Effect of Cu doping on the anatase-to-rutile phase transition in TiO2 photocatalysts: theory and experiments /
View/ Open
Date
2019-01-22Author
Byrne, Ciara
Moran, Lorraine
Hermosilla, Daphne
Blanco, Ángeles
Rhatigan, Stephen
Hinder, Steven
Ganguly, Priyanka
Nolan, Michael
Merayo, Noemí
Pillai, Suresh C.
Metadata
Show full item recordAbstract
This paper shows that incorporation of Cu inhibits the anatase to rutile phase transition at temperatures above
500 °C. The control sample, with 0% Cu contained 34.3% anatase at 600 °C and transitioned to 100% rutile by
650 °C. All copper doped samples maintained 100% anatase up to 600 °C. With 2% Cu doping, anatase fully
transformed to rutile at 650 °C, at higher Cu contents of 4% & 8% mixed phased samples, with 27.3% anatase
and 74.3% anatase respectively, are present at 650 °C. All samples had fully transformed to rutile by 700 °C. 0%,
4% and 8% Cu were evaluated for photocatalytic degradation of 1, 4 dioxane. Without any catalyst, 15.8% of the
1,4 dioxane degraded upon irradiation with light for 4 h. Cu doped TiO2 shows poor photocatalytic degradation
ability compared to the control samples. Density functional theory (DFT) studies of Cu-doped rutile and anatase
show formation of charge compensating oxygen vacancies and a Cu2+ oxidation state. Reduction of Cu2+ to Cu+
and Ti4+ to Ti3+ was detected by XPS after being calcined to 650–700 °C. This reduction was also shown in DFT
studies. Cu 3d states are present in the valence to conduction band energy gap upon doping. We suggest that the
poor photocatalytic activity of Cu-doped TiO2, despite the high anatase content, arises from the charge recombination at defect sites that result from incorporation of copper into TiO2.
Collections
The following license files are associated with this item: