Show simple item record

dc.contributor.authorO’Connor, Sean
dc.contributor.authorEhimen, Ehiaze
dc.contributor.authorPillai, Suresh C.
dc.contributor.authorLyons, Gary
dc.contributor.authorBartlett, John
dc.date.accessioned2020-03-11T16:12:13Z
dc.date.available2020-03-11T16:12:13Z
dc.date.copyright2020-02-03
dc.date.issued2020
dc.identifier.citationO’Connor, S., Ehimen, E., Pillai, S.C., Lyons, G. and Bartlett, J. (2020) "Economic and Environmental Analysis of Small-Scale Anaerobic Digestion Plants on Irish Dairy Farms", Energies, 13 (3), pp.637. DOI: https://doi.org/10.3390/en13030637.en_US
dc.identifier.issn1996-1073
dc.identifier.urihttp://research.thea.ie/handle/20.500.12065/3042
dc.description.abstractThe European Union’s (EU) climate and energy package requires all EU countries to reduce their greenhouse gas (GHG) emissions by 20% by 2020. Based on current trends, Ireland is on track to miss this target with a projected reduction of only 5% to 6%. The agriculture sector has consistently been the single largest contributor to Irish GHG emissions, representing 33% of all emissions in 2017. Small-scale anaerobic digestion (SSAD) holds promise as an attractive technology for the treatment of livestock manure and the organic fraction of municipal wastes, especially in low population communities or standalone waste treatment facilities. This study assesses the viability of SSAD in Ireland, by modelling the technical, economic, and environmental considerations of operating such plants on commercial Irish dairy farms. The study examines the integration of SSAD on dairy farms with various herd sizes ranging from 50 to 250 dairy cows, with co-digestion afforded by grass grown on available land. Results demonstrate feedstock quantities available onfarm to be sufficient to meet the farm's energy needs with surplus energy exported, representing between 73% and 79% of the total energy generated. All scenarios investigated demonstrate a net CO2 reduction ranging between 2059–173,237 kg CO2-eq. yr-1. The study found SSAD systems to be profitable within the plant’s lifespan on farms with dairy herds sizes of >100 cows (with payback periods of 8–13 years). The simulated introduction of capital subvention grants similar to other EU countries was seen to significantly lower the plant payback periods. The insights generated from this study show SSAD to be an economically sustainable method for the mitigation of GHG emissions in the Irish agriculture sector.en_US
dc.formatPdfen_US
dc.publisherMDPIen_US
dc.relation.ispartofEnergiesen_US
dc.rightsAttribution 3.0 Ireland*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/ie/*
dc.subjectSewage -- Purification -- Anaerobic treatmenten_US
dc.subjectFarm manure in methane productionen_US
dc.subjectGreenhouse gas mitigationen_US
dc.subjectClimatic changes -- Risk managementen_US
dc.subjectDairy farming -- Irelanden_US
dc.titleEconomic and Environmental Analysis of SmallScale Anaerobic Digestion Plants on Irish Dairy Farms /en_US
dc.typeArticleen_US
dc.description.peerreviewyesen_US
dc.identifier.issue3en_US
dc.identifier.startpage637en_US
dc.identifier.urlhttps://doi.org/10.3390/en13030637en_US
dc.identifier.volume13en_US
dc.rights.accessCreative Commons Attributionen_US
dc.subject.departmentDept of Life Sciences, ITSen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 3.0 Ireland
Except where otherwise noted, this item's license is described as Attribution 3.0 Ireland