Show simple item record

dc.contributor.authorMannion, Patrick
dc.date.accessioned2019-03-14T18:36:14Z
dc.date.available2019-03-14T18:36:14Z
dc.date.copyright2019
dc.date.issued2019
dc.identifier.citationarXiv:1902.03601 [cs.CV]en_US
dc.identifier.urihttps://research.thea.ie/handle/20.500.12065/2517
dc.description.abstractCorrectly identifying vulnerable road users (VRUs), e.g. cyclists and pedestrians, remains one of the most challenging environment perception tasks for autonomous vehicles (AVs). This work surveys the current state-of-the-art in VRU detection, covering topics such as benchmarks and datasets,object detection techniques and relevant machine learning algorithms. The article concludes with a discussion of remaining open challenges and promising future research directions for this domain.en_US
dc.formatPdfen_US
dc.language.isoenen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Ireland*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ie/*
dc.subjectEnvironment Perceptionen_US
dc.subjectAutonomous Vehiclesen_US
dc.subjectObject Detectionen_US
dc.subjectObject Classificationen_US
dc.subjectVulnerable Road Usersen_US
dc.subjectPedestrian Detectionen_US
dc.subjectCcyclist Detection.en_US
dc.titleVulnerable road user detection: state-of-the-art and open challengesen_US
dc.typeArticleen_US
dc.description.peerreviewyesen_US
dc.rights.accessCopyrighten_US
dc.subject.departmentDepartment of Computer Science & Applied Physicsen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Ireland
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Ireland