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Abstract

ABSTRACT

Application of Multivariate Statistical Process Control to Fuel

Cell Manufacturing

Olivia Lannon

Univariate statistical control charts, such as the Shewhart chart, do not satisfy the
requirements for process monitoring on a high volume automated fuel -cell
manufacturing line. This is because of the number of variables that require monitoring.
The risk of elevated false alarms, due to the nature of the process being high volume,
can present problems if univariate methods are used. Multivariate statistical methods are
discussed as an alternative for process monitoring and control.

The research presented is conducted on a manufacturing line which evaluates the
performance of a fuel cell. It has three stages of production assembly that contribute to
the final end product performance. The product performance is assessed by power and
energy measurements, taken at various time points throughout the discharge testing of
the fuel cell.

The literature review performed on these multivariate techniques are evaluated
using individual and batch observations. Modem techniques using multivariate control
charts on Hotellings T2 are compared to other multivariate methods, such as Principal
Components Analysis (PCA).

The latter, PCA, was identified as the most suitable method. Control charts such
as, scores, T2 and DModX charts, are constructed from the PCA model. Diagnostic
procedures, using Contribution plots, for out of control points that are detected using
these control charts, are also discussed. These plots enable the investigator to perform
root cause analysis. Multivariate batch techniques are compared to individual
observations typically seen on continuous processes. Recommendations, for the
introduction of multivariate techniques that would be appropriate for most high volume
processes, are also covered.
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CHAPTER ONE

INTRODUCTION

1.1 Introduction

Portable electronic devices have become more advanced and continue to offer
greater capabilities and functionality. Device manufacturers, service providers and
consumers seek significantly increased and longer lasting power. Since batteries have
reached close to their maximum capabilities, a power gap exists between those ever-
increasing power demands of electronic applications and the amounts of power in

present batteries. (Coll and Quinn, 2006).

Micro Fuel Cells are unique in their composition. They are cheap, lightweight,
portable and they provide a power supply that is capable of charging a portable device
when there is no wall socket available. For this reason, they are extremely convenient in

emergency situations, as they provide an immediate power source.

The overall project involves research on the fuel cell manufacturing process in
order to characterise a fuel cell assembly process which is stable and repeatable and can
be successfully and safely scaled to meet the volume, yield and throughput targets.
Market research has estimated that the potential market for the micro fuel cell is 18
million units per year. Currently no process exists for producing high volume Micro
Fuel Cells. This process is new and untested and requires a high degree of technical
innovation to deliver an automated process with six sigma quality levels. This is a
unique product in that it is totally new; technology at this scale does not exist. This is

the first automated line and worldwide volume manufacturing for Micro Fuel Cell line.

The traditional statistical techniques in Six Sigma for monitoring and controlling
ongoing production quality have been very effective up to quite recently. These
techniques have relied on identifying statistical trends in defective parts that indicate
when deterioration in product quality has occurred. In such situations it was relatively
easy to observe deterioration, as the ambient number of defective parts was reasonably
high.
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However, this situation has now changed and these techniques are no longer
applicable. For example, in the high volume automated manufacturing sector it is not
unusual for manufacturers to have product quality goals in the region of 10 defects in 1
million parts. With such low ambient defect rates, the traditional techniques are no
longer effective or workable. Newer techniques have been proposed to detect
abnormalities in production processes however very few of these have transferred
successfully into industrial practice. These techniques include multivariate data

transformation.

The objective of the research is to investigate these multivariate techniques and
assess how effectively they perform their intended function bearing in mind the

industrial context.
1.2 Current State of Statistical Process Control

In a survey conducted on small and medium enterprises Yusuf and Aspinwall
(2000) were extremely surprised to find that that 25% of respondents were not applying
Statistical Process Control (SPC) techniques especially when the companies involved
tended to be the more advanced in quality practices. This is an unusual situation as the
use of SPC is generally considered to represent a gauge of an enterprise’s maturity
(Montgomery, 2001). Woodall (2000) laments the fact that “some useful advances in
control charting methods have not had a sufficient impact in practice”. He also identifies
a disturbing message that the SPC segment of the Certified Quality Engineer (CQE)
exam of American Society for Quality (ASQ) consists almost entirely of material
covered in the 1956 Western Electric Handbook.

One reason for this trend away from the application of SPC is that the traditional
SPC charts have lost their relevance as identified by Gunter (1998), Woodall (2000) and
Stoumbos (2000). These authors note that further research is required to make these

techniques more relevant to the needs of modern industry and service environments.

More recently as quality is measured in part per million (ppm), it has become
uneconomical to increase sample sizes still further. Because of this, new SPC
techniques are being devised to detect changes in the process while retaining economic

sample sizes.
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1.3 Scope

The objective of the proposed research is to investigate SPC techniques for a high
volume automated production process. As this is the first ever high volume automated
continuous production project involving manufacture of this particular Fuel Cell
technology, there will be constraints from unknown issues that may arise. In order to
alleviate them, experimentation will be conducted to identify the process controls
required and the optimised process parameters to ensure a stable and repeatable

manufacturing process.

In order to establish a reliable and repeatable process which can be scaled
successfully to a high volume fuel filling and sealing process for automated assembly

process for Micro Fuel Cells the following objectives are required:

1 To investigate the current status of Statistical Process Control (SPC),

in particular Multivariate SPC techniques.

2. To propose suitable new/alternative SPC techniques for use with high

volume manufacturing.

3. To develop control charts that can also be applied to a higher volume

of production.

4. To develop a control chart for a highly automated fuel cell process,

which will assess the most important parameter, product performance.

5. To create a single monitoring system that will reduce the amount of

work involved in monitoring individual process parameters.

6. Identify suitable diagnostic tools to assist in identifying parameters

implicated for root cause of out of control failures.

7. ldentify an effective system that can be used to monitor control of
future observations, which can be used for increased volumes of

production.
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8. The system identified must be capable of monitoring both continuous

and batch processes.
14 Structure

Chapter 2 discusses statistical process control in univariate and multivariate
processes. Hotellings T2 chart is introduced and its application is demonstrated
throughout the chapter. Autocorrelation and collinearity considerations are also

described.

Chapter 3 examines a multivariate method called Principal Components Analysis
(PCA). The standard control charts generated from this method are presented in addition
to a T2 chart on PCA and another chart called DModX. Contribution plots and their
usefulness in narrowing down which of the original variables are causing of an out of

control signal is introduced. Partial Least Squares (PLS) method is also mentioned.

Chapter 4 discusses batch processing and the differences between it and

continuous processing. Various methods for analysing batch process data are reviewed.

Chapter 5 discusses fuel cell technology and the various stages of manufacturing a
fuel cell on an automated production line. The testing requirements at each stage of
manufacturing and the final performance testing, which will contribute to the overall

batch decision, are also described.

Chapter 6 details the research analysis, where the various multivariate methods
are applied to real production data. One method is selected as the more suitable, from all

the methods presented.
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CHAPTER TWO
STATISTICAL PROCESS CONTROL

2.1 Introduction

In every industry process data is widely available, Statistical Process Control
(SPC) is used to analyse and display data. SPC is widely used to monitor a process over
time and improve its performance by reducing variability for the key process
parameters. Control charts are the most common form of SPC. These control charts,
presented by Walter A. Shewhart (1931), plot the values of the key process variables
over time in order to show variation between observations of this variable. Variation is
described in two main categories by Woodall (2000), ‘Common cause’ and ‘Special
cause’ variation. ‘Common cause’ variation describes the natural variability or “noise”
of the process. ‘Special cause’ variation usually has an assignable cause, that is not part
of the natural process variation, and which can be removed. Control charts are used to
distinguish between these two types of variation. A control chart is so-called because it
has control limits associated with the process and the process is said to be “in control”
when the data is between these limits. If something changes in the process then an “out
of control” signal will lie outside of these limits, and something must be done to get the
process back in control again. The control limits for these charts are referred to as “three

sigma” limits and are calculated as +3 standard errors from the centreline.

This chapter describes both univariate and multivariate data and distributions,
what their similarities are and then the differences that make them so distinguishable

from one another. Methods for analysing multivariate data are also introduced.

In order to generate a control chart, it is necessary to screen the data of any
variation that has assignable cause. Once identified, this data can then be removed
before calculating control limits. This is done so that the limits are representative of the
process. Screening ensures that only normal process variation is captured. This
procedure is referred to as Phase | in process control. It can take a lot of time to
characterise and understand a process. In order to achieve a stable historical baseline in
which to calculate the control limits from, it is desirable to capture all possible aspects

of normal variation that may occur throughout the life cycle ofthe process.
6



Statistical Process Control

Once the reference baseline has been characterised and 3 sigma limits are
calculated, Phase Il of process control then begins. The process is monitored for

violations to these pre-defined control limits.

Run rules are applied to control charts to indicate when a process is in an out of

control situation.

The Western Electric Handbook (1956) details some of these run rules which are

used in order to detect patterns in the data.

Once Phase | upper and lower control limits have been determined then Phase Il
monitoring of a process can commence. Figure 2.1 shows a typical Shewhart SPC chart
for individual measurements. It shows each individual data point plotted on the x axis
and the value of the process variable on the y axis. There is an upper control limit
(UCL) and a lower control limit (LCL) which act as a signal should there be some

change outside of these Phase | “process” limits.

Figure 2.1 Shewhart SPC Chart for individual variables

It is not always possible to monitor every observation generated from a process
variable, so it is common practice to take a sample of data points at specified time
intervals in order to see if there is any process variation from the last time interval to the

current time interval. Taking this into consideration, a variation of the individuals chart

7
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is used. A sample of N observations is taken at specific time intervals, d, for a single
variable, the mean of these observations is then plotted on the control chart. This is
referred to as an X chart. The sample group number is plotted on the x axis and the

sample mean ofthe variable, X, is plotted on the y axis.

Using the example above, the sample time intervals, d, were determined to be
every 30 minutes. The X control chart, is shown in Figure 2.2. Similarly, the UCL and

LCL are used to indicate when a process is outof control.

Figure 2.2 Shewhart SPC X Chart

In addition to the X chart, the dispersion within these sampling groups must also
be monitored and this variance is measured and displayed through a standard deviation,
S chart or Range, R chart. The dispersion ofthe data is important to monitor because an
X chart showing the distance of the mean of a group from its centreline (average) does
not describe how the variation of the data is spread across the groups. Figure 2.3 and
Figure 2.4 show the example described above plotted on the typical Shewhart control

charts used for dispersion.
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Figure 2.3 S Chart for plotting Standard Deviation within groups

Figure 2.4 R Chart for plotting Range within groups

In industry, pairs of charts, (X, S) or (X, R) are monitored simultaneously, for each
variable, to alert the user to special causes of variation in the process variable being

measured.

These types of charts are referred to as univariate, so-called as the chart contains

data where only one process variable is plotted on the chart at atime.

W hat if two process variables were to be monitored? Typically, univariate charts

would be generated to monitor mean and dispersion for each variable, resulting in many
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control charts being monitored. The number of charts being monitored increases as the
number of variables increases. Figure 2.5 and 2.6 shows univariate control charts for
two variables, X1 and X2. Only the means charts are shown but when monitoring the

process, the dispersion charts must also be monitored.

Figure 2.5 Univariate mean control chart for X1

Figure 2.6 Univariate mean control chart for X2

When some relationship exists between two variables, this cannot be shown on
individual univariate control charts, therefore it is best to use some control region that
can assess the relationship between these variables and then determine if they are in-
control. Mason and Young (2002) describe that a control ellipse is used to show the true
control region for correlated variables. Correlation measures the strength of the
relationship between two variables. Correlation will be discussed in more detail later in

the chapter, but the equation for constructing an ellipse will be described here.
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They described that in order to construct an ellipse for two variables, their
correlation measure must be calculated. The variances of each variable, Sj and 32, is
required as well as the covariance of both variables, S12. The covariance measures how

the variables vary together. Equation 1.0 is the equation of an ellipse for two variables.

(10)

where r = QI\Q is the sample correlation coefficient.

The more correlated the variables are to one another, the more tilted the elliptical region

will be.

Figure 2.7 shows a scatterplot of the two variables, X1 and X2, and the elliptical
region surrounding the data points. The UCL and LCL for X1 and X2 are also displayed
in Figure 2.7 by the box area around the elliptical region. These were the limits

determined in the univariate control charts in Figures 2.5 and 2.6 respectively.

Figure 2.7 Control Ellipse with univariate control limits

All data points fall within the rectangular region, which is determined by their
upper and lower control limits. This shows that the process seems in control when

treated as univariate data. However there are three points identified that lie outside the

11
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elliptical region. This shows a violation of the correlation structure of the X1 and X2
variables. This relationship is not analysed in the univariate charts. This is seen by the
points in bold in Figure 2.5 and 2.6. These points are within the control Ilimits.
Therefore, multivariate techniques must be used instead of univariate techniques in

order to highlight this type ofviolation.

In most industries where SPC is utilised, univariate process control methods are
more commonly known. This is because it is the process control method that is taught

either in university or through training within an industry.

As technology moves further into the future, process data is collected
electronically via online and offline computer systems and a lot more frequently than
before, even in real time. It would be impossible to look at each individual observation
for all process variables. It is also not practical to summarise into groups and look at

these control charts as it could still involve hundreds of variables.

To look further into this data requires a little more knowledge and research. The
monitoring of two or more process variables is referred to as Multivariate Statistical
Process Control (MSPC), and it is possible to monitor several variables simultaneously
on one control chart. Most data analysis tools deal primarily with univariate data,
however, there are more and more software packages with updates that now include

Multivariate data analysis.

A lot of the complicated calculations can be done very quickly through such
software packages but you need to have some knowledge about Multivariate data in

order to use these.

Multivariate control involves summarising each of the variables in a multivariate

space into a univariate statistic and plotting this univariate statistic on a control chart.

CPACT (2008) in Newcastle University, UK, note that some desired

characteristics of Multivariate Control are

. Ease of application

. Signal interpretation

12
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° Sensitivity to subtle shifts

. Real time monitoring

. Appropriate software for both detection and interpretation

The application of Multivariate techniques can contribute to an improved
understanding of a process, close monitoring of a process performance, early detection

ofdefective product and subsequently cost reduction.

As with most distributions, the primary objective is to describe the mean and
variance of a population using certain assumptions about the distribution of the
particular process variable being monitored. Montgomery (2005) described that the
mean, fi, measures the centre of the distribution while the dispersion is measured by

variance, 02.In the univariate case, the normal population is described as:

X~N(n,ty2

Univariate statistics deal with N observations of single variables using the normal

population distribution.

W hen using a sample from a population, the more appropriate distribution used to
describe the mean and variance of the distribution is known as the Students t
distribution. A random sample of Nl observations are taken from a population. The
sample mean, X, measures the centre ofthis distribution while the spread is measured by

the sample standard deviation, s. The equation is written as:

s/Vn (1.1)
where
If Equation 1.1 is squared, then t becomes,
t2 = (x —fi)2{s2/n)
(1.2)

13
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The univariate t statistic can be extended to the Multivariate case. The

Multivariate Normal (M VN ) population is described by,
X ~ N p{ii,2)
where jXis the mean vector and E is the covariance matrix.

W ith Multivariate, the mean is also measured, but it relates to a mean vector, as

there are multiple variables, P, and these are given by X|tX2,—,Xp.
*1
*
X- "2
X,

The observation vector, X, contains all the information about the variables with

mean vector, il, and the covariance matrix, X, contains information about the variation

ofthe variables and their relationships.

Xi
X2
X =
which can also be expressed as X' = (x1(x2, ... ,Xp).

The dispersion is measured using the variance-covariance matrix, £, also known

as the covariance matrix.

Gol Qw2 Jp
v

This matrix has diagonals that represent the variance of the zh variable, dAU. The

off-diagonals, , represent the covariance between the ith and yth variables. This

represents how each pair ofvariables is related.

14
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Suppose X' = (Xl,XZ, ,Xp) is a p-variate normal probability distribution with
the vector of the means of X' given by [j' = (n ,pi2, p), and the covariance matrix,
If there is a sample of « observations, Xl,x2>—,xn,where Xt= (XA.XA co,Xip),
i = 1,2,....,n, with mean vectorp and a covariance matrix E, the Multivariate

generalisation o f the t2 statistic in Equation 1.2 becomes

(1.3)

where X and S are sam ple estimators of |j. and 2.

X= «zr= iXi, and the sample covariance matrix, S = —X) (Xt —X)\

can also be expressed as,

rsn sj2

This matrix has diagonals that represent the sample variance of the Ithvariable,
s,, and the off-diagonals, sy, represent the sample covariance between the /th and / h
variables. The covariance will only give an indication of their linear relationship, being

either positive or negative.

The covariance is often standardised as it is difficult to interpret how strongly
the variables are related. The Correlation Coefficient measures the strength of the
relationship between the variables. The correlation coefficient measure simplifies the
covariance so that the effect of scale is removed. The correlation coefficient is

calculated by dividing the standard deviations of the two variables and is denoted

by Pt_]l

15
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covariance (ij) _ 5
Pij  st.dev(i)*st.dev(j)  S#sjj

(1.4)

This can be represented in an NXP matrix called the Correlation Matrix,

A
P12 PI3 PU Pip
1? = P21 1 P23 P2j P2P
Pjl Pj2 Pip

If two variables are independent then their covariance and hence, their correlation,
w ill be zero. The reverse of this is not necessarily true. Zero correlation does not imply
independence, they could possibly be correlated in a non linear way. Transformation of

one ofthe variables could show a linear relationship.

The <cross-correlation between two variables measures the linear dependency

between them. This can reveal strong relationships between variables.

1. If there are two independent variables that are highly correlated then it can be
justified that one of them could be eliminated as they are both providing the

same information.

2. A true relationship would be indicated between an independent and a dependent

variable.

3. If a relationship is seen between an independent variable and a residual, this

would indicate a goodness o f fitin a model.

These are just some considerations that should be taken into account when looking

at Multivariate data.

16
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2.2 Distance Statistics

This section describes the various distance measurements and how these relate to
Multivariate SPC. Statistical distance calculations such as Euclidean (straight line)
distance, statistical distance (elliptical distance), Mahalanobis distance are described
and one of the most wi«dely used multi.ve;riate di'stl:ib.utions, Hotelli.ngs T aistribution

which is similar to Mahalanobis distance.

2.2.1 Euclidean Distance and Statistical Distance

In order tounderstand multivariate control, the concept of statistical distance must
be considered. Thisincorporates the means, variances and covariances of variables and
how stable these are as each observation is added over time. For uncorrelated variables,
i.e. p = 0. Consider two observations each with (x,y) coordinates. When plotted, these
two data points will have a mean point, and a line through all three data points should

show some linear relationship between each ofthe data points and the mean.

If this mean point truly represents the population mean then the straight line
distance between a point ([X|I'X2) and this population point (n1(~2) > calculated. This is

the distance statistic, D and using Pythagoras’ Theorem is given by

D = yftxl1- nJ’'+ (x2- M2)2 (1-5)

This is known as the Euclidean (straight line) distance. Squaring each side, this

can be written as
D2= (1 - Aaih2+ 02- M2)2 (1-6)

If this distance is fixed, then all points that are the same distance from the mean
can be represented by a circle around the mean. This centre point is the centroid with

radius D.

Mason and Young (2002) highlighted that any point inside this circle has
distance to the mean less than D. Any point outside this circle has distance to the mean
greater than D. This method ignores the variation between the variables and so it is

insufficient in an n-dimensional space.
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However, consider the variance ofthe data, Equation 1.6 can be standardised to be

SD2 = (E1Z£12! + (L7)
a\L 02

This is known as the Statistical Distance or elliptical distance, as standardised data
are enclosed in an ellipse. As with the Euclidean distance, if SD is fixed, then all the

points are the same statistical distance from the mean point and so is an ellipse, Figure

2.8.

Any point inside the ellipse has statistical distance less than SD and all points outside
the ellipse have statistical distance greater than SD. If the variances ofXland X2were
equal then the Euclidean and Statistical Distances would be the same. SD is simply a

weighted straight line measure of distance.

An elliptical region of control is easily created for distributions that contain two
characteristics, but if more than two characteristics were to be measured it becomes

difficult to construct and it will have a multi-dimensional ellipse.

2.3 Hotellings T2

2.3.1 Hotellings T2Statistic

Hotellings T2 Statistic (1931) is based on a generalisation of the Students T statistic
previously seen in Equation 1.3. It is a distance measure that will consider the

covariance structure ofthe MV N. The T2 distance statistic is given as,
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T2= (X- X)'S~x(X- X) (1.8)
where X is the observation vector,
X is the mean vector, and
Sis the covariance matrix.

Mason and Young (2002) describe that Equation 1.8 represents the squared
distance from each observation to the group mean. Thus, the variability around the

group mean can be calculated by summing the T 2 statistic for each observation.

232 Hotellings T2 Distribution

Hotellings T2 distribution was introduced by Harold Hotelling (1947). He was one
of the first to design a control chart around the concept of Multivariate SPC. His idea
was to use one control chart that would plot one statistic representing information for
the dispersion and mean of several quality characteristics. This chart would have an
upper control limit, which would indicate when a process goes outofcontrol. However,
itwouldn’t indicate which characteristic contributed to the out of control condition. This
would have to be investigated using additional methods. This section will describe the
Hotelling T2 method for monitoring a Multivariate process and review some methods

for detecting the variables that contributed to the out of control situation.

The properties ofthe T2 distribution, as detailed by Mason and Young (2002), will

depend on a probability function and whether the parameters are known orunknown.

The T2 is a univariate statistic which describes the corresponding Multivariate
distribution, where the p-variate observations must be transformed into a single

Hotelling T2 statistic.

In univariate statistics, the Z distribution is the population distribution and
estimates of population parameters are described in the T distribution. The t statistic is
described by the t distribution with (n-1) degrees of freedom. The ]2 statistic can be

described by an F distribution with 1 and («-1) degrees of freedom.
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This is the same for the Multivariate case, if the parameters of the M VN
- * - *
distribution are unknown, a form ofthe univariate F is used to describe the T statistic.

233 T2Distributions for Individual observations

Mason and Young (2002) have shown that for an individual observation vector X,
assuming that ii and £ are known in the m v N distribution, T has similar distribution

to the Chi-square distribution, X2.
t2=(x- Qi)"Y r\x- a0- x2(pp» (i.9)
where X2(p) represents a chi-square distribution with D degrees offreedom.

The T2 distribution depends only on [P, the number of variables in the
observation vector X. For smaller P, the shape ofthe distribution is skewed with a long

tail to the right. For large P, the distribution looks more symmetrical.

Tracey 6t al. (1992) have shown that if fi and ¢ are unknown, and the
observation vector X is independent of X and S, i.e. the observation vector X is not
included in the calculation of X and S, parameter estimates are obtained using a

historical baseline consisting of Nobservations. The T2 statistic is given by,
T2= (X—Xys-\X -X)~ F@pn_p), (1.10)
where F(pn_p);is an F distribution with p and (n—p) degrees of freedom.

The T2distribution depends on the number of variables, p and the sample size, N

The shape ofthe distribution is skewed with a long tail to the right.

Sullivan and Woodall (1996) describe that if fi and ¢ are unknown, and the
observation vector X is NOt independent of X and S, i.e. the observation vector X is
included in the calculation of X and S, parameter estimates are obtained using a

historical baseline consisting of N observations.

The T2 statistic is given by,
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T2 =CX-JO'S-HX-X)- [~-] Pipr2,(n-p-n/2) (1.11)

where P(P/2,(n-p-i)/2) > a beta distribution with parameters p/2 and (n —p —ni2.

The T2distribution depends on the number ofvariables,/? and the sample size, n.
The shape of the beta distribution can look like other familiar distributions such as the

normal, chi-square and F distributions.

Mason and Young (2002) pointed out that as the beta distribution can take the
form of the F distribution, the beta distribution is generally used to describe the T

distribution,

pp

P(p/2,(n—p—1)/2) = (n-p—4)pF>5 (U229

where

F ~ F(p,n-p-\y (1-13)

If this formof theF distribution is used, the observation vector X is not

independent ofX and S Either form is acceptable where || and £ are unknown.

2.3.4 T2Distribution for Subgrouped Data

The above distributions are used for individual observation vectors. Yang and
Trewn (2004) consider a distribution for monitoring the mean ofa subgroup of size M
observations taken at k sampling intervals. It is assumed that the observation vector Xt
is independent of the sample estimates X and S, which are obtained using a historical

baseline consisting of Nobservations.

Ryan (1989) defines the Statistical Distance, T2 statistic, between the sample

mean ofthe *h observation vector, Xt and the baseline data mean, X, as,

T2=0f,- i iy - 2 ) ~ hr.n-p) 0.14)

where Xt is the sample mean ofthe ithobservation vector, and
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X and S are the sam ple estimates.

This T2distribution depends on the number of variables, p in Xt , the sample size

ofthe subgroup, M, and the size ofthe baseline with n observations.

2.4 Hotellings T2Control

For Phase | in process control, a T2 control procedure where there are unknown
parameters will be generated. Data is collected from a historical baseline when the
process is in-control. Estimates of these unknown parameters can then be produced

from this dataset.

241 Phase land Phase Il UCL for Individual observations.

Univariate process monitoring uses 3 sigma limits on their control charts for
determining upper and lower control limits (UCL & LCL). That is not the case for
Multivariate process monitoring. A UCL is determined by a critical value of the
probability function used to describe the distribution ofthe data. A value of @ is chosen
to minimise the error of a false reject i.e. @ error is the probability of stating that a
process is out of control when in fact it is not. On univariate control charts, the control
limits are set at +3 sigma. This fixes the false alarm rate, A, at a value of 0.0027. Tracy
et aI. (1992) identify that the LCL can be set to zero in certain situations. This s
because, if there is a shift in the mean, the T2 statistic will increase and so the LCL can

be disregarded.

Similar to univariate procedures, there are two phases in Multivariate process
monitoring. Woodall (2000) discusses Phase | and Phase Il in great detail and what is

involved in the transition from one to the other.

Phase | involves the analysis of historical data in order to obtain a baseline and target, or

UCL, in which to use in Phase II.

Phase Il is where real-time process monitoring is applied, where it is determined if a

new observation is part ofthe baseline dataset characterised in Phase I.
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As Phase | involves creating an in-control baseline dataset, which will be used to
describe how the process performs in normal operating conditions, the dataset must be
constructed by in-control conditions. Therefore, it is necessary to purge the dataset of
observations that appear to be inconsistent with the rest of the data, i.e. outliers. Outliers
that indicate abnormal conditions are removed, because if these are included, it will
inflate the UCL. Outliers will increase the variation of the variables but will have little
effect on their correlation. A small number of samples containing outliers will have a

large effect on fl and £ .

In a Multivariate system, outliers indicate that an observation is not conforming
to the group notjust the individual variable being monitored. The removal of outliers
must be carefully justified with root cause determined. Not all outliers indicate a

nonconforming observation, it may be a genuine observation.

In Phase | application, all observation vectors whose T2 values are > UCL are
removed from the dataset and new estimates of il and 2 are calculated. This process of
purging outliers is repeated until there are no more outliers identified after the

recalculation of estimates of Mand £ and UCL.

Chenouri €t aI. (2009) also explain that observations found to be outside the
control limits in Phase | must be investigated. If there is an assignable cause, they are
removed, as including them can lead to reduced power for detecting a process change in
Phase Il as well as inflated control limits. When the unusual observation has been

eliminated, the control limits are recalculated.

Mason and Young (1999) describe the importance of creating a representative

. 2
baseline (model) in Phase |I. The better the model fit, the more sensitive the T control
method will be to outliers. More emphasis should be placed into constructing a baseline
dataset in Phase |I. This will ensure that the appropriate process variables are used, ones
which characterise the process the best, and in turn a useful model is created from which

Phase Il can be based upon.

Calculating the UCL for a process also has some additional considerations. Is
the process in Phase | or Phase II1? Are the population parameters, N and £, known, or

w ill sample estimates X and S, have to be calculated?
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2.4.1.1  Phase | Control Limits, where fi and ¢ are known population parameters

For a chi-square distribution, where \Xand £ are known, assuming multivariate

normality, from Equation 1.9, the UCL for
r2z= (x- n)'Yrix- a0 is,
T2ucl = X2(ap) (1-15)
for chosen @, where x2(a p) is the upper a®rquantile ofx2(p) with p degrees of freedom.

Tracy et aI. (1992) discussed that for a Phase | “start-up stage”, an exact method
should be used to construct the control chart. The x2 distribution, as in Equation 1.15,
and an F distribution are approximated distributions. These approximations and
subgroups being small, i.e. n=1 for individual observations, the associated degree of

error is unknown.

2.4.1.2 Phase J Control Limits, where jxand ¢ are unknown

Tracy et al. (1992), Lowry and Montgomery (1995) stated that calculating
control limits for individual observations of a Phase | process, the exact procedure
follows a beta distribution. Assuming multivariate norm ality, from Equation 1.11, it can

be shown thatthe UCL for

T2= (X- X)'S-KX- X) is,

T2UCL = ~ n > P(a,p/2,(n—p—1)/2) (1-16)

for chosen A, where P(a,p/2,(n-p-i)/2) is the uPPer a t/lquantile of P (p/2,(n-p-i)/2)-
Example 2.1, Phase |

Equation 1.11 is used to calculate the T2 values and Equation 1.16 to calculate the UCL

for the distribution.

This example contains start-up stage data in a Chemical Process generated from
Tracy et aI. (1992). Three variables are used in monitoring the Chemical Process. The
three variables are Percentage impurities (X J, Temperature (XZ) and
Concentration (X 3). The initial sample has 14 observations shown in Table 2.1.
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Sample %Impurities Temperature Concentration
No. XJ (X2) (X3)

1 14.92 85.77 42.26

2 16.9 83.77 43.44

3 17.38 84.46 42.74

4 16.9 86.27 43.6

5 16.92 85.23 43.18

6 16.71 83.81 43.72

7 17.07 86.08 43.33

8 16.93 85.85 43.41

9 16.71 85.73 43.28

10 16.88 86.27 42.59

11 16.73 83.46 44

12 17.07 85.81 42.78

13 17.6 85.92 43.11

14 16.9 84.23 43.48
16.83 85.19 43.21

Table 2.1 - Chemical Process Data

X = (16.83,85.9,43.21)

and the sample covariance matrix is,

0.365 -0.022 0.10
S = -0.022 1.036 -0.245
0.10 -0.245 0.224

Using Equation 1.11,
T2=(X- X)S {X—X)

T2x = (14.92 - 16.83,85.77 - 85.19,42.26

-1
0.365 -0.022 0.10 14.92 - 16.83"

43.21) -0.022 1.036 -0.245 85.77-85.19 = 10.93
0.10 -0.245 0.224 . 42.26-43.21.

T22= 2.01, T2z = 558, T24= 3.86, 125=0.04, T26 = 2.25, 127=
1.44, Tlgge_i.m, T29 = 068, T210=2.17, T2n = 417, T212 = 1.40, 7213 =
2.33, 1214 = 0.90.

1
w

Using Equation 1.16 to calculate the UCL, n = 14, p
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T UCL — —reeeeeeees P(0.05,3/2,(U-3-1)/2)

= 12.070(0.05,1.5,5)

= 12.07(0.5266) = 6.36

Sample

Figure 2.9 - Phase I T Control Chart

From the T 2calculations above, T2Xsh0ws that Sample 1 is out of control, this

is also demonstrated by the graph in Figure 2.9. Sample | was determined to be a

measurement error and so can be removed from the calculations. There are now 13

samples used to calculate the UCL for Phase I.

X = (16.98,85.14,43.28),

the sample covariance matrix is,

0.068 0.076 -0.055
S = o0.07s6 1.092 0.216
L-0.055 -0.216 0.163
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T2t = 184, T22=5.33, T23= 3.58, 724 = 0.23, [25=2.17, T26=

1.46, 127 = 1.05, T28= 191, T29 = 5.16, r 210 = 3.84, 12N = 1.65, T212 =

7.00, T213 = 0.77.

Note: For calculation purposes, Samples are numbered 1-13. To convert to original

Sample numbers add 1 (as Sample 1 has been removed).

Toud — - - P(005,372,(13-3-1)/2)
= 11.08P(085j1,545)

= 11.08(0.562) = 6.23.

Figure 2.10 - T2 Control Chartwith Sample 1removed

Although, T212 = 7.00, shows that it is out of control in Figure 2.10, there is no

assignable cause for this observation and so it is notremoved.

Now that the baseline dataset has been determined, the Phase I1IUCL is used for

monitoring new observations.

2.4.1.3 Phase Il Control Limits, where fi and Y, are known population parameters

When p and £ are known for individual observations and there is anexisting

steady state process, the TZL.G_ is used as in Phase | (Equation 1.15).
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T2= (X- io'stH=*- H) ang,

t2ucl= X2(ap)

To justify use ofthis equation, Lowry and Montgomery (1995) suggest for Phase |
and Phase Il control limit calculations, where p is large, n should exceed 500. With a
large sample size from Phase 1, it is assumed that X and S are equal to the true
population parameters pi and 2!. These parameters are approximations and therefore

using this method gives an approximate calculation ofthe control limit.

The control limit is independent of the size of Il used to determine the baseline

dataset in Phase I.

This method is not usually recommended, as in industry, it is rarely the case that

you will have known population parameters.

2.4.1.4 Phase Il Control Limits, where fi and Y, are unknown

The application of the Phase Il process monitoring is that each incoming data
point is plotted in sequence, and is independent. Equation 1.17 is used, where the

incoming observation vector X is not included in the calculation of X and S.

W here the population parameters, |i and £ are unknown, Equation 1.10, is used to

calculate the T 2 statistic,
T2= (X- xys”~cx- X)
Ryan (1989) defines the exact UCL for this T2 statistic as,

t'2 — (n+1)(n=l)p
T UCL ~ n(n_p) F(a,p,n-p), (L17)

for given @, where n is the size ofthe baseline dataset from Phase I,
p is the number of variables and
F(a,p,n-p) is the a t,Iquantile of F(pn_p).

This method calculates the exact control limits as the exact distribution of T is
obtained from Equation 1.10.
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If the new incoming observation is greater than the UCL this will indicate a
signal implying that it does not conform to the established baseline dataset. Mason et aI.
(2003) discussed that it is at this point where it is decided, whether to react to each out
of control point, or to wait and search for some trend or pattern and declare an out of
control when a number of T2 values are > UCL. These are similar to run rules used on

Shewhart Control Charts in univariate process monitoring.

Example 2.2

Using the 13 samples from Phase | data from Example 2.1 above, a new

observation, sample 14, is collected, Xnew = (17.08,84.08,43.81)".

The T2 Statistic is calculated using,

T2=(Xnew - X)'S-\Xnew - X)

'0.068 0.076 -0.055
where X = (16.98,85.14,43.28)", and S = 0.076 1.092 -0.216
-0.055 -0.216 0.163

Thew = (17.08 - 16.98,84.08 - 85.14,43.81

'0.068 0.076 -0.055* 14.92 - 16.83"
43.28) 0.076 1.092 -0.216 85.77 -85.19 = 3.52
.-0.055 -0.216 0.163 . .42.26 - 43.21.

Using Equation 1.17 to calculate if this new T2 value is in control,

(n + I)(n —1)p
ucl Fr

(13 + 1X13-1)3,,
1 UCL— 13(13 —3) (0.05,3,13-3),

= 3.88 F(0.053,10),

= 3.88(3.708) = 14.38
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Figure 2.11 shows a graph ofthe T2 Statistics from Phase | (samples 1-13), the

T 2 Statistic for the new observation (sample 14) and the UCL for Phase II.

Thew is within the control limits, therefore the new observation, XNBW , is in control.

Figure 2.11 - Phase Il T2 Control Chart

2.4.2 Phase land Phase Il UCL for Subgrouped Data
A more common SPC method is to monitor the subgroup means.

The mean vector | ofa sample of N observations is distributed as a p-variate

normal distribution Np([j_,E /m ).

Using subgroup data, the method for calculating the T2 Statistic and the UCL in
Phase | is the same as the method used for individual observations. Mason and Young
(2002) noted that the data is in samples of size mi;i = 1,2,.... k. The total sample size
will ben = £i=inij. The observations can be treated as one group as all the observation

vectors come from the same Multivariate Norm al distribution.

30



Statistical Process Control

2.42.1 Ifnande are known,
For Phase Il monitoring of subgroups, where (i and £ are known, the T Statistic

is calculated by,
T2= m(Xt- n) ¢ ~HXt- o ,
where Xt is the Ith sample mean,

The UCL for a given @ is the same as for individual data shown in Equation 1.15,
m2 %
1 uUCL ~ (a,p)

This control limit is independent ofthe sample size ofthe subgroups, M and the

baseline dataset N

2A.2.2 Ifsi ands are unknown,

In Phase Il, where p.and £ are unknown, the UCL for the T2 Statistic, given in

Equation 1.14,
t2= (xt- xys-HXi- X),
where Xand Sare estimates of || and X from the baseline data, is,

rp2 _ (m+n)(w-)p /i ion

T Lﬂ—‘“ ITn(n- V) F(«-P"-P)

for a given a. N is the size ofthe baseline dataset.

Example 2.3

Using the new observation data in Example 2.2, Xnew = (17.08,84.08,43.81)",
after the baseline dataset has been determined from the 13 samples in Phase |, suppose
that the new observation and the 13 samples represent a subgroup mean i.e. each sample
is the mean of 5 observations, then M —5. The T2 value for the new observation

would remain the same butthe UCL would be calculated as follows,

From Equation 1.18,
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(m+n)(n-Dp n
1 UCL ~ mn(n_p) r~'n®

_ (5 + 13X13-1)3
5(13)(13 - 3) (0.05,3,13—3)

(18)(12)3

5(13)(10) ®-05'3'10)

648
= — (3.708) = 3.70

Thew = 3.52, is less than T2Ul - 3.70, and therefore is in control.

2.5 Autocorrelation

If a time dependency exists in the data (such as decay process), it is known as
time-correlation or autocorrelation. For data where autocorrelation exists, an adjustment
must be made to the T2 Statistic as it is based on the assumption that independent
observations exist in the data i.e. the observation vectors must be uncorrelated over

time.

Montgomery and Mastrangclo (1991) discussed that using the T2 Statistic without

appropriately adjusting for atime dependency can result in a false signal.
Mason and Young (2002) described two forms of autocorrelation in a process,

1. Continuous Decay - Correlation exists in the process where the current

observation is dependent on an immediate preceding value.

2. Stage Decay - The performance in one stage of the process is dependent
on the performance in the previous stage. This can be seen, for example,
on equipment wear and tear. There is a step-wise pattern over an extended

period oftime.

In univariate processes, adjustments are made so that the confounding effect from

one variable with correlated variables is removed.
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In multivariate processes, an investigation is carried out, to look at how the time
variables relate to the other process variables, so they are not confounded. This s
performed by adding a variable that is time sequenced, into the dataset, and observing
how other process variables relate to it. If they correlate, then it is probable that the

process variable will correlate with itselfin time.

Bersimis €t aI. (2007) list various papers written on methods used for dealing with

autocorrelated multivariate processes.

2.6 Collinearity

Collinearity is where two or more variables are perfectly correlated which results
is a singular covariance matrix. This can occur in the data where some variables are
computed from some measured variables. The T2 Statistic is based on the assumption

that the covariance matrix is non-singular and can be inverted.

Collinearities in the covariance and the correlation matrix can occur because of

1. Sampling restrictions

2. Theoretical relationships existing in the process

3. Outliers in the data.

By examining the eigenvalues and eigenvectors of the sample covariance matrix,

collinearity can be detected. The correlation matrix is usually used for this purpose.

Highly correlated variables are analysed using Principal Component Analysis
(PCA). This method is discussed in detail in the next chapter but for the purposes of

explaining the detection ofcollinearity, it can be mentioned that PCA can be used

1. to detect a singular covariance matrix, and

2. to determine variables that are highly correlated
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As described by Mason and Young (2002), one of the recommendations for
detecting a near singular matrix is given by calculating the condition indices. The

formula for calculating these indices is,

maXeigenvalue
every other eigenvalue

where i = 2,..., n, and n is the total number of eigenvalues.

Eigenvalues are the characteristic roots of a matrix and eigenvectors are the

characteristic vectors ofthe corresponding eigenvalue.

If any of the indices are greater than 30, this indicates that severe collinearity is
L]
present in the data. In the case where collinearity exists, the use ofthe T statistic is not

recommended.
There are anumber of solutions that can be implemented,
1. One ofthe variables involved in the collinearity can be removed,

2. The covariance matrix can be reconstructed by excluding the eigenvectors

corresponding to the near-zero eigenvalues.

The latter method is used in PCA by reducing the number of Principal

Components and will be discussed in the next chapter.

2.7 Conclusion

All techniques discussed in this chapter can be applied for monitoring and
statistical process control in continuous processes with multivariate data. Which
equation to apply, in order to calculate the T2 Statistic and UCL, will depend on the type
of data (i.e. individuals or subgrouped) and whether the mean and variance are known.
This applies for both Phase | and Phase Il ofthe process.
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The steps for implementation are summarised as follows,

1. Phase | screens the data for outliers,

a. The T2 values for each observation are determined based on their

respective distribution.

b. The UCL is calculated, from which each of the T values are

compared against.

c. Any outofcontrol points with assignable cause are removed.

d. Step | is repeated until there are no outliers with assignable cause.

2. Phase Il monitors new observations,

a. The new T2 values are calculated using the mean and covariance

from the baseline data determined from Phase |I.

b. The UCL is also calculated using the number of observations from

Phase I.

c. The new T2 values are assessed against the UCL for out of control

signals.
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CHAPTER THREE

PRINCIPAL COMPONENT ANALYSIS

3.1 Introduction

Principal Component Analysis (PCA) has been used for many decades for various
applications. It is one of the oldest multivariate techniques. It was first described by
Pearson (1901) and then Hotelling (1933) described its specific computational
technique. As seen with Multivariate analysis, there are many variables to consider and
it is not always possible to exclude variables. It is desirable to include as many variables
as possible and try not to omit any relevant variables. It is not practical to analyse all

variables as the level of correlation between variables is likely to be large.

Jackson (2003) described Principal Component Analysis as a data analysis
technique, which describes the multivariate structure ofthe data. The most common use
for Principal Component Analysis is data reduction. This simplifies the data by reducing
the dimensionality in the data and so separates the signal from the noise. It does this by
extracting a small number of factors that can be used to summarise the data with
minimal loss of information about the original variables. This can help during
investigation in finding the root cause of a signal. It tries to find a few independent
linear combinations o fthe original variables that will account for most of the variability
in the data. Generally two or three Principal Components will account for 80-90% o fthe
data. Once the components are extracted, separate analysis can be performed to help

interpret what this means for the process.

Dillon and Goldstein (1984) defined PCA as:

“Principal components analysis transforms the original set of variables into a
smaller set of linear combinations that account for most of the variation in the original
set. The purpose of PCA is to determine factors (i.e., principal components) in order to

explain as much ofthe total variation in the data as possible.”
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Fuchs and Kenett (1998) illustrated how Principal Component Analysis plays an

important part in Quality Control, it has certain important features.
1. The new variables are uncorrelated,

2. A few of the principal components will determine where most of the
variability is captured, so these new variables need only be used for

controlling the process.

Principal Component Analysis has many objectives including summarising data,
classifying variables, detecting outliers and a warning of faults occurring in the process

and traceability ofthe fault.

If variables are correlated, PCA takes P variables, Xl'X2i...,Xp, and transforms
them into puncorrelated variables, tife, —,tV. These new transformed variables arc

called Principal Components.
3.2 Principal Component Analysis
Principal Component Analysis has three main steps:

1. Calculate the correlation matrix. This is done in order to find groups of
variables that are correlated to one another. It can also help to determine
w hich variable to eliminate if one variable is correlated to any of the other

variables.
2. Calculate the Principal Components.

3. Calculate the transformed data set to find multivariate relationships in the

data.

Principal Components arc linear transformations ofthe original variables and can

be used to approximate the original data matrix X

Let X be an NXP matrix where n corresponds to the number of observations and P

corresponds to the number of process variables.

X = + e +tppp= JN=1tiPi (3.1)
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where ttis the ilhPrincipal Com ponentofx also known as the score vector and
Pi is the ith loading vector.

Fuchs and Kenett (1998) pointed out that the loading vector is also known as the
eigenvector of covariance matrix, XTX. The corresponding eigenvalues (Aj) to the
eigenvectors (pj) are the coefficients of the original variables and show the variance of

each principal component (t,).

The PCA of X is equivalent to the eigenvector analysis of the covariance matrix
ofx, XX If the eigenvalues are arranged in order of the largest variation in X to the

smallest variation in X, shown as follows,

A> A2>  Ap,

then their corresponding eigenvectors, pi,p 2, ,p p are the loading vectors of X

The first Principal Component of A" is a linear combination of the original

variables with the greatest amount ofvariation, illustrated below.
ti = PIXI + p2Ix2 + ...+ Ppaxp
and it has the greatest variance.

The second principal component of X is the linear combination

t2 = Pl2X1 + p22x2 + mmm+ Pp2Xp

and it has the next largest amount of variation. This Principal Component has a

condition whereby it is not correlated (orthogonal) to the first principal component.

Each Principal Component after this is not correlated with any of the other

principal components that have been previously defined.

Principal Component Analysis can be performed on the covariance matrix or the
correlation matrix. Which to use depends on the nature of the data and what its
application will be. As discussed by Yang and Trewn (2004), in industry, when the data

is a measurement and it describes a dimensional characteristic i.e. length or distance, it
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is not recommended to standardise the original data because the original scale is
required in order to quantify the actual geometry of an object. When data is normalised,
each variable has the same unit and so has the same physical meaning. It would not be
appropriate to try and identify components in a “normalised” shape that account for
most of the variation in a real shape. For this situation, PCA must be done on the

covariance m atrix as this deals with the original variables.

MacGregor and Kourti (1995) pointed out that the covariance matrix is not known
in practice and so is estimated. Yang and Trewn (2004) also described that if the
original variables are in different units or if they have different numerical magnitudes
like units of inches and psi (pressure measurement), then the PCA will be more
influenced by the larger measurement and so the original variables must be standardised

(scaled) and the correlation matrix should be used to perform PCA.

3.3 Standardised Principal Components

If PCA is to be performed on the correlation matrix, as described in the case

above, the Principal Components must be standardised.

This first involves standardising the vector X = (XI1J3X 2,..IXp), to find the principal

component scores.

The next step is to standardise the PC scores, this is done by dividing each PC by

their standard deviations.

3.3.1 Principal Component Scores

X = (X1;X2)..Xp), is standardised by subtracting the mean from the observation to

get the deviations of the variables from their target. This results in standardised X's. In

standardising the vector X = (X 1;X2..Xp), the resulting matrix Z is written as,
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XLis the sample mean for Xt and

Sii is the sample variance for X|4

Example 3.1

Continuing with the Tracy et aI. (1992) data used in the previous chapter where the

initial dataset had 14 observations. In the Phase | process for T2 control charting, sample

1 was identified as an out ofcontrol point and was excluded.

The next step is to run a principal component analysis on the remaining 13

samples (Table 3.1) using the correlation matrix.

Sample % Impurities

No. Xl

© 0o N O U WN R

el
w N P O

Table 3.1 -

16.9
17.38
16.9
16.92
16.71
17.07
16.93
16.71
16.88
16.73
17.07
17.6
16.9

Temperature

X2

83.77
84.46
86.27
85.23
83.81
86.08
85.85
85.73
86.27
83.46
85.81
85.92
84.23

Concentration
X3

43.44
42.74
43.6
43.18
43.72
43.33
43.41
43.28
42.59
44
42.78
43.11
43.48

Phase | Historical Data

The Principal Components Analysis platform

Figure 3.1.
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Multivariate
Principal Components / Factor Analysis

Principal Components: on Correlations

Number Eigenvalue Percent 20 40 60 80 Cum Percent
1 18797  62.658 62.658
2 07184  23.945 X 86.603
3 04019 13397 | \ 100,000

Eigenvectors

% Impurities X1 054701 -0.70168 0.45623
Temperature X2 054413 0.71227 0.44339
Concentration X3 -0.63616 0.00S71 0.77153

Figure 3.1 - JMP Output for Principal Components Analysis

The cumulative percent of the first two components accounts for 86.6% of the
total variation as shown in Figure 3.1, therefore the principal components charts will be

generated from two PC's.

The principal component equations are, from Equation 3.1,

P ,
z topi

ti= y

6_>i:1p'i*i
where ti is the principal component and ptare the eigenvectors.

So, the first principal component is,

tl = P'I*l + Pr2*2 -P's*3
tr= 0547241 + 0.544*2 - 0.636*3

w hich can also be expressed as,

tx= o0.547 %impurities + o.s44 temperature —o.636 concentration

The second principal component is,

t2 = —0.702*! + 0.712*2 — 0.006*3

which can also be expressed as,
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t2= —o0.702 %impurities + o.712 temperature — o.0o6 concentration

After the Principal Components have been identified, the new principal
component scores are obtained by substituting the variable values ofthe original objects

into the principal component equations, which are defined by the PC eigenvectors.

SU = sn = variance ofvariable XX. The standard deviations o fthe variables are, NSt
0.2589, V722 = 1-0454 and szj = 0.4037, which are %impurities, temperature and

concentration respectively.
The mean vector X = (16.9769,85.1484,43.2815)".

The principal component scores, Thare calculated by,

Ti - PiZi — PuZl+ p2i Z2 + p3iZ3

where p£fis the eigenvector and

zZ, = — is the standardised variable.

The PC1 score for Sample No. 1 is calculated by,

(16.90 - 16.9769) (83.77 - 85.1454)
0.547 e e -+ 0544 — — s -

= 0.547(—0.2970) + 0.544(-1.3156) - 0.636(0.3938)

= -0.1605 - 0.7154 - 0.2504 = - 1.13

The PC2 score for Sample No. 1 is calculated by,

X\ —xx *Q ~*2 *3 .+ 3
T2= -0.7018 + 0.7122 - 0.0057
VAT 2 VSR
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(16.90- 16.9769) (83.77 - 85.1454)

(43.44-43.2815)

0.0057-—— — e
0.4037

= —0.7018(—0.2970) + 0.7122(-1.3156) - 0.0057(0.3938)

= 0.2084 - 0.9369 - 0.0022 = -0.73

The rounded results calculated in JMP are shown in Table 3.2.

Sample
No. PCI Score PC2 Score
1 -1.13 -0.73
2 1.348 -1.57
3 -0.08 0.979
4 0.084 0.211
5 -1.95 -0.18
6 0.607 0.385
7 0.065 0.609
8 -0.26 1.122
9 147 1.019
10 -2.53 -0.47
11 1.333 0.193
12 1.99 -1.16
13 -0.95 -0.41

Table 3.2 - PC Scores for Historical Data

3.3.2 Standardised PC Scores

Recall that PCs are linear combinations of the deviations of the variables from
their targets. AIll PC scores are divided by their standard deviations resulting in

standardised PC scores.

Yang and Trewn (2004) describe the standard deviations ofthe PC scores are the

square root ofthe eigenvalues since the eigenvalues are the variance ofthe PCs.

S — "\
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Si2= A = Var(Xi)

The standardised PC scores, also called Latent variables, follow a multivariate

normal distribution, so mean = 0 and standard deviation = 1, and so three-sigma limits

forUCL and LCL can be applied. UCL = 3, Mean = 0, and LCL = -3.

Each ofthe Principal Components are divided by their variances, shown as,

_ZL = Pi£i = Vlizi + p2izl + P3izi
JTi  yi yri

Example 3.2

Using the data from Example 3.1, the principal components charts can then be

generated from the standardised scores. The eigenvalues for PCIl and PC2 from Table

3.2 in Example 3.1 are, = 1.8797 and X2: 0.7184.

Ti =-1.13 and T2= -0.73, as calculated in Example 3.1.

The standardised PC 1 score for sample 1 is,

T, S1.13

TIT V1.8797

-1.13
= — — = -0.82
1.37
The standardised PC2 score for sample 1 is,
Tn -0.73
VO.7184
-0.73
= -0.86
0.84
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The standardised PC scores (rounded) for each of the samples, calculated in JMP,

are shown in Table 3.3.

As the PC scores are standardised i.e. scaled to unit variance, it is assumed that
they follow a standardised normal distribution, N(0,1), so mean = 0 and standard

deviation = 1.

Sample Standardised Standardised

No. PCI score PC2 score
1 -0.82 -0.86
2 0.983 -1.85
3 -0.06 1.155
4 0.061 0.248
5 -1.42 -0.21
6 0.443 0.454
7 0.048 0.719
8 -0.19 1.324
9 1.072 1.203

10 -1.85 -0.55
11 0.972 0.228
12 1.452 -1.37
13 -0.69 -0.49

Table 3.3 - Standardised PC Scores for Historical Data

There can be as many Principal Components as there are variables. If PCA is
performed on the correlation matrix then the number of Principal Components will be
equal to the number of variables. How to decide on the number of Principal

Components to retain will be discussed in the next section.

3.3.3 Retaining Principal Components

Given a set of N observations on p variables, PCA is used to determine k new
variables. A number k, can be chosen which is small relative to p, without the loss of
information. These k new variables are called Principal Components (PC’s) and will
account for most of the variation in the p variables. The set of Principal Components

w ill have the same variation and structure as the original variables.
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Jackson (2003) describes various methods for deciding when to optimally

determine a number, k

CPACT (2008) in Newcastle University, UK, discuss a few ways for selecting the

number of Principal Components, k, to retain, listed below,

1. Include enough of the components to explain 80-90% of the total
variability in the data, as shown in the JMP output in Figure 3.2, by

calculating,
0.8 < < 0.9
Hi=1 A
2. Exclude the Principal Components whose eigenvalues are less than 1.
3. Cross validate, this means taking approximately three-quarters ofthe data,

calculating the PCs and creating a model. The model is then validated

using the remaining one-quarter ofthe data.

Nomikos and MacGregor (1995) describes that cross validation involves
excluding some data from the dataset, the PCA model is then created with the remaining
batches. This is done a number oftimes excluding different sets of data each time. This
shows how the PCA models’ predictive ability increases by adding more principal

components.

3.4 Principal Component Control Charts

Figure 3.2 outlines the method for setting up and using a Principal Component

Control Chart, which was described by Yang and Trewn (2003).

The scores from Table 3.3 in Example 3.1 can be plotted on a control chart with

UCL= 3 and LCL= -3 as shown in Figure 3.3 and Figure 3.4.
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Obtain reference baseline and
use T2control chart to
eliminate outliers.

Run PCA on Correlation Matrix

of reference baseline to obtain

PC equations, eigenvalues and
cumulative percentage
variations for each PC.

~\
Pick k PCs (typically 80-90% of
cum. percentage variation},

and display a control chart for
each PC, where

mean =0, UCL = 3 and LCL=-3.

A
Calculate standardised PC

scores for each observation in
reference sample and each k
PC. Plot on control chart.

Are there out of control (OOC)
points?

0oocC
Points

No OOC
Points

Remove OOC observation if
there is an assignhable cause.

Continue to monitor PC
control charts for new
observations.

Figure 3.2 Setting up PC Control Charts
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Sarrple

Figure 3.3 - PC Chart for PC1 Score

Figure 3.4 - PC Chart for PC2 Score

Run Rules similar to univariate SPC can be used to identify an out of control

situation

W hen plotting PC scores on individual control charts, it is also useful to plot pairs

on a scatterplotoftwo PCs, usually PC1l and PC2 since these are the largest PC’s.

Figure 3.5 shows a scatterplot (biplot) of the first two principal components

scores.
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Figure 3.5 - ScatterplotofPC1l and PC2

Transforming the original variables into Principal Components and then plotting
the new uncorrelated variables on control charts was proposed by Jackson (1985). In
order to do this effectively, the Principal components must have a meaning. It must not

be difficult to interpret what this means in terms ofthe original variables.

As Principal Components represent a special type of correlated variation in the

observations, a high PC score indicates an extreme case for that type ofvariation.

341 PC Scores for a New Observation

This is also known as Phase Il, as new observations are compared againstthe PCA
model developed from Phase |I. The standardised scores are obtained for the new

observation vector and assessed againstthe +3 standard deviations control limits.

Example 3.3

The 13 samples used to develop the model has, X and S,

0.068 0.076 -0.055
X = (16.98,85.14,43.28)", S = 0.076 1.092 -0.216
-0.055 -0.216 0.163
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The covariance matrix is used in Phase Il. This is because £ is usually unknown,

therefore it has to be estimated from the sample. In this case, the sample estimate from

Phase | will be used, as it is representative ofnormal operation.

Using the new observation data in Example 2.2, Xnew = (17.08,84.08,43.81)",

The standardised values are,

~ 17.08-16.98
Zi = L =0.38

=-1.01
VL0992
43.81 -43.238
Z3 = - =1.31
V0163
The standardised score for PC I is,
7\ _ -0.547(0.38) - 0.544(-1.01) + 0.636(1.31)

VI1.8797 ~~ VL8797

-0.20 + 0.54 + 0.83

= 0-85
1.37
The standardised score for PC2 is,

T2 0.702(0.38) - 0.712(—1.01) - 0.006(1.31)

V0.7184 V0.7184

0.26 + 0.71 -0.007

= 1.15
0.84

Both of these scores are within the control limits, UCL= 3 and LCL= -3, so this

observation is in control.
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3.5 T2Charts and Squared Prediction Error (SPE) in PC Space

3.5.1 T2Charts in Principal Component Space

Kourti and MacGregor (1995) described how Hotellings T2 statistic can also be

plotted in the Principal Component space.

Mason and Young (2002) and Fuchs and Kenett (1998) indicate PC Control
Charts use the Principal Component on the correlation and so better detection for out of
control points is obtained if they are used alongside the T2chart. In addition, PC control
charts complement T2 charts since PCA does not measure the deviation of the

multivariate data from the norms.

These Hotellings T2 charts are generated based on the first kPCs ofthe correlation

matrix,
k 7
t2
£=1
where 321 , is the estimated variance ofth the principal component score.

These are sometimes referred to as the Principal Factors.
t2 E;Z
TE: rr-+ -

Example 3.4

Using the results from Example 3.3, i.e. the standardised scores, tX= 0.85 and

t2: 1.15 and the eigenvalues of the correlation matrix, X\ = 1.8797 and A2= 0.718,
the T2 statistic for the new observation is,
0.852 1.152

T2=- —— — + _—__ = 0.384 + 1.840 = 2.22.
1.8797 0.7184

Ferrer (2007) also showed this derivation of the T2 statistic as calculated in
Example 3.4. He also details that the Phase | and Phase Il control limits for the T2

statistic are similar to the control limits used for individual observations, where (i and £
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are unknown. This is based on the assumption that the scores follow an M VN

distribution.

Phase | is based on the Beta distribution, shown in Equation 1.16 and Phase Il
UCL is based on an F distribution, shown in Equation 1.17. When the T2 statistic is
being plotted in the score space, the original number of variables, p, changes to the
number of retained components in the score space, K, and N is the number of
observations. Uppercase is used to denote calculations in the score space. The Phase |

UCL, similar to Equation 1.16, is calculated as,

and the Phase 2 UC L is calculated as,

(n+h)(n—)p
which is the same as Equation 1.17, T2WO n(n-p) F(<x,p,n—p), as the observations
are not independent ofthe PCA parameters.
Phase Il control limits where the population parameters and [i and £ are

unknown, are calculated using Equation 1.17, to determine if this new T2 value is in

control.

N=n= 13 and K= P = 2 as there are two principal components retained in the

model.

~ UL N(N —K) F(a,K,N-K),

(13 + 1)(13-1)2

F(0.05,2,13-2),
L 13(13-2) ( )
— 2.35 F(0052,11),

= 2.35(3.98) = 9.35

The T2: 2.22 < TZL.U = 9.35, therefore the new observation is in control.
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Kourti and MacGregor (1995) outline that a high T2 value suggests that the
observation has an abnormal extreme value in one or more of the original variables.
This is caused by the observation being a large distance from the origin in the score
space, given that all PC scores are in control. This indicates that the cause of the
variation cannot be explained by a known Principal Component and it needs to be

investigated further.

Similar to T2 charts, PCA does not identify the variables that are responsible for
an out of control situation. They are not original variables and so operators can find

them difficult to interpret.

3.5.2 Residuals Charts

Montgomery (2005) describes that for autocorrelated data in a univariate time
series model, a useful control chart is one based on the residuals. The model, which
describes the correlation structure of the data is used to remove autocorrelation from the
data. A control chart based on the residuals can be plotted. Suppose that Xt is the fitted

value oth, the residuals are calculated by,

et = xt- xt

A residual is effectively the difference between an observed value and a predicted

value created by a model.

Traditional control charts can be applied to the residuals. Any abnormal patterns
or out of control point would suggest that the parameters used to create the model have

changed. This would indicate thatthe original variable, Xt is out o f control.

In Multivariate data, when a model is developed using a set of k Principal

Components, based on historical data, the matrix X is defined by,

X = TP

For each new observation, the fitted values xneW, can be calculated.
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These values are then used to evaluate the SPE (Q Statistic), i.e. the squared

distance between the observed and the predicted values from the nominal.

353 Squared Prediction Error

Jackson (2003) describes SPE (Q Statistic) as a measure of how close the
observation is to the k-dimensional space defined by the model. If the new observation
fits the model, then the SPE will be small as X and X will be similar. If they show
differences, a high SPE will emerge, which indicates that the predicted and observed

values are not similar, and that something has changed in the process.

SPEnew ~ 2 '(%new %new )’
&l
The SPE scores are also plotted on a control chart. Jackson and Mudholkar (1979)
recommended approximate control limits for a given level of significance, a, for the

quadratic residuals as,

1
Hi
2021V
caJ20 02ho(ho —
Qa = o1 + 1+
01 0,
where cais the normal variate with the same sign as hoO.
The remaining quantities are as follows,
i=k+1 i=k+1 i=k+1

where k = retained principal components and p = total number ofvariables.

Kourti and MacGregor (1995) explain thatwhen a process is in control, the SPE will be
small. When the PCA model has been generated from an in control process, the SPE

accounts for variation that is not accounted for by the model, as it is based on the
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residuals. So, when a new type of special event happens and this event was not
accounted for when developing the in-control PCA model, new PCs will appear
indicating that the structure of the correlation has changed. These new events will be

detected by the SPE values. They will be large, which indicates that the model does not

fit for that observation.

354 DModX Charts

Eriksson €l al. (2001) proposed an alternative method based on the equality of
variances from a normal distribution. Their method is also based on the SPE. SIMCA

P+, developed by umetrics, calculates the DM odX.
Eriksson et al. (2001) define two methods for determining DM od X,
1. Absolute DModX
2. Normalised DM odX, denoted as DM o d X nOrm-

The absolute DM odX calculates the absolute distance of an observation to the
model. It uses a correction factor, ¢, a function of the number of variables, P, and the

number ofretained components,K, for use in Phase |I.

DModX

where £ efp isthe SPE.

The correction factor, c, accounts for the degrees of freedom based on the fact,
that the distance to the model (DModX) is likely to be somewhat smaller for an

observation in the reference dataset, as it has influenced the model. In Phase Il, C = 1.

Eriksson €t al (2001) show that the normalised DM odX, (DM odXnomi) calculates
the normalised distance of an observation to the model. This uses the Absolute DM od X

and divides it by the pooled residual standard deviation, SO.This is shown as,

DModX S
DModX; o/
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where
YN Yip=182
iv - K- <oyp - Ky
and /fo = 1 if the model is centred, so the divisor will be (N—K —1)p — )

otherwise ATD = 0, where the divisor will be (N — K)(P —K)

2

The (— ) statistic has an approximate F distribution with

P —K and (N —K —1)(P —K) degrees offreedom.

The UCL is calculated as,

UCL(SPEY = E-z-}i-(--s(%P«,P—K,(N-K—l){P—K)

J(Ar-jr-i)(p-,ir) has an F distribution with

for specified a, where

P—K and (TV — K —1) (P — K) degrees offreedom.

Figure 3.6 shows the normalised DM odX chart for the 13 samples from Example

Figure 3.6 - DM odX plotin SIMCA P+
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The correlation has a large effect on the distribution of a Multivariate statistic.
The SPE monitors the correlation structure and the T2 monitors the magnitude
(direction) given that the correlation is ok. Changes in these statistics are indicated on
their respective control charts. It is because of this that both charts must be monitored in
order to investigate the cause of an out of control signal. If either of these statistics

moves outside its control limit then something has changed.

The T2control chartis a general multivariate control chart and can be used with or
without using Principal Components. The SPE (Q-Statistic) and DModX, however,

specifically deal with the residuals from PCA.

Chiang and Colegrove (2007) explain how a PCA model can be used to develop

T2and Q (SPE) charts in order to detect changes for all variables atthe same time.

Wikstrom €t aI (1998) proposed a scores monitoring and residual tracking,
(SMART) chart which measures the process over time which consists of a Shewhart
type Hotelling T: or scores control chart and a DModX chart displayed horizontally.
These SMART charts can simultaneously show the systematic variation in the data from

the scores and T2 charts and the unsystematic variation from the DM od X chart.

To clearly see which variables contributed to an out of control signal, one must
revert back to the original variables. Firstly, their contribution to the calculated scores
and the SPE must be assessed. Remember that if PCA is performed on the correlation
m atrix, the variables are standardised and so inteipretations on the variables can be

difficult to see immediately.

This contribution can be displayed using a contribution plot. The major advantage
to using this type of plot is that it allows the interpretation of information in terms ofthe

original process variables.

3.6 Contribution Plot

A Contribution Plot is very effective in identifying the set of original variables

whose contribution has changed from those predicted from the PCA model. MacGregor
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and Kourti (1995) described it as one of the most common approaches for identifying

the original variables responsible for an out-of-control signal.

It will show how each variable contributes to the calculation of the PC score. It
shows the change in the new observations relative to their average values calculated

from the PCA model.

The PC scores are written as a weighted sum of the data. The loadings are the

weights.

As the PC chart, T2 and SPE charts cannot be interpreted in terms ofthe original
variables, the contribution plot can display the contributions that each of the original
variables has on the calculation for the particular statistic. The scores chart and T2 chart
show the variation that is explained by the model. The contribution plot of DModX

shows unexplained variation.

Figure 3.7 shows the contributions that sample 1, in Example 3.1, had on the T

statistic from each ofthe variables, % Impurities, Temperature and Concentration.

Sredbiids PAGSS gy ™
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Figure 3.7 - Contribution Plot for sample 1 O0OC point.

In fault detection, the contribution chart shows the contribution that each variable
made to the abnormal condition. This information can help in finding the particular

variables that are the root cause o fthe problem.
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3.7 Partial Least Squares

Suppose that a process measures a large number of input process variables, X that
are highly correlated and the process also measures the output quality variables, Y. it is
possible to predict the Y quality variables using the X process variables measurements
by developing a predictive model. As with all predictive models, it must be calculated
from a stable reference dataset of optimal conditions. This type of model can be
generated through Partial Least Squares (PLS). PLS can also be known as Projection to

Latent Structures.

AlGhazzawi and Lennox (2009) explain that PLS is similar to Principal
Component Regression as it explains the variation in the process data, which can be
known as cause data, by reducing it to a set of factors that will maximally explain the
variation of the data in X In addition to this, PLS also explains the variation in this

input (cause) data that is most predictive ofthe quality (effect).

This method has the ability to predict if the process is potentially going to have a
negative effect on the output quality. It does so by identifying an unusual event at a

certain stage in the process. The earlier this is detected, the better for the process.

In manufacturing, the benefits of having an accurate predictive model of the
process have high cost savings and also reduce the potential for distressed inventory of

finished product.

The score vectors that are derived from the PLS analysis are different to those

that are obtained from PCA.

AlGhazzawi and Lennox (2009) discussed the application of PCA and PLS in a
multivariate process control system. They described the breakdown of the PLS

algorithm into cause and effect matrices.

The purpose of modelling is to maximally explain the variation of the data, in
order to explain the outputY using the inputx. The purpose of PLS is to find the
relationship between X and Y while making the error matrix in the quality data, as small

as possible.
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Cross validation helps to select the number of latent variables. A small number of

latent variables should explain the greatest variation in the input and output variables.

In PLS, the monitoring statistics that are used are T 2, SPEXand SPEy

For Multivariate SPC, the difference between PCA and PLS is that PCA monitors
a process through a single block of information whereas PLS considers the relationship
between the process and quality variables. The process is monitored through a model of
the quality variables that was developed from the process information. The monitoring

statistics of PLS method (T 2, SPEXand SPEy) can also help in identifying the root cause

of a signal by relating itto the X or Y variable.

Berismis €l aI. (2007) conclude that PCA and PLS techniques are mostly used in

the area of chemometrics but that they can be used for any type of multivariate process.

3.8 Conclusion

In addition to the multivariate techniques discussed in Chapter 2, Principal
Component Analysis and modelling can be used for monitoring and statistical process

control in continuous processes.

The steps for implementation are summarised in Figure 3.8.

*«On Covariance matrix
- variables are not
standardised

+On Correlation matrix Monitors
- i correlation . .
variables ar'1d scores *Measures the *Used for diagnosis
are standardised . structure of the .
deviation of the data model in to uncover variable
+ Plot Scores Control data from the Phase | and Phase contribution to
Chart norms in Phase | OOCon charts.
and Phase |II. SPE/DModX
Chart

Figure 3.8 - Multivariate Principal Component Analysis implementation steps

Not all processes are continuous, some are batch processes. They will be

discussed in the next chapter.
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CHAPTER FOUR

MULTIVARIATE SPC FOR BATCH PROCESSES

4.1 Introduction

A Multivariate control system needs to be adaptable to all processes in industry,
otherwise it has a limited capability. Continuous processes are most common in automated
and semi-automated systems where multiple observations are generated and collected every
second. This is usually conducted over a certain time period, i.e. day, shift. The individual
process control charts are monitored regularly by the operators. For online systems this can be

problematic due to the number of false alarms that can be encountered.

Another common process in industry is batch processes. Data is collected after a

particular process and a decision can be made to determine what the next steps are.

Slack, Chambers and Johnston (2007) identify the simple differences between a batch
and a continuous process. They highlight that continuous process are managed over long
periods oftime at high volumes. It is an endless run ofproduction where each unit of product
is undivided. The effortless flow from one stage of the process to another is the principal

characteristic of a continuous process.

They describe that a batch process has a process route that it follows, where groups of
product are treated together. A batch process is repetitive if a batch is of a large volume. The
size of a batch can vary from very small to very high volumes. A batch has a beginning and

an end.

CPACT (2008) describe the main characteristics of a batch process as,

. They are finite in duration,

. Can be oflow volume, so small production runs,

. Usually consist of high value products,

. They may have complex mechanisms.
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A batch process can be 3-dimensional; where the

71

. Batches represent | dimension,

. Variables represent J, and

J/

. Time is represented by K.

The T2 Statistic has the ability to deal with both continuous and batch processes.

4.2 Batch Processing

Batch process SPC differs from continuous processes as it is a finite process in duration.
Batch processing typically uses the data collected from passing batches to create a model

from which future batch progress are monitored against.
4.2.1 T2on Batch Observations

Mason €t aI. (2001), discuss two categories of batch processes, namely Category 1 and
Category 2. Calculations ofthe T2 statistic and UCL for the T2 chart will differ, depending on
the batch category. Phase | for removing outliers and finding an appropriate baseline in which

to use for Phase Il is described for each category.

Mason €t al (2001) classifies a process as Category 1 if it is assumed that the
observations come from the same p-dimensional normal distribution. The mean vector, (., and
covariance matrix, £, will be common. This type of batch process will manufacture product
similar to a continuous process. This is the type of batch process that will be discussed in this

research.

Category 2 batch processes assume that the observations come from different
multivariate normal distributions, Np(g,(;i,E). fa, I = 1 ,2,..., k, is the population mean vector
of the Ith batch. The batch mean vectors are separated but are contained within a defined

acceptable region.
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In their paper, Mason et al. (2001) discuss how batch sizes can affect the overall
calculation ofthe batch means. Suppose data is collected for a number of batches, r, and the

batch size is equal to one, so that on each batch, there is only one observation for p variables.
neg= 1, where | = 1,
The total sample size is N = I1[=1n¢ = T

Hence, the method in Phase I, for screening for outliers for individual observations on a

continuous process can be applied where each batch in a batch process has one observation.

The equation for calculating the Phase | T2 Statistic on a batch process, where the batch

size = 1 is,
T2=(X- XyS~\X - X) - p ~ 1 P(p/2,(N_p_1)/2) (4.1)
where 3(p/2,(n-p-i)/2) is a beta distribution with parameters p/2 and (N —p —1)/2.

The UCL is calculated using,

T2UCL —“ N~ P(cx,p/2,(N-p—1)/2) (4-2)

for chosen a,where P(a;p/2,(N- p_i)/2) isthe upper a®~quantile of (3(p/2,(N_p_1i)/2).

Equations 4.1 and 4.2 are similar to Equations 1.11 and 1.16, for calculating the T2

Statistic and UCL for individual observations.

Phase Il is calculated in a similar manner to the individual observation situation.
Consider an observation vector, X, with an unknown mean vector, X The covariance

matrix, S, is taken from Phase | with a baseline size N = nNr.

The T2 Statistic, for a future batch containing M observations, where m = 1 is given

by,

T2= (X- XNMSMQX - X) (4.3)

The corresponding UCL is given by,
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y2 (A1QV 1)P _ .
I UCL ~  jv(dV-p) *Vp.N-p), t4A)
for given @, where N = NI, is the size ofthe baseline dataset from Phase I,

p is the number of variables, I is the number of batches and F(apN_p) is the @ quantile

°f F(p,N—)-

Equation 4.3 is similar to Equation 1.10, for calculating a Phase Il T2 Statistic and

Equation 4.4 is similar to Equation 1.17, for calculating the UCL, for individual observations.

These equations are also similar to the ones proposed by Ferrer (2007) in Chapter 3,

section 3.5 where he described plotting the T2 statistic in the score space.

4.2.2 Batch Process Data

Nomikos and MacGregor (1995) discuss an alternative method for analysing and
monitoring a batch process. They explain how a batch has a recipe of materials, such as
chemicals, that are processed under controlled conditions, according to some specified time
trajectories, in which the process variables are varied. Once a batch is completed, the product
is then tested to see if it is ofgood quality. This is done by measuring certain quality variables
from a sample of the batch, usually in a laboratory. There will be some batch-to-batch
variation which can happen for any number of reasons. This variation will ultimately lead to

undesired conditions where the current batch and subsequent batches, will be of poor quality.

On-line monitoring of critical process variables at specific times in the process may
alleviate the problem of having poor quality batches detected after a batch has been
completed. This will enable earlier detection and correction of issues arising earlier in the

process.

The process variables are monitored at certain times in the process, using historical data.
It doesn’t matter whether they are successful or unsuccessful batches, as they will contribute
valuable information in which to build a model. This model can then be used to characterise

what conditions a batch requires in order to be successful.

There are many process variables that can be measured, which vary over time and can
be highly correlated. As batches are finite and non-linear in nature, building a model can

prove to be difficult.
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CPACT (2008) describe various methods for multivariate process control. Their

research is primarily based on chemical data.

PCA and PLS are discussed in Chapter 3. These are bi-linear techniques. Batch data
must be transformed some way in order to convert from a 3-dimensional into a 2-dimensional

space. Continuous data is bi-linear and is represented by a 2-dimensional matrix.

The data can be analysed a number ofways,

. Unfolding the data into a 2-dimensional array, which is similar to continuous

process, and then applying PCA or PLS.

. Keeping the tri-linear form and applying multi-linear techniques.

423 Multiway PCA

MacGregor and Nomikos (1992) presented a paper on monitoring batch processes and
in another paper they, (Nomikos and MacGregor, 1994), extended multivariate SPC methods

used in continuous processes to Multiway Principal Component Analysis (MPCA).

In their 1995 paper, Nomikos and MacGregor discuss the measurement of many
variables over the finite duration of a batch process, using MPCA. Control Limits are

calculated from distributional information obtained from historical data.

Multi-way PCA decomposes the three-way data array, X_or X, into a series of principal
components that consists of score vectors (tr) and loading matrices (pr), or unfolded vectors

(pr), plus aresidual E, which is as small as possible, in a least squares sense.

x= £r=1tr ®Pr+e or X=cr=itrpr'+ E

where r = 1, R, are the retained principal components.

Decomposition of the data block is in two parts. The residual, E, describes the noise in
the data. The other part, £? =i tr pl", expresses the dataset as two fractions. One fraction (tr)

related to the batches and the other (pr) related to the variables and their time variation.
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The loading matrix, H’(JX K), contains most of the structural information about how
the variable measurements deviate from their mean trajectories under normal operating

conditions.

To test a new batch for unusual occurrences, the loading matrix can be used by

obtaining the predicted t scores and residuals for a new batch, Xnew(Jx K)

If the t-scores ofthe new batch are within the normal operation region and its residuals
are small, then no unusual behaviour is detected and the batch is performing the same as that

ofthe reference dataset.

As with PCA, the t-scores can be plotted, as can Hotellings T 2and the DM od X statistic.

4.2.4 Batch-wise and Variable-wise Unfolding

In their 1995 paper, Nomikos and MacGregor suggested unfolding the batch data
(Batch-wise unfolding). By unfolding the three-way array, X (l X J X K), into slices using
Multiway PCA. The slices can be rearranged into a two-dimensional matrix where PCA can
then be performed. The PC score vectors contain information on batch-to-batch variation and

the loading matrices show the variables behaviour over time.

CPACT (2008) simplified the diagram given by Nomikos and MacGregor (1995),
Figures 4.1 and 4.2, which shows how the data array, X, is unfolded slice by slice into a 2-

dimensional matrix, X, where PCA can then be applied.

wold €t aI. (1998) proposed unfolding the variables of the data (variable-wise
unfolding). This approach will only capture the covariance structure of the variables and it
doesn’t account for the behaviour ofthe batch process. From Figure 4.1, the first few K rows
are measurements for the first few batches. If variables are only measured for a portion of a
batch, this will lead to missing data. The behaviour of a batch is monitored using the scores.
The loading vectors contain information on the variables. No assumptions are needed for

future measurements.
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Figure 4.1 - Unfolding a three-way matrix into atwo-dimensional matrix
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Figure 4.2 - Two-dimensional matrix

The horizontal slices (JX K) are the loading matrices, which contains information on

the batch-to-batch variation i.e. each slice describes the trajectories of all the variables from a
single batch ().
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The vertical slices (/ X/) are the score vectors, which reflect the behaviour of the
variables over time i.e. each slice describes the values of the variables for all batches at the

same time interval (/c).

Nomikos and MacGregor (1995) suggested that using the vertical slices to analyse and

monitor a batch process is the most meaningful way ofunfolding X.

. The vertical slices must be arranged into a two-dimensional matrix, X(/ XJK)
These represent each time point, T1 representing the firstlime point, as shown in

Figure 4.2.

. Mean scaling and centring the data must then be completed before carrying out
PCA. Unfolding this way, by subtracting the mean trajectory from each process

variable, removes the non-linearity associated with batch processes.

. PCA is then performed on this adjusted data, i.e. PCA is applied to the distances

instead o fthe measured trajectory.
4.25 Dealing with Incomplete Batches

Nelson €t aI. (2006) discuss a problem with the method presented above. As a batch is
finite in duration, the batch must be complete in order to calculate if it performed
successfully. As the batch progresses, it would not be appropriate to use the above method to
test the data. The matrix XFHN will not be completed until the batch has finished. Each time
interval (/c) only has the measurements up until that particular interval in time. The rest is

undefined.

Nomikos and MacGregor (1995) suggested three methods in order to predict future

unknown observations for an incomplete batch, XNEW. These methods for in-filling are,

1. Using zero deviations. This assumes that future observations will operate along
the mean trajectory as calculated from the reference dataset. However, this
method has a sensitivity issue, as it is unable to detect a fault at the start of a

batch.

2. Using the current deviations. This assumes that future deviations will continue to

operate atthe same level as the current values for the remainder ofthe batch.
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3. Using the missing data method. There is no in-filling applied. The future
observations are considered as missing values. The principal components of the
reference dataset can be used to predict the missing values by using the observed
values up to the time interval and wusing the correlation structure of the

measurement variables in the reference dataset defined by the model.

Cho and Kim (2003) proposed another method for predicting future observations of a
batch. They propose using past batch trajectories, by choosing a past batch trajectory that is

comparable to the current batch, from a library of batch trajectories.

Kourti (2005) strongly recommends against in-filling or using missing data methods.
Kourti states that: “The reason that we should not fill with missing data is simple: these
variables are missing at the same time interval for all the batches in the data base; the
behaviour ofa variable that is never measured at a certain time interval, is not observable at

that time interval. ”

Nelson et aI. (2006) discuss the issues with the use of measurement sets that are
incomplete. They analyse the impact that wusing the missing measurements presents
uncertainties in the predictions, scores, Hotellings T2 and SPE statistics as well as the

contributions.

wurl et aI. (2001) also discuss batch processing but they focus on a PLS model. They
suggest further dividing the process into two stages, namely startup stage and production

stage.

4.3 Conclusions

Batch data has its own requirements as it is a finite process with complex systems. It
can require a different approach than continuous processes, as batch processes are 3-

dimensional and continuous processes are 2-dimensional.

There are various methods identified for analysing batch data. Mason et aI. (2001)
identify a simple technigue for modelling batch data which is similar to the continuous
method. They propose calculating a T2 Statistic and UCL based on a particular category of

batch data.

73



Multivariate SPCfor Hatch Processes

Unfolding a 3-dimensional matrix into a 2-dimensional matrix in order to build a model
using PCA or PLS was proposed by Nomikos and MacGregor (1995), and Wold eI at. (1998).
These methods are mainly applied to the chemical industries where a process is a batch
process from start to finish. There are drawbacks to this approach, which involves dealing

with incomplete batch data. Some suggest methods for infilling.

The approach to batch data proposed by Mason et aI. (2001) will be considered for
assessing a batch process as part of this research. The research data is suitable to a Category 1

batch process.
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CHAPTER FIVE

FUEL CELL TECHNOLOGY AND MANUFACTURING
PROCESS

5.1 Introduction to Fuel Cell Technology

A fuel cell is an electrochemical device that converts the chemical energy ofa fuel
into electrical energy such as electricity. The fuel cell works like a battery in principle,
it generates power and as long as there is fuel, there will be power. Linden and Reddy
(2001) explain the essential difference between a battery and a fuel cell is the way the
source of energy is supplied. When power is needed in a fuel cell, the fuel and oxidant
are provided by an external source. In a battery, the fuel and oxidant are elements ofthe
device. When the reactant is depleted, electrical energy will no longer be generated.
Oxygen, or air, is the most common oxidant used in fuel cells. Details on fuel cells can

be found on Fuel Cells 2000 website <http://www .fuelcells.org>.

Linden and Reddy (2001) give an overview about how the fuel cell operates. A
fuel cell consists of two electrodes, an anode and a cathode. They are catalysts which
enable the reaction between the fuel and the oxidant. They are saturated by an
electrolyte and divided by a gas barrier. The fuel travels along one electrode while the
oxidant travels along the other electrode. This is illustrated by Linden and Reddy

(2001), through Figure 5.1.

The ions and electrons generated from the fuel, along with the oxygen, come
together on the surface of the electrode which the oxidant travels along. W ater is

produced as a by-product and, of course, electrical energy is produced as the output.

Fuel Cells come in many different forms, some which include, proton exchange
membrane fuel cell, PEMFC, direct methanol fuel cell, DM FC and direct liquid fuel
cell, DLFC, along with many more. They are differentiated based on the type of

electrolyte used.
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S~MARATOH

Figure 5.1 - Typical Fuel Cell (Linden and Reddy, 2001)

xue €t aI. (2006) discuss the complexity of a polymer electrolyte membrane
(PEM) fuel cell. These systems have limitations with respect to the components used in
the fuel cell. The assembly ofthe critical components, the membrane and the electrodes,
can create fault conditions. Failure analysis has revealed three forms for failure of a fuel

cell. They discuss the effects of,

1. Drying outofthe membrane

2. Fuel starvation for electrochemical reaction

3. Leaking ofthe membrane

The DLFC uses a borohydride technology. This type of fuel cell is the subject of
this research. It is a micro-fuel cell based secondary power source. It supports the
batteries that are currently used on a device and it is designed to power and charge most
common handheld electronic devices such as mobile phones and MP3 players
<http://www.medistechnologies.com>. It has an integrated fuel cartridge that generates
power immediately after activation. This is achieved by filling the fuel cell with fuel

from the cartridge.

The benefits of a Fuel Cell are discussed on Fuel Cells 2000 website

<http://www .fuelcells.org>, these include,
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. Low to Zero emissions - Fuel cells are very quiet, as there are no fan

systems, so there is no noise pollution.

. Highly efficient - Fuel cells do not bum fuel, they obtain their energy

electrochemically.

In addition to these benefits, a portable fuel cell is engineered by Medis
Technologies. Details on their portable fuel cells can be found on their website

<http://www.medistechnologies.com>. They describe them as,

. Easily transportable - They are lightweight and can even be carried and

used on an airplane.

. Recyclable - They are recyclable and are also RoHS compliant
(Restriction of Hazardous Substances). This ensures that levels of certain
chemical elements meet EU standards, which makes it a green

environmentally friendly product.

. Safe - They are UL (Underwriters Laboratories) and CE listed.

5.2 Overview of Manufacturing Process

This research was conducted at a contract manufacturing company based in
Galway, Ireland. The company provided an wupgrade to an existing Fuel Cell
manufacturing process based in Israel. The facility in Israel is an R&D based facility,
which manufactures approximately one thousand fuel cells monthly. The manufacturing
process in lIreland provides a high volume automated facility, which has the ability to
produce over one million fuel cells monthly. This line is the world’s first high volume,
fully automated assembly line, to mass manufacture a fuel cell for portable devices. The
equipment required to assemble this fuel cell was custom made in order to achieve this.
Due to confidential information, the fuel cell manufacturing process and laboratory

testing cannot be discussed in detail.
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5.2.1 Stages of Fuel Cell Assembly

The Fuel Cell manufacturing line is divided into four stages, each of which is

treated as an independent process, as shown in Figure 5.2.

. Stage 1 manufactures the Cell Core of the fuel cells. This is where the

electrical components, anode and cathode are assembled.

. Stage 2 is the Fuel Module manufacture. A container is assembled and
then filled with a chemical fuel. The filled container is called the fuel

cartridge.

. Stage 3 assembles the Cell Core to the fuel cartridge and places them into

an outer casing.

. Stage 4 is a Pack line where the fuel cell and operating instructions are

contained in the outer packaging.

The fuel used to power the fuel cell is stored in the cartridge. The cell core and
fuel are not mixed until a customer has activated it for the first time after purchase.
Once activated, the fuel cell is an immediate power source, so there is no need to warm
up before it starts generating power. There are approximately 20 watt hours of power

available until the fuel cell is depleted.
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Stage 1 (Continuous Process)

* Online Monitoring

* Leaktest
* Vision System

« Offline Monitoring
* Visual Inspection
* Dimensional Measurements

Stage 4 (Batch Process)

» Offline
* Flow Wrap
» Contents Inspection

Figure 5.2 - Manufacturing Process Flow

Online and offline monitoring systems are used to check the quality of the product
as it moves through the production line. The online monitoring systems check 100% of
the product for various attributes. Offline monitoring is facilitated by audit stations,
which are located in each of the four stages of the manufacturing line. The offline
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monitoring is done in a laboratory. Samples are automatically removed from the
production line at a predetermined rate using an automated system via the audit station.
Various tests are performed on these samples to monitor quality attributes. These tests

are detailed in the following sections.

5.2.1.1 Stagel

r 1
Stage 1 (Continuous Process)

e Online Monitoring
» Leaktest
* Vision System

« Offline Monitoring
* Visual Inspection
« Dimensional Measurements

Figure 5.3 - Stage 1 Testing

Stage 1 on the manufacturing line is a continuous process. This stage continually
assembles the components using the raw materials. Figure 5.3 details the tests

performed at Stage 1 ofthe process.
Online monitoring in Stage 1includes,

» Leak testing: leak testers are used to test 100% of product during the
assembly of the various components. The leak test checks the integrity of

the assembled parts.

e Vision systems are used to detect defective product or incorrectly

assembled parts, in order to meet requirements.

Stage 1 has four audit stations. As the samples are removed from the line, via the
audit stations, visual inspections are performed on each assembly. The visual
inspections look for defects associated with that particular stage of the process. Results
are logged onto a monitoring system as a good part or bad part. This calculates the

number of good and bad parts produced per hour.

82



Fuel Cell Technology and Manufacturing Process

These samples are then taken to the laboratory for dimensional checks. This is
done via a contact measurement system, which has all the specifications for each
assembly pre-programmed into it. This system will display Statistical Process Control
charts for each characteristic of each assembly. Quality Inspectors respond to out of

specification measurements as detailed in Sampling and Response Plans.

5.2.1.2 Stage?2

r
Stage 2 (Continuous Process)

* Online Monitoring
* Leaktest

« Offline Monitoring
* Visual Inspection
* Vacuum Test
* Pressure Test

Figure 5.4 - Stage 2 Testing

Stage 2 is also a continuous process. It has two audit stations. Figure 5.4 details

the tests performed at Stage 2 of the process.

Leak testing is performed as part of online monitoring in Stage 2. Leak testers are
used to test 100% of product during the assembly of the fuel container. The leak test
checks the integrity of the assembled parts before and after the container is filled with

fuel.

Samples are removed via the audit stations. They undergo a vacuum test and
pressure test in addition to a visual inspection. The vacuum and pressure tests are
performed on several areas of the fuel container. This is to ensure there will be no

chemical leakage resulting from the assembly of the fuel container.
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5.2.1.3 Stage 3

Stage 3 (Continuous Process)

* Online Monitoring
* Vision System

« Offline Monitoring
* Visual Inspection
+ Final Testing _

Figure 5.5 - Stage 3 Testing

Stage 3 is a continuous process, and it has two audit stations. Figure 5.5 details the

tests performed at Stage 3 ofthe process.

Online monitoring in Stage 3 involves a vision system, which is used to detect

defective product or incorrectly assembled parts.

Once the visual inspections are complete, the samples are taken to the laboratory

for Final Testing. The final tests that are performed include,

« Discharge Testing - this is a destructive test that measures the
performance of the fuel cell. It does this by measuring the electrical output

of a fuel cell, i.e. Power and Energy.

o Safety Testing - this is to ensure there is no leakage of corrosive

chemicals.

» Activation Testing - this measures the force required to break a membrane

that will activate the fuel cell.

» ShelfLife Testing - this measures the time period from which the fuel cell

can be left unactivated and still perform satisfactorily.

Units not meeting the required criteria at Stage 3 Final Testing, are sent for

Failure Analysis. Laboratory technicians will then try to determine the cause of failure.

Meanwhile, at the end of Stage 3, the manufacturing line artificially creates

batches from a continuous process. Every 2000 units are considered to be a batch. This
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was determined to be an adequate number in order to contain an issue in the event that

one should arise. Each batch has a unique batch number.

5.2.1.4 Stage4

Stage 4 (Batch Process)

* Offline Monitoring
* Flow Wrap
» Contents Inspection

Figure 5.6 - Stage 4 Testing

Stage 4 is the pack line. This stage also has two audit stations. Figure 5.6 details

the tests performed at Stage 4 of the process.

This packs units for each batch into a flow wrap package. Each unit is then placed
into a separate box along with the product information. Samples are inspected to ensure
that all required components are contained in the box. Units are then packed into outer
boxes and placed on a pallet in the warehouse. They will be shipped directly to the
customer, from the warehouse. Their shipping status is dependent on the results of the

final testing performed in Stage 3.

Once the Stage 3 final tests are complete, a decision can be made in relation to the

quality of each batch, and acceptable batches can be released for shipment.

5.3 Performance Measurement Tests

There are many measurements and tests carried out at various points in the
process. This research will investigate the performance measurements and assess the
results using Multivariate statistical methods. The discharge test performed at Stage 3,
measures the electrical output in terms of Power and Energy. Power and Energy will

ultimately be what the customer will get from using the product.
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As this is the first high volume automated fuel cell line, purposely built for this
technology, qualification production runs were carried out to ensure capability of the
process and the product functionality. Once all “Risk production” runs were completed

and results achieved, the “Production” phase commenced.

All final testing is destructive, which has a huge impact on costs. Therefore, it is
in the best interest of the company to have a minimum amount of sampling in the

laboratory.

A batch consisting of 2000 units, from which 80 units are used in a discharge test.

The discharge test, for performance, measures two parameters,
* Power (W),
* Energy (Wh)
40 units are used to assess each of these parameters.
The results of testing will determine the status of each batch, i.e. pass, fail or hold.

An automated monitoring system ensures that voltage measurements are
performed every minute and converted to power and energy outputs, W and Wh,

respectively. These results are then automatically exported to a database for analysis.

Electrical power is calculated from the voltage measurements using Ohms Law
(Holzner, 2005),

V = IR

where V is the voltage measured in volts, / is the current measured in amperes and R is

the resistance measured in ohms. This formula can be rearranged to show that,
\/
= w

Gibilisco (2005) demonstrates that power can be calculated using,
P=1Vv

where P is power in watts.
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Substituting / from Ohms Law,

Electrical Energy is expressed as a function of power and time (Gibilsco, 2005),
E =Pt
where E is Energy measured in Watt Hours and t is time.

Figure 5.7 is a graph of the product label claim given for a particular fuel cell
product <http://www.medistechnologies.com>. It shows the relationship between the

voltage and the energy generated by the fuel cell over time.

Typical Discharge Cunve -
Voltage vs. Time Discharge @ 1W

After Power Management

25
20
O
<a
15
£
03

OOQO Qv-vol‘h o8

10 15 20 25

Time - Hours

Figure 5.7 - Typical Discharge Graph of a Fuel Cell

Power
Power is measured at the start up phase. This stage is defined as the 5 minute

period after activation. This is to ensure that the fuel cell generates power immediately

after activation, as stated by the product claim.
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The working power is also measured. This is defined at numerous time points

throughout the life of the unit after the start up phase, namely 2h, 6h, and 12h.

Power is assessed at each of these stages, to ensure the reliability of the fuel cell is

acceptable throughout the product life.

Figure 5.8 shows a power graph of twenty fuel cells. Each line on the graph shows
the trend of the power output over time for a single fuel cell. Time is shown on the x-
axis and the watts are shown on the y-axis. It is easier to see the trend of twenty cells
instead of the forty on the one graph. Power and time values have been removed for

confidentiality reasons.

Powti

Figure 5.8 -Power Output from twenty Fuel Cells

Energy
Energy is also evaluated from the voltage measurements. Energy testing on a fuel

cell is terminated once the energy from the fuel cell reaches a predefined cut-off value.
This cut-off value defines when the energy has deteriorated significantly. The total

number of Watt Hours (Wh) is then calculated.

Figure 5.9 shows the energy output from twenty fuel cells. Time is shown on the

x-axis and the watt hours are shown on the”-axis for a single fuel cell. Each line on the
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graph shows the trend of the energy output over time. Energy and time values have been

removed for confidentiality reasons.

™m

Figure 5.9 - Energy Output from twenty Fuel Cells

A batch average for power and energy is reported based on forty units. A decision
is made for batch release based on these results. These are the parameters chosen for
this research. The performance results contribute to the decision as to whether a batch

receives an acceptable or unacceptable batch status.

It is critical that the customer gets an immediate source of power and also that the
fuel cell generates enough power and energy over a period of time that is acceptable for
the customer’s requirements, based on the label claim, as shown in Figure 5.7. If these
requirements are not met then the reputation of the fuel cells reliability is in jeopardy

and repeat business would be threatened.
5.4 Conclusion

A description on fuel cell technology and how it works is presented. Some reasons
for failures on a fuel cell are also highlighted. The manufacturing process for a new
innovative micro fuel cell is described. The first three stages of the process are
continuous and this feeds into the final stage where the batches are determined. It is an

automated high volume production line that is capable of manufacturing over one
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million fuel cells a month. This equates to an average of 16 batches per day, operating

on 24/7 (24 hours a day, 7 days a week) system.

Various product testing is performed at each stage of the process, which is
facilitated by automatic sampling stations distributed throughout the line. The final
product performance testing data, which evaluates power & energy, will be used for this

research.
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CHAPTER SIX

MULTIVARIATE SPC TO MONITOR FUEL CELL
PERFORMANCE

6.1 Introduction

The data presented in this research is based on the performance results generated
from the power and energy output measurements from each batch. These batch results

are calculated from testing a sample of forty units for power and energy, respectively.

Four parameters are used to assess power and one parameter is used to assess

energy. Therefore, five parameters are used to evaluate the performance of a batch.

A Multivariate process control method will be presented for Phase 1 and Phase 1
of the process. This method will be used as an alternative to the traditional univariate

method of assessing five individual control charts for the means.

The Phase | data presented was generated from the “Production” phase of the
process. After it was determined that this phase had been characterised, Phase 11 data
collection began. This involved ramping up production, by increasing the number of

batches manufactured in a 24 hour period.

The data used for Phase Il monitoring contains seventeen new batch observations.
They were sent for final testing once all samples were gathered from the Stage 3 audit

station.

All batch samples that are for discharge testing must be started at the same time.
As the batch results from each test become available, they are exported to a database for

analysis.

6.2 Multivariate Analysis

This chapter will investigate various multivariate SPC methods through charting

and model building. It will identify which is a more suitable method for fuel cell
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manufacturing. It will also determine which method identifies an out of control situation

the fastest.
The objectives of this chapter are to,

o Develop a multivariate control chart using both parameters (power and

energy) as inputs. Charts that will be covered include,
0 The T2 Statistic using individual observations,
0 The T2 Statistic on batch observations
» Develop a model using power and energy parameters by the use of,
0 Principal Components Analysis
0 T2and DModX control charts on PCA

. Identify the criteria to determine the most appropriate multivariate

control chart/method for this process.

6.3 Multivariate Control Chart
6.3.1 T2Statistic using Individual Observations

Each batch result is treated as an individual observation. In Phase I, the T2
Statistic and UCL for individual observations, are calculated using Equations 1.11 and

1.16 respectively.

In Phase Il, the UCL for new individual observations is calculated using Equation

1.17.

The targets for the start up power, working power and energy for each batch are

given in Table 6.1.

P5min (W) P2h (W) P6h (W) P12h(W) Energy (Wh)
0.85 1.00 1.00 1.00 17.00

Table 6.1 - Batch Targets
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6.3.1.1 Multivariate Phase | - Screening Datafor Outliers

Data generated from the power and energy performance testing, as identified in
Chapter 5, will be assessed. Each power timepoint, (5 minutes, 2 hours, 6 hours, 12
hours) is measured in Watts (W) and the energy is measured in Watt hours (\Wh).
Twenty nine batch results for Phase I, are given in Table 6.2.

Batch P5min P2h P6h PlZh Energy

1 1.09 1.23 1.27 1.19 18.71

2 1.11 1.22 1.25 1.21 18.69

3 1.10 1.26 1.26 1.13 18.08

4 1.14 1.26 1.25 1.06 18.12

5 1.11 1.25 1.24 1.06 18.48

6 1.11 1.25 1.23 1.08 17.73

7 1.11 1.23 1.27 1.08 18.69

8 1.09 1.27 1.28 1.12 18.08

9 1.13 1.25 1.26 1.11 18.71
10 1.11 1.24 1.24 1.07 18.49
11 1.03 1.22 1.23 1.11 18.83
12 1.08 1.22 1.24 1.07 17.79
13 1.07 1.25 1.25 1.10 18.14
14 1.11 1.23 1.26 1.24 18.85
15 1.11 1.28 1.29 1.17 18.57
16 1.10 1.24 1.26 1.18 18.72
17 1.11 1.27 1.29 1.20 18.34
18 1.12 1.26 1.29 1.20 18.45
19 1.12 1.28 1.29 1.19 18.85
20 1.14 1.29 1.29 1.18 18.43
21 1.07 1.30 1.33 1.18 18.65
22 1.09 1.25 1.23 1.00 17.61
23 1.07 1.25 1.21 1.04 18.00
24 1.03 1.26 1.25 1.09 17.58
25 1.00 1.24 1.24 1.02 16.49
26 1.09 1.22 1.24 1.16 18.56
27 1.12 1.26 1.29 1.20 19.29
28 1.09 1.26 1.28 1.23 19.58
29 1.13 1.29 1.27 1.19 17.63

Table 6.2 - Batch Data for Phase |

JMP 7.0 software, developed by SAS Institute, is used to plot the multivariate
control charts. Applying the multivariate control chart platform in JMP gives the
following results shown in Figure 6.1.
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Multivariate Control Chart

Covariance

P5min P2h Peh P12h Energy
PSmin 0.0011 0.0002 0.0003 0.0009 0.0093
P2h 0.0002 0 0005 0.0004 0.0004 «0.0003
P6h 0.0003 0.0004 0.0007 0.0012 0.0066
P12h 0.0009 0.0004 0.0012 0.0045 0.0267

Energy 0.0093  -0.0003 0.0068 0.0267 0.3627

Group Means

Count  PfimIn P2h P6h P12l Energy
29  1.0964  1.2535  1.2616  1.1331  18.3499

Figure 6.1 - Phase | Hotellings T2 Output

The parameter means and variance from Figure 6.! are consistent with manual

calculations given by,

X = (1.096,1.254,1.262,1.133,18.350)

and the sample covariance matrix, S,

0.0011 0.0002 0.0003 0.0009 0.0093
0.0002 0.0005 0.0004 0.0004 -0.0003
0.0003 0.0004 0.0007 0.0012 0.0068
0.0009 0.0004 0.0012 0.0045 0.0267
0.0093 -0.0003 0.0068 0.0267 0.3627

Using Equation 1.11, the T2 Statistics are calculated,

T2= (X- x)'s~Hx- X)

The T2values for each batch are contained in Table 6.3.
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Batch T2

1 4.667

2 5.301

3 0.431
4 4.507

5 3.412

6 2.960

7 8.358
8 2.521

9 2.898
10 2.446
11 9.344
12 4.157
13 0.737
14 4.749
15 2.275
16 0.939
17 2.194
18 2.355
19 2.288
20 4.510
21 12.033
22 4612
23 8.307
24 5.982
25 13.773
26 2.813
27 2.681
28 7.989
29 10.760

Table 6.3 - T2 Statistics for each Batch

The Phase 1u c L is calculated from Equation 1.16, wheren = 29, p =5

TZLI]_~ D Q(a,p/Z,(n-p-I)/Z) ,

T UL> - ™. 3(0.0S,5/2,(29-5-1)/2)

— 27.034R(0.05,2.5,II-5)

= 27.034(0.3646) = 9.86

The T2values from Table 6.3 and the UCL are plotted on a multivariate chart illustrated

in Figure 6.2.
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Multivariate Control Chart

Note: UCL is calculated based on AIphaZOCB

Figure 6.2 —Hotellings T2 Chart

The out of control points identified in Figure 6.2 are measured against the
individual observations in Table 6.2. Batch 21, 25 and 29 are assessed against their
group means in Figure 6.1. It can be seen that Batch 21 is performing well above the
batch average for working power output (2h, 6h and 12h). Batch 25 has a below average
energy output. These output values are considered abnormal events. Batch 29, however,

does not seem to have any extreme case for either power or energy.

Failure analysis on Batch 25 concluded that defective materials were present on
some of the units, resulting in the overall low performance of the batch. However, not

all of the units from this batch were defective.

Batch 21 is an atypical batch as its results are high. Failure analysis concluded that
some units from this batch were assembled with high performing components. These
high performing components are not representative of a normal fuel cell composition.
To include this batch in Phase I, would inflate the mean and sample covariance matrix,

so this batch was removed for the purposes of characterising a typical baseline for Phase

Batches 21 and 25 will be removed from the baseline dataset for Phase Il
monitoring as it was determined that these batches are not representative of normal

batch operation.
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Batch 29 will not be removed, as there was no obvious root cause for the high T2

Statistic.

After removing Batch 21 and 25, a second screening of the data (n = 27) is then
performed. This reveals an additional batch above the new UCL. This is shown in

Figure 6.3. The new UCL was recalculated using n = 27.

Batch 24 (sample number 23 in Figure 6.3) has a T2 Statistic of 11.03, which is
above the UCL of 9.76. Upon examination of the raw data, one notices that this batch
has the lowest energy output of 17.58Wh. This is below the batch average of 18.41 Wh,
however it is above the target energy, as listed in Table 6.1. The start up power of
1.03W is also below the average, but is well above the 0.85W requirements for start up.
It was decided to retain Batch 24 as part of the baseline dataset as there were no
abnormal results observed.

Multivariate Control Chart
\%

Qut Pnin Ph FBh Ph
Z7 (1B 1853 1X0 113/

Figure 6.3 - Second Screening of Phase | Data



Multivariate SPC to Monitor Fuel Cell Performance

6.3.1.2 Multivariate Phase II-Monitoring New Observations
Twenty seven batches were used to create the historical baseline for use in Phase
Il monitoring of the process. Seventeen new batches were manufactured and their

performance results are given in Table 6.4.

Batch P5min P2h P6h P12h Energy
30 1.08 1.25 1.27 1.21 19.09
31 1.11 1.27 1.26 1.09 17.7
32 1.13 1.29 1.32 1.27 18.51
33 1.12 1.28 1.28 1.15 18.73
34 1.13 1.25 1.26 1.1 18.5
35 1.07 1.23 1.26 1.23 18.76
36 1.14 1.28 1.26 1.1 17.74
37 1.13 1.3 1.31 1.27 18.21
38 1.1 1.24 1.24 1.2 18.98
39 1.1 1.23 1.3 1.28 19.26
40 1.13 1.26 1.27 1.22 19.1
41 1.1 1.26 1.27 1.26 18.84
42 1.13 1.3 1.32 1.27 18.49
43 1.15 1.29 1.33 1.3 18.59
44 1.05 1.22 1.25 1.11 19.15
45 1.12 1.29 1.29 1.14 17.99
46 1.13 1.26 1.29 1.28 18.49

Table 6.4 - New Batch Data

These seventeen additional batches can be plotted on their own T2 chart to
determine if they are within the Phase Il UCL. This UCL will be calculated using the

statistics from Phase | as described previously in Chapter 2.

The group mean and covariance are determined from Phase I, as shown in Figure

6.3.

Equation 1.11 is used to calculate the T2 Statistics for the new batches,
T2= (Xnew - X)'s~Hxnew - X)

The T2values for these seventeen new batches are presented in Table 6.5.
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Sample Batch T2
1 30 3.884
2 31 2.675
3 32 8.972
4 33 3.241
5 34 2.442
6 35 5.841
7 36 5.413
8 37 10.260
9 38 8.367
10 39 10.933
11 40 4.830
12 41 6.551
13 42 9.438
14 43 12.410
15 44 9.095
16 45 4.681
17 46 8.115

Table 6.5 - T2 Statistics for new batches

The Phase Il UCL is calculated from Equation 1.17, wheren = 27, p = 5.

7 n+ D(n—Dpr
Tucl~ nin-p)

(27 + 1)(27 —1)5 7
~ 27(27 - 5) F(0.05,5,27—5),

(28) (26) 5
“ 7.7(22}" FC°05'522)

3640
~ “A « F(0.05,5,22),

= 6.13(2.661) = 16.31

The Multivariate control chart platform in JMP produces the results shown in

Figure 6.4.
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Multivariate Control Chart

Note: UCL is calculated based on Alpha=0.05

Figure 6.4 - Phase Il Hotellings T2 Output

The multivariate control chart in Figure 6.4, shows that the process is now
performing satisfactorily. The T2 control chart will be monitored for all new

observations.

Another application of the multivariate control chart is using the T Statistic on

batch observations. This is discussed in the next section.

6.3.2 T2 Statistic on Batch Observations

The Phase I process for plotting the T2Control Chart using the batch data in Table

6.2, is assessed exactly as discussed in Section 6.3.1.

Treating a batch using the equations for a Category 1 with Batch Size = 1, as
described by Mason et al. (2001), will give the same result as treating data as an

individual observation.

Recall from Section 4.2, n; = 1, where i = 1, ...,r and the the total sample size

isN= £[=ln; =r.
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The Phase | T2 Statistic and UCL are calculated from Equations 4.1 and 4.2
respectively, using N = 27. The results for T2 values and UCL are identical to those
presented in Table 6.3 and Figures 6.1 and 6.2 as the equations are equivalent. Batch 21
and 25 are removed using the same reasons for exclusion when treated as individual

observations.

The remaining twenty seven batches are used to calculate the mean and

covariance matrix applied in Phase II.

The Phase Il process uses a baseline size = nr , where r is the number of batches
as described in section 4.2. The Phase Il T2 Statistic, for new batches containingm = 1
observations, and UCL are calculated from Equations 4.3 and 4.4 respectively,

where N —27. The results are identical to those shown in Table 6.5 and Figure 6.4.

The T2 control charts will not give any additional information for an out of control
situation. Other methods can be utilised to convert the out of control point back in terms

of the original observations.

The next section uses an alternative method, using Principal Components
Analysis. This should help to determine, which out of all these methods, is the more

appropriate monitoring method for interpreting an out of control point.

6.4 Principal Components Analysis

Principal Component Analysis will be generated using the same raw data as
described in Section 6.1. The Phase | process of using a T2 control chart to screen the
data for outliers, is used prior to principal components analysis. Section 6.3.1.1 has

already provided the results for this screening.
6.4.1 Develop PCA Model

The initial dataset had twenty nine batches. Batches 21 and 25 were removed as
part of Phase I, shown by the red arrows in Table 6.6. There are twenty seven batches

remaining, for creating the Principal Components Model, shown in Table 6.6.
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Batch P5min P2h P6h P12h Energy
1 1.09 1.23 1.27 1.19 18.71
2 1.11 1.22 1.25 1.21 18.69
3 1.10 1.26 1.26 1.13 18.08
4 1.14 1.26 1.25 1.06 18.12
5 1.11 1.25 1.24 1.06 18.48
6 1.11 1.25 1.23 1.08 17.73
7 1.11 1.23 1.27 1.08 18.69
8 1.09 1.27 1.28 1.12 18.08
9 1.13 1.25 1.26 1.11 18.71

10 1.11 1.24 1.24 1.07 18.49
11 1.03 1.22 1.23 1.11 18.83
12 1.08 1.22 1.24 1.07 17.79
13 1.07 1.25 1.25 1.10 18.14
14 1.11 1.23 1.26 1.24 18.85
15 1.11 1.28 1.29 1.17 18.57
16 1.10 1.24 1.26 1.18 18.72
17 1.11 1.27 1.29 1.20 18.34
18 1.12 1.26 1.29 1.20 18.45
19 1.12 1.28 1.29 1.19 18.85
20 1.14 1.29 1.29 1.18 18.43
22 1.09 1.25 1.23 1.00 17.61
23 1.07 1.25 1.21 1.04 18.00
24 1.03 1.26 1.25 1.09 17.58
26 1.09 1.22 1.24 1.16 18.56
27 1.12 1.26 1.29 1.2 19.29
28 1.09 1.26 1.28 1.23 19.58
29 1.13 1.29 1.27 1.19 17.63

Table 6.6 - Batch Data for Creating PCA Model, n = 27

The correlation matrix is used to calculate the principal components. JMP

generates the output, given in Figure 6.5.

One notices in Figure 6.5, that the outlier analysis is calculated using a T2 control
chart. Two out of the twenty seven batches are identified as outliers. These are Batch 24
and Batch 29. Recall that these batches were also identified in Phase | screening of
outliers, in Section 6.3.1.1, but remained as part of the baseline dataset as no actual root

cause was determined for the out of control situations.
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Multivariate
Principal Components | Factor Analysis

Principal Components: on Correlations
Number Eigenvalue Percent 20 40 60 80  CumPercent

1 2.5716  51.432 51 432
2 1.3349 26699 78 130
3 0.6350 12 701 90 831
4 0.3022 6.044 96 875
5 0 1563 3125 100000
Eigenvectors

PStnin 0.39946  0.30210 085192 0 14966  0.03161

P2h 0.33743 064703 -0.33992 036980  0.46389

P6h 057627  0.08367 -026272  0.04938 -0.76776

P12h 0.51213 -0 31693 -0.25563 -0 64437 0 39568

Energy 0 36361 -0.61858 0 15594 0.65054 019398

10 15 20 25 30

Row Number

Figure 6.5 - PCA Output for n = 27 Batches

The number of principal components to retain is based on the rationale that the
selected number of PC’s should include enough of the components to explain 80-90%
of the total variability in the data. The cumulative percent of the first two components
accounts for 78% of the total variation. The first three components accounts for 90% of

the total variation, therefore three principal components will be retained.
The linear equation for the first principal component is,
0.399 *PS min + 0.337 *P2h + 0.576 *P6h + 0.512 *P12h + 0.3636 *Energy
The linear equation for the second principal components is,
0.302 *PSmin + 0.647 *P2h + 0.083 *P6h —0.317 *P12h —0.619 *Energy

The linear equation for third principal component is,
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0.852 *PSmin - 0.340 *P2h - 0.263 *P6h - 0.256 *P12h + 0.156 *Energy

The PC scores are calculated using these linear equations and the results are

shown in Table 6.7.

Batch PCI Score PC2 Score PC3 Score

1 0.41 -1.38 -0.21
2 0.18 -1.61 0.72
3 -0.14 0.69 -0.23
4 -0.33 1.39 1.41
5 -0.92 0.27 0.87
6 -1.55 1.06 0.67
7 -0.18 -0.60 0.84
8 0.30 1.01 -0.90
9 0.44 0.03 1.14
10 -0.99 -0.11 0.99
11 -2.17 -2.26 -1.11
12 -2.26 -0.19 0.17
13 -1.18 0.09 -0.75
14 0.94 -1.61 0.37
15 1.75 0.73 -0.60
16 0.39 -0.96 0.09
17 1.66 0.56 -0.62
18 1.72 0.23 -0.11
19 2.26 0.40 -0.28
20 2.33 1.50 0.09
22 -2.56 1.37 0.32
23 -2.76 0.40 -0.11
24 -2.09 0.69 -2.30
26 -0.85 -1.47 0.37
27 2.33 -0.81 0.15
28 2.09 -1.68 -0.70
29 1.18 2.25 -0.28

Table 6.7 - Principal Component Scores

The PC scores are standardised by dividing each PC score by the square root of

its eigenvalue, resulting in the standardised scores shown in Table 6.8.

These standardised PC scores should follow a standard normal
distribution /V(0,1). They can be plotted on a control chart with mean = 0 and control

limits = +/-3, as shown in Figures 6.6, 6.7 and 6.8.
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Standardised Standardised Standardised

Batch PCI PC2 PC3
1 0.25 -1.19 -0.26
2 0.11 -1.40 0.90
3 -0.09 0.60 -0.29
4 -0.20 1.20 1.77
5 -0.57 0.23 1.09
6 -0.97 0.92 0.84
7 -0.11 -0.52 1.05
8 0.19 0.88 -1.13
9 0.27 0.03 1.43
10 -0.62 -0.09 1.25
11 -1.35 -1.95 -1.39
12 -1.41 -0.17 0.21
13 -0.74 0.07 -0.95
14 0.59 -1.39 0.47
15 1.09 0.63 -0.75
16 0.25 -0.83 0.12
17 1.03 0.49 -0.78
18 1.07 0.20 -0.14
19 1.41 0.35 -0.35
20 1.45 1.30 0.11
22 -1.60 1.19 0.41
23 -1.72 0.35 -0.13
24 -1.30 0.60 -2.88
26 -0.53 -1.27 0.46
27 1.45 -0.70 0.18
28 1.30 -1.46 -0.88
29 0.73 1.95 -0.35

Table 6.8 - Standardised PC Scores

Batch

Figure 6.6 - Standardised PCI Score Control Chart
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Figure 6.7 - Standardised PC2 Score Control Chart

Figure 6.8 - Standardised PC3 Score Control Chart

Scatterplots for the standardised PC scores can also be very informative. These

are shown in Figures 6.9, 6.10 and 6.11.

The PC3 score for Batch 24 is very close to the lower control limit, as seen in
the score control chart in Figure 6.8, and the scatterplots in Figures 6.10 and 6.11. This
is one of the batches that was identified as a possible outlier in Phase | screening, but it
was not removed from the baseline dataset as no root cause was determined to warrant

removal.
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Figure 6.9 - Scatterplot of Standardised PCI and PC2

Figure 6.10 - Scatterplot of Standardised PCI and PC3
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Figure 6.11 - Scatterplot of Standardised PC2 and PC3
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The other batch that was identified as a possible outlier was Batch 29. From the
score control chart in Figure 6.7 and the scatterplots in Figures 6.9 and 6.11, it seems its

PC2 has a heavier weighting towards the UCL, butthis is not significant.

6.4.1.1 t Charton PCA

SIMCA P+ plots a T2 control chart on the principal component scores in
addition to scores and loadings plots. The T2 chart can help to determine if a good
model has been developed by identifying if there are any outliers in the model. The T2
values on Principal Components are calculated using the formula described in Section

3.5,

where s2£ = , is the estimated variance oft{,the principal component score.

The T2 values forthe PCA model are shown in Figure 6.12. Batch 24 is showing

to be outside the 95% confidence region ofthe model.

The green line in Figure 6.12 shows the control limit fora = 0.05, i.e. 95%
confidence I|limit. The red line indicates the control limit fora = 0.01, ie. 99%

confidence limit.
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Figure 6.12 - T2on PCA Model
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Perhaps a contribution plot can provide additional information to the cause of

2
the elevated T value.

2chart has movea from the

A contribution plot can explain why a point on the T
average. Figure 6.13 shows the weighted difference between the data in Batch 24 and
the model average. The weights are derived from the loadings. In this case, the loadings
are pi to p3. It identifies that the contributions to the average start up power (P5min)

has moved from the model average.

Figure 6.13- Weighted Contribution plot for T2, Batch 24

6.4.1.2 DModX Chart on PCA

The normalised DModX chart can be used, as described in Section 3.5.1. It can
also give an indication if the model has any outliers, as it can identify a change in the
correlation structure of the data. It is monitored in addition to the T chart as
recommended by Wikstrom et al. (1998). The combined charts are called SMART
charts. The charts are generated for each principal component to enable the user to

determine which principal component has contributed to the out of control situation.

Figures 6.14, 6.15 and 6.16 show the normalised DModX charts for each of the
three retained components of the model using SIMCA P+. The contribution plot for a
selected batch will display the scaled residuals of all the variables. These scaled
residuals are multiplied by the absolute value of the weight parameter. The weights are

the principal components.
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Figure 6.14 —Normalised DModX of PCI
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Figure 6.15- Normalised DModX of PC2

Figure 6.16 - Normalised DModX of PC3
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Figure 6.18 identifies that Batch 24 has contributed to an out of control situation
for PC2. A contribution plot should help determine which variable(s) are causing the
out of control. From Figure 6.15, it seems that the start up power (P5min) is again

flagging a signal in the DModX chart.

Batch 24 has the lowest start up power (1.03W) out of all the batches in the
model. The model average is 1.10W with a standard deviation of 0.03W. This is not

significant for the product performance, as the target for start up power is 0.85W.

Figure 6.17 - Contribution Plot for DModX, Batch 24, PC2

Figure 6.18 shows a scatterplot of DModX values for PC2 along with its control
limit on the y-axis, the x-axis contains the observation data for start up power (P5min)
for all batches is shown. This plot illustrates where Batch 24 fits in the model, in

relation to all the other batches in the model.
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Figure 6.18 - Scatterplot of DModX and Start up Power
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There is nothing wrong with the process even though Batch 24 is indicating an out
of control. This could be due to the selection of an a level of 0.05, which will naturally

indicate an out of control for 1in 20 samples.

One should look carefully at the chosen level of alpha (a). Figures 6.3, 6.4 and 6.5
show the T2 charts for a = 0.05. This alpha level will result in 1 out of 20 points giving
an out of control signal by falling outside the control limits even when the process is in
control. Batch 24 indicated an out of control but upon investigation, no root cause was

determined.

Figures 6.6, 6.7 and 6.8 show the PC score charts. These charts are standardised
and so follow a normal distribution with centre 0 and +3 standard deviations. The a
level for these charts are set at 0.0027, as three standard deviations of a normal
distribution falls within 99.73% of the distribution. Batch 24 did not signal an out of

control on these charts.

In the T2 chart on PCA in Figure 6.12, Batch 24 was just outside the green 95%
control limits (a = 0.05). However, if one was to monitor the process using the red
99% control limits (a = 0.01), Batch 24 would not have signalled an out of control.
Wikstrom et al. (1998) pointed that 95% limits can be used as warning limits and 99%

limits as the action limits.

6.5 Comparison of Multivariate Methods

A multivariate method is determined to be the most suitable for this process if the

following criteria are satisfied.
« Create arepresentative baseline dataset,
e Generate relevant control limits for future use,
» The ability to detect an abnormal situation in future observations,

» Easily generate alternative charts for investigative analysis, if required
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e The ability to assist in determining what contributed to an abnormal

situation,

e Continue to monitor new observations with minor effort.

All the methods described in this chapter have their uses. The T2 control chart can
generate a control limit for characterising a process in Phase I. This information is then
used to generate control limits for Phase Il of a process. It can also deal with both
individual and batch observations. It has the ability to create the different control charts
depending on the process. The T2 control charts are quick to determine an out of control
signal, however, it is not easy to interpret how the out of control signal relates to the
original variables. It does not have the ability identify a variable or group of variables

that could have contributed to the signal.

A baseline model is developed using Principal Components Analysis. This model
is used to generate control charts that detect if a future observation does not conform to
the model. T2and DModX control charts are generated. Should an out of control signal
occur, the PC linear equations, loadings and scores, are a good way to investigate how
much influence each variable has on the out of control signal. Contribution plots are
also a helpful tool to assist one in determining the questionable variables associated

with an out of control signal.

Control charts based on PCA is the most appropriate method for detecting,
monitoring and interpreting an out of control signal. These control charts have an
advantage over the regular T2 control charts. PCA control charts have the ability to
identify the contributions and give more information for the out of control signal. They

satisfy all the criteria for the most suitable method as outlined above.

6.5.1 Phase Il using Principal Components Analysis

Phase Il for Principal Components Analysis was ran on the seventeen new batch
observations, as the T2 and DModX charts on PCA were determined to be the best
method for monitoring and interpreting the process data. T2 and DModX results are

shown in Figures 6.19 - 6.22.
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Figure 6.19 - T2 Control Chart for New Batches
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Figure 6.20 - DModX Control Chart on PCI
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Figure 6.21 - DModX Control Chart on PC2
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Figure 6.22 - DModX Control Chart on PC3

All new batches are in control therefore there is nothing abnormal in the process.

These charts will be used to monitor future observations.

6.6 Conclusion

An objective of this research is to identify suitable methods to be used for
monitoring and controlling an automated high volume process. All multivariate methods
discussed using T2 control charts and control charts on PCA satisfy this purpose. The
latter, has more advanced features that provide valuable information on the current
process. It also identifies how future observations compare to the in-control model and

it can assist in interpreting how these future observations do not fit the model.
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CHAPTER SEVEN

DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS

7.1 Introduction

Modem manufacturing processes contain both online and offline process systems,
which are capable of collecting information on hundreds of process variables. These
variables are analysed to give reliable and useful information on the process. They must
be selected wisely, so that they will provide relevant data to enable the user to monitor
and control conditions contributing to the parameter results. Monitoring and controlling
this data is performed through Statistical Process Control (SPC). SPC has been used in
industry for many decades, through various control charting techniques. Univariate SPC
techniques are more commonly used in industry, through the application of traditional
Shewhart control charts. These control charts display how each point compares to its
average, for a single process parameter. They provide upper and lower control limits,
which signal an out of control observation should a point fall outside these limits.
However, Multivariate SPC is becoming more popular due to the powerful capability of

analysing more than one variable on a single control chart.

This research, through many literature reviews, will investigate the current status
of SPC, in particular Multivariate SPC techniques. This should put forward
consideration for suitable new or alternative SPC techniques. The most suitable
techniques will be considered and applied to performance data generated from a high
volume automated manufacturing line of a Fuel Cell. Product performance will be
considered for the application of these methods, as this is one of the most important

quality characteristics for the end user.

These multivariate techniques will be investigated to create a single monitoring
system that will effectively reduce the amount of work involved in monitoring

individual process parameters.

Investigative tools to assist in identifying parameters that could be a factor in the
root cause for out of control failures, will also be assessed. Consequently, this will
identify the most effective system that can be used to monitor and control future
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observations. This system should have the ability to be applied on a manufacturing line
with increased volumes of production. It must also be capable of monitoring both

continuous and batch processes.
7.2 Discussion

Xue et al. (2006) point out that some of the main challenges in fuel cell industry is
the durability and reliability of the fuel cell. Under normal conditions fuel cells can even
fail. This can be due to the membrane drying out, no electrochemical reaction because
of fuel starvation and leaking of the membrane. A fuel cell system has varying
conditions. They state that it would be very expensive and impractical to create a non-
model baseline, as a huge amount of data would need to be collected from all these

varying conditions.

Statistical Process Control monitoring is divided into two stages. Phase | involves
screening the data to create a baseline from which the process parameters are estimated.
Phase Il monitoring and controlling future data observations. Both of these were

considered as part of this research, in order to create an effective monitoring system.

The literature reviews conducted on these multivariate techniques were evaluated.
These techniques included Hotellings T2, Principal Components Analysis (PCA), Partial
Least Squares (PLS), Squared Prediction Error (SPE) and Distance to the Model
(DModX).

Hotellings T2 and PCA techniques were applied to the fuel cell performance data,
The Hotellings T2 chart can quickly determine an out of control observation. It does not,
however, provide information as to which of the variables created the out of control
situation. The T2 value on the control chart is not presented in the original variable

units.

Multivariate PCA differs from the standard control chart procedure. It describes
the multivariate structure of the data by determining relationships between the variables
in a dataset. PCA takes a small number of factors and creates a baseline model in which
future observations are assessed against. The control charts will determine whether or

not these observations conform to the model.
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This was found to be the most effective method. Not only does it have the
capability to create control charts to monitor the process for detecting an out of control
situation, it also has the ability to diagnose which of the original variables played a part
in producing the signal. Similarly, as with the T2 control chart, the control chart values
are not in terms of the original units. However, PCA can translate the out of control

signal back into the original variable contributions.

A single monitoring system, using multivariate PCA, is used to assess product
performance of the Fuel Cell. Once the PCA model has been developed, T and DModX
control charts are generated. The T2 control chart is different to the standard T2 control
chart. The values that are plotted on the control chart are not the original variable
observations. They are calculated from the scores that were generated by the PCA
model. The T2and DModX charts are monitored simultaneously. Each chart provides a
different perspective on how the data fits the model. The Ty control chart monitors
observations that deviate from the mean, but still remain on the plane. Observations that
violate the correlation structure of the model, by moving off the plane, are monitored by
the DModX chart. In addition to these, scores and loadings charts can be considered as
part of the monitoring system. If a signal occurs on any of the control charts generated
from PCA, a contribution plot has the ability to isolate a particular variable or group of

variables that were responsible for the out of control situation.

This monitoring system, on PCA control charts, could also be applied to
production processes with even higher volumes. The number of charts that are
monitored will remain the same. Even increasing the number of variables to be
monitored does not affect the number of charts that will be monitored. It is only the

number of data points that increases.

7.3 Conclusions

All of the objectives for this project were achieved through the application of
multivariate SPC techniques on the fuel cell performance data collected from an
automated high volume manufacturing process. Multivariate SPC, an alternative
technique to the standard Univariate SPC, was proposed. Multivariate SPC control

charts can be created easily enough with the right knowledge.
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This research investigated the present status of both univariate and multivariate
SPC techniques. The literature reviews have shown that there are many Multivariate
SPC methods available, but they are not always used in industry due to the lack of

education and resources for the application of these techniques.

The most appropriate techniques were selected and these methods were applied to

the performance data from a Fuel Cell manufacturing line.

These multivariate SPC techniques generated control charts that can be applied to
both continuous and batch processes. This reduces the labour involved in monitoring

individual process parameters, as is done in Univariate SPC.

A single monitoring system was identified as the most effective system. It can
monitor and control future observations, and also provides suitable tools to assist in
identifying which parameters to investigate for root cause of out of control failures. This

system can also be used in processes with increased volumes of production.

This project had a lot of challenging obstacles from a quality perspective. The
sampling and testing requirements for a high volume manufacturing line are a lot
different to a normal manufacturing environment. This project was developed from an
R&D environment. Moving from this to a semi-automated line and then developing into
a high volume automated line brought unexpected problems. These problems could not
have been anticipated at the start of the project, as it was unknown how mass

manufacturing would affect the product performance.

These unexpected problems meant that it took a little longer to get to Phase I,
where a model of the process could be characterised. All of these issues were worked

through with an acceptable final result, i.e. shippable product.

Phase | is a very important part of the process characterisation. An appropriate
and representative model developed from Phase | is vital for monitoring future product.

The better the fit of the model, the easier it is to detect abnormal situations.

The consequences surrounding inaccurate screening in Phase | would result in

abnormal batch performances that do not cause a signal. The danger is that these
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abnormal conditions remain in the baseline dataset, as they are not thoroughly

investigated for root cause, in order to justify their removal.

Similarly, if the baseline model does not contain enough data to support all
conditions that a normal process could encounter, a signal may occur as an out of
control. In reality, there is nothing wrong with the process. Should this particular
condition have been included as part of the model, no signal for an abnormal condition

would have been generated.

Phase Il monitoring needs to be an efficient system for high volume
manufacturing, in order for SPC to be effective. The monitoring system identified
through multivariate control charts on PCA satisfies the requirements for the
manufacturing line presented in this research. It also satisfies the requirements should
production ramp up resulting in an increase in the number of batches manufactured

daily.

The various testing implemented both online and offline in the laboratory was
initially unexpected, so it involved expanding the laboratory to facilitate the

requirements for all final testing ofthe product.

7.4 Recommendations

7.4.1 Method

It has been shown that Principal Components Analysis (PCA) for multivariate
SPC applications on high volume processes is the most effective method for an

automated high volume manufacturing line.

7.4.2 Parameter Selection

There can be hundreds of parameters measured as part of a manufacturing
process. The parameters that are selected for analysis should be representative of what
one is attempting to demonstrate for end product functionality. The critical quality
attributes should be considered as well as the corresponding critical process parameters.

Should the incorrect parameters be selected then any analysis and decisions made would
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be done in vain, as they would not be applicable to the final quality decision. The
accurate selection of parameters is critical as to whether they are appropriate for what
one is attempting to measure. It is important to thoroughly assess all relevant parameters
and determine if they contribute valuable information to the principal quality

characteristic of the product.
7.4.3 Characterisation

The characterisation of the baseline dataset is a very important step in process
monitoring and control. Phase | for process monitoring involves selecting the
observations and conditions that are considered to be representative of normal process
operation. These observations should be selected from in-control situations. Therefore,
this stage should be approached with caution. Should the baseline not be suitably
characterised, the Phase Il stage of the process, where future observations are monitored
for conformance to the baseline, would be compromised. Abnormal future observations
will not be accurately represented as an out of control state. Therefore it is essential that

the baseline be captured appropriately.
7.4.4 Software

Multivariate data analysis is an advanced technique. The use of the most
appropriate software is essential as hand calculations can be very complex, time-
consuming and tedious. Standard software packages, such as Minitab and JMP, only
cover certain aspects of multivariate data analysis. For instance, the regular T charts
and Principal Components Analysis can be generated on separated platforms, but T2

charts on PCA and the SPE or DModX charts cannot be created effortlessly.

More advanced software is necessary to plot the T2 statistic and DModX charts on
Principal Components Analysis. SIMCA, developed by umetrics, is one such software
package. It is largely used for model building and predictive analysis. It has the ability
to generate all the charts necessary in order to build an effective monitoring system. It
also has the capability to generate contribution plots. These are an important tool for
establishing root cause. SIMCA can be expensive as licences for this type of software

are usually costly.
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For this reason, it is highly likely that many industries would incorporate the T2
method for monitoring a process. The importance of pros should be weighed up against
the cons in order to determine a company’s priorities in relation to quality. No

compromise on quality should have to be made.
7.4.5 Risk of False Alarms

In terms of the data analysis, the chosen a levels are crucial in a high volume
process. One should be aware for the implications associated with selecting the a level.
An a level of 0.05 results in 1 in 20 batches will naturally falling outside the limits.
An a level ofo.01 resultsin 1in 100 and a = o0.0027 results in 1 in 370 out of control
signals when there is no abnormal situation occurring. If the a level is not carefully
considered, there would be a lot of resources wasted in trying to find a root cause for a

problem that doesn’t exist.

An intermediate choice of a = 0.01 should be selected for a high volume
production line. This will result in 1 in 100 batches naturally falling outside the control

limit.

7.5 Future Research
7.5.1 Partial Least Squares

Partial Least Squares (PLS) could be considered as an alternative to Principal
Components Analysis (PCA). PLS is also capable of providing a monitoring system for
multivariate processes. It is based on regression techniques where a predictive model
has been characterised from assessing the impact that the input variables have on the

output variables.
7.5.2 Automated Data Collection

Systems could be implemented online to contain software that would take
parameter measurements to monitor control using PCA or PLS methods. This would
enable real-time monitoring, so that a pending batch status could be made before a batch

reaches end of line.
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Fuel data could be collected and PLS could be used to build a model for the
chemical composition, and how it will affect the overall performance parameters. This

data could be assessed before the fuel is transferred into fuel cell.
7.5.3 Robust Charting Methods

More robust control charts could be introduced in Phase I, when screening for
outliers. The traditional multivariate T2 control chart can quickly detect extreme
outliers. However, moderate outliers will be unsuccessfully detected. Robust control

charts are more efficient for detecting outliers during Phase I.

These control charts are determined using robust estimators of the mean vector
and covariance matrix. These would replace the mean vector and covariance matrix,

estimated using conventional methods.

There are various methods for evaluating these robust estimates. The minimum
covariance determinant (MCD) estimators and the minimum volume ellipsoid (MVE)
estimators were proposed by Vargas (2003) and Jensen et al. (2007). More recently,
Chenouri et al. (2009) proposed using reweighted minimum covariance determinant

(RMCD) estimators, which can be used in Phase II.
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