java application, SharePriceNews, simulated share price changes and sent these to a

message queue where they were read by the main application. The main application was

developed using a MVC architecture. Most o f the work was concentrated in the model

where various EJB components and patterns already developed in Chapter 4 were

integrated with additional components and patterns developed in this chapter.

Some o f the benefits o f the MVC architecture were illustrated, e.g.

(i) the ease with which new uses cases are added to the application.

(ii) the ease with which the the application runs in the language of the current locale.

(iii) the ease with which a wireless client is added.

The facility to run the application in the language o f choice is particularly useful in the

context o f using this application as a teaching tool in DklT. The target class for this

application is made up o f students from France, Germany, Spain and China as well as

Ireland.

The view was developed to illustrate all the o f use cases as set out in Chapter 3. The

wireless client was added without making any changes to the EJB components, command

handlers or JSPs already developed. All that was required were new JSPs to render the

view in the wireless device.

Chapter 6 examines how the aims, as set out in Chapter 1, were achieved and suggests

further areas of research.

83

Chapter: 6 Conclusions

The aims of the project were outlined in chapter 1 and this chapter examines how these

aims were met and also looks at possible areas of research following from this dissertation.

6.1 Aims

(i) To gain a good working knowledge o f the J2EE platform in general and EJB

technology in particular.

In order to gain a good understanding o f EJB, all the components used in the application

were developed initially with a basic editor and the standalone OC4J server and a MySQL

database. As well as writing the various components from first principles, this involved

manually modifying various global configuration files (server.xml, application.xml, data-

sources.xml, http-web-site.xml, jms.xml, jazn.xml). In addition, all entries in the project’s

ejb-jar.xml and orion-ejb-jar.xml were entered manually. This involved a lot of hard work

and is not something that every student should have to experience (and, in hindsight,

something the author would probably avoid if starting again). It was particularly difficult

to obtain reliable information on developing CMP entity beans and CMRs (container

managed relationships) for MySQL using OC4J. However, all problems encountered were

eventually overcome. The knowledge gained proved invaluable when developing the

application using JDeveloper. At limes when errors were made in selecting options within

the IDE, it was knowledge o f the various configuration files that enabled the errors to be

corrected. This knowledge should also prove invaluable when teaching J2EE technologies.

(ii) To gain a good understanding of best practice in applying J2EE technology for the

development o f enterprise systems through the use of patterns.

Initially the author read through the Core J2EE catalogue, as well as other catalogues,

examining the various patterns. Some o f the patterns used in implementing the controller

were used in earlier work, with modifications and improvements for this application.

However, the study o f the other patterns only became focused when Gamma’s advice [3]

was followed, i.e. “feeling the pain” o f a design before applying design patterns to

improve the design. This technique should also prove invaluable in teaching patterns to

students.

84

(iii) To case the learning curve o f students studying these technologies by using

appropriate tools to ease the development and understanding of the technologies.

The students who are the target audience for the application developed for this dissertation

are familiar with Oracle database. The choice o f JDeveloper as a development tool for

J2EE should certainly ease the learning curve for these students. As one would expect,

integrating the various Oracle tools (Oracle lOg, JDeveloper, JWE) makes development

much easier. A word o f caution is necessary here. Students who use IDEs often fail to get

a good understanding of the underlying technology. Using a good development tool is no

substitute for understanding the technologies. JDeveloper allows developers to become

more productive without hiding these underlying technologies and it also facilitates

refactoring. Developers using JDeveloper still need a good understanding o f the various

components, the life-cycles o f the different types of components and how the components

interact. It is important when assessing students that they are examined on these details.

(iv) To share the knowledge and experience gained during the research for this thesis

with students in order to enhance their knowledge and learning experience.

This was to be achieved through the development o f a demonstration application for use as

a learning tool.

Because o f the timescale involved in developing this thesis, and because o f the starting

date o f the courses in Enterprise Systems in DkIT, it was not possible to evaluate the

application as a learning tool or to relate the experiences of students in using the

application. The application as outlined in the aims was developed and tested and will

shortly be used with students. Various EJB components were developed, beginning with

simpler examples and progressing to more difficult components. Patterns were applied to

improve the design as development progressed, but only when design problems were

identified. A small wireless client was added to the application to demonstrate the benefit

o f the architecture used. As developing this application in the manner outlined was a

useful exercise for the author learning about patterns, it should also prove useful in

enhancing the learning experience of students.

6.2 Deployment

It was planned to deploy the completed application on the Oracle Application Server in

Dundalk Institute o f Technology. Unfortunately, when the Application Server (v. 10) was

85

installed on the Unix server which already housed the Oracle database (v 9i), a conflict

arose between the versions. As the Oracle database is required, at the time o f going to

press, to service existing courses in the institute, the application server was removed from

the system. It is hoped that this problem will be resolved and that the application will be

deployed to diis server at a future date.

6.3 Areas of Further Research

There are several areas o f further research that could be pursued by the author, or indeed

by target students for this project should they decide to pursue postgraduate research.

6.3.1 The Application as a Learning Tool

As the application for this project was chosen and developed with the specific intention of

teaching J2EE technologies and J2EE patterns, a logical follow-on from the project is to

investigate the success of using the application as a learning tool. A class of students could

be divided into two groups. One group could examine a particular pattern in isolation and

could develop an implementation of this pattern. The second group could encounter the

problem o f a poor design in the application as recommended by Gamma [3], Upon

recognition o f the problem, these students could be encouraged to solve the problem. This

is similar to the techniques used in Problem Based Learning (PBL). Only when these

students have devised their own solutions would they be introduced to the appropriate

patterns. The roles o f the two groups o f students could then be reversed with a different

pattern, or set o f patterns. Measuring how the students coped with the different approaches

could prove to be an interesting and useful research topic. As members of staff in another

department in DkIT are already involved in research into PBL, collaboration could be

initiated with these researchers.

6.3.2 OptimalJ and Archetype Patterns

The OptimalJ tool used in this project was obtained for a 30-day trial period. It is hoped to

obtain this tool under the Compuware University licence agreement for use in Dundalk

Institute o f Technology. An investigation could be carried out into the productivity of

students developing J2EE applications using this tool, together with a catalogue of

Archetype patterns. In particular, the productivity o f students with a good background in

J2EE technologies against the productivity of students with good modeling skills, but only

basic J2EE knowledge, could be examined.

86

6.3.3 Wireless Clients

The wireless client developed for this project was very basic, using WML as the markup

language. The purpose o f the wireless client was to illustrate one of the benefits o f the

architecture used in the development o f the application. However, further work with

Oracle’s TWE, together with the OpcnWave SDK, could be pursued.

6.4 Summary

This dissertation set out with clear aims and boundaries. These have been met. The subject

o f the dissertation, The Application o f Architectural and Design Patterns in Enterprise

Systems, has been well researched, the material has been presented in an instructional

format with suggested exercises and a prototype teaching tool has been developed. At the

time o f going to press, the application has been introduced to the target class and some

initial components have been developed using JDeveloper. Initial response from students

has been very positive.

87

References

[1] “Implementing Sun Microsystems’ Core J2EE Patterns”.

John Crupi and Frank Baerveldt, April 2005

http ://www. compuware.com/whitepapers/default. asp

[2] Core J2EE Patterns (Best Practices and Design Strategies) Second Edition.

Alur Deepak, Crupi John and Malks Dan.

Prentice Hall, 2003.

[3] How to Use Design Patterns

A Conversation with Eric Gamma, Part 1, by Bill Venners, May 2005

http ://www.artima. com/lej ava/articles/gammadp. html

[4] Patterns o f Enterprise Application Architecture

Fowler Martin

Addison-Wesley, 2003

[5J Design Patterns (Elements of Reusable Object-Oriented Software)

Gamma Eric, Helm Richard, Johnson Ralph and Vlissides John

(These authors are usually referred to as the Gang o f Four, GoF)

Addison-Wesley, 1995

[6] http ://j ava. sun. com/j 2ee/leaming/tutorial/

[7] Sun Blueprints, Web-Tier Application Framework Design

http://java.sim.com/blueprints/guidelines/

designing enterprise_applications_2e/web-tier/web-tier5.html

[8] http://java.sun.com/products/javabeans/docs/spec.html

[9] http://www.sun.com/service/about/success/ebay.xml

[10] An Interview with John Crupi, theServerSide.com, 2003

http://www.theservcrsidc.com/talks/videos/JohnCrupi/interview.tss7bandwidthF56k

[11] http://java.sun.com/products/jdo/index.jsp

[12] http://www.hibemate.org/

[13] http://www.oracle.com/technology/products/ias/toplink/index.html

[14] The Rise of the POJO

Duncan Mills, Oracle Corporation, July 2005

http://www.oracle.com/technology/tecli/java/newsletter/

articles/rise_of_the_poj o.html

[15] http://www.jboss.com/developers/index

[16] http://www.bea.com

[17] http://www.oracle. com/technology/tech/java/oc4j /index.html

88

http://www.artima
http://java.sim.com/blueprints/guidelines/
http://java.sun.com/products/javabeans/docs/spec.html
http://www.sun.com/service/about/success/ebay.xml
http://www.theservcrsidc.com/talks/videos/JohnCrupi/interview.tss7bandwidthF56k
http://java.sun.com/products/jdo/index.jsp
http://www.hibemate.org/
http://www.oracle.com/technology/products/ias/toplink/index.html
http://www.oracle.com/technology/tecli/java/newsletter/
http://www.jboss.com/developers/index
http://www.bea.com
http://www.oracle

[18] http://www.borland.com/us/products/jbuilder/index.html

[19] http://www.netbeans.org/

[20] http ://www.oracle. com/technology/products/jdev/index.html

[21] http://www.mysql.com/

[22] http ://www. compuware. com/products/optimalj/

[23] A Pattern Language: Towns/Buildings/Construction

Christopher Alexander

Oxford University Press, 1977

[25] Object-Modelling and Design

Rumbaugh James, Blaha Michael, Premerlani William, Eddy Frederick,

Lorensen William

Prentice-Hall, 1991

[26] http://www.hillside.net/

[27] https://pattemscentral.dev.java.net/

[28] http://pattemshare.org/default.aspx/Home.GOF.HomcPage

[29] http://www.sun.com/service/sunjavasystem/

[30] Core J2EE Patterns (Best Practices and Design Strategies).

Alur Deepak, Crupi John and Malks Dan.

Prentice Hall, 2001.

[31] Refactorings - Improving the Design o f Existing Code

Martin Fowler

Addison-Wesley, 1999

[32] http://www.TheServerSide.com

[33] EJB Design Patterns

Floyd Marinescu,

Wiley, 2002

[34] A Cookbook for Using the Model-View- Controller User Interface Paradigm in

Smalltalk-80.

G. E. Krasner and S. T. Pope.

JOOP, Vol 1, no 3, August/ September, 1988

[35] http://jakarta.apache.org/stmts/index.html

[36] http://ibatis.apache.org/

[37] http://db.apache.org/ojb/

[38] http ://www-306. ibm. com/software/data/ db2/

[39] http://www.microsoft.com/sql/default.mspx

89

http://www.borland.com/us/products/jbuilder/index.html
http://www.netbeans.org/
http://www.oracle
http://www.mysql.com/
http://www.hillside.net/
https://pattemscentral.dev.java.net/
http://pattemshare.org/default.aspx/Home.GOF.HomcPage
http://www.sun.com/service/sunjavasystem/
http://www.TheServerSide.com
http://jakarta.apache.org/stmts/index.html
http://ibatis.apache.org/
http://db.apache.org/ojb/
http://www.microsoft.com/sql/default.mspx

[40] http://www.bea.com/

[41] http ://www.j boss. cotn/developers/index

[42] An Interview with Ted Anderson, Oracle Corporation, Sept. 2004

http: //'www. itwritin g. com/j de v 1. php

[43] JDeveloper Help Documentation

[44] www.junit.org

[45] ADF Business Components J2EE Design Pattern Catalogue

Steve Muench, ADF Development Tearn

June, 2005

http ://www. oracle, com/technology/products/j dev/tips/muench/

designpattems/index.html

[46] http://www.omg.org

[47] http://www.omg.org/mda

[48] Enterprise Patterns and MDA

(Building Better Software with Archetype Patterns and UML)

Arlow Jim and Neustadt Ila

Addison-Wesley, 2004

[49] The Decision is in: Agile versus Heavy Methodologies

Cutter vol. 2 No. 19, Charelte R. 2003

[50] Agile MDA

Stephen J. Mellor, Project Technology, Inc.

http://www.omg.org/mda/mda_files/Agile_MDA.pdf

[51] www. agilealliance. org

[52] http://www.macromedia.com/software/dreamweaver/

[53] Seve Vinosky, Chief Engineer o f Product Innovation, IONA Technologies

Preface to [48]

[54] UML Modeling and MDA in Oracle JDeveloper lOg

[55] Higher Education Staff Development Network

An Initiative o f the Department of Education & Science and the council o f Directors

the Institutes o f Technology under the NDP 2000-2006.

[56] J2EE Design Patterns

Crawford William, Kaplan Jonathan

O ’Reilly Press, 2003

[57] www.developer.openwave.com/dvl/

90

http://www.bea.com/
http://www.j
http://www.junit.org
http://www.omg.org
http://www.omg.org/mda
http://www.omg.org/mda/mda_files/Agile_MDA.pdf
http://www.macromedia.com/software/dreamweaver/
http://www.developer.openwave.com/dvl/

Appendix A: Chapter 4 Code
r Author: Seamus Kelly
* Project: M.Sc. in Computing
* Date: September 2005
* This comment is omitted from remaining files
7

package sk.sharesapp.ejb.session.stateless;
import II imports not shown

public interface CompanyListerRemote extends EJBObject
{

Collection getCompaniesO throws SQLException,
RemoteException, NamingException;

double getSharePriceBySymbol(String symbol) throws
SQLException, RemoteException, NamingException;

package sk.sharesapp.ejb.session.stateless;
import // imports not shown

public interface CompanyListerRemoteHome extends EJBHome
{

CompanyListerRemote createO throws RemoteException,
CreateException;

}

package sk.sharesapp.ejb.session.stateless;
import II imports not shown

public interface CompanyListerLocal extends EJBLocalObject
{

Collection getCompaniesO throws SQLException, NamingException;
double getSharePriceBySymbol(String symbol) throws SQLException,

NamingException;
}

package sk.sharesapp.ejb.session.stateless;
import II imports not shown

public interface CompanyListerLocalHome extends EJBLocalHome
{

CompanyListerLocal createO throws CreateException;
>

package sk.sharesapp.ejb.session.stateless;
import II imports not shown

public class CompanyListerBean implements SessionBean
{

public void ejbCreateO { }
public void ejbActivateO { }
public void ejbPassivateO { }
public void ejbRemoveO { }
public void setSessionContext(SessionContext ctx) { }

public Collection getCompaniesO throws SQLException, NamingException
{

ArrayList companies = new ArrayListO ;
Connection con = n u ll;
PreparedStatement stmt = n u ll;
ResultSet rs = nu ll;
try
{

Context ctx = new InitialContextO ;
DataSource ds = (DataSource) ctx.lookup ("jdbc/sharesDS") ,
con = ds.getConnectionO ;
String query = “SELECT * FROM Company" ;
stm t= con.prepareStatement(query) ;
rs = stmt.executeQueryO ;

while (rs.nextO)
{

long companyld = rs.getLongfCOMPANYID");
String symbol = rs.getStringC’SYMBOL”) ;
String name = rs.getString("NAME");
double sharePrice = rs.getDoublef'SHAREPRICE") ;
double high = rs.getDoublef HIGH") ;

double low = rs.getDoublefLOW ");
CompanyTO to = new CompanyTO(companyld, symbol, name, sharePrice,

high, low)
companies.add(to);

}
>
catch(NamingException e)
{

// Exception handling not shown
}
return companies ;

}

public double getSharePriceBySymbol(String symbol) throws SQLException,
NamingException

{
Connection con = n u ll;
PreparedStatement stmt = null ;
double sharePrice = -1 ;
ResultSet rs = nu ll;
try
{

Context ctx = new InitialContextO ;
DataSource ds = (DataSource) ctx.lookup ("jdbc/sharesDS") ;
con = ds.getConnectionO ;
String query = ’’SELECT SharePrice FROM Company WHERE Symbol = ?" ;
stmt = con.prepareStatement(query) ;
stmt.setString(1, symbol) ;
rs = stmt.executeQueryO ;
if (rs.nextO)
{

sharePrice = rs.getDoublefSharePrice") ;
}
else

throw new SQLExceptionfNo such symbol ” + symbol);
}
catch(NamingException e) { /* Exception handling not shown */ }
return sharePrice ;

}

public class CompanyTO implements Serializable
{

private long companyld ;
private String sym bol;
private String name ;
private double sharePrice ;
private double high ;
private double lo w ;

public CompanyTOO
{

companyld = OL ;
symbol = ;
name = ;
sharePrice = 0.0;
high = 0.0 ;
low = 0.0;

}
public CompanyTO(long companyld, String symbol, String name, double sharePrice,

double high, double low)
{

this.companyld = companyld ;
this.symbol = sym bol;
this.name = nam e;
this.sharePrice = sharePrice ;
this, high = high ;
this.low = low ;

}

// set / get methods not shown

package sk.sharesapp.utils;
import java.io.Serializable;

92

package sk.sharesapp.ejb.session,stateless;
import // imports not shown

public class CompanyListerRemoteClient
{

public static void main(String [] args)
{

CompanyListerRemoteClient CompanyListerRemoteClient =
new CompanyListerRemoteClientO;

try
{

Context context = getlnitialContextO:
CompanyListerRemoieHome companyListerRemoteHome =

(CompanyListerRemoteHome)PortableRemoteObject.narrow
(co nt ext. lookupf Company Lister EJB"),

Company Lister Remot e Home, class);
CompanyListerRemote companyListerRemote;

companyListerRemote = companyListerRemoteHome.createO;
Collection companies = companyListerRemote.getCompanies();
System.out.printlnfCompany details") ;
Iterator it = companies.iteratorO ;
while (it.hasNextO)
{

CompanyTO to = (CompanyTO) it.nextO ;
System, out. prlntln(to.getCompanyldQ + "\t" + to.getSymbolO + "\t" +

to.getNameO + "Vt" + to.getSharePriceO + "U" +
to.getHighO + "\t" + to.getLowO);

}
String symbol = ’’Iona” ;
double sharePrice = companyListerRemote.getSharePriceBySymbol(symbol);
System.out.println(''\nShare price of “ + symbol + " is " + sharePrice);

}
catch(/* Exception handling not shown */) { etc. }

}
private static Context getlnitialContextO throws NamingException
{

return new InrtialContextO;

>
}

public class CompanyListerLocalClientServlet extends HttpServlet
{

private static final String CONTENT_TYPE = "text/html; charset=windows-1252” ;
CompanyListerLocalHome home ;
public void init(ServletConfig config) throws ServletException
{

super. init(config);
try
{

Context context = new InrtialContextO ;
home = (CompanyListerLocalHome)

context.lookup("java:comp/env/ejb/CompanyListerEJB");
}
catch(NamingException e)
{

throw new ServletException("Error looking up home” , e) ;

}
}

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, lOException
{

CompanyListerLocal local = n u ll;
Collection companies = n u ll;
try
{

local = home.createO ;
companies = local.getCompaniesO ;

}
catch(/* Exception handling not shown */) { etc. }

package sk.sharesapp.servlet;
import II imports not shown

93

response.setContentType(CONTENT_TYPE);
PrintWriter out = response.getWriterO;
out.println("<html>");
out.printlnf<head><title>CompanyListerLocalClientServlet</title></head>");
out.println("<body>");
out.printlnf<p>Company Details</p>");

Iterator it = companies.iteratorO ;
while (it.hasNextO)
{

CompanyTO to = (CompanyTO) it.nextO ;
out.println(to.getSymbolO + "Snbsp" + to.getNameO + ” " +

to.getSharePriceO + " “ + to.getHighO + " " +
to.getLowO + "
”) ;

}
out.println("</bodyx/html>");
out.closeO;

}

// CompanyListerLocalClientJSP.jsp

<%@ page contentType="text/html;charset=windows-1252"%>
<%@ page import="javax.naming.*" %>
<%@ page import-'java.sql.'" %>
<%@ page import="java.utH.*" %>
<%@ page import-'sk.sharesa pp. ejb.session, state less. %>
<%@ page import="sk.sharesapp.utils.*" %>

<html>
<head>

<meta http-equiv="Content-Type“ content=“text/html; charset=windows-1252''>
<title>untitled</title>

</head>
<body>
<form>

<table cellspacing="3" cellpadding="2" border='’1" width=”80%">
<%

Context context = new InitialContextO ;
CompanyListerLocalHome home = (CompanyListerLocalHome)

context.Iookupfjava:comp/env/ejb/CompanyListerEJB");

CompanyListerLocal local = n u ll;
Collection companies = n u ll;

local = home.createO ;
companies = local.getCompaniesO ;
Iterator it = companies.iteratorO ;
while (it.hasNextO)
{

CompanyTO to = (CompanyTO) it.nextO I
%>

<tr>
<td><%= to.getCompanyldO %> </td>
<td><%= to.getSymbolO %> </td>
<td><%= to.getNameO %> </td>
<td><%= to.getSharePriceO %> </td>
<td><%= to.getHighO %> </td>
<td><%= to.getLowO %> </td>

</tr>

<%
}

%>

</table>
</form>
</body>

</html>

94

package sk.sharesapp.ejb.session.stateful;
import javax.ejb.EJBObject;
import java.rmi. RemoteException;

public interface AccountRemote extends EJBObject
{

double getBalanceO throws RemoteException;

void setBalance(double balance) throws RemoteException;

boolean makePurchase(double sharePrice, int quantity) throws RemoteException;
}

package sk.sharesapp.ejb.session.stateful;
import javax.ejb.EJBHome;
import java.rmi. RemoteException;
import javax.ejb.CreateException;

public interface AccountRemoteHome extends EJBHome
{

AccountRemote createO throws RemoteException, CreateException;

AccountRemote create(double balance) throws RemoteException, CreateException;
}

package sk.sharesapp.ejb.session.stateful;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

public class AccountBean implements SessionBean
{

public double balance;
private SessionContext context;

public void ejbCreateO
{

System.out.println(”Entered ejbCreateO”) ;
balance = 50000 ;

}

public void ejbCreate(double balance)
{
System.out.printlnf Entered ejbCreate(double balance)") ;
this.balance = balance ;

}
public void ejbActivateO
{

System.out.printlnC Entered ejbActivateO") ;
}
public void ejbPassivateO
{

System.out.printlnC Entered ejbPassivateO") ;
}
public void ejbRemoveO
{
System.out.printlnf Entered ejbRemoveO”) ;

}
public void setSessionContext(SessionContext ctx)
{

System. out.printlnC Entered setSessionContextO") ;
this.context = ctx;

}
public double getBalanceO {

return balance;
}
public void setBalance(double balance) {
this.balance = balance;

}
public boolean makePurchase(double sharePrice, int quantity)
{

double newBalance = balance - sharePrice * quantity ;
if (newBalance < 0)

return false ;
else
{

balance = newBalance ;
return true ;

}
}

}

95

public class AccountRemoteClient
{

public static void main(String [] args)
{

AccountRemoteClient accountRemoteClient = new AccountRemoteClientO;
try
{

Context context = getlnitialContextO;
AccountRemoteHome accountRemoteHome =

(AccountRemoteHome)PortableRemoteObject. narrow
(context. lookup("AccountEJB”), AccountRemoteHome.class);

AccountRemote accountRemote;

// accountRemote = accountRemoteHome.createO;
accountRemote = accountRemoteHome.create(IOOOO);

System.out.println(''lnitial balance = " + accountRemote.getBalanceO);
accountRemote.makePurchase(2.5, 1000);
System.out.println("Cost of purchase = " + 2.5 * 1000) ;
System.out.printlnf New Balance = " + accountRemote.getBalanceO) ;

accountRemote.makePurchase(10.0, 500);
System.out.printlnf Cost of purchase = " + 10 * 500) ;
System.out.printlnC'New Balance = " + accountRemote.getBalanceO);

}
catch(Throwable ex)
{

ex. printStackT raceO;
}

package sk.sharesapp.ejb.session.stateful;
import II imports not shown

private static Context getlnitialContextO throws NamingException
{

return new InitialContextO;
}

public interface BmpCompanyRemote extends EJBObject
{

Long getCompanyldO throws RemoteException;
String getSymbolO throws RemoteException;
void setSymbol(String symbol) throws RemoteException;
String getNameO throws RemoteException;
void setName(String name) throws RemoteException;
double getSharePriceO throws RemoteException;
void setSharePrice(double sharePrice) throws RemoteException;
double getHighO throws RemoteException;
void setHigh(double high) throws RemoteException;
double getLow() throws RemoteException;
void setLow(double low) throws RemoteException;

}

package sk.sharesapp.ejb.entity.bmp;
import // imports not shown

public interface BmpCompanyRemoteHome extends EJBHome
{

BmpCompanyRemote createO throws RemoteException, CreateException;

BmpCompanyRemote create(Long companyld, String symbol, String name,
double sharePrice, double high, double low)

throws RemoteException, CreateException;

BmpCompanyRemote findByPrimaryKey(Long primaryKey)
throws RemoteException, FinderException;

Collection findAIIO throws RemoteException, FinderException;
}

package sk.sharesapp.ejb.entity.bmp;
import II imports not shown

96

public interface BmpCompanyLocal extends EJBLocalObject
{

Long getCompanyldO;
String getSymbol();
void setSymbol(String symbol);
String getNameO;
void setName(String name);
double getSharePriceO;
void setSharePrice(double sharePrice);
double getHighO;
void setHigh(double high);
double getLow();
void setLow(double low);

}

/* Author: Seamus Kelly
* Project: M.Sc. in Computing
' Date: September 2005
*/

package sk.sharesapp.ejb.entity.bmp;
import // imports not shown

public interface BmpCompanyLocalHome extends EJBLocalHome
{

BmpCompanyLocal createO throws CreateException;
BmpCompanyLocal findByPrimaryKey(Long primaryKey) throws FinderException;
BmpCompanyLocal create(Long companyld. String symbol, String name,

double sharePrice, double high, double low) throws CreateException;
Collection findAIIO throws FinderException;

package sk.sharesapp.ejb.entity.bmp;
import javax.ejb.EJBLocalObject;

}

package sk.sharesapp.ejb.entity.bmp;
import // imports not shown

public class BmpCompanyBean implements EntityBean
{

public Long companyld;
public String symbol;
public String name;
public double sharePrice;
public double high;
public double low;
private EntityContext context;
public Long ejbCreateO { return null; }
public void ejbPostCreateO { }
public Long ejbCreate(Long companyld, String symbol, String name,

double sharePrice, double high, double low) throws CreateException
{

System. out. print In (" ejbCreate") ;
Connection con = n u ll;
PreparedStatement ps = n u ll;
ResultSet rs = n u ll;
try
{

con = getConnectionO ;
ps = con.prepareStatement("INSERT INTO Company VALUES(?, ?, ?, ?, ?, ?)"),
ps.setLong(1, companyld.longValueO) ;
ps.setString(2, symbol) ;
ps.setString(3, name) ;
ps.setDouble(4, sharePrice);
ps.setDouble(5, high) ;
ps.setDouble(6, low) ;
int rows = ps.executeUpdateO ;
if (rows != 1) throw new CreateExceptionf Failed to create “ + companyld) ;
setCompanyld(companyld);
setSymbol(symbol);
setName(name) ; setSharePrice(sharePrice) ;
setHigh(high); setLow(low) ;

}
catch(NamingException e) { / * Exception handling not shown */ }
return companyld ;

}

public void ejbPostCreate(Long companyld, String symbol, String name,
double sharePrice, double high, double low)

{
System.out.println("Entered ejbPostCreateO”) ;

}
public Long ejbFindByPrimaryKey(Long primaryKey) throws FinderException
{

Connection con = n u ll;
PreparedStatement ps = n u ll;
ResultSet rs = n u ll;
try {

con = getConnectionO ;
ps = con.prepareStatement

("SELECT COMPANYID FROM COMPANY WHERE COMPANYID = ?') ;
ps.setLong(1, primaryKey.longValueO);
rs = ps.executeQueryO ;
if (Irs.nextO)

throw new FinderExceptionfCannot find Company " + companyld) ;
}
catch (/* Exception handling not shown * /) { /* etc. */}
return primaryKey;

}
public Collection ejbFindAIIO throws FinderException
{

Connection con = n u ll;
PreparedStatement ps = n u ll;
ResultSet rs = n u ll;
ArrayList a = new ArrayListO ;
try
{

con = getConnectionO ;
ps = con.prepareStatement("SELECT * FROM COMPANY”) ;
rs = ps.executeQueryO ;
while (rs.nextO)
{

a.add(new Long(rs,getLong(“COMPANYID"))) ;
}

}
catch (/* Exception handling not shown * /) { / * etc. */}
return a;

}

public void ejbActivateO { System.out. printlnf Entered ejbActivateO"); }
public void ejbPassivateO { System. out.printlnfEntered ejbPassivateO”) ; }
public void ejbLoadO
{

System.out.printlnfEntered ejbLoadO") ;
Long primaryKey = (Long) context.getPrimaryKeyO ;
Connection con = n u ll;
PreparedStatement ps = n u ll;
ResultSet rs = nu ll;
try
{

con = getConnectionO ;
ps = con.prepareStatement

("SELECT * FROM COMPANY WHERE COMPANYID = ?”) ;
ps.setLong(1, primaryKey longValueO) ;
rs = ps.executeQueryO ;
if (rs.nextO)
{

companyld = primaryKey;
symbol = rs.getStringfSYMBOL") ;
name = rs.getStringfNAME”) ;
sharePrice = rs.getDoublefSHAREPRICE") ;
high = rs.getDoublefHIGH") ;
low = rs.getDoublefLOW ");

}
else

throw new EJBExceptionf Failed loading Company" + companyld) ;
}
catch (/* Exception handling not shown * /) { /* etc. */}
finally
{

closeResources(con, ps, rs) ;
}

}

98

public void ejbRemoveO throws RemoveException

System.out.printlnC'Entered ejbRemoveO") ;
Connection con = n u ll;
PreparedStatement ps = n u ll;
ResultSet rs = n u ll;
try
{
con = getConnectionO ;
ps = con.prepareStatement

("DELETE FROM COMPANY WHERE COMPANYID = 7') ;
ps.setLong(1, companyld.longValueO) ;
int rows = ps.executellpdateO ;
if (rows != 1)

throw new SQLExceptionf Failed to remove Company " + companyld) ;
}
catch (/* Exception handling not shown * /) { /* etc. */}

}
public void ejbStoreO
{

System.out.printlnf Entered ejbStoreO") ;
Connection con = n u ll;
PreparedStatement ps = n u ll;
ResultSet rs = nu ll;
try
{

con = getConnectionO ;
String command =

"UPDATE COMPANY SET SYMBOL = ?, NAME = ? , SHAREPRICE = 7 ,"
“ HIGH = ?, LOW = ? WHERE COMPANYID = ?“ ;

ps = con.prepareStatement(command) ;
ps.setString(1, symbol) ;
ps.setString(2, name) ;
ps.setDouble(3, sharePrice);
ps.setDouble(4, h igh);
ps.setDouble(5, lo w);
ps.setLong(6, companyld. longValueO) ;
int rows = ps.executeUpdateO ;
if (rows != 1){throw new SQLException(”Store failed " + companyld);}

} catch (/* Exception handling not shown * /) { / * etc. * /}
}

public void setEntityContext(EntityContext ctx)
{

System.out.printlnC'Entered setEntityContextO");
this.context = ctx;

}

pubfic void unsetEntityContextO
{

System.out.printlnC’Entered unsetEntityContextO”) ;
this.context = null;

}
private Connection getConnectionO throws NamingException, SQLException
{

Context context = new InitialContextO ;
DataSource ds = (DataSource) context.lookup ("jdbc/sharesDS") ;
Connection con = ds.getConnectionO;
return con ;

}
private void closeResources(Connection con, PreparedStatement ps, ResultSet rs)

throws EJBException
{

try
{

if (rs != null) { rs.closeO ; rs = n u ll; }
if (ps != null) { ps.closeO ; ps = nu ll; }
if (con != null) { con.closeO ; con = n u ll; }

}
catch(SQLException e)
{
throw new EJBException(e.getMessageO) ;

}
}
public Long getCompanyldO { return companyld; }
public void setCompanyld(Long companyld) { this.companyld = companyld;
}
// Other set / get methods not shown

)

99

package sk.sharesapp.ejb.entity.bmp;
import // imports not shown

public class BmpCompanyRemoteClient
{

public static void main(String [] args)
{

BmpCompanyRemoteClient bmpCompanyRemoteClient =
new BmpCompanyRemoteClientO;
try
{

Context context = getlnrtialContextO;
BmpCompanyRemoteHome bmpCompanyRemoteHome =

(BmpCompanyRemoteHome)PortableRemoteObject. narrow
(context.lookupCBmpCompanyEJB"), BmpCompanyRemoteHome.class);

BmpCompanyRemote bmpCompanyRemote;
System.out.printlnCTest findByPrimaryKey(10001)");
bmpCompanyRemote =

bmpCompanyRemoteHome.findByPrimaryKey(new Long(10001));
System.out.println(bmpCompanyRemote.getSymbol() + "\t” +

bmpCompanyRemote.getNameO + "It” +
bmpCompanyRemote.getSharePriceO + "\t" +
bmpCompanyRemote.getHighO + “\t" +
bmpCompanyRemote.getLowO) ;

System.out.println(“Test findAIIO") I
Collection col = bmpCompanyRemoteHome.findAIIO ;
Iterator it = col.iteratorO ;
while (it.hasNextO)
{

BmpCompanyRemote to = (BmpCompanyRemote) it.nextO ;
System.out.println(to.getSymbolO + " i t ” +

to.getNameO + "\t" +
to.getSharePriceO + "it” +
to.getHighO + "it” +
to.getLowO) ;

}

Long primaryKey = new Long(20001) ;
System.out.println("Test Create(" + primaryKey + ")");
bmpCompanyRemoteHome.create(primaryKey, "XXX", "XXXX", 2.51, 2.61, 2.41);

System.out.println("Nowtest findByPrimaryKeyC + primaryKey + ")“) ;
bmpCompanyRemote = bmpCompanyRemoteHome.findByPrimaryKey(primaryKey) ;
System.out.println(bmpCompanyRemote.getSymbol() + "\t" +

bmpCompanyRemote.getNameO + "\t" +
bmpCompanyRemote.getSharePriceO + "\t" +
bmpCompanyRemote.getHighO + "\t" +
bmpCompanyRemote.getLowO) ;

System.out,println("Nowtest set methods)");
bmpCom pany R em ote. setSymbol("YYY”) ;
bmpCompanyRemote.setNameCYYYY") ;
bm pCom pany Remote. setS h arePr lce(3.51);
bmpCompanyRemote.setHigh(3.61) ;
bmpCompanyRemote.setLow(3.41) ;
System.out.println("Now test findByPrimaryKeyC + primaryKey + ")") ;
bmpCompanyRemote = bmpCompanyRemoteHome.findByPrimaryKey(primaryKey) ;
System.out.println(bmpCompanyRemote.getSymbol() + "\t“ +

bmpCompanyRemote.getNameO + "\t” +
bmpCompanyRemote.getSharePrice() + "\t" +
bmpCompanyRemote.getHighO + "it" +
bmpCompanyRemote.getLowO) ;

System.out.println("Nowtest RemoveO");
bmpCompany Remote. removeO;
System, out. printlnfNow test findByPrimaryKeyC + primaryKey + ")") ;
bmpCompanyRemote = bmpCompanyRemoteHome.findByPrimaryKey(primaryKey) ;
}
catch(/* Exception handling not shown ’ /) { /* etc. * /) ;
}

}
private static Context getlnitialContextO throws NamingException
{

return new InitialContextO;
}
}

r
The following implementation of the PK Block Generator Pattern
is a variation on the implementation provided in the following text:
Title: J2EE DEsign Patterns
Author: Crawford and Kaplan
Publisher: O'Reilly, 2003
ISBN: 0-596-00427-3
Page: 156
This version is implemented as a Singleton

7
package sk.sharesapp.dao ;
import II imports not shown

public class PrimaryKeyGenerator
{

private static PrimaryKeyGenerator keyGenerator = n u ll;
DataSource ds = n u ll;
private static int BLOCK_SIZE = 10 ;
private static long current = -1 ;
private static long getNextAt = -1 ;

private PrimaryKeyGeneratorO throws DaoException
{
try
{

Context context = new InitialContextO ;
ds = (DataSource) context.lookup ("jdbc/sharesDS") ;

}
catch(NamingException e)
{
throw new DaoException(e.getMessageO) ;

}
}
public synchronized static PrimaryKeyGenerator getlnstanceO throws DaoException
{

if (keyGenerator == null)
{

keyGenerator = new PrimaryKeyGeneratorO ;
}
return keyGenerator;

}

public synchronized long getNextPKO throws DaoException
{

if (current > -1 && current < getNextAt)
return current++ ;
// Retrieve a new block from the database

Connection con = null ;
PreparedStatement ps = null ;
ResultSet rs = n u ll;
try
{

con = getConnectionO ; H DUAL is a system table in Oracle
String query = "SELECT NEXTPK.NEXTVAL FROM DUAL";
ps = con.prepareStatement(query) ;
rs = ps.executeQueryO ;
if (rs.nextO)
{

long nextSeq = rs.getLongfNEXTVAL") ;
current = nextSeq * BLOCK_SIZE ;
getNextAt = current + BLOCK_SIZE ;

}
}
catch(/• Exception handling not shown 7) { /* etc. 7) ;
return current++ ;

}
private Connection getConnectionO throws DaoException
{
try
{

Connection con = ds.getConnectionO;

return con ;
}
catch(SQLException e)
{

throw new DaoException(e.getMessageO) ;

}
}

101

{
try
{

if (rs != null) { rs.closeO ; rs = nu ll; >
if (ps != null) { ps.closeO ; ps = nu ll; }
if (con != null) { con.closeO ; con = n u ll; }

}
catch(SQLException e) { throw new DaoException(e.getMessageO) ; }

private void closeResources(Connection con, PreparedStatement ps, ResultSet rs)
throws DaoException

public static void main(String[] args) throws DaoException
{

for (int i = 0 ; i < 25 ; i++)
{

PrimaryKeyGenerator keyGenerator = PrimaryKeyGenerator.getlnstanceO ;
System.out.printlnC'Next primary key: " + keyGenerator.getNextPKO) ;

}
}

}

package sk.sharesapp.exceptions;

import java.sql.* ;

public class DaoException extends SQLException
{

public DaoExceptionO
{
}
public DaoException(String aMessage)
{

super(aMessage) ;
}

}

public interface Dao
{

Collection findAIIO throws DaoException ;
}

package sk.sharesapp.dao;
import // imports not shown

package sk.sharesapp.dao ;
import // imports not shown

public class CompanyDao implements Dao
{

DataSource ds = nu ll;
public CompanyDaoO throws DaoException
{

try
{

Context context = new InitialContextO ;
ds= (DataSource) context.lookup ("jdbc/sharesDS'');

}
catch(NamingException e)
{
throw new DaoException(e.getMessageO) ;

}
}
public CompanyTO findByPrimaryKey(long companyld) throws DaoException
{

Connection con = n u ll;
PreparedStatement ps = n u ll;
ResultSet rs = nu ll;
CompanyTO to = n u ll;
try
{
con = getConnectionO
ps = con.prepareStatement

("SELECT * FROM COMPANY WHERE COMPANYID = ?”) ;
ps.setLong(1, companyld) ;

102

rs = ps.executeQueryO ;

if (irs.nextO)
throw new DaoException(''Cannot find Company * + companyld) ;

else
{
to = new CompanyTOO ;
to.setCompanyld(rs.getLong("COMPANYID"));
to.setSymbol(rs.getString("SYMBOL")):
to.setName(rs.getStringC NAME"));
to.setSharePrice(rs.getDouble("SHAREPRICE"));
to.setHigh(rs.getDouble(''HIGH")) ;
to.setLow(rs.getDouble("LOW'));

}
}
catch (SQLException e)
{

throw new DaoException(e.getMessageO) ;
}
finally { closeResources(con, ps, rs) ; }
return to;

}
public Collection findAIIO throws DaoException
{

Connection con = n u ll;
PreparedStatement ps = n u ll;
ResultSet rs = n u ll;
ArrayList a = new ArrayListO ;
try
{

con = getConnectionO i
ps = con.prepareStatement("SELECT * FROM COMPANY') ;
rs = ps.executeQueryO ;

while (rs.nextO)
{

CompanyTO to = new CompanyTOO ;
to.setCompanyld(rs.getLong(" COMPANYID'));
to.setSymbol(rs.getStringC'SYMBOL"));
to.setName(rs.getStringC'NAME''));

to.setSharePrice(rs.getDouble(' SHAREPRICE”));
to.setHigh(rs.getDouble("HIGH")) ;
to.setLow(rs.getDouble(“LOW"));
a.add(to);

}
}
catch (/* Exception handling not shown * /) { / * etc. }
return a;

}
public CompanyTO findBySymbol(String symbol) throws DaoException
{

Connection con = n u ll;
PreparedStatement ps = n u ll;
ResultSet rs = nu ll;
CompanyTO to = n u ll;
try
{

con = getConnectionO ;
ps = con.prepareStatement

('SELECT * FROM COMPANY WHERE SYMBOL = ?“) ;
ps.setString(1, symbol) ;
rs = ps.executeQueryO ;
if (Irs.nextO)

throw new DaoExceptionfCannot find Company with symbol ” + symbol) ;
else
{
to = new CompanyTOO ;
to.setCompanyld(rs.getLong(”COMPANYID"));
to.setSymbo!(rs.getString(''SYMBOL"));
to.setName(rs.getString(''NAME''));
to.setSharePrice(rs.getDouble(’SHAREPRICE"));
to.setHigh(rs.getDouble(''HIGH''));
to.setLow(rs.getDouble("LOW"));

}
}
catch (/* Exception handling not shown 7) { /* etc. 7 }
return to;

103

Connection con = n u ll;
PreparedStatement ps = nu ll;
ResultSet rs = n u ll;
long pk = -1 ;
try
{

PrimaryKeyGenerator pkGen = PrimaryKeyGenerator.getlnstanceO ;
pk = pkGen.getNextPKO ;
con = getConnectionO I
ps = con.prepareStatementf INSERT INTO Company VALUES(?, ?, ?, ?, ?, ?)”)
ps.setLong(1, pk) ;
ps.setString(2, to.getSymbolO) ;
ps.setString(3, to.getNameO) ; ps.setDouble(4, to.getSharePriceO) ;
ps.setDouble(5, to.getHighO) ;
ps.setDouble(6, to.getLowO) ;
int rows = ps.executellpdateO ;
if (rows != 1)

throw new DaoExceptionfFailed to create Company " + to.getCompanyldO)
}
catch (r Exception handling not shown * /) { /* etc. * /}
return pk ;

}
public void delete(CompanyTO to) throws DaoException
{

Connection con = n u ll;
PreparedStatement ps = nu ll; ResultSet rs = n u ll;
try
{

con = getConnectionO ;
ps = con.prepareStatement

("DELETE FROM COMPANY WHERE COMPANYID = ?") ;
ps.setLong(1, to.getCompanyldO) ;
int rows = ps. execute UpdateO ;
if (rows != 1)
throw new DaoExceptionfFailed to remove Company " + to.getCompanyldO) i

}

public long add(CompanyTO to) throws DaoException
{

catch (/* Exception handling not shown */) { /* etc. */}

public void amend(CompanyTO to) throws DaoException
{

Connection con = n u ll;
PreparedStatement ps = n u ll;
ResultSet rs = nu ll;
try
{

con = getConnectionO ;
String command =

"UPDATE COMPANY SET SYMBOL = ?, NAME = ?, SHAREPRICE = ?,
"HIGH = ?, LOW = ? WHERE COMPANYID

ps = con.prepareStatement(command) ;

ps.setString(1, to.getSymbolO) ;
ps.setString(2, to.getNameO) ;
ps.setDouble(3, to.getSharePriceO) ;
ps.setDouble(4, to.getHighO) ;
ps.setDouble(5, to.getLowO);
ps.setLong(6, to.getCompanyldO) I
int rows = ps.executeUpdateO ;
if (rows != 1)
{

throw new DaoExceptionfFailed to store Company" + to.getSymbolO) ;
}

}
catch (/* Exception handling not shown 7) { /* etc. 7 }

private Connection getConnectionO throws DaoException
{
try
{

Connection con = ds.getConnectionO;
return con ;

}
catch (/* Exception handling not shown 7) { /* etc. 7 }

}

{
try
{

if (rs != null) { rs.closeO ; rs = null ; }
if (ps != null) { ps.closeO ; ps = nu ll; }
if (con != null) { con.closeO ; con = n u ll; }

}
catch(SQLException e) { throw new DaoException(e.getMessage()) ; }

}
}

package sk.sharesapp.dao;
import II imports not shown

public class DaoFactory
{

private static final String packageName = "sk.sharesapp.dao." ;

private static DaoFactory factory = n u ll;
private HashMap map = n u ll;
private DaoFactoryO
{

map = new HashMapO ;
}
public synchronized static DaoFactory getlnstanceO
{

if (factory == null) // first time
factory = new DaoFactoryO ;

return factory ;
}

public synchronized Dao createDao(String daoName) throws DaoException
{

Dao dao = n u ll;
try
{

daoName = packageName + daoName ;

if (map.containsKey(daoName))

private void closeResources(Connectior) con, PreparedStatement ps, ResultSet rs)
throws DaoException

{
dao = (Dao) map.get(daoName) ;

}
else
{

Class theClass = Class.forName(daoName);
Object theObject = theClass.newlnstanceO ;

dao = (Dao) theObject;
map.put(daoName, dao) ;

}
}
catch (/* Exception handling not shown 7) { /* etc. 7 }
return d a o ;

}

package sk.sharesapp.dao;
import // imports not shown

public class TestCompanyDao
{

// CompanyDao dao = n u ll;
public TestCompanyDao() throws DaoException
{
// dao = new CompanyDaoO ;

}
public void testFindO throws DaoException
{

DaoFactory factory = DaoFactory.getlnstanceO ;
CompanyDao dao = (CompanyDao) factory.createDaof Company Dao");
CompanyTO to ;
System.out.println("Test findAIIO") ;
Collection col = dao.findAIIO ;
Iterator it = col.iteratorO ;
while (it.hasNextO)
{
to = (CompanyTO) it.nextO ;
display(to) ;

}
System.out.printlnCTest findByPrimaryKey(10001)“) ;

105

to = dao.findByPrimaryKey(10001) ;
display(to) ;
System.out.printlnfTest findByPrimaryKey(10005)") ;
to = dao.findByPrimaryKey(10005) ;
display(to) ;
System.out.println("Test findBySymbol(\"AIBV')”) ;
to = dao.findBySymbolC'AlB") ;
disp!ay(to);

}
public void testAddAmendDeleteO throws DaoException
{

DaoFactory factory = DaoFactory.getlnstanceO ;
CompanyDao dao = (CompanyDao) factory.createDao("CompanyDao“) ;
CompanyTO to = new CompanyTO(20001. "XXX", "XXXX", 2.51, 2.61, 2.41);
System.out.println(''Test add");
long pk = dao.add(to);
to = dao.findByPrimaryKey(pk) ;
display(to) ;
to = new CompanyTO(pk, "YYY", "YYYY’, 3.51, 3.61, 3.41);
System.out.println("Test amend");
dao.amend(to);
to = dao.find By Primary Key (pk) ;
display(to);
System.out.println(“Test delete") ; dao.delete(to);
System.out.println(”After delete") ; to = dao.findByPrimaryKey(pk);

}
public void display(CompanyTO to)
{

System.out.println(to.getCompanyldO + ”\t" + to.getSymbolO + "tt" +
to.getNameO + "V + to.getSharePriceO + " \ f +
to.getHighO + "\t“ + to.getLowO) ;

}
public static void main(String[] args)
{
try
{

TestCompanyDao t= new TestCompanyDaoO ;
t.testFindO ; t.testAddAmendDelete();

}
catch (/* Exception handling not shown * /) { /* etc. */}

}

package sk.sharesapp.ejb.entity.bmp;
import // imports not shown

public interface BmpCompanyPatternsRemoteHome extends EJBHome
{

BmpCompanyPatternsRemote createO throws RemoteException, CreateException;

BmpCompanyPattemsRemote findByPrimaryKey(Long primaryKey)
throws RemoteException, FinderException;

BmpCompanyPatternsRemote
create(String symbol, String name, double sharePrice, double high, double low)

throws RemoteException, CreateException;
}

package sk.sharesapp.ejb.entity.bmp;
import II imports not shown

public interface BmpCompanyPatternsRemote extends EJBObject
{

Long getCompanyldO throws RemoteException;
//void setCompanyld(Long companyld) throws RemoteException;
String getSymbolO throws RemoteException;
void setSymbol(String symbol) throws RemoteException;
String getNameO throws RemoteException;
void setName(String name) throws RemoteException;
double getSharePriceO throws RemoteException;
void setSharePrice(double sharePrice) throws RemoteException;
double getHighO throws RemoteException;
void setHigh(double high) throws RemoteException;
double getLow() throws RemoteException;
void setLow(double low) throws RemoteException;

}

106

public class BmpCompanyPatternsBean implements EntityBean
{

public double low;
public double high;
public double sharePrice;
public String name;
public String symbol;
public Long companyld;
private EntityContext context;

public Long ejbCreateO
{

return null;
}
public void ejbPostCreateO
{
}
public Long ejbCreate(String symbol, String name, double sharePrice,

double high, double low) throws CreateException
{

System.out.println("ejbCreate“) ;
try
{

DaoFactory factory = DaoFactory.getlnstanceO ;
CompanyDao dao = (CompanyDao) factory.createDao('’CompanyDao“) ;

CompanyTO to = new CompanyTO(companyld.longValueO,
symbol, name, sharePrice, high, low) ;

long newld = dao.add(to);
companyld = new Long(newld);

}
catch(DaoException e)
{
throw new CreateException(e.getMessageO + “ ejbCreate Failed") ;

}
return companyld ;

package sk.sharesapp.ejb.entity.bmp;
import // imports not shown

}

public void ejbPostCreate(String symbol, String name, double sharePrice,
double high, double low)

{
System.out.println("Entered ejbPostCreateO”) ;

}
public Long ejbFindByPrimaryKey(Long primaryKey) throws FinderException
{

System.out.printlnC'Entered ejbFindByPrimaryKeyO") ;
Connection con = n u ll;
try
{

DaoFactory factory = DaoFactory.getlnstanceO ;
CompanyDao dao = (CompanyDao) factory.createDao("CompanyDao“) ;
dao.findByPrimaryKey(primaryKey.longValueO);

}
catch(DaoException e) { throw new FinderException(e.getMessageO) ; }
return primaryKey;

}
public void ejbLoadO throws EJBException
{

System.out.println(”Entered ejbLoadO");
try
{

Long primaryKey = (Long) context.getPrimaryKeyO ;

DaoFactory factory = DaoFactory.getlnstanceO ;
CompanyDao dao = (CompanyDao) factory.createDaoC’CompanyDao") ;

CompanyTO to = dao.findByPrimaryKey(primaryKey.longValueO) ;
companyld = primaryKey;
symbol = to.getSymbolO ;

name = to.getNameO ;
sharePrice = to.getSharePriceO ;
high = to.getHighO I
low = to.getLowO ;

>
catch(DaoException e) { throw new EJBException(e.getMessageO) ; }

}

107

public void ejbRemoveO throws RemoveException
{

System.out.printlnf'Entered ejbRemoveO");
try
{

CompanyTO to = new CompanyTOO ;

to.setCompanyld(companyld.longValueO) ;
to.setSymbol(symbol);
to.setName(name) ;
to.setSharePrice(sharePrice) ;
to.setHigh(high) ;
to.setLow(low) ;

DaoFactory factory = DaoFactory.getlnstanceO ;
CompanyDao dao = (CompanyDao) factory.createDao("CompanyDao");
dao.delete(to);

}
catch(DaoException e) { throw new RemoveException(e.getMessageO) ;

)
public void ejbStoreO throws EJBException
{

System.out.println("Entered ejbStoreO") ;
try
{

CompanyTO to = new CompanyTOO ;
to.setCompanyld(companyl d. longValueO);
to.setSymbol(symbol);
to.setName(name) ;
to.setSharePrice(sharePrice);
to.setHigh(high) ;
to.setLow(low) ;
DaoFactory factory = DaoFactory.getlnstanceO ;
CompanyDao dao = (CompanyDao) factory.createDaofCompanyDao");
dao.amend(to),

}
catch(DaoException e) { throw new EJBException(e.getMessageO) ; }

public void ejbActivateO { System.out.println("Entered ejbActivateO") ; }

public void ejbPassivateO { System.out.printlnC'Entered ejbPassivateO”) ; }
public void setEntityContext(EntityContext ctx)
{

System.out.printlnC'Entered setEntityContextO”) ;
this.context = ctx;

}
public void unsetEntityContext()
{

System.out.printlnC'Entered unsetEntityContext()") ;
this.context = null;

}
public Long getCompanyldO
{

return companyld;
}
public void setCompanyld(Long companyld)
{

this.companyld = companyld;
}
public String getSymbolO { return symbol; }
public void setSymbol(String symbol) { this.symbol = symbol; }
public String getNameO { return name; }
public void setName(String name) { this.name = name; }
public double getSharePrice() { return sharePrice; }
public void setSharePrice(double sharePrice) { this.sharePrice = sharePrice; }
public double getHighO { return high; }
public void setHigh(double high) { this.high = high; }
public double getLow() { return low; }
public void setLow(double low) { this.low = low; }

}

package sk.sharesapp.ejb.entity.bmp;
import II imports not shown
public class BmpCompanyPatternsRemoteClient
{

public static void main(String [] args)
{

BmpCompanyPatternsRemoteClient bmpCompanyPatternsRemoteClient =
new BmpCompanyPatternsRemoteClientO;

108

try
{

Context context = getlnitialContextO;
BmpCompanyPatternsRemoteHome bmpCompanyPatternsRemoteHome =

(BmpCompanyPatternsRemoteHome)PortableRemoteObject. narrow
(context. lookupf'BmpCompanyPatternsEJB”),

bmpCompanyPatternsRemoteHome.class);
BmpCompanyPatternsRemote bmpCompanyPatternsRemote;
System .out. printlnfTest findByPrimaryKey(10001)“) ;
bmpCompanyPatternsRemote =

bmpCompanyPatternsRemoteHome.findByPrimaryKey
(new Long(10001)) ;

System.out.println(bmpCompanyPatternsRemote.getCompanyld()) ;
System.out.println(bmpCompanyPatternsRemote.getSymbol() + "\t" +

bmpCompanyPatternsRemote.getNameO + "\t" +
bmpCompanyPatternsRemote.getSharePriceO + "tt" +
bmpCompanyPatternsRemote.getHighO + "\t" +
bmpCompanyPatternsRemote.getLowO) ;

System.out. printlnf Test Create(XXX, XXXX, 2.51, 2.61, 2.41)“) ;
BmpCompanyPatternsRemote newRemote =

bmpCompanyPatternsRemoteHome.create("XXX", "XXXX",
2.51, 2.61, 2.41) ;

Long newld = newRemote.getCompanyldO ;
System.out.println(” Now test findByPrimaryKeyf + newld + ")”) ;
bmpCompanyPatternsRemote =

bmpCompanyPattemsRemoteHome.findByPrimaryKey(newld) ;
System.out.println(bmpCompanyPatternsRemote.getCompanyldO + "\t" +

bmpCompanyPatternsRemote.getSymbol() + "It” +
bmpCompanyPatternsRemote.getNameO + “It" +
bmpCompanyPatternsRemote.getSharePriceO + "\t” +
bmpCompanyPatternsRemote.getHighO + "\t“ +
bmpCompanyPatternsRemote.getLowO) ;

System.out.println("Nowtest set methods)") ;
bmpCompanyPatternsRemote.setSymbol("YYY”) ;
bmpCompanyPatternsRemote.setName("YYYY") ;
bmpCompanyPatternsRemote.setSharePrice(3.51) ;
bmpCompanyPatternsRemote. setHigh(3.61) ;
bmpCompanyPatternsRemote.setLow(3.41) ;
System.out.printlnfNow test findByPrimaryKeyf + newld + ")");

bmpCompanyPatternsRemote =
bmpCompanyPatternsRemoteHome.findByPrimaryKey(newld);

System.out.println(bmpCompanyPatternsRemote.getSymbol() + “\t" +
bmpCompanyPatternsRemote.getNameO + "\t" +
bmpCompanyPatternsRemote.getSharePriceO + “\t" +
bmpCompanyPatternsRemote.getHighO + "\t" +
bmpCompanyPatternsRemote.getLowO);

System.out.printlnfNow test RemoveO") ;
bmpCompanyPatternsRemote. removeO I
System.out.printlnfNow test findByPrimaryKeyf + newld + ")”) ;
bmpCompanyPatternsRemote =

bmpCompanyPatternsRemoteHome.findByPrimaryKey(newld);
}
catch(/* Exception handling not shown */) { /* etc. */ }
}

private static Context getlnitialContextO throws NamingException

return new InitialContextO;
}

}

package sk.sharesapp.ejb.entity.cmp;
import // imports not shown

public interface CompanyRemoteHome extends EJBHome
{

CompanyRemote createO throws RemoteException, CreateException;
CompanyRemote create(Long companyid, String symbol, String name,

Double shareprice, Double high, Double low)
throws RemoteException, CreateException;

CompanyRemote findByPrimaryKey(Long primaryKey)
throws RemoteException, FinderException;

Collection findAIIO throws RemoteException, FinderException;
Collection findCompaniesWithPriceLessThan(Double sharePrice)

throws RemoteException, FinderException;
Collection findCompaniesWithNameLikeO

throws RemoteException, FinderException;
CompanyRemote findCompanyBySymbol(String symbol)

throws RemoteException, FinderException;
}

public interface CompanyRemote extends EJBObject
{

Long getCompanyidO throws RemoteException;
String getSymbol() throws RemoteException;
void setSymbol(String symbol) throws RemoteException;
String getNameO throws RemoteException;
void setName(String name) throws RemoteException;
Double getSharepriceO throws RemoteException;
void setShareprice(Double shareprice) throws RemoteException;
Double getHighO throws RemoteException;
void setHigh(Double high) throws RemoteException;
Double getLowO throws RemoteException;
void setLow(Double low) throws RemoteException;

}

package sk.sharesapp.ejb.entity.cmp;
import // imports not shown

public abstract class CompanyBean implements EntityBean
{

private EntityContext context;

public Long ejbCreateO { return null; }

public void ejbPostCreateO { }

public Long ejbCreate(Long companyid, String symbol, String name,
Double shareprice, Double high, Double low)

{
setCsmpanyid(companyid);
setSymbol(symbol);
setName(name);
setShareprice(shareprice);
setHigh(high);
setLow(low);
return companyid;

package sk.sharesapp.ejb. entity.cmp;
import II imports not shown

}

public void ejbPostCreate(Long companyid, String symbol, String name,
Double shareprice, Double high, Double low)

{
}
public void ejbActivateO { }
public void ejbLoadO { }
public void ejbPassivateO { }
public void ejbRemoveO { }
public void ejbStoreO { }
public void setEntityContext(EntityContext ctx)
{

this.context = ctx;
}
public void unsetEntityContextO
{

this.context = null;
}
public abstract Long getCompanyidO;
public abstract void setCompanyid(Long companyid);
public abstract String getSymbolO;
public abstract void setSymbol(String symbol);
public abstract String getNameO;
public abstract void setName(String name);
public abstract Double getSharepriceO;
public abstract void setShareprice(Double shareprice);
public abstract Double getHighO;
public abstract void setHigh(Double high);
public abstract Double getLowO;
public abstract void setLow(Double low);

}

package sk.sharesapp.ejb.entity.cmp;
import II imports not shown

public class CompanyRemoteClient
{

public static void main(String [] args)
{

CompanyRemoteClient CompanyRemoteClient = new CompanyRemoteClientO;

110

try
{

Context context = getlnitialContextO;
CompanyRemoteHome companyRemoteHome =

(CompanyRemoteHome)PortableRemoteObject.narrow
(context.lookupC’CompanyEJB"), CompanyRemoteHome.class);

CompanyRemote companyRemote;

Collection companies = companyRemoteHome.findAIIO;
Iterator iter = companies.iteratorO;
while (iter.hasNextO)
{

companyRemote = (CompanyRemote)iter.nextO;
System.out.printlnfcompanyRemote.getCompanyidO + "Vt" +

companyRemote.getSymbolO + "\t* + companyRemote.getNameO + "it" +
companyRemote.getSharepriceO + "Vt" + companyRemote.getHighO + "\t" +
companyRemote.getLowO);

}

System.out.printlnC Now findCompanyBySymbol(lona)") ;
companyRemote = companyRemoteHome.findCompanyBySymbolClona');
System.out.println(companyRemote.getCompanyrdO + "Vt” +

companyRemote.getSymbolO + "Vt” + companyRemote.getNameO + "Vt" +
companyRemote.getSharepriceO + "Vt" + companyRemote.getHighO + "Vt" +
companyRemote.getLowO);

Double sharePrice = new Double(140.0) ;
System.out.println("Now list companies with share price < " + sharePrice) ;
companies =

companyRemoteHome.findCompaniesWithPriceLessThan(sharePrice) ;
iter = companies.iteratorO;
while (iter.hasNextO)
{

companyRemote = (CompanyRemote)lter.nextO;
System.out.println(companyRemote.getCompanyidO + “Vt" +

companyRemote.getSymbolO + "Vt" + companyRemote.getNameO + "Vt" +
companyRemote.getSharepriceO + "Vt” + companyRemote.getHighO + “Vt" +
companyRemote.getLowO);

}
System.out.println(“ Now list companies with name like bank") ;
companies = companyRemoteHome.findCompaniesWithNameLikeO ;
iter = companies.iteratorO;

while (iter.hasNextO)
{

companyRemote = (CompanyRemote)iter.nextO;
System.out.println(companyRemote.getCompanyidO + "Vt" +

companyRemote.getSymbolO + "Vt" + companyRemote.getNameO + "Vt" +
companyRemote.getSharepriceO + " V t " + companyRemote.getHighO + "Vt"
companyRemote.getLowO);

}
Long pk = new Long(2001);
System.out.printlnC'Add new company: 2001, AAA, AAAA, 4.75, 4.85, 4.65") ;
companyRemote = companyRemoteHome.create(pk, "AAA", “AAAA",

new Doub!e(4.75), new Double(4.85), new Double(4.95));
System.out.printlnfNow findByPrimaryKeyC + pk + ")") ;
companyRemote = companyRemoteHome findByPrimaryKey(pk) ;
System.out.println(companyRemote.getCompanyidO + "Vt" +

companyRemote.getSymbolO + "Vt" + companyRemote.getNameO + “Vt" +
companyRemote.getSharepriceO + "Vt" +- companyRemote.getHighO + "Vt" +
companyRemote.getLowO);

System.out.print In
('Now modify company: 2001, BBB, BBBB, 5.75, 5.85, 5.65, using set methods")
companyRemote.setSymbol("BBB") ;
companyRemote.setNameC'BBBB") ;
companyRemote.setShareprice(new Double(5.75)) ;
companyRemote.setHigh(new Double(5.85)) ;
companyRemote.setLow(new Double(5.65)) ;
System. out.printlnC Now findByPrimaryKeyC + pk + “) ") ;
companyRemote = companyRemoteHome.findByPrimaryKey(pk) ;
System.out.println(companyRemote.getCompanyidO + "Vt” +

companyRemote.getSymbolO + “VT + companyRemote.getNameO + "Vt" +
companyRemote.getSharepriceO + "Vt" + companyRemote.getHighO + "Vt" +
companyRemote.getLowO);

System.out.println("Now remove company" + p k) ;
companyRemote.removeO;
System.out.printlnC Now findByPrimaryKeyC + pk + ")'');
companyRemote = companyRemoteHome.findByPrimaryKey(pk) ;

}
catch(/* Exception handling not shown * /) { / ‘ e tc,*/ }

}
private static Context getlnitialContextO throws NamingException {

return new InitialContextO;
})

package sk.sharesapp.ejb. session.stateless;
import // imports not shown

public interface CompanySessionFacadeRemoteHome extends EJBHome
{

CompanySessionFacadeRemote createO
throws RemoteException, CreateException;

}

package sk.sharesapp.ejb.session.stateless;
import // imports not shown

public interface CompanySessionFacadeRemote extends EJBObject
{

long addCompany(String symbol, String name, double sharePrice,
double high, double low)

throws DaoException, RemoteException, CreateException,
N ami ngExce ption, Se rviceLocatorException;

long addCompany(CompanyTO to) throws RemoteException, CreateException,
NamingException. DaoException, ServiceLocatorException;

void amendCompany(CompanyTO to) throws FinderException,
NamingException, RemoteException. ServiceLocatorException;

void deleteCompany(CompanyTO to) throws RemoteException, FinderException,
RemoveException, NamingException, ServiceLocatorException;

CompanyTO getCompany(long companyld) throws RemoteException,
FinderException, NamingException, ServiceLocatorException;

CompanyTO getCompanyBySymbol(String symbol) throws RemoteException,
FinderException, NamingException, ServiceLocatorException;

}

package sk.sharesapp.ejb.session.stateless;
import // imports not shown

public class CompanySessionFacadeBean implements SessionBean
{

public void ejbCreateO { }
public void ejbActivateO { }
public void ejbPassivateO { }
public void ejbRemoveO { }
public void setSessionContext(SessionContext ctx) { }

public long addCompany(String symbol, String name, double sharePrice,
double high, double low)

throws CreateException, NamingException,
DaoException, ServiceLocatorException

{
PrimaryKeyGenerator pkGenerator = PrimaryKeyGenerator.getlnstanceO ;
long pk = pkGenerator.getNextPKO ;
CompanyLocalHome localHome = getCompanyLocalHomeO ;
CompanyLocal local =

localHome.ereate(new Long(pk), symbol, name, new Double(sharePrice),
new Double(high), new Double(low)) ;

return pk ;
}

public long addCompany(CompanyTO to) throws CreateException,
NamingException, DaoException, ServiceLocatorException

{
PrimaryKeyGenerator pkGenerator = PrimaryKeyGenerator.getlnstanceO ;
long pk = pkGenerator.getNextPKO ;

CompanyLocalHome localHome = getCompanyLocalHomeO ;
CompanyLocal local =

localHome.create(new Long(pk), to.getSymbolO, to.getNameO,
new Double(to.getSharePriceO),
new Double(to.getHighO),
new Double(to.getLowO)) ;

return p k ;
}

public void amendCompany(CompanyTO to) throws FinderException,
NamingException, ServiceLocatorException

{
CompanyLocalHome localHome = getCompanyLocalHomeO ;
CompanyLocal local =

localHome.findByPrimaryKey(new Long(to.getCompanyldO));
local. setSymbol(to.getSymbolO);
local.setName(to.getNameO);
local.setShareprice(new Double(to.getSharePriceO));
local.setHigh(new Double(to.getHighO));
local.setLow(new Double(to.getLowO));

}

public void deleteCompany(CompanyTO to) throws NamingException,
FinderException, RemoveException, ServiceLocatorException

{
CompanyLocalHome localHome = getCompanyLocalHomeO ;
CompanyLocal local =

localHome.findByPrimaryKey(new Long(to.getCompanyldO)) ;
local.removeO;

}

public CompanyTO getCompany(long companyld) throws NamingException,
FinderException, ServiceLocatorException

{
CompanyLocalHome localHome = getCompanyLocalHomeO ;
CompanyLocal local = localHome.findByPrimaryKey(new Long(companyld));
CompanyTO to = new CompanyTOO ;
to.setCompanyld(local.getCompanyidO.longValueO);
to.setSymbol(local.getSymbolO);
to.setName(local.getNameO);
to.setSharePrice(local.getSharepriceO.doubleValueO);
to.setHigh(local.getHighO.doubleValueO);
to.setLow(local.getHighOdoubleValueO);

return to ;
}

public CompanyTO getCompanyBySymbol(String symbol) throws NamingException,
FinderException, ServiceLocatorException

{
CompanyLocalHome localHome = getCompanyLocalHomeO ;
CompanyLocal local = localHome.findCompanyBySymbol(symbol) ;
CompanyTO to = new CompanyTOO
to.setCompanyld(local,getCompanyidO.longValueO);
to.setSymbol(local.getSymbolO);
to.setName(local.getNameO);
to.setSharePrice(local.getSharepriceO.doubleValueO);
to.setHigh(local.getHighO.doubleValueO);
to.setLow(local.getHighO.doubleValueO);

return to ;
}

private CompanyLocalHome getCompanyLocalHomeO
throws ServiceLocatorException //NamingException

{
//final InitialContext context = new InitialContextO;
//return
//(CompanyLocalHome)context.lookup("java:comp/env/ejb/local/CompanyEJB");

ServiceLocator serviceLocator = ServiceLocator.getlnstanceO ;
CompanyLocalHome localHome = (CompanyLocalHome)

serviceLocator.getLocalHomefCompanyEJB") ;
return localHome ;

}
}

package sk.sharesapp.ejb.session.stateless;
import // imports not shown

public class CompanySessionFacadeRemoteClient
{

public static void main(String [] args)
{

CompanySessionFacadeRemoteClient companySessionFacadeRemoteClient =
new CompanySessionFacadeRemoteClientO;

try
{

Context context = getlnitialContextO;
CompanySessionFacadeRemoteHome companySessionFacadeRemoteHome
(CompanySessionFacadeRemoteHome)PortableRemoteObject.narrow

(context. Iookup("CompanySessionFacadeEJB"),
CompanySessionFacadeRemoteHome.class);

CompanySessionFacadeRemote companySessionFacadeRemote =
companySessionFacadeRemoteHome.createO;

// The id is ignored as pk will be generated automatically
CompanyTO to = new CompanyTO(123, "AAA", "AAAA", 4.5, 4.6, 4.4);
System.out.printlnfCreate new company(AAA, AAA. 4.5, 4.6, 4.4)“) ;
// long pk = companySessionFacadeRemote.addCompany(to) ;
long pk= companySessionFacadeRemote.addCompanyCAAA". "AAAA", 4.5,

4.6, 4.4) ;
System.out.println("Primary key of new company is " + pk) ;
System.out .printlnf Now get companyf + pk + ")“) ;

to = companySessionFacadeRemote.getCompany(pk);
System.out.println(to.getCompanyld() + "\t" + to.getSymbolO + “\P +

to.getNameO + ”\t" + to.getSharePriceO + "\t“ +
to.getHighO + "V + to.getLowO) I

System.out.println("Nowget company(AAA)“) ;
to = companySessionFacadeRemote.getCompanyBySymbolC'AAA") ;
System.out. println(to.getCompanyldO + "\t" + to.getSymbolO + "\t" +

to.getNameO + "\t” + to.getSharePriceO + "\t” +
to.getHighO + + to.getLowO) ;

System.out.println("Now amend companyf + pk + “ BBB, BBBB, 5.5, 5.6, 5.4)'');
to = new CompanyTO(pk, "BBB", "BBBB", 5.5, 5.6, 5.4);
companySessionFacadeRemote.amendCompany(to);
System.out.println("Nowget company amended company{“ + pk + ")");
to = companySessionFacadeRemote.getCompany(pk);
System.out.println(to.getCompanyldO + "Vt" + to.getSymbolO + “\t" +

to.getNameO + "VP + to.getSharePriceO + “\t” +
to.getHighO + "V + to.getLowO) I

System.out.println("Now delete company(" + pk + ”) ") ;
companySessionFacadeRemote.deleteCompany(to);
System.out. println ("Now attempt to get company deleted companyf + pk + ")");
to = companySessionFacadeRemote.getCompany(pk);

}
catch(/* Exception handling not shown */ { /* etc. */ }

private static Context getlnitialContextO throws NamingException
{

return new InitialContextO;
}

}

package sk.sharesapp.utils ;
import // imports not shown

r
This client is used by local clients to lookup
local home interfaces. Exercise for students:
1. Modify to allow other lookups, e.g. data sources,

Queue connections etc.
2. Write Service Locator for remote look ups
The class is implemented as Singleton.

public class ServiceLocator
{

private static ServiceLocator ServiceLocator = null ;
private Context context = n u ll;
private Map cache = n u ll;

private ServiceLocatorO throws ServiceLocatorException
{

try
{

context = new InitialContextO ;
cache = new HashMapO ;

}
catch(NamingException e)
{

throw new ServiceLocatorException(e.getMessageO) ;
}

}
public static ServiceLocator getlnstanceO throws ServiceLocatorException
{

if (ServiceLocator == null)
ServiceLocator = new ServiceLocatorO ;

return ServiceLocator;
>

114

public EJBLocalHome getLocalHome(String ejbName)
throws ServiceLocatorException

{
EJBLocalHome localHome = null;
try
{

localHome = (EJBLocalHome) cache.get(ejbName) ;
if (localHome == null) // not already in cache
{

localHome = (EJBLocalHome)
context. Iookup("java:comp/env/ejb/local/" + ejbName);

cache. put(ejbName, localHome); II cache it
}

}
catch (NamingException e)
{

throw new ServiceLocatorException(e.getMessageO) ;

}
catch (Exception e)
{

throw new ServiceLocatorException(e.getMessage()) ;
}
return localHome;

}
}

package sk.sharesapp.ejb.mdb;
import // imports not shown

public class SimpleMessageDrivenEJBBean
implements MessageDrivenBean, MessageListener

{
private MessageDrivenContext context;
QueueConnection queueConnection ;
QueueSession queueSession ;
QueueReceiver queueReceiver;

try
{

System.out.printlnfMDB ejbCreateO") ;
InitialContext ctx = new InitialContextO;
System.out.printlnC Looking up Queue connection factory...");
QueueConnectionFactory queueConnectionFactory =

(QueueConnectionFactory) ctx.lookup("jms/QueueConnectionFactory");
System.out.println(” Looking up Queue...");
Queue queue = (Queue) ctx.lookup(”jms/simpleQueue");
System.out.printlnf Creating Queue connection...”) ;
queueConnection = queueConnectionFactory.createQueueConnectionO ;
queueConnection.startO ;
System.out.println("Getting queue session...");
queueSession = queueConnection.createQueueSession(false,

Session.AUTO_ACKNOWLEDGE);
System.out.println(“Creating queue receiver (i.e. a queue consumer)...") ;
queueReceiver = queueSession.createReceiver(queue) ;

}
catch(/* Exception handling not shown * /) { /* etc. 7 }

}
public void onMessage(Message msg)
{

try
{

if (msg instanceof TextMessage)
{

TextMessage txtMessage = (TextMessage) msg ;
>
else if (msg instanceof MapMessage)
{

MapMessage mapMessage = (MapMessage) msg ;
String one = mapMessage.getStringfone”) ;
int two = mapMessage.getlnt("two");
double three = mapMessage.getDoublefthree") ;
System.out.printlnC'Message received one :" + one + + two + " “ + three) ;

}

public void ejbCreateO
{

115

if (msg instanceof ObjectMessage)

{
ObjectMessage objMessage = (ObjectMessage) msg ;
ArrayList a = (ArrayList) objMessage.getObjectO ;
for (int i = 0 ; i < a.sizeO ; i++)
{
String s = (String) a.get(i) ;
System.out.println(s);

}
>

}
catch(/* Exception handling not shown * /) { /* etc. */ }

}
public void ejbRemoveQ
{
try
{

queueReceiver.closeO;
queueSession.closeO;
queueConnection.stopO;

}
catch(/’ Exception handling not shown * /) { / ' etc. */ }

}
public void setMessageDrivenContext(MessageDrivenContext ctx)
{
this.context = ctx;

}
}

package sk.sharesapp.utils;
import II imports not shown

public class SimpleMessageDrivenSender
{

Context context = n u ll;
QueueConnection queueConnection ;
QueueSession queueSession ;
QueueSender queueSender;

context = getlnitialContextO;
}
public void runO
{
try
{

System.out.printlnfStarting queue...");
startQueueO ;
System.out.printlnfSending messages...");
sendMessagesO ;
System.out.printlnfStop queue") ;
stopQueueO ;

}
catch(/* Exception handling not shown * /) { /"e tc . */ }

}

public void startQueueO
{
try
{

System.out.printlnC’Looking up Queue connection factory...”) ;
QueueConnectionFactory queueConnectionFactory =

(QueueConnectionFactory) context.lookupfjms/QueueConnectionFactory");
System.out.printlnf Looking up Queue...”) ;
Queue queue = (Queue) context. lookupOjms/simpleQueue”) ;
System.out.println("Creating Queue connection...");
queueConnection = queueConnectionFactory.createQueueConnectionO ;
System.out.printlnfStarting queueConnection...");
queueConnection.startO ;
System.out.printlnfGetting queue session...");
queueSession = queueConnection. createQueueSession(false,

Session.AUTO_ACKNOWLEDGE);
System.out.printlnf Creating queue sender (i.e. a queue producer)...");
queueSender = queueSession.createSender(queue) ;

}

public SimpleMessageDrivenSenderO
{

catch(/* Exception handling not shown * /) {/"e tc. * / }

116

public void sendMessagesO throws RemoteException,
NamingException, JMSException

{
System.out.printlnC'Sending text message..,");
TextMessage txtMessage = queueSession.createTextMessageO ;
txtMessage.setTextf'This is my text message");
queueSender.send(txtMessage);
System.out.println("Sending map message...”) ;
MapMessage mapMessage = queueSession.createMapMessageO I
mapMessage.setStringProperty(”MessageFormat", "Version 3.4") ;
mapMessage.setStringfone", "This is map message one") ;
mapMessage. se tln tf two", 2) ;
mapMessage.setDouble("three", 3 .0);
queueSender.send(mapMessage) ;

ArrayList a = new ArrayListO ;
a .add fone"); a.addf'two") ; a.addfthree") ;
ObjectMessage objectMessage = queueSession.createObjectMessageO ;
objectMessage.setObject(a) ;
queueSender.send(objectMessage) ;

}
public void stopQueueO
{

try
{

System.out.println("Closing queue connection...");
queueConnection.closeO I
System.out.println("Closing queue connection completed...");

}
catch(/* Exception handling not shown * /) { /"e tc . */ } }

}
public static void main(String [] args)
{

SimpleMessageDrivenSender SimpleMessageDrivenSender =
new SimpleMessageDrivenSenderO;

try {
SimpleMessageDrivenSender.runO ;

}

}
}

c a tc h (/* Exception handling not shown * /) { /"e tc . 7 })

private Context getlnitialContextO
{

try
{

context = new InitialContextO;
}
catch(/* Exception handling not shown * /)

return context ;
}

}

{/"e tc . */ } }

117

Appendix B: Chapter 5 code

package sk.sharesapp.utils ;
import sk.sharesapp.exceptions. RandomGeneratorException;

public class MyRandomGenerator
{

public MyRandomGeneratorO
{
}
II generate random number between 1 and end

public static int generateNumber(int end) throws RandomGeneratorException
{

if (end < 2)
{

throw new RandomGeneratorExceptionfend value must be greater >= 2‘
}
double x = Math.randomO ; // 0.0 <= x < 1.0
int number = (int) ((x * end) + 1) ;

return number;
}
II generate n random numbers between 1 and end, inclusive

public static intQ generateNumbers(int n, int end)
throws RandomGeneratorException

{
if (n < 2) {

throw new RandomGeneratorExceptionfn must be >= 2") ;
}
else if (end < 2) {

throw new RandomGeneratorException("end value must be >= 2“) ;
}
else if (n > end) {

throw new RandomGeneratorExceptionfn cannot be greater than end")
}

int[] vals = new int[end + 1] ;
for (int i = 0 ; i <= end ; i++)
{

vals[i] = i ;
}

int[] numbers = new in t[n];
for (int i = 0 ; i < n ; i++)
{

double x = Math.randomO ; // 0.0 <= x < 1.0
int number = (int) ((x * (end - i)) + 1); //1 <= number <= end, end reducing by 1
numbers[i] = vals[number] ; // use numberas index into array
// now swap selected number out of array to avoid repetition
vals[number] = vals[end - i] ;
vals[end - i] = numbers[i];

}
return numbers ;

}

public static void main(String[] args) throws RandomGeneratorException
{

for (int i = 0 ; i < 100 ; i++)
{

int n = MyRandomGenerator.generateNumber(6);
if (n < 2)

n = 2 ;

intQ numbers = MyRandomGenerator.generateNumbers(n, 42) ;
for (int j = 0 ; j < n ; j++)
{

System.out.print(numbers[j] + “I t ") ;
}
System.out.printlnO ;

}

>
}

/* Author: Seamus Kelly
* Project: M.Sc. in Computing
* Date: September 2005
*

* SharePriceNews.java
*
* This application is the message producer of the main
* application. This application uses CompanyListerEJB
* to read the list of companies from the database. It
* continuously selects at random a number of these companies
* to update the share price. It randomly selects the % change
' in the share price and sends a list of theese to a
* message queue.
*/

public class SharePriceNews
{

private static final int minNumUpdates = 3 ; II i.e. number of updates
private static final int maxNumUpdates = 7 ; II in trend
private static final int minNumCompanies = 2 ;
private static final double modifier = 20.0 ;
II Modifier = 20 means that max. percentage change = 100 / 20, i.e. 5%
prh/ate int numberUpdates = 0 ;
private int{] companiesForlfpdate ;
private int[] trend ;
-Context context = n u ll;
ArrayList companies = n u ll;
ArrayList updateCompaniesList = n u ll;

QueueConnection queueConnection ;
QueueSession queueSession ;
QueueSender queueSender;
ObjectMessage objectMessage ;

public SharePriceNewsO
{

context = getlnitialContextO;

package sk.sharesapp.utils;
import // imports not shown

}

public void runO
{
try
{

companies = readCompaniesO ;
Z/showCompaniesO ;
//selectCompaniesForllpdateO ;
/ZshowCompaniesForUpdateO ;
//updateCompaniesO ;
//sendPriceChanges(updateCompaniesList) ;
//showCompaniesForUpdateO ;

System.out.println("Starting queue...");
startQueueO ;
System.out.printlnfStarted queue...") ;

for (int i = 0 ; i < 100 ; i++)
{

System.out.println(” i = " + i) ;
updateCompaniesO ;
while (numberUpdates > 0)
{

System.out.println("number updates = “ + numberUpdates) ;
sendPriceChanges(updateCompaniesList) ;
//companies = readCompaniesO ;
//showCompaniesO ;
Thread.sleep(1000) ;
updateCompaniesO ;

}
}
System.out.printlnfStop queue");
stopQueueO ;

}
catch(/* Exception handling not shown 7) { / "e tc .* / }

119

public ArrayList readCompaniesO
{

ArrayList a = n u ll;
try
{

Context context = getlnitialContextO;
CompanyListerRemoteHome CompanyListerRemoteHome =

(CompanyListerRemoteHome)
PortableRemoteObject.narrow(context.lookup

("CompanyListerEJB"), CompanyListerRemoteHome.class);
CompanyListerRemote CompanyListerRemote =

companyListerRemoteHome.createO;
a = (ArrayList) companyListerRemote.getCompaniesO ;

}
catch(/* Exception handling not shown * /) { / * etc. * /}
return a ;

public void showCompaniesO
{

if (companies == null)
return ;

for (int i = 0 ; i < companies.sizeO ; i++)
{

CompanyTO to = (CompanyTO) companies.get(i);
System.out.println(to.getCompanyldO + “tt" + to.getSymbolO + "\t" +

to.getNameO + “\t" + to.getSharePriceO + "\t" +
to.getHighO + "\t" + to.getLowO) ;

}

public void startQueueO
{

try
{

System.out.println("Looking up Queue connection factory...”) ;

QueueConnectionFactory queueConnectionFactory =
(QueueConnectionFactory) context. lookupf jms/QueueConnection Factory");

System.out.printlnfLooking up Queue...");
Queue queue = (Queue) context.lookup(”jms/myQueue") ;
System.out.println("Creating Queue connection...");
queueConnection = queueConnectionFactory.createQueueConnectionO ;
System.out.println("Starting queueConnection...");
queueConnection.startO ;
System.out.println("Getting queue session...");
QueueSession queueSession = queueConnection.createQueueSession(false,

Session. AUTO_ACKNOWLEDGE);
System.out.printlnfCreating queue sender (i.e. a queue producer)...");
queueSender = queueSession.createSender(queue) ;
ObjectMessage = queueSession.createObjectMessage();

}
catch(I' Exception handling not shown * /) { / * etc. * /}

}
public void stopQueueO
{
try
{

System.out.printlnf Closing queue connection...");
queueConnection.close() ;

}
catch(/* Exception handling not shown * /) { / * etc. * /}

}
public void showCompaniesForUpdateO
{

for (int k = 0 ; k < companiesForUpdate. length ; k++)
{

System.out.println(companiesForUpdate[k] + " \ f +trend[k]) ;
}
for (int i = 0 ; i < updateCompaniesList.sizeO ; i++)
{

ShareChange sc = (ShareChange) updateCompaniesList.get(i) ;
System.out.println(sc.getCompanyldO + "\t" + sc.getPercentChangeO) ;
System.out.println(trend[i]) ;

}

120

public void updateCompaniesO throws RandomGeneratorException
{

if (numberUpdates == 0)
numberUpdates = selectCompaniesForUpdate();

// Generates updateCompaniesList.sizeO numbers between 1 and 100
II Must not be more than 100 companies
int[] perCentChange =

MyRandomGenerator.generateNumbers(updateCompaniesList.sizeO, 100) ;

II (3) For each company, randomly generate % change in share price
for (int i = 0 ; i < updateCompaniesList.sizeO ; i++)
{

double change = ((double) (trend[i] * perCentChange[i])) / modifier;
System.out.println(change) ;
ShareChange sc = (ShareChange) updateCompaniesList.get(i) ;
sc.setPercentChange(change);

}
numberUpdates-- ;

}
public int selectCompaniesForUpdateO throws RandomGeneratorException
{

// Determine number of updates to apply to estabish trend (3 to 7)
numberUpdates = MyRandomGenerator.generateNumber(maxNumUpdates);
if (numberUpdates < minNumUpdates)

numberUpdates = minNumUpdates ;

// (1) Generate random number n, the number of companies to update
II keys.length is the total number of companies

int n = MyRandomGenerator.generateNumber(companies.size()) ;
if (n < minNumCompanies)

n = minNumCompanies ;

// (2) Randomly select these n companies

companiesForUpdate =
MyRandomGenerator.generateNumbers(n, companies.sizeO) ;
updateCompaniesList = new ArrayList(companiesForUpdate.length) ;

for (int i = 0 ; i < companiesForUpdate.length ; i++)
{

CompanyTO to = (CompanyTO) companies.get(companiesForUpdate[i] -1) ;
ShareChange sc = new ShareChangeO ;
sc.setCompanyld(to.getCompanyldO);

// System.out.println(sc.getCompanyldQ) ;
updateCompaniesList.add(sc) ;

}
trend = new in t[n];
for (int i = 0 ; i < n ; H-+)
{

int direction = MyRandomGenerator.generateNumber(2) ;
if (direction == 1)

trend[i] = -1 ;
else

trend[i] = 1 ;
}
return numberUpdates ;

}
public void sendPriceChanges(ArrayList list) throws

RemoteException, NamingException, JMSException
{

objectMessage.setObject((ArrayList) lis t) ;
queueSender.send(objectMessage) ;
System.out.printlnfObject message sent...") ;

}
public static void main(String [] args)
{

SharePriceNews sharePriceNews = new SharePriceNewsO;
try {

sharePriceNews.runO ;
}
catch(/* Exception handling not shown 7) { /* etc. 7 }

}
private Context getlnitialContextO
{

try { context = new InitialContextO; }
catch(/* Exception handling not shown * /) { /* etc. 7 }
return context ;

}
}

121

package sk.sharesapp.ejb.mdb;

import java.util.ArrayList;
package sk.sharesapp.ejb.mdb;

import // imports not shown

public class PriceWatchMessageDrivenBean
implements MessageDrivenBean, MessageListener

{
private MessageDrivenContext context;
QueueConnection queueConnection ;
QueueSession queueSession ;
QueueReceiver queueReceiver;

public void ejbCreateO
{
try
{

System.out.printlnfMDB ejbCreateO") ;
InitialContext ctx = new InitialContextO;
System.out.println("Got initial context...");
System.out.println("Looking up Queue connection factory...");
QueueConnectionFactory queueConnectionFactory =

(QueueConnectionFactory) ctx.lookupfjms/QueueConnectionFactory");
System.out.println(” Looking up Queue...");
Queue queue = (Queue) ctx.lookupO'jms/myQueue") ;
System.out.printlnfCreating Queue connection...");
queueConnection = queueConnectionFactory.createQueueConnectionO ;
System.out.printfStarting queueConnection" ;
queueConnection.startO ;
System.out.printlnfGetting queue session...”) ;
queueSession = queueConnection.createQueueSession(false,

Session. AUTO_ACKNOWLEDGE);

System.out.println("Creating queue receiver (i.e. a queue consumer)...") ;
queueReceiver = queueSession.createReceiver(queue) ;

}
catch(/* Exception handling not shown * /) { / * etc. 7 }

}
public void onMessage(Message msg)
{
try
{

CompanyLocalHome home = getCompanyLocalHomeO ;
if (msg instanceof ObjectMessage)

{
ObjectMessage objMessage = (ObjectMessage) msg ;
ArrayList a = (ArrayList) objMessage.getObjectO ;
for (int i = 0 ; i < a.sizeO ; i++)
{

ShareChange sc = (ShareChange) a.get(i);
CompanyLocal local =

home.findByPrimaryKey(new Long(sc.getCompanyldO)) ;
double oldSharePrice = local.getSharepriceO-doubleValueO ;
double high = local.getHighO.doubleValueO ;
double low = local.getLow().doubleValue() ;
double newSharePrice = oldSharePrice * (1 + sc.getPercentChangeO/ 100.0);
local.setShareprice(new Double(newSharePrice));
if (newSharePrice > high) local.setHigh(new Double(newSharePrice));
if (newSharePrice < low) local.setLow(new Double(newSharePrice));

}
}

}
catch(/ ' Exception handling not shown 7) { / * etc. 7 } catch(FinderException e)

\
public void ejbRemoveO
{
try {

queueReceiver.closeO;
queueS ession.closeO;
queueConnection.stopO;

}
catch(I* Exception handling not shown 7) { /* etc. 7 } catch(FinderException e)

122

public void setMessageDrivenContext(MessageDrivenContext ctx)
{
this.context = ctx;

}
private CompanyLocalHome getCompanyLocalHomeO throws NamingException
{
final InitialContext context = new InitialContextO;
return (CompanyLocalHome)

context.lookupC'javaxomp/env/ejb/local/CompanyEJB");
}

}

package sk.sharesapp.ejb.entity.cmp;
import // imports not shown

public interface PlayerLocalHome extends EJBLocalHome
{

PlayerLocal createO throws CreateException;
PlayerLocal findByPrimaryKey(Long primaryKey) throws FinderException;
Collection findAIIO throws FinderException;
PlayerLocal create(Long playerid, String codename, String password,

String lastname, String firstname, String department)
throws CreateException;

PlayerLocal findByCodeNamePassword(String codename, String password)
throws FinderException;

PlayerLocal findByCodeName(String codename) throws FinderException;
}

package sk.sharesapp.ejb.entity.cmp;
import // imports not shown

public interface PlayerLocal extends EJBLocalObject
{

Long getPlayeridO;
String getCodenameO;
void setCodename(String codename);
String getPasswordO;
void setPassword(String password);
String getLastnameO;
void setLastname(String lastname);
String getFirstnameO;
void setFirstname(String firstname);
String getDepartmentO;
void setDepartment(String department);
Collection getGameEJ B_playeridO;
void setGameEJB_playerid(Collection gameEJB_playerid);

}

package sk.sharesapp.ejb.entity.cmp;
import // imports not shown

public abstract class PlayerBean implements EntityBean
{

private EntityContext context;

public Long ejbCreateO { return null; }
public void ejbPostCreateO {)

public Long ejbCreate(Long playerid, String codename, String password,
String lastname, String firstname, String department)

{
setPlayerid(playerid);
setCodename(codename);
setPassword(password);
setLastname(lastname);
setFirstname(firstname);
setDepartment(department);
return playerid;

}
public void ejbPostCreate(Long playerid, String codename, String password,

String lastname, String firstname, String department)
{ }

123

public void ejbActivateO { }
public void ejbLoadO { }
public void ejbPassivateO { }
public void ejbRemoveO { }
public void ejbStoreO { }
public void setEntityContext(EntityContext ctx)
{

this.context = ctx;
}
public void unsetEntityContextO
{
this.context = null;

}

public abstract Long getPlayeridO;
public abstract void setPlayerid(Long playerid);
public abstract String getCodenameO;
public abstract void setCodename(String codename);
public abstract String getPasswordO;
public abstract void setPassword(String password);
public abstract String getLastnameO;
public abstract void setLastname(String lastname);
public abstract String getFirstnameO;
public abstract void setFirstname(String firstname);
public abstract String getDepartmentO;
public abstract void setDepartment(String department);
public abstract Collection getGameEJB_playeridO;
public abstract void setGameEJB_playerid(Collection gameEJB_playerid);

}

package sk.sharesapp.utils;
import java.io.Serializable;

public class PlayerTO implements Serializable
{

private long playerid;
private String codeName;
private String password;
private String lastName;
private String firstName;
private String department;

this, playerid = OL ;
this.codeName = ;
this.password = ;
this.lastName = "";
this.firstName = ~ ;
this.department = ;

}
public PlayerTO(String codeName, String password, String lastName,

String firstName, String department)
{

this.playerid = playerid ;
this.codeName = codeName ;
this.password = password ;
this.lastName = lastName ;
this.firstName = firstName ;
this.department = department;

}
public long getPlayeridO { return playerid; }
public void setPlayerld(long playerid) { this playerid = playerid; }

II Other set / get methods not shown
}

package sk.sharesapp.ejb.entity.cmp;
impbrt // imports not shown

public class PlayerLocalDTO implements Serializable
{

private Long playerid;
private String codename;
private String password;
private String lastname;
private String firstname;
private String department;
private Collection gameEJB_playeridDTO;
public PlayerLocalDTO()
{
}

public PlayerTOO
{

124

if (playerLocal != null)
{

playerid = playerLocal.getPlayeridO;
codename = playerLocal.getCodenameO;
password = playerLocal.getPasswordO;
lastname = playerLocal.getLastnameO;
firstname = playerLocal.getFirstnameO;
department = playerLocal. getDepartmentO;

}

public Long getPlayeridO

return playerid;

public PlayerLocalDTO(PlayerLocal playerLocal)
{

Other set / get methods not shown

jublic Collection getGameEJB_playeridDTO0

return gameEJB_playeridDTO;

private void JoadGameEJB_playeridDTO(Collection gameEJB_playerid)

final int len = (gameEJB_playerid == null ? 0 : gameEJB_playerid.size());
gameEJB_playeridDTO = new ArrayList(len);
if (len > 0)
{

for (Iterator iter = gameEJB_playerid.iteratorO;iter.hasNextO;)
{
gameEJB_playeridDTO.add(newGameLocalDTO((GameLocal)iter.next()));

}
}

}
public void setGameEJB_playeridDTO(Collection gameEJB_playeridDTO)
{
this.gameEJB_playeridDTO = gameEJB_playeridDTO;

}

package sk.sharesapp.ejb.entity.cmp;
import // imports not shown

public interface GameLocalHome extends EJBLocalHome
{

GameLocal createO throws CreateException;
GameLocal findByPrimaryKey(Long primaryKey) throws FinderException;
Collection findAIIO throws FinderException;
GameLocal create(Long gameid) throws CreateException;

}

package sk.sharesapp.ejb.entity.cmp;
import // imports not shown

public interface GameLocal extends EJBLocalObject
{

Long getGameidO;
Double getBalanceO;
void setBalance(Double balance);
Timestamp getPeriodO;
void setPeriod(Timestamp period);
PlayerLocal getPlayerEJB_playeridO;
void setPlayerEJB_playerid(PlayerLocal playerEJB_playerid);

}

package sk.sharesapp. ejb.entity.cmp;
import // imports not shown

public abstract class GameBean implements EntityBean
{

private EntityContext context;

public Long ejbCreateO { return null; }
public void ejbPostCreateO { }
public Long ejbCreate(Long gameid)
{

setGameid(gameid);
return gameid;

}

125

public void ejbPostCreate(Long gameid) { }
public void ejbActivateO { }
public void ejbLoadO { }
public void ejbPassivateO { }
public void ejbRemoveO { >
public void ejbStoreO { }
public void setEntityContext(EntityContext ctx)
{

this.context = ctx;
}
public void unsetEntityContextO
{
this.context = null;

}
public abstract Long getGameidO;
public abstract void setGameid(Long gameid);
public abstract Double getBalanceO;
public abstract void setBalance(Doubie balance);
public abstract Timestamp getPeriodO;
public abstract void setPeriod(Timestamp period);
public abstract PlayerLocal getPlayerEJB_playeridO;
public abstract void setPlayerEJB_playerid(PlayerLocal playerEJB_playerid);

}

package sk.sharesapp.utils;
import // imports not shown

public class GameTO implements Serializable, Comparable
{

private long gameid;
String codename;
private double balance;
private Timestamp period;
public GameTOO { }
public GameTO(long gameid, String codename, double balance, Timestamp period)
{
this.gameld = gameid;
this, codename = codename ;
this.balance = balance;
this, period = period;

}

public long getGameidO { return gameid; }
public void setGameid(long gameid) { this.gameld = gameid; }

// sort in descending order, needed as EJB QL has no "ORDER BY'
public int compareTo(Object obj)
{

GameTO other = (GameTO) o b j;
return (int) (other.balance - balance) ;

}
}

package sk.sharesapp.ejb.entity.cmp;
import // imports not shown

public class GameLocalDTO implements Serializable
{

private Long gameid;
private Double balance;
private Timestamp period;
private PlayerLocalDTO playerEJB_playeridDTO;

public GameLocalDTOO { }

public GameLocalDTO(GameLocal gameLocal)
{

if (gameLocal != null)
{

gameid = gameLocal.getGameidO;
balance = gameLocal.getBalance();
period = gameLocal.getPeriodO;

}
}

public Long getGameidO
{

return gameid;
}

II other set / get methods not shown

126

return playerEJB playeridDTO;
}
public void setPiayerEJB_playeridDTO(Playerl_ocalDTO playerEJB_playeridDTO)
{
this.playerEJB_playeridDTO = playerEJB_playeridDTO;

}
}

package sk.sharesapp.ejb.session.stateless;
import // imports not shown

public interface PlayerGameSessionFacadeRemoteHome extends EJBHome
{

PlayerGameSessionFacadeRemote createO
throws RemoteException, CreateException;

}

package sk.sharesapp.ejb. session.stateless;
import II imports not shown

public interface PlayerGameSessionFacadeRemote extends EJBObject
{

Long addPlayer(PlayerLocalDTO dto) throws CreateException,
ServiceLocatorException, NamingException, RemoteException, DaoException;

Long addPlayer(String codeName, String password. String lastName,
String firstName, String department)

throws CreateException, RemoteException, NamingException,
FinderException,DaoException, ServiceLocatorException;

void amendPlayer(PlayerLocalDTO dto) throws ServiceLocatorException,
NamingException, FinderException. RemoteException;

void deletePlayer(PlayerLocalDTO dto) throws FinderException,
RemoveException, ServiceLocatorException, NamingException,

RemoteException;
Long addGame(GameLocalDTO dto) throws RemoteException, CreateException,

FinderException, NamingException, DaoException, ServiceLocatorException;

public PlayerLocalDTO getPlayerEJB_playeridDTO0
{

Long addGame(Double balance, Timestamp period, PlayerLocal playerLocal)
throws RemoteException, CreateException, FinderException,

NamingException, DaoException, ServiceLocatorException;
Long addGame(Double balance, Timestamp period, Long playerid)

throws DaoException, FinderException, NamingException,
ServiceLocatorException, CreateException, RemoteException;

void deleteGame(GameLocalDTO dto) throws RemoteException, FinderException,
RemoveException, NamingException, ServiceLocatorException;

PlayerLocalDTO getPlayer(String codeName, String password)
throws NamingException, ServiceLocatorException, FinderException,

RemoteException;
PlayerLocalDTO getPlayer(String codename) throws RemoteException,

NamingException, FinderException, ServiceLocatorException;
PlayerLocalDTO getPlayer(Long primaryKey) throws RemoteException,

NamingException, FinderException, ServiceLocatorException,
GameLocalDTO getGame(Long primaryKey) throws NamingException,

ServiceLocatorException, FinderException, RemoteException;
PlayerLocalDTO getPlayerGames(Long primaryKey) throws NamingException,

ServiceLocatorException, FinderException, RemoteException;
Collection getSortedGamesO throws NamingException, ServiceLocatorException,

FinderException, RemoteException;

package sk.sharesapp.ejb.session.stateless;
import II imports not shown

publicb lic class PlayerGameSessionFacadeEJBBean implements SessionBean
{

public void ejbCreateO { }
public void ejbActivateO { }
public void ejbPassivateO { }
public void ejbRemoveO { }
public void setSessionContext(SessionContext ctx) { }

public Long addPlayer(String codeName, String password, String lastName,
String firstName, String department)

throws NamingException, FinderException, DaoException,
CreateException, ServiceLocatorException

{
PrimaryKeyGenerator pkGenerator = PrimaryKeyGenerator.getlnstanceO ;
long id = pkGenerator.getNextPKO ;
Long pk = new Long(id);
PlayerLocalHome localHome = getPlayerLocalHomeO ;
// 'te s t if codename already exists 7
PlayerLocal local = localHome.create(pk, codeName, password,

lastName, firstName, department) ;
return pk ;

}

public Long addPlayer(PlayerLocalDTO dto) throws CreateException,
ServiceLocatorException, NamingException, DaoException

{
PrimaryKeyGenerator pkGenerator = PrimaryKeyGenerator.getlnstanceO ;
long id = pkGenerator.getNextPKO ;
Long pk = new Long(id) ;

PlayerLocalHome localHome = getPlayerLocalHomeO ;
PlayerLocal local = localHome.create(pk, dto.getCodenameO, dto.getPassword(),

dto.getLastnameO, dto.getFirstnameO, dto.getDepartmentO) ;
return pk;

}

public void amendPlayer(PlayerLocalDTO dto) throws FinderException,
ServiceLocatorException, NamingException

{
PlayerLocalHome localHome = getPlayerLocalHomeO ;
PlayerLocal local = localHome.findByPrimaryKey(dto.getPlayeridO);
local.setCodename(dto.getCodenameO);
local.setPassword(dto.getPasswordO);
local.setLastname(dto.getLastnameO);
local.setFirstname(dto.getFirstnameO);
local.setDepartment(dto. get DepartmentO);

}

public void deletePlayer(PlayerLocalDTO dto) throws FinderException,
RemoveException, ServiceLocatorException, NamingException

{
PlayerLocalHome localHome = getPlayerLocalHomeO ;
PlayerLocal local = localHome.findByPrimaryKey(dto.getPlayeridO) ;
local. removeO;

}

public PlayerLocalDTO getPlayer(String codeName, String password) throws
NamingException, FinderException, ServiceLocatorException

{
PlayerLocalHome localHome = getPlayerLocalHomeO ;
PlayerLocal local = localHome.findByCodeNamePassword(codeName, password) ;
PlayerLocalDTO dto = new PlayerLocalDTOO
dto.setPlayerid(local.getPlayeridO) ;
dto.setCodename(local.getCodenameO);
dto.setPassword(local.getPasswordO);
dto.setLastname(local.getLastnameO);
dto.setFirstname(local.getFirstnameO);
dto.setDepartment(local.get DepartmentO);
// Not necessary to return games hanging from this player
return dto ;

}
public PlayerLocalDTO getPlayer(String codeName) throws FinderException,

NamingException, ServiceLocatorException
{

PlayerLocalHome localHome = getPlayerLocalHomeO ;
PlayerLocal local = localHome.findByCodeName(codeName);
PlayerLocalDTO dto = new PlayerLocalDTOO I
dto.setPlayerid(local.getPlayeridO) ;
dto.setCodename(local.getCodenameO);
dto.setPassword(local.getPasswordO);
dto.setLastname(local.getLastnameO);
dto.setFirstname(local.getFirstnameO);
dto. setDepartment (local.get DepartmentO);

// Not necessary to return games hanging from this player
return dto;

}

public PlayerLocalDTO getPlayer(Long primaryKey) throws NamingException.
FinderException, ServiceLocatorException

{
PlayerLocalHome localHome = getPlayerLocalHomeO ;
PlayerLocal local = localHome.findByPrimaryKey(primaryKey) ;
PlayerLocalDTO dto = new PlayerLocalDTOO ;
dto.setPlayerid(local.getPlayeridO) ;
dto.setCodename(local.getCodenameO);
dto.setPassword(local.getPasswordO);
dto.setLastname(local.getLastnameO);
dto.setFirstname(local.getFirstnameO);
dto.setDepartment(local.getDepartment());
return dto;

}
public PlayerLocalDTO getPlayerGames(Long primaryKey) throws

NamingException, FinderException, ServiceLocatorException
{

PlayerLocalHome localHome = getPlayerLocalHomeO ;
PlayerLocal local = localHome.findByPrimaryKey(primaryKey) ;
PlayerLocalDTO dto = new PlayerLocalDTOO ;
dto.setPlayerid(local.getPlayeridO) ;
dto.setCodename(local.getCodenameO);
dto.setPassword(local.getPasswordO);
dto.setLastname(local.getLastnameO);
dto.setFirstname(local.getFirstnameO);
dto,setDepartment (local, get DepartmentO);
// Now hang games onto player
Collection colLocal = local.getGameEJB_playeridO ;
ArrayList a = new ArrayListO ;
Iterator it = colLocal.iteratorO ; int i = 0 ;
while (it.hasNextO) {

GameLocal gameLocal = (GameLocal) it.nextO ;
GameLocalDTO gameDTO = new GameLocalDTOO ;
gameDTO.setGameid(gameLocal. getGameidO);
game DTO.set Balance(gameLocal. getBalanceO) ;
gameDTO.setPeriod(gameLocal.getPeriodO);
a.add(gameDTO);

}
dto.setGameEJB_playeridDTO(a);
return dto;

public GameLocalDTO getGame(Long gamePK) throws NamingException,
FinderException, ServiceLocatorException

{
GameLocalHome gameLocalHome = getGameLocalHome() ;
GameLocal gameLocal = gameLocalHome.findByPrimaryKey(gamePK) ;

GameLocalDTO gameDTO = new GameLocalDTOO ;
gameDTO.setGameid(gameLocal.getGameidO);
gameDTO.setBalance(gameLocal.getBalanceO);
gameDTO.setPeriod(gameLocal.getPeriodO);

// Now find player for this game
PlayerLocal playerLocal = gameLocal.getPlayerEJB_playeridO ;
// Transfer player details to DTO
PlayerLocalDTO playerDTO = new PlayerLocalDTOO ;
playerDTO.setPlayerid(playerLocal.getPlayeridO);
playerDTO.setCodename(playerLocal.getCodenameO);
playerDTO.setPassword(playerLocal.get PasswordO);
playerDTO.setLastname(playerLocal.getLastname());
playerDTO.setFirstname(playerLocal.getFirstname());
playerDTO.setDepartment(playerLocal.get DepartmentO);

gameDTO.setPlayerEJB_playeridDTO(playerDTO);

return gameDTO ;
}

public Collection getSortedGamesO throws FinderException, NamingException,
ServiceLocatorException

{
GameLocalHome gameLocalHome = getGameLocalHomeO ;
Collection col = gameLocalHome.findAIIO ;
ArrayList games = new ArrayListO ;
Iterator it = col. iteratorO ;
while (it.hasNextO)
{

GameLocal gameLocal = (GameLocal) it.nextO ;
PlayerLocal playerLocal = gameLocal.getPlayerEJB_playeridO ;
GameTO to = new GameTOO ;
to.setGameid(gameLocai.getGameid0.longValueO);
to.setCodename(playerLocal.getCodenameO);

129

to.setBalance(gameLocal.getBaiance().doubleValueO);
to.setPeriod(gameLocal.getPeriodO);
games.add(to) ;

}
Collections.sort(games); // No “ORDER BY' in EJB QL
return games ;

}

public Long addGame(GameLocalDTO dto) throws NamingException,
CreateException, FinderException, DaoException, ServiceLocatorException

{
PrimaryKeyGenerator pkGenerator = PrimaryKeyGenerator.getlnstanceO ;
long id = pkGenerator.getNextPKO ;
Long pk = new Long(id) ;

GameLocalHome gameLocalHome = getGameLocalHomeO ;
GameLocal gameLocal = gameLocalHome.create(pk);
gameLocal.setBalance(dto.getBalanceO);
gameLocal.setPeriod(dto.getPeriodO);
// Find player associated with this game
PlayerLocalHome playerHome = (PlayerLocalHome)getPlayerLocalHomeO ;
PlayerLocal playerLocal = (PlayerLocal)

playerHome.findByPrimaryKey(dto.getPlayerEJB_playeridDTO().getPlayeridO) ;

gameLocal,setPlayerEJB_playerid(playerLocal);

return pk;
}

public Long addGame(Double balance, Timestamp period, PlayerLocal playerLocal)
throws NamingException, CreateException,

DaoException, ServiceLocatorException
{

PrimaryKeyGenerator pkGenerator = PrimaryKeyGenerator.getlnstanceO ;
long id = pkGenerator.getNextPKO ;
Long pk = new Long(id) ;

GameLocalHome gameLocalHome = getGameLocalHomeO ;
GameLocal gameLocal = gameLocalHome.create(pk);
gameLocal.setBalance(balance);
gameLocal.setPeriod(period);

gameLocal.setPlayerEJB_playerid(playerLocal);

return pk;
}

public Long addGame(Double balance, Timestamp period, Long playerid)
throws CreateException, DaoException, FinderException,

NamingException, ServiceLocatorException
{

PrimaryKeyGenerator pkGenerator = PrimaryKeyGenerator.getlnstanceO ;
long id = pkGenerator.getNextPKO ;
Long pk = new Long(id) ;

GameLocalHome gameLocalHome = getGameLocalHomeO ;
GameLocal gameLocal = gameLocalHome.create(pk) ;
game Local. setBalance(balance);
gameLocal.setPeriod(period);

II Find player associated with this game
PlayerLocalHome playerHome = (PlayerLocalHome)getPlayerLocalHomeO ;
PlayerLocal playerLocal = (PlayerLocal)

playerHome.findByPrimaryKey(playerld) ;

gameLocal.setPlayerEJB_playerid(playerLocal);

return pk;
}

public void deleteGame(GameLocalDTO dto) throws NamingException,
FinderException, RemoveException, ServiceLocatorException

{
GameLocalHome localHome = getGameLocalHomeO ;
GameLocal local = localHome.findByPrimaryKey(dto.getGameidO) ;

local.removeO;;
1

130

{
//final InitialContext context = new InitialContextO;
//return (PlayerLocalHome)context.lookup("java:comp/env/ejb/local/RayerEJB");

ServiceLocator ServiceLocator = ServiceLocator.getlnstanceO ;
PlayerLocalHome localHome =

(PlayerLocalHome) serviceLocator.getLocalHome(''PlayerEJB") ;
return localHome ;

}

private GameLocalHome getGameLocalHome()
throws NamingException, ServiceLocatorException

{
ServiceLocator ServiceLocator = ServiceLocator.getlnstanceO ;
GameLocalHome localHome =

(GameLocalHome) service Locator.get Local Hom ef GameEJB”) ;
return localHome ;

}
}

package sk.sharesapp.ejb.session.stateless;
import // imports not shown

public class PlayerGameSessionFacadeRemoteClient
{

PlayerGameSessionFacadeRemote playerGameSessionFacadeRemote = null;

public PlayerGameSessionFacadeRemoteClientO
throws RemoteException, NamingException, CreateException

{
Context context = getlnitialContextO;
PlayerGameSessionFacadeRemoteHome

playerGameSessionFacadeRemoteHome =
(PlayerGameSessionFacadeRemoteHome)PortableRemoteObject. narrow
(context.lookupf PlayerGameSessionFacadeEJB”),

PlayerGameSessionFacadeRemoteHome.class);
playerGameSessionFacadeRemote =

playerGameSessionFacadeRemoteHome.createO;

private PlayerLocalHome getPlayerLocalHomeO
throws NamingException, ServiceLocatorException

}

public void testPlayerO throws RemoteException, CreateException,
ServiceLocatorException, RemoveException, DaoException,

FinderException, NamingException
{

System.out.printlnfaddPlayer(abcdef, abcdef, Smith, John, Science”);
// Long pk = playerGameSessionFacadeRemote.addPlayer(“abcdef", "abcdef,
// "Smith", "John", "Science");
PlayerLocalDTO to = new PlayerLocalDTOO ;
to.setPlayerid(new Long(111)); II Will be auto generated, so value Prevalent
to.setCodenamefabcdef);
to.setPassword("a bcdef');
to.setLastnamefSmith");
to.setFirstnamefJohn");
to.setDepartment(”Science");
Long pk = playerGameSessionFacadeRemote.addPlayer(to) ;

System.out.println("Nowfind by primary ke y " + pk);
PlayerLocalDTO dto = playerGameSessionFacadeRemote.getPlayer(pk) ;
display(dto) ;
System, out.printlnf Now find by codename, password: abcdef abcdef);
dto = playerGameSessionFacadeRemote.getPlayer(’’abcdef, ’’abcdef) ;
display(dto) ;
System.out.println("Now find by codename abcdef);
dto = playerGameSessionFacadeRemote.getPlayer(pk);
display(dto) ;
System.out.println("Now amend, ghijkl ghijkl jones ann eng”);
dto.setCodename("ghijkr) ; dto.setPassword("ghijkl");
dto.setLastnamef'jones"); dto.setFirstnamefann");
dto.setDepartmentC'eng'');
playerGameSessionFacadeRemote.amendPlayer(dto);
display(dto) ;
System.out.printlnf Now find by primary ke y" + pk);
dto = playerGameSessionFacadeRemote.getPlayer(pk);
display(dto);
System.out.printlnf Now delete “);
playerGameSessionFacadeRemote.deletePlayer(dto);
System.out.printlnf Now attempt to find by primary key ” + p k);
dto = playerGameSessionFacadeRemote.getPlayer(pk);

}

public void testPlayerGamesO throws RemoteException, CreateException,
ServiceLocatorException, RemoveException, DaoException,

FinderException, NamingException
{

System.out,println("Try getPlayerO firs t");
PlayerLocalDTO dto =

playerGameSessionFacadeRemote.getPlayer(new Long(10001)) ;
display(dto);
System.out.println("Nowtry getPlayerGamesO”);
dto = playerGameSessionFacadeRemote.getPlayerGames(new Long(10001)) ;
System.out.printlnfand display");
displayPlayerGames(dto);

}

public void testGameO throws RemoteException, CreateException,
ServiceLocatorException, RemoveException, DaoException,

FinderException, NamingException
{

GregorianCalendar gc = new GregorianCalendarO ;
long millisecs = gc.getTimelnMillisO ;
ArrayList a = new ArrayListO ;
System.out.println("addPlayer(abcdef, abcdef, Smith, John, Science");
PlayerLocalDTO playerDTO = new PlayerLocalDTOO ;
playerDTO.setPlayerid(new Long(111)); // auto generated, so value irrevalent
playerDTO.setCodename("abcdef);
playerDTO.setPassword("abcdef);
playerDTO. setLastnamefSmith");
playerDTO.setFirstnam e(" John");
playerDTO.setDepartmentf Science");
Long playerPK= playerGameSessionFacadeRemote.addPlayer(playerDTO);
playerDTO.setPlayerid(playerPK); II ensure TO has correct pk, needed below
System.out.print)n(” Now add game for this player");
GameLocalDTO gameDTOI = new GameLocalDTOO ;
gameDTOI ,setGameid(new Long(1)) ; II pk generated automatically
gameDTOI ,setBalance((new Double(1000)));
gameDTOI ,setPeriod(new Timestamp(millisecs));

gameDTOI .setPlayerEJB_playeridDTO(playerDTO);

Long gamePK= playerGameSessionFacadeRemote.addGame(gameDTOI) ;
System.out.printlnfPK for this game: ” + gamePK + " now get this game") ;

gameDTOI = playerGameSessionFacadeRemote.getGame(gamePK) ;
display(gameDTOI) ;
System.out.printlnC'Adding gam e" + gameDTOI.getGameidO + " to ArrayList a")
a.add(gameDTOI) ;

System.out.println(“ Now add another game for this player");
GameLocalDTO gameDT02 = new GameLocalDTOO ;
gameDT02.setGameid(new Long(1)); // pk generated automatically
gameDT02.setBalance((new Double{2000)));
gameDT02.setPeriod(newTimestamp(miilisecs));
gameDT02,setPlayerEJB_playeridDT0(playerDT0);
gamePK = playerGameSessionFacadeRemote.addGame(gameDT02);
System.out.printlnC'PK for this game: ” + gamePK + ” now get this gam e");
gameDT02 = playerGameSessionFacadeRemote.getGame(gamePK);
display(gameDT02) ;
System.out.printlnC'Adding gam e" + gameDTOI .getGameidO + " to ArrayList a")
a.add(gameDT02) ;

System.out.printlnC'Now add another game for this player");
GameLocalDTO gameDTO3 = new GameLocalDTOO ;
gameDT03.setGameid(new Long(1)) ; pk generated automatically
gameDT03.setBalance((new Double(2000)));
gameDT03.setPeriod(new Timestamp(millisecs));
gameDT03.setPlayerEJB_playeridDT0(playerDT0);
gamePK = playerGameSessionFacadeRemote.addGame(gameDT03) ;
System.out.printlnC'PK for this game: “ + gamePK + " now get this gam e");
gameDTO3 = playerGameSessionFacadeRemote.getGame(gamePK);
display(gameDT03) ;
System.out.printlnC’Adding gam e" + gameDTOI .getGameidO + " to ArrayList a”)
a.add(gameDT03) ;

System.out.printlnfAdd the Arraylist of games to player") ;
player DTO. setGameEJ B_playerid DTO(a);
System.out.printlnC Now display player’s games") ;
Collection col = playerDTO.getGameEJB_playeridDTO0 ;
if (col == null)

System.out.printlnfcol is nu ll");

Iterator it = col.iteratorO ;
while (it.hasNextO)
{

GameLocalDTO game = (GameLocalDTO) it.nextO ;
display(game) ;

}
}
System.out.println("Now perform cascade delete") ;
playerGameSessionFacadeRemote.deletePlayer(playerDTO);

System.out.println(”Now attempt to get player" + playerPK) ;
playerGameSessionFacadeRemote.getPlayer(playerPK) ;

}
public void display(PlayerLocalDTO dto)
{

System.out.println(dto.getPlayeridO + + dto.getCodenameO + "\T +
dto.getPasswordO + "tt" + dto.getLastnameO + "\t" +
dto.getFirstnameO + "\t” + dto.getDepartmentO) I

}
public void displayPlayerGames(PlayerLocalDTO dto)
{

System.out.println(dto.getPlayerid() + "\t" + dto.getCodenameO + "Vt" +
dto.getPasswordO + "\t" + dto.getLastnameO + ”\t" +
dto.getFirstnameO + "\t" + dto.getDepartmentO) ;

Collection col = dto.getGameEJB_playeridDTO0 ;
if (col == null || col.sizeO == 0)

System .out. println(" No games") ;
else
{

Iterator it = col.iteratorO ;
while (it.hasNextO)
{

GameLocalDTO gameDTO = (GameLocalDTO) it.nextO I
System.out.printfGame details:");
System.out.println(gameDTO.getGameidO + "\t" +

gameDTO.getBalanceO + "\t" + gameDTO.getPeriodO) ;
}

}

{
System.out. printf'Game details:");
System.out.println(dto.getGameidO +”\t,,+ dto.getBalanceO +"\t"+ dto.getPeriodO) ;
System.out.printf Played b y :");
display(dto.getPlayerEJB_playeridDTO0) ;

}
public static void testTimestampO
{

GameLocalDTO dto = new GameLocalDTOO ;
dto.setGameid(new Long(1000));
dto.setBalance(new Double(100));
GregorianCalendar gc = new GregorianCalendarO :
long millisecs = gc.getTimelnMillisO ;
dto.setPeriod(new Timestamp(millisecs));
System.out.println(dto.getGameidO + "V +

dto.getBalanceO + "\t" + dto.getPeriodO) ;
}
public static void main(String [] args)
{
try
{

PlayerGameSessionFacadeRemoteClient client =
new PlayerGameSessionFacadeRemoteClientO :

//client.testPlayerO;
client.testGameO;
//client.testPlayerGamesO;
//client.testTimestampO ;

}
catch(Exception e)
{

System.out.println(e.getMessageO) ;
}

}
private static Context getlnitialContextO throws NamingException
{

return new InitialContextO:

public void display(GameLocalDTO dto)

}
}

133

package sk.sharesapp. ejb. session, stateful;
import II imports not shown

public interface PortfolioRemoteHome extends EJBHome
{

PortfolioRemote createO throws RemoteException, CreateException;
PortfolioRemote create(Long playerid, double balance)

throws RemoteException, CreateException;
}

package sk.sharesapp.ejb.session.stateful;
import // imports not shown

public interface PortfolioRemote extends EJBObject
{

double getBalanceO throws RemoteException;
void setBalance(double balance) throws RemoteException;
void purchaseShares(FolioTO folio)

throws RemoteException, StockExchangeException;
void sellShares(int foliold, long quantity) throws RemoteException,

StockExchangeException, FinderException, ServiceLocatorException;
void sellAIISharesO throws RemoteException, CreateException, FinderException,

StockExchangeException, ServiceLocatorException, DaoException;
Long getPlayerldO throws RemoteException;
void setPlayerld(Long playerid) throws RemoteException;
public Collection getFoliosO throws RemoteException;

}

package sk. sharesa pp. ejb.session.stateful;
import // imports not shown;

public class PortfolioBean implements SessionBean
{

public Long playerid;
public ArrayList folios;
public double balance;
private SessionContext context;

{
playerid = new Long(OL) ;
balance = 50000 ; II Default balance
folios = new ArrayListO ;

}
public void ejbCreate(Long playerid, double balance)
{

this.playerid = playerid ;
this.balance = balance ;
folios = new ArrayListO ;

}
public void ejbActivateO { }
public void ejbPassivateO { }
public void ejbRemoveO { }
public void setSessionContext(SessionContext ctx)
{
this.context = ctx;

}
public double getBalanceO {

return balance;
}
public void setBalance(double balance) {
this.balance = balance;

}
public Collection getFoliosO
{

return folios;
}
public void setFolios(ArrayList folios)
{
this.folios = folios;

}
public void purchaseShares(FolioTO folio) throws StockExchangeException
{

double cost = folio.getPurchasePriceO * folio.getQuantityO ;
double newBalance = balance - cos t;
if (newBalance < 0)
throw new StockExchangeExceptionflnsufficient funds. Balance"

+ balance + " Cost “ + cost) ;

public void ejbCreateO

134

folios.add(folio) ;
balance = newBalance ;
System.out.println("Affer purchase shares'1) ;
showPortfolioO ;

}
public void sellShares(int foliold, long quantity) throws FinderException,

StockExchangeException, ServiceLocatorException

{
boolean found = false ;
for (int i = 0 ; i < folios. sizeO ; i++)
{

FolioTO folio = (FolioTO) folios.get(i) ;
if (foliold == folio.getFolioldO)
{
found = true ;
long sharesRemaining = folio.getQuantity() - quantity ;
if (sharesRemaining < 0)
{

throw new StockExchangeExceptionfERROR! Insufficient shares, owns "
folio.getQuantityO + " attempting to se ll" + quantity) ;

}
String symbol = folio.getSymbolO ;
CompanyLocalHome localHome = getCompanyLocalHomeO ;
CompanyLocal local =

localHome.findByPrimaryKey(new Long(folio.getCompanyldO)) ;
double sharePrice = local.getSharepriceO-doubleValueO ;
if (sharesRemaining > 0)
{

folio.setQuantity(sharesRemaining) ; folio.displayO ;
}
else
{

folios.remove(i) ;
}
balance += sharePrice * quantity ;

}
}
if (found == false)
throw new StockExchangeExceptionf'This folio does not exist");

System.out.println("After selling shares”) ; showPortfolioO ;
}

public void sellAIISharesO throws CreateException, DaoException, FinderException,
StockExchangeException, ServiceLocatorException

{
for (int i = 0 ; i < folios.sizeO ; i++)
{

FolioTO folio = (FolioTO) folios.get(i) ;
String symbol = folio.getSymbolO ;
CompanyLocalHome CompanyLocalHome = getCompanyLocalHomeO ;
CompanyLocal CompanyLocal =

companyLocalHome.findByPrimaryKey(new Long(folio.getCompanyldO)) ,
double sharePrice = companyLocal.getSharepriceO-doubleValueO ;
System.out.printlnfxxxShareprice" + sharePrice) ;
balance += sharePrice * folio.getQuantityO ;

}
PrimaryKeyGenerator pkGenerator = PrimaryKeyGenerator.getlnstanceO ;
long id = pkGenerator.getNextPKO I
Long pk = new Long(id) ;
GameLocalHome gameLocalHome = getGameLocalHomeO ;
GameLocal gameLocal = gameLocalHome.create(pk) ;
GregorianCalendar gc = new GregorianCalendarO ;
Timestamp period = new Timestamp(gc.getTimelnMillisO) ;
gameLocal.setBalance(new Double(balance));
gameLocal.setPeriod(period);
PlayerLocalHome playerHome = (PlayerLocalHome) getPlayerLocalHomeO ;
PlayerLocal playerLocal = (PlayerLocal) playerHome.findByPrimaryKey(playerld) ;
gameLocal.setPlayerEJB_playerid(playerLocal);
folios.clearO;
System.out. println f After selling all shares”) ;
showPortfolioO ;

}
private void showPortfolioO
{

System.out.println(playerld + '"s portfolio " + "Balance " + balance) ;
for (int i = 0 ; i < folios.sizeO ; i++) {

FolioTO folio = (FolioTO) folios.get(i) ;
System.out.println(folio.getFoliold() + ”\t" + folio.getCompanyldO + "\t" +

folio.getSymbolO + "\t" + + folio.getPurchasePriceO + "Vt" +
folio.getQuantityO) ;

}
}

{
Service Locator service Locator = ServiceLocator.getlnstanceO ;
CompanyLocalHome localHome =

(CompanyLocalHome) serviceLocator.getLocalHome("CompanyEJB") ;
return localHome ;

}

private GameLocalHome getGameLocalHomeO throws ServiceLocatorException
{

Service Locator serviceLocator = ServiceLocator.getlnstanceO ;
GameLocalHome localHome =

(GameLocalHome) serviceLocator.getLocalHome("GameEJB") ;
return localHome ;

}

private PlayerLocalHome getPlayerLocalHomeO throws ServiceLocatorException
{

ServiceLocator serviceLocator = ServiceLocator.getlnstanceO ;
PlayerLocalHome localHome =

(PlayerLocalHome) serviceLocator.getLocalHome("PlayerEJB”) ;
return localHome ;

}
public Long getPlayerldO
{

return playerid;
}
public void setPlayerld(Long playerid)
{
this.playerid = playerid;

}

private CompanyLocalHome getCompanyLocalHomeO
throws ServiceLocatorException

package sk.sharesapp.utils;
import java.io.Serializable;

public class FolioTO implements Serializable
{

static long nextld = 10001L ;
private long foliold ;

private long companyld ;
private String sym bol;
private double purchasePrice ;
private long quantity ;

public FolioTO()
{
foliold = nextld++ ;
companyld = OL ; symbol = " " ;
purchasePrice = 0.0 ; quantity = 0 ;

}
public FolioTO(long companyld, String symbol, double purchasePrice, long quantity)
{
this.foliold = nextld++ ;
this.companyld = companyld;
this.symbol = sym bol;
this.purchasePrice = purchasePrice ;
this.quantity = quantity ;

}

// get / set methods not shown

public void displayO
{

System.out.println(getCompanyldO + ”\t" + getSymbolO + "\t" +
getPurchasePriceO + "\t" + getQuantityO) ;

}
public static void main(String[] args)
{

FolioTO folio = new FolioTOO ;
folio.displayO ;
folio.setCompanyld(10001);
folio.setSymbolCAlB") ;
folio.setPurchasePrice(200.5) ;
folio.setQuantity(IO);
folio.displayO ;
FolioTO folio2 = new FolioTO(10001, "Iona", 78.9, 200) ;
folio2.display0 ;

>
}

public class PortfolioRemoteClient
{

public static void main(String [] args)
{

PortfolioRemoteClient portfolioRemoteClient = new PortfolioRemoteClientO;
try
{

Context context = getlnrtialContextO;
/* PortfolioRemoteHome portfolioRemoteHome =

(PortfolioRemoteHome)PortableRemoteObject. narrow
(context.lookupfPortfolioEJB"), PortfolioRemoteHome.class);

PortfolioRemote portfolioRemote;

Long playerid = new Long(10001) ;
portfolioRemote = portfolioRemoteHome.create(playerld, 50000);
portfolioRemote.setPlayerld(playerld);
FoHoTO folio = new FolioTO(10001, "AIB", 18.2, 100) ;
long id1 = folio.getFolioldO ;
portfolioRemote. purchaseShares(folio);
folio = new FolioTO(10001, "AIB", 18.2, 200) ;
long id2 = folio.getFolioldO ;
portfolioRemote.purchaseShares(folio);
folio = new FolioTO(10002, "Iona", 2.7, 100) ;
long id3 = folio.getFolioldO ;
portfolioRemote. purchaseShares(folio);
folio = new FolioTO(10002, “AIB", 2.7, 200) ;
long id4 = folio.getFolioldO ;
portfolioRemote.purchaseShares(folio);
//Testing for overflow
//folio = new FolioTO(10001, "AIB", 18.2, 5000) ;
//Long id5 = folio.getFolioldO ;
//portfolioRemote.purchaseShares(folio);

//portfolioRemote.sellShares(id1, 100);
//portfolioRemote.sellShares(id1, 50);
//portfolioRemote.sellShares(id1, 200);
portfolioRemote.sellAIISharesO;

package sk.sharesapp.ejb.session.stateful;
import II imports not shown

7

PlayerGameSessionFacadeRemoteHome
playerGameSessionFacadeRemoteHome =

(PlayerGameSessionFacadeRemoteHome)PortableRemoteObject. narrow
(context.lookupO'PlayerGameSessionFacadeEJB"),

PlayerGameSessionFacadeRemoteHome.class);
PlayerGameSessionFacadeRemote playerGameSessionFacadeRemote =

playerGameSessionFacadeRemoteHome.createQ;
Collection col = playerGameSessionFacadeRemote.getSortedGamesO ;
Iterator it = col.iteratorO ;
while (it.hasNextO)
{

GameTO to = (GameTO) it.nextO i
System.out.println(to.getGameidO + “VT+ to.getBalanceO +"\t" + to.getPerrodO) ;

}
}
catch(/* Exception handling not shown */ ({ /* etc. 7

}

private static Context getlnitialContextO throws NamingException
{

return new InitialContextO;
}

}

package sk.controller.servlet;
import II imports not shown;

public class FrontController extends HttpServlet
{

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws lOException, ServletException

{
Command commandHandler = n u ll;
String command = request.getParameter("command") ;
HttpSession session = request.getSession(true) ;

String state = (String) session.getAttribute("state") ;

137

if (command == null || state == null) // First time controller is called
{

command = “Home" ;
state = "NotRegistered" ;
session.setAttributefstate", sta te);
Locale locale = request.getLocaleO ;
ResourceBundle messages ;
String header = request.getHeader("User-Agent") ;
if (header.indexOf("Mozilla”) == -1) // use wireless bundle
{

session.setAttributeC'device” , "wireless");
messages = ResourceBundle.getBundle

("sk.sharesapp.resources.w_MyResources", locale);
}
else
{

session.setAttributeC'device", "p c ");
messages = ResourceBundle.getBundle

("sk.sharesapp. resources. My Resources", locale) ;

}
session.setAttributeC'messages", messages);

}
ResourceBundle messages =

(ResourceBundle) session.getAttributefmessages") ;
// Check if ValueList handler needed
if ([(command.equalsfViewLeagueTable")

|| command.equals(”ViewSectionTable")))
{

try
{

ValueListHandlerSessionFacadeRemote remoteListHandler =
(ValueListHandlerSessionFacadeRemote)

session.getAttribute(''remoteListHandler");
if (remoteListHandler != null)
{

remoteListHandler.removeO;
session.removeAttributefremoteList Handler") ;

}
}

{
catch(RemoveException e)

throw new ServletException("FrontController" + e.getMessageO) ;
}

}
CommandFactory factory = CommandFactory.getlnstanceO ;
try
{

commandHandler = factory.createCommand(command) ;
}
catch(CommandCreation Exception e)
{

throw new ServletExceptionfFrontController" + e.getMessageO) ;
}
if (commandHandler == null)

throw new ServletExceptionflllegal command handler ” + command);
else
{

String page = commandHandler.execute(request, response) ;
String device = (String) session.getAttribute("device");
if (device, equalsfw ireless"))

page = "w_" + page ; II different JSP for wireless devices
gotoPage(page, request, response) ;

}
return ;

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws lOException, ServletException {
doGet(request, response) ;

}
public void gotoPage(String page, HttpServletRequest request,

HttpServletResponse response) throws lOException, ServletException
{

Token.saveToken(request) ; II To prevent duplicate submissions
page = "/WEB-INF/private/" + page ;
String encodedURL = response.encodeURL(page) ;
RequestDispatcher dispatcher =

getServletContextO getRequestDispatcher(encodedURL) ;
dispatcher.forward(request, response) ;

}

package sk.sharesapp.utils ;
import // imports not shown

public class Token II Used to prevent duplicate submissions
{

public Token0
{
}
public static void saveToken(HttpServletRequest request)
{

HttpSession session = request.getSessionO ;
String token = generateToken(request);
if (token != nu ll)
{

session.setAttribute(”token” , token);
}

}
private static String generateToken(HttpServletRequest request)
{

HttpSession session = request.getSessionO ;
GregorianCalendar d = new GregorianCalendarO ;
long t = d.getTimelnMillisO ; // generate string based on time
String token = session.getldO + 1 ; // and on session id
return token ;

}
public static boolean isTokenValid(HttpServletRequest request)
{

HttpSession session = request.getSession(false) ;
if (session == null)

return (fa lse);
String saved = (String) session.getAttributeftoken") ;
if (saved == null)

return (false) ;
String token = request.getParameter("token'') ;
if (token == null)

return (false) ;
return (saved.equals(token));

}

public interface Command
{

String execute(HttpServletRequest request, HttpServletResponse response) ;
}

package sk.controller.command ;
import // imports not shown

public class CommandFactory
{

private static final String packageName = "sk.controller.command." ;
private static CommandFactory factory = n u ll;
private CommandFactoryO
{
}
public synchronized static CommandFactory getlnstanceO
{

if (factory == null) // first time
factory = new CommandFactoryO ;

return factory ;
}

public synchronized Command createCommand(String command)
throws CommandCreationException

{
Command commandHandler = n u ll;
try
{

command = packageName + command + “Command";
Class theClass = Class.forName(command);
Object theObject = theClass.newlnstanceO ;
commandHandler = (Command) theObject;

}
catch (/* Exception handling not shown ’ /

return commandHandler;

package sk. controller, command ;
import II imports not shown

}
}

139

package sk.controller.command ;
import // imports not shown

public class BuySharesCommand implements Command
{

public BuySharesCommandO
{
}
public String execute(HttpServletRequest request, HttpServletResponse response)
{

String page = n u ll;
try
{

HttpSession session = request.getSession(true);
String state = (String) session.getAttributefstate") ;
if (!state.equals("Registered“))
{

request.setAttribute("errorMessage", NOT_LOGGED_IN) ;
page = errorPage ;

}
else
{

String symbol = request.getParameterC'symbol”) ;
String quantity = request.getParameter("quantity");
if (symbol == null || symbol.lengthO = 0 ||

quantity == null || quantity.lengthO == 0)
{

page = "BuyShares.jsp";
}
else
{

if (Token.isTokenValid(request)) // avoid duplicate submission
{
long numShares= Long.parseLong(quantity) ;
Context context = new InitialContextO;
CompanySessionFacadeRemoteHome remoteHome =

(CompanySessionFacadeRemoteHome)PortableRemoteObject. narrow
(context. lookupfCompanySessionFacadeEJB"),

CompanySession Facade RemoteHome.class);
CompanySessionFacadeRemote remote = remoteHome.createO ;

CompanyTO to = remote.getCompanyBySymbol(symbol) ;
FolioTO folio = new FolioTO(to.getCompanyldO, symbol,
to.getSharePriceO, numShares);
PortfolioRemote portfolioRemote =

(PortfolioRemote) session.getAttribute("portfolioRemote“) ;
portfolioRemote.purchaseShares(folio);
request.setAttributefmessage” , SUCCESSFUL_TRANSACTION) ;

}
page = messagePage ;

}
}

}
catch(/* Exception handling not shown * /) { / * etc. * /}
return page ;

}

< !- BuyShares.jsp -->

<HTML>
<TITLE>Buy Shares</TITLE>

<jsp:include page = "/WEB-INF/private/Banner.jsp" flush-'true" />

<%@ include file = "Header.jsp” %>

<FORM METHOD="POST“ ACTION="<%= controller %>” >
<INPUT TYPE = "HIDDEN" NAME="command" VALUE="BuyShares">
<INPUT TYPE = "HIDDEN" NAME="token"

VALUE=<%= (String) session.getAttributeftoken") %> >
<Table WIDTH = "100%" CELLPADDING = "10">
<COLGROUP>

<COL WIDTH = "30%" VALIGN = "TOP" ALIGN = "RIGHT" >
<COL ALIGN = "CENTER”>
<COL WIDTH = "40%" ALIGN = ”LEFT”>

</COLGROUP>
<TR>

<TD></TD>
<TD><H2><%= messages.getStringf PurchaseShares") %><H2></TD>

</TR>

140

<TR> <!— Using Resource Bundle ->
<TD><%= messages.getStringf Symbol") %></TD>
<TD><INPUT TYPE= "TEXT" NAME= "symbol" ></TD>

</TR>
<TR>

<TD><%= messages.getStringC'Quantity") %></TD>
<TD><INPUT TYPE= "TEXT" NAME= "quantity" ></TD>

</TR>
<TR>
<TD></TD>

<TD><INPUT TYPE="SUBMIT"
VALUE = "<%= messages.getStringO'SubmitYourEntries") %>"></TD>

<TD></TD>
</TR>

</TABLE>
</FORM>

<jsp:include page = "/WEB-INF/private/Footer.jsp" flush-'true" />

</HTML>

<!-- Header.jsp This is not a complete page. This is the start of a page. -->

<!-
Every page includes this header. The String controller
is therefore available to every page.

—>

<%@ page import-'java.util.*" %>

<%
String controller = response.encodeURLfcontroller") ;

ResourceBundle messages = (ResourceBundle)session.getAttribute(”messages");
%>

<TABLE VALIGN = "TOP" cellpadding=“ 10" cellspacing="0“ ALIGN = "CENTER"
WIDTH = "100%">
<TBODY>

<COLGROUP>
<COL WIDTH = "20%" VALIGN = "TOP” ALIGN = "LEFT“>
<COL VALIGN = "TOP' ALIGN = "CENTER">

</COLGROUP>
<TR >

<TD class = "menu”>
<%= messages.getString("TradersCorner") %>

<A HREF= "<%= controller%>?command=ViewCompanies">

<%= messages.getStringfViewCompanies") %>

<A HREF= "<%= controller%>?command=BuyShares">

<%= messages.getString("BuyShares") %>

<A HREF= "<%= controller%>?command=SellShares">

<%= messages.getString("SellShares") %>

<A HREF= "<%= controller%>?command=SellAIIShares“><%=

messages.getString("SellAIIShares") %>

<A HREF= ”<%= controller%>?command=ViewPortfolio">

<%= messages.getString(”ViewPortfolio") %>

<A HREF= "<%= controller%>?command=ViewYourGames"><%=

messages.getStringC'ViewYourGames") %>

<A HREF= "<%= controller%>?command=ViewLeagueTable">

<%= messages.getStringfViewLeagueTable”) %>

<A HREF= ”<%= controller%>?command=ViewSectionTable">

<%= messages.getString("ViewSectionTable") %>

<%= messages.getString("PlayersCorner") %>

<A HREF= "<%= controller%>?command=Login">

<%= messages.getString("Login") %>

<A HREF= "<%= controller%>?command=Register"><%=

messages.getStringf Register") %>

<A HREF= “<%= controller%>?command=AmendPlayer">

<%= messages.getStringC’Amendyourdetails”) %>

<A HREF= "<%= controller%>?command=DeletePlayer">

<%= messages getStringfDeleteyourdetails") %>

</TD>

<TD>

package sk.sharesapp.resources ;
/*

Default language English
*/
import java.u til.*;

public class MyResources extends ListResourceBundle
{

public Object[]□ getContentsO
{

return contents ;
}
static final Object[][] contents =
{

fmessagePage",
{"TradersComer” ,
{"Home'',
{"ViewCompanies",
{"BuyShares",
II etc.
{"ALREADY_LOGGED_IN",
{"PLAYER_EXISTS",
{"NO_SUCH_PLAYER",
{“ NOT_LOGG E D_l N",
II etc.

}:
}

"Message.jsp"},
"Traders' Corner"} ,
"Home"},
"View Companies"},
"Buy Shares"} ,

"You are already logged in, ”} ,
"You are already registered. You should login.”} ,
"Sorry, but you are not a registered member."} ,
"Sorry, but you are not logged in ."} ,

public class w_MyResources extends ListResourceBundle
{

public Object[][] getContentsO
{

return contents ;
}
static final Object□[] contents =
{

{"WE LCOME_PLAYE R", 'Welcome "} ,
// etc.

<?xml version=”1,0”?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1 .xml">

<%@ page import=''java.io.*,java.util.*" %>
<%

response. setContentType("text/vnd. wap. wml");
String message = (String) request.getAttribute("message") ;
String target = response.encodeURL

(”http://localhost:8988/SharesApp-Project-context-root/controller”) ;
%>

<wml>
<card id = "home" title = "Home">

<p>
<% if (message != null)

{
%>

<%= message %>
<%

}
%>

</p>
<p>

codename: <input name = “codename" type = "text" l>
<1 p>
<p>

password: <input name = "password” type = "password" />
</p>
<do type= "accept" label=“Go" optional = "false" name = "Go”>

<go method = "get" href="<%= target %>" >
<postfield name = "codename" value="$(codename)" />
<postfield name = "password” value="$(password)" />
<postfield name = "device" value="mobile" />
<postfield name = "command" va lue -1 Login" l>

</go>
</do>

</card>
</wml>

142

http://www.wapforum.org/DTD/wml_1.1
http://localhost:8988/SharesApp-Project-context-root/controller%e2%80%9d

Appendix C: Configuration files

ejb-jar.xml

<?xml version = '1.0' encoding = 'windows-1252'?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, lnc.//DTD Enterprise JavaBeans
2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd”>
<ejb-jar>

<enterprise-beans>
<session>

<description>Session Bean (Stateless)</description>
<display-name>CompanyViewEJB</display-name>
<ejb-name>CompanyViewEJ B</ejb-name>
<home>sk.sharesapp.ejb.session.stateless.CompanyViewEJBHome</home>
<remote>sk.sharesapp.ejb.session.stateless.CompanyViewEJB</remote>
clocal-

home>sk. sharesapp.ejb. session.stateless.CompanyViewE JBLocalHom e</local-
home>

<local>sk.sharesapp.ejb.session.stateless.CompanyViewEJBLocal</local>
<ejb-class>sk.sharesapp.ejb.session.stateless.CompanyViewBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>

</session>
<session>

<description>Session Bean (Stateful)</description>
<display-name>AccountEJB</display-name>
<ejb-name>AccountEJB</ejb-name>
<home>sk.sharesapp.ejb.session. stateful. Account RemoteHome</home>
<remote>sk.sharesapp.ejb.session.stateful.AccountRemote</remote>
<ejb-class>sk.sharesapp.ejb.session.stateful.AccountBean</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Container</transaction-type>

</session>
<session>

<de5cription>Session Bean (Stateless)</description>
<display-name>CompanyListerEJB</display-name>
<ejb-name>CompanyListerEJB</ejb-name>
<home>sk.sharesapp.ejb.session.stateless.CompanyListerRemoteHome</home>

<remote>sk.sharesapp.ejb.session.stateless.CompanyListerRemote</remote>
<local-

home>sk.sharesapp.ejb.session.stateless.CompanyListerLocalHome</local-home>
<local>sk.sharesapp.ejb.session. stateless. CompanyListerLocal</local>
<ejb-class>sk.sharesapp.ejb.session. stateless. CompanyListerBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>

</session>
<session>

<description>Session Bean (Stateless)</description>
<display-name>CompanySessionFacadeEJB</display-name>
<ejb-name>CompanySessionFacadeEJB</ejb-name>

<home>sk.sharesapp.ejb.session.stateless.CompanySessionFacadeRemoteHome</
home>

<remote>sk.sharesapp.ejb.session.stateless.CompanySessionFacadeRemote</remo
te>

<ejb-
class>sk.sharesapp.ejb.session. stateless. CompanySessionFacadeBean</ejb-class>

<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<ejb-local-ref>

<ejb-ref-name>ejb/local/CompanyEJB</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<local-home>sk.sharesapp.ejb.entity.cmp.CompanyLocalHome</local-home>
<local>sk.sharesapp.ejb.entity.cmp.CompanyLocal</local>
<ejb-link>CompanyEJB</ejb-link>

</ejb-local-ref>
</session>
<session>

<description>Session Bean (Stateless)</description>
<display-name>PlayerGameSessionFacadeEJB</display-name>
<ejb-name>PlayerGameSessionFacadeEJB</ejb-name>

<home>sk.sharesapp.ejb.session.stateless.PlayerGameSessionFacadeRemoteHome
</home>

<remote>sk.sharesapp.ejb.session.stateless. PlayerGameSessionFacadeRemote</re
mote>

http://java.sun.com/dtd/ejb-jar_2_0.dtd%e2%80%9d

<ejb-
class>sk.sharesapp.ejb.session.stateless.PlayerGameSessionFacadeEJBBean</ejb-
class>

<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<ejb-local-ref>
<ejb-ref-name>ejb/local/PlayerEJB</ejb-ref-name>
<ejb-ref-type>Entrty</ejb-ref-type>
<local-home>sk.sharesapp.ejb.entity.cmp.PlayerLocatHome</local-home>
<local>sk.sharesapp.ejb.entity.cmp.Playerl_ocal</local>
<ejb-link>PlayerEJB</ejb-link>

</ejb-local-ref>
<ejb-local-ref>

<ejb-ref-name>ejb/local/GameEJB</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<local-home>sk.sharesapp. ejb. entity. cmp.GameLocalHome</local-home>
<local>sk.sharesapp.ejb.entity.cmp GameLocal</local>
<ejb-link>GameEJB</ejb-link>

</ejb-local-ref>
</session>
<session>

<description>Session Bean (Stateful)</description>
<display-name>PortfolioEJB</display-name>
<ejb-name>PortfolioEJB</ejb-name>
<home>sk.sharesapp.ejb.session. stateful. PortfolioRemoteHome</home>
<remote>sk.sharesapp.ejb.session.stateful.PortfolioRemote</remote>
<ejb-class>sk.sharesapp.ejb.session.stateful.PortfolioBean</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Container</transaction-type>
<ejb-local-ref>

<ejb-ref-name>ejb/loca I/Com panyEJB</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<loca l-home>sk.sharesapp. ejb. entity, cmp. Company LocalHome</local-home>
<local>sk.sharesapp.ejb.entity.cmp.CompanyLocal</local>
<ejb-link>CompanyEJB</ejb-link>

</ejb-local-ref>
<ejb-local-ref>

<ejb-ref-name>ejb/local/GameEJB</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<local-home>sk. sharesapp. ejb. entity.cmp. GameLocalHome</local-home>
<local>sk.sharesapp.ejb.entity.cmp.GameLocal</local>

<ejb-link>GameEJB</ejb-link>
</ejb-local-ref>
<ejb-local-ref>

<ejb-ref-name>ejb/local/PlayerEJB</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<local-home>sk.sharesapp.ejb.entity.cmp.PlayerLocalHome</local-home>
<local>sk.sharesapp.ejb.entity.cmp.PlayerLocal</local>
<ejb-link>PlayerEJB</ejb-link>

</ejb-local-ref>
</session>
<session>

<description>Session Bean (Stateful)</description>
<display-name>ValueListHandlerSessionFacadeEJB</display-name>
<ejb-name>ValuelistHandlerSessionFacadeEJB</ejb-name>

<home>sk.sharesapp.ejb.session.stateful.ValueListHandlerSessionFacadeRemoteHo
me</home>

<remote>sk.sharesapp. ejb. session, stateful. ValueListHandlerSessionFacadeRemote<
/remote>

<ejb-
class>sk.sharesapp.ejb.session.stateful. ValueListHandlerSessionFacadeBean</ejb-
class>

<session-type>Stateful</session-type>
<transaction-type>Container</transaction-type>

</session>
<entity>

<description>Entity Bean (BMP)</description>
<display-name>BmpCompanyEJB</display-name>
<ejb-name>BmpCompanyEJB</ejb-name>
<home>sk. sharesapp. ejb. entity, bmp. BmpCompanyRemoteHome</home>
<remote>sk.sharesapp. ejb. entity.bmp. BmpCompanyRemote</remote>
<local-home>sk.sharesapp.ejb.entity.bmp.BmpCompanyLocalHome</local-

home>
<local>sk.sharesapp.ejb. entity, bmp. BmpCompanyLocal</local>
<ejb-class>sk.sharesapp. ejb. entity. bmp.BmpCompanyBean</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>java.lang.Long</prim-key-class>
<reentrant>False</reentrant>

</ent'rty>
<entity>

<home>sk.sharesapp.ejb.entity.bmp.BmpCompanyPatternsRemoteHome</home>
<remote>sk.sharesapp. ejb. entity, bmp. BmpCompanyPatternsRemote</remote>
<local-

home>sk.sharesapp. ejb. entity, bmp. BmpCompanyPatternsLocalHome</local-home>
<local>sk.sharesapp.ejb.entity.bmp.BmpCompanyPatternsLocal</local>
<ejb-class>sk. sharesapp. ejb.entity.bmp. BmpCompanyPatternsBean</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>java. lang. Long</prim-key-class>
<reentrant>False</reentrant>

</entity>
<entity>

<description>Entity Bean (CMP)</description>
<display-name>CompanyEJB</display-name>
<ejb-name>CompanyEJB</ejb-name>
<home>sk.sharesapp.ejb.entity.cmp.CompanyRemoteHome</home>
<remote>sk.sharesapp.ejb.entity.cmp.CompanyRemote</remote>
<local-home>sk. sharesapp. ejb. entity, cmp. Com pa nyLocalHome</local-home>
<local>sk.sharesapp.ejb.entity.cmp.CompanyLocal</local>
<ejb-class>sk. sharesapp. ejb.entrty.cmp. CompanyBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.Long</prim-key-class>
<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>CompanyEJB</abstract-schema-name>
<cmp-field>

<field-name>companyid</field-name>
</cmp-field>
<cmp-field>

<field-name>symbol</field-name>
</cmp-field>
<cmp-field>
<field-name>name</field-name>

</cmp-field>
<cmp-field>
<field-name>shareprice</field-name>

</cmp-field>
<cmp-field>

<description>Entity Bean (BMP)</description>
<display-name>BmpCompanyPatternsEJB</display-name>
<ejb-name>BmpCompanyPatternsEJB</ejb-name>

<field-name>high</field-name>
</cmp-field>
<cmp-field>

<field-name>low</field-name>
</cmp-fieid>
<primkey-field>companyid</primkey-field>
<query>
<query-method>

<method-name>findAII</method-name>
<method-params/>

</query-method>
<ejb-ql>select object(o) from CompanyEJB o</ejb-ql>

</query>
<query>

<query-method>
<method-name>findCompaniesWithPriceLessThan</method-name>
<method-params>

<method-param>java.lang.Double</method-param>
</method-params>

</query-method>
<ejb-ql>select object(c) from CompanyEJB c where c.shareprice < ?1</ejb-ql>

</query>
<query>

<query-method>
<method-name>findCompaniesWithNameUke</method-name>
<method-params/>

</query-method>
<ejb-ql>select object(c) from CompanyEJB c where c.name like '%Bank%'</ejb-

>
</query>
<query>

<query-method>
<method-name>findCompanyBySymbol</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

</query-method>
<ejb-ql>select object (c) from CompanyEJB c where c.symbol = ?1 </ejb-ql>

</query>
</entity>
<entity>

<description>Entity Bean (CMP)</description>
<display-name>GameEJB</display-name>
<ejb-name>GameEJB</ejb-name>
<local-home>sk. sharesapp. ejb. entity.cmp.GameLocalHome</local-home>
<local>sk.sharesapp.ejb.entity.cmp.GameLocal</local>
<ejb-class>sk. sharesapp. ejb. entity.cmp.GamcBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java. lang. Long</prim-key-class>
<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>GameEJB</abstract-schema-name>
<cmp-field>

<field-name>gameid</field-name»
</cmp-field>
<cmp-field>

<field-name>balance</field-name>
</cmp-field>
<cmp-field>

<fjeld-name>period</field-name>
</cmp-field>
<primkey-field>gameid</primkey-field>
<query>

<query-method>
<method-name>findAII</method-name>
<method-params/>

</query-method>
<ejb-ql>select object(o) from GameEJB o</ejb-ql>

</query>
</entity>
<entity>

<description>Entity Bean (CMP)</description>
<display-name>PlayerEJB</display-name>
<ejb-name> PlayerE J B</ejb-name>
<local-home>sk.sharesapp.ejb.entity.cmp.PlayerLocalHome</local-home>
<local>sk.sharesapp.ejb.entity.cmp. PlayerLocal</local>
<ejb-class>sk.sharesapp.ejb.entity.cmp. PlayerBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.Long</prim-key-class>
<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>PlayerEJB</abstract-schema-name>

<cmp-field>
<field-name>playerid</field-name>

</cmp-field>
<cmp-field>

<field-name>codename</field-name>
</cmp-field>
<cmp-field>

<field-name>password</field-name>
</cmp-field>
<cmp-field>

<field-name>lastname</field-name>
</cmp-field>
<cmp-field>

<field-name>firstname</field-name>
</cmp-field>
<cmp-field>

<field-name>department</field-name>
</cmp-field>
<primkey-field>playerid</primkey-field>
<query>

<query-method>
<method-name>findAII</method-name>
<method-params/>

</query-method>
<ejb-ql>select object(o) from PlayerEJB o</ejb-ql>

</query>
<query>

<query-method>
<method-name>findByCodeNamePassword</method-name>
<method-params>

<method-param>java.lang.String</method-param>
<method-param>java.lang.String</method-param>

</method-params;>
</query-method>
<ejb-ql>select object (p) from PlayerEJB p where p.codename = ?1 and

p.password = ?2</ejb-ql>
</query>
<query>

<query-method>
<method-name>findByCodeName</method-name>
<method-params>

146

<method-param>java.lang.String</method-param>
</method-params>

</query-method>
<ejb-ql>select object (p) from PlayerEJB p where p.codename = ?1</ejb-ql>

</query>
</entrty>
<message-driven>

<description>Message Driven Bean</description>
<display-name>PriceWatchMessageDrivenEJB</display-name>
<ejb-name>PriceWatchMessageDrivenEJB</ejb-name>
<ejb-class>sk. sharesapp.ejb.mdb. PriceWatchMessageDrivenBean</ejb-class>
<transaction-type>Container</transaction-type>
<acknowledge-mode>Auto-acknowledge</acknowledge-mode>
<message-driven-destination>

<destination-type>javax.jms.Queue</destination-type>
<subscription-durability>Durable</subscription-durability>

</message-driven-destination>
<ejb-local-ref>

<ejb-ref-name>ejb/local/CompanyEJB</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<local-home>sk.sharesapp.ejb.entity.cmp.CompanyLocalHome</local-home>
<local>sk.sharesapp.ejb.entity.cmp.CompanyLocal</local>
<ejb-link>CompanyEJB</ejb-link>

</ejb-local-ref>
</message-driven>
<message-driven>

<description>Message Driven Bean</description>
<display-name>SimpleMessageDrivenEJB</display-name>
<ejb-name>SimpleMessageDrivenEJB</ejb-name>
<ejb-class>sk.sharesapp.ejb.mdb.SimpleMessageDrivenEJBBean</ejb-class>
<transaction-type>Container</transaction-type>
<acknowledge-mode>Auto-acknowledge</acknowledge-mode>
<message-driven-destination>

<destination-type>javax.jms.Queue</destination-type>
<subscription-durability>Durable</subscription-durability>

</message-driven-destination>
</message-driven>

</enterprise-beans>
<relationships>

<ejb-relation>
<ejb-relation-name>GameEJB - PlayerEJB</ejb-relation-name>

<ejb-relationship-role>
<ejb-relationship-role-name>GameEJB may have one PlayerEJB</ejb-

relationship-role-name>
<muftiplicity>Many</multiplicity>
<cascade-delete/ >
<relationship-role-source>

<ejb-name>GameEJB</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>playerEJB_playerid</cmr-field-name>
</cmr-field>

</ejb-relationship-role>
<ejb-relationship-role>

<ejb-relationship-role-name>PlayerEJB may have many GameEJB</ejb-
relationship-role-name>

<multiplicity>One</multiplicity>
<relationship-role-source>

<ejb-name>PlayerEJB</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>gameEJB_playerid</cmr-field-name>
<cmr-field-type>java.utiI.Collection</cmr-field-type>

</cmr-field>
</ejb-relationship-role>

</ejb-relation>
</relationships>
<assembly-descriptor>

<container-transaction>
<method>

<ejb-name>CompanyViewEJB</ejb-name>
<method-name>’,</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>AccountEJB</ejb-name>
<method-name>"</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>

147

<container-transaction>
<method>

<ejb-name>CompanyListerEJB</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>BmpCompanyEJB</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Supports</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>BmpCompanyPatternsEJB</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Supports</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>CompanyEJB</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Supports</tra ns-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>CompanySessionFacadeEJB</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>GameEJB</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Supports</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>PlayerEJB</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Supports</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>PlayerGameSessionFacadeEJB</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>PortfolioEJB</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>ValueListHandlerSessionFacadeEJB</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>

orion-ejb-jar.xml

<?Xml version = '1.0' encoding = 'windows-12527>
<!DOCTYPE orion-ejb-jar PUBLIC "-//Evermind//DTD Enterprise JavaBeans 1.1
runtime//EN" "http://xmlns.oracle.com/ias/dtds/orion-ejb-jar.dtd”>
<orion-ejb-jar>

<enterprise-beans>
<session-deployment name="CompanyViewEJ B"/>

148

http://xmlns.oracle.com/ias/dtds/orion-ejb-jar.dtd%e2%80%9d

<session-deployment name=”AccountEJB7>
<session-deployment name="CompanyListerEJ B"/>
<session-deployment name-'CompanySessionFacadeEJB7>
<session-deployment name="PlayerGameSessionFacadeEJ B7>
<session-deployment name=“PortfolioEJB"/>
<session-deployment name=''ValueListHandlerSessionFacadeEJB7>
<entity-deployment name="BmpCompanyEJB7>
<entity-deployment name="BmpCompanyPatternsEJB7>
<entity-deployment name="CompanyEJ B'' data-source-'jdbc/sharesDS"

table="S HARES.COMPANY">
<primkey-mapping>

<cmp-field-mapping name=''companyid" persistence-name="COM PAN Yl D1’
persist ence-ty pe=” N U M BE R(6)7 >

</primkey-mapping>
<cmp-field-mapping name=‘,companyid'' persistence-name-'COMPANYID"

persist ence-type=” N UM BE R(6)7>
<cmp-field-mapping name="symbol" persistence-name="SYM BO L" persistence-

type="VARCHAR2(20)7>
<cmp-field-mapping name-'name" persistence-name-'NAME" persistence-

type="VARCHAR2(80)7>
<cmp-field-mapping name="shareprice" persistence-name="SHAREPRICE”

persistence-type-'NUMBER(10,2)7>
<cmp-field-mapping name="high" persistence-name=,'HIGH,, persistence-

type="NUMBER(10,2)7>
<cmp-field-mapping name="low" persistence-name="LOW” persistence-

type="NU MBE R(10,2)"/>
</entity-deployment>
<entity-deployment name="GameEJB" data-source="jdbc/sharesDS“

table="SHARES.GAME”>
<primkey-mapping>

<cmp-field-mapping name="gameid'' persistence-name-'GAMEID" persistence-
typ e ^ N U M B E R(6)7 >

</primkey-mapping>
<cmp-field-mapping name="gameid" persistence-name-'GAMEID" persistence-

type^'NU MBE R(6)7>
<cmp-field-mapping name=“balance" persistence-name="BALANCE" persistence-

type=" N UM B E R(10,2)"/>
<cmp-field-mapping name=”period” persistence-name="PERIOD" persistence-

type="DATE"/>
<cmp-field-mapping name="playerEJB_playerid" persistence-

name=" PLAYER I D">

<entity-ref home=''PlayerE J B">
<cmp-field-mapping persistence-name=''PLAYERID" persistence-

type -' N U M B E R (6)"/>
</entity-ref>

</cmp-field-mapping >
</entity-deployment>
<entity-deployment nam e-’PlayerEJB" data-source="jdbc/sharesDS"

table="S HARES. PLAYE R" >
<primkey-mapping>

<cmp-field-mapping name=“playerid" persistence-name="PLAYERI D"
persistence-ty pe=" N U M B E R(6) "/>

</primkey-mapping>
<cmp-field-mapping name="playerid" persistence-name="PLAYERID"

persistence-type=” N U M BE R(6)"/>
<cmp-field-mapping name=''codename'' persistence-name="CODENAME”

persistence-type=”VARCHAR2(20)7>
<cmp-field-mapping name-'password" persistence-name=" PASS WORD"

persistence-type="VARCHAR2(10)''/>
<cmp-field-mapping name="lastname" persistence-name="LASTNAME"

persistence-type="VARCHAR2(30)"/>
<cmp-field-mapping name="firstname" persistence-name="FI RSTNAM E"

persistence-type=”VARCHAR2(30)"/>
<cmp-field-mapping name="department" persistence-name="DEPARTMENT

persistence-type=''VARCHAR2(30)'7>
<cmp-field-mapping name="gameEJB_playerid">

<collection-mapping table=”SHARES.GAME''>
<primkey-mapping>
<cmp-field-mapping>

<entity-ref home=''PlayerEJB">
<cmp-field-mapping name="playerEJB_playerid_playerid" persistence-

name="PLAYERID" persistence-type="NUMBER(6)"/>
</entity-ref>

</cmp-field-mapping>
</primkey-mapping>
<value-mapping type="sk.sharesapp.ejb.entity.cmp.GameLocal">

<cmp-field-mapping>
<entity-ref home="GameEJB">

<cmp-field-mapping name="gameEJB_playerid_gameid" persistence-
name-'GAMEID" persistence-type=“ NUMBER(6)"/>

</entity-ref>
</cmp-field-mapping>

