Show simple item record

dc.contributor.authorAnsari, Mohammad Samar
dc.contributor.authorBartos, Vaclav
dc.contributor.authorLee, Brian
dc.date.accessioned2020-07-01T13:42:49Z
dc.date.available2020-07-01T13:42:49Z
dc.date.copyright2020
dc.date.issued2020
dc.identifier.citationAnsari. M.S., Bartos, V., Lee, B. (2020). Shallow and deep learning approaches to network intrusion alert prediction. Procedia Computer Science. 171: 644-653. doi.org/10.1016/j.procs.2020.04.070en_US
dc.identifier.issn1877-0509
dc.identifier.otherArticles - Software Research Institute AITen_US
dc.identifier.urihttp://research.thea.ie/handle/20.500.12065/3327
dc.description.abstractThe ever-increasing frequency and intensity of intrusion attacks on computer networks worldwide has necessitated intense research efforts towards the design of attack detection and prediction mechanisms. While there are a variety of intrusion , the prediction of network intrusion events is still under active investigation. Over the past, statistical methods have dominated the design of attack prediction methods. However more recently, both shallow and deep learning techniques have shown promise for such data intensive regression tasks. This paper first explores the use of shallow learning techniques for predicting intrusions in computer networks by estimating the probability that a malicious source will repeat an attack in a given future time interval. The approach also highlights the limits to which shallow learning may be applied for suchen_US
dc.formatPDFen_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofProcedia Computer Science. Special Issue: Third International Conference on Computing and Network Communications (CoCoNet'19)en_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Ireland*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ie/*
dc.subjectAlert predictionen_US
dc.subjectConvultional LSTMen_US
dc.subjectCybersecurityen_US
dc.subjectDeep learningen_US
dc.subjectGradient boosted decision treesen_US
dc.subjectShallow learningen_US
dc.titleShallow and deep learning approaches for network intrusion alert prediction.en_US
dc.typeArticleen_US
dc.description.peerreviewyesen_US
dc.identifier.doidoi.org/10.1016/j.procs.2020.04.070
dc.identifier.orcidhttps://orcid.org/0000-0002-8475-4074
dc.identifier.orcidhttps://orcid.org/0000-0002-4368-0478
dc.rights.accessOpen Accessen_US
dc.subject.departmentSoftware Research Institute AITen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Ireland
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Ireland