Show simple item record

dc.contributor.authorChawla, Ashima
dc.contributor.authorJacob, Paul
dc.contributor.authorLee, Brian
dc.contributor.authorFallon, Sheila
dc.date.accessioned2020-04-29T14:01:35Z
dc.date.available2020-04-29T14:01:35Z
dc.date.copyright2019
dc.date.issued2019
dc.identifier.citationChawla, A., Jacob, P., Lee, B., Fallon, S. (2019). Bidirectional LSTM autoencoder for sequence based anomaly detection in cyber security. International Journal of Simulation -- Systems, Science & Technology. 20(5): 1-6. DOI: 10.5013/IJSSST.a.20.05.07en_US
dc.identifier.issn1473-804X
dc.identifier.issn1473-8031
dc.identifier.otherArticles - Software Research Institute AITen_US
dc.identifier.urihttp://research.thea.ie/handle/20.500.12065/3154
dc.description.abstractCyber-security is concerned with protecting information, a vital asset in today’s world. The volume of data that is generated can be usefully analyzed when cyber-security systems are effectively implemented with the aid of software support. Our approach is to determine normal behavior of a system based on sequences of system call traces made by the kernel processes in the system. This paper describes a robust and computationally efficient anomaly based host based intrusion detection system using an Encoder-Decoder mechanism. Using CuDNNLSTM networks, it is possible to obtain a set of comparable results with reduced training times. The Bidirectional Encoder and a unidirectional Decoder is trained on normal call sequences in the ADFA-LD dataset. Intrusion Detection is evaluated based on determining the probability of a sequence being reconstructed by the modelen_US
dc.formatPDFen_US
dc.language.isoenen_US
dc.publisherUnited Kingdom Simulation Societyen_US
dc.relation.ispartofInternational Journal of Simulation -- Systems, Science & Technologyen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Ireland*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ie/*
dc.subjectAutoencodersen_US
dc.subjectCuDNNLSTMen_US
dc.subjectEmbeddingsen_US
dc.subjectHost based intrusionen_US
dc.subjectSystem callen_US
dc.titleBidirectional LSTM autoencoder for sequence based anomaly detection in cyber security.en_US
dc.typeArticleen_US
dc.contributor.sponsorThis project reported in this paper has received funding from the European Union Horizon 2020 research and innovation programme under grant agreement No. 700071 for the PROTECTIVE project.en_US
dc.description.peerreviewyesen_US
dc.identifier.doidoi: 10.5013/IJSSST.a.20.05.07
dc.identifier.orcidhttps://orcid.org/0000-0001-5933-3107
dc.identifier.orcidhttps://orcid.org/0000-0001-5090-2756
dc.identifier.orcidhttps://0000-0002-8475-4074
dc.identifier.orcidhttps://orcid.org/0000-0001-6874-5699
dc.rights.accessOpen Accessen_US
dc.subject.departmentSoftware Research Institute AITen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Ireland
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Ireland