dc.contributor.author | de Frein, R. | en |
dc.contributor.editor | - | en |
dc.date.accessioned | 2017-03-21T13:26:21Z | |
dc.date.available | 2017-03-21T13:26:21Z | |
dc.date.copyright | 2013 | |
dc.date.issued | 2013-06 | |
dc.identifier.citation | de Frein, R. (2013) 'Ghostbusters: A parts-based NMF algorithm', presented at 24th IET Irish Signals and Systems Conference (ISSC 2013), 20 - 21 Jun. | en |
dc.identifier.isbn | 978-1-84919-754-0 | en |
dc.identifier.issn | - | en |
dc.identifier.uri | https://research.thea.ie/handle/20.500.12065/1044 | |
dc.description.abstract | An exact nonnegative matrix decomposition algorithm is proposed. This is achieved by 1) Taking a nonlinear approximation of a sparse real-valued dataset at a given tolerance-to-error constraint, c; Choosing an arbitrary lectic ordering on the rows or column entries; And, then systematically applying a closure operator, so that all closures are selected. Assuming a nonnegative hierarchical closure structure (a Galois lattice) ensures the data has a unique ordered overcomplete dictionary representation. Parts-based constraints on these closures can then be used to specify and supervise the form of the solution. We illustrate that this approach outperforms NMF on two standard NMF datasets: it exhibits the properties described above; It is correct and exact. | en |
dc.format | Pdf | en |
dc.language.iso | en | en |
dc.publisher | Signals and Systems Conference (ISSC 2013), 24th IET Irish | en |
dc.subject | Lectic orderings | en |
dc.subject | Nonnegative matrix factorization | en |
dc.subject | Unique solutions | en |
dc.title | Ghostbusters: A parts-based NMF algorithm | en |
dc.type | Conference Presentation | en |
dc.description.peerreview | Yes | en |
dc.identifier.url | http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6621236&punumber%3D6606941%26sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A6620810%29%26pageNumber%3D2 | en |
dc.subject.department | Science | en |