dc.contributor.author | Khan, Amir | |
dc.contributor.author | Ansari, Samar | |
dc.date.accessioned | 2021-03-24T09:38:32Z | |
dc.date.available | 2021-03-24T09:38:32Z | |
dc.date.copyright | 2021 | |
dc.date.issued | 2021-02-06 | |
dc.identifier.citation | Khan A., Ansari M.S. (2021) Deep Learning Based Stable and Unstable Candle Flame Detection. In: Thampi S.M., Piramuthu S., Li KC., Berretti S., Wozniak M., Singh D. (eds) Machine Learning and Metaheuristics Algorithms, and Applications. SoMMA 2020. Communications in Computer and Information Science, vol 1366. Springer, Singapore. https://doi.org/10.1007/978-981-16-0419-5_5 | en_US |
dc.identifier.isbn | 9789811604188 | |
dc.identifier.isbn | 9789811604195 | |
dc.identifier.uri | http://research.thea.ie/handle/20.500.12065/3553 | |
dc.description.abstract | This paper presents a deep learning based solution for identification of normal and abnormal candle flames, controlled and uncontrolled flames. Candle flames affected by external factors like wind, improper combustion of fuel etc. Proposed CNN based deep neural network can successfully classify the stable and unstable candle flame with an accuracy of 67% for generated test set and an accuracy of 83% for random images taken from open source on internet. | en_US |
dc.format | PDF | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Machine Learning and Metaheuristics Algorithms, and Applications. | en_US |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Stable flame | en_US |
dc.subject | Unstable flame | en_US |
dc.subject | Deep learning | en_US |
dc.title | Deep learning based stable and unstable candle flame detection | en_US |
dc.type | info:eu-repo/semantics/other | en_US |
dc.contributor.affiliation | Athlone Institute of Technology | en_US |
dc.identifier.conference | Machine Learning and Metaheuristics Algorithms, and Applications. Second Symposium, SoMMA 2020, Chennai, India, October 14–17, 202 | |
dc.identifier.doi | 10.1007/978-981-16-0419-5_5 | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-4368-0478 | en_US |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | en_US |
dc.subject.department | Software Research Institute AIT | en_US |
dc.type.version | info:eu-repo/semantics/acceptedVersion | en_US |