Show simple item record

dc.contributor.authorVashishtha, Ashish
dc.contributor.authorCallaghan, Dean
dc.contributor.authorNolan, Cathal
dc.date.accessioned2021-05-18T14:31:39Z
dc.date.available2021-05-18T14:31:39Z
dc.date.copyright2021
dc.date.issued2021
dc.identifier.citationVashishtha, A., Callaghan, D., & Nolan, C. (2021). Drag control by hydrogen injection in shocked stagnation zone of blunt nose. IOP Conference Series: Materials Science and Engineering, 1024, 012110. doi:10.1088/1757-899x/1024/1/012110en_US
dc.identifier.issn1757-899X
dc.identifier.urihttp://research.thea.ie/handle/20.500.12065/3588
dc.description.abstractThe main motivation of the current study is to propose a high-pressure hydrogen injection as an hybrid active flow control technique in order to manipulate the flow-field in front of a blunt nose during hypersonic flight. Hydrogen injection can lead to self-ignition under the right environment conditions in a stagnation zone, and may cause thermal heat addition through combustion and provide the counterjet effect together by pushing bow shock upstream. The axisymmetric numerical simulations for the hemispherical blunt nose are performed at a Mach 6 freestream flow with 10000 Pa pressure and 293 K temperature. The sonic and supersonic hydrogen and air injections are compared for drag reduction at the same stagnation pressure ratio PR and momentum ratio (RMA). The sonic air and hydrogen injection scenarios show similar performance in terms of drag reduction and similar SPM flow features, but hydrogen injection has a mass flow rate 3.76 times lower than air. Supersonic hydrogen injection at Mj 2.94 behaves differently than supersonic air injection and can achieve up to 60 % drag reduction at lower PR and LPM mode with lower mass flow rate. Additionally, air injection achieves a drag reduction of 40 % in SPM mode at higher PR with very high mass flow rate.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.publisherIOP Publishingen_US
dc.relation.ispartofIOP Conference Series: Materials Science and Engineeringen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjecthypersonicen_US
dc.subjecthydrogenen_US
dc.subjectshock induced combustionen_US
dc.subjectdrag controlen_US
dc.subjectOpenFOAMen_US
dc.titleDrag control by hydrogen injection in shocked stagnation zone of blunt noseen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.contributor.affiliationInstitute of Technology Carlowen_US
dc.contributor.affiliationInstitute of Technology Carlowen_US
dc.contributor.affiliationInstitute of Technology Carlowen_US
dc.description.peerreviewyesen_US
dc.identifier.doi10.1088/1757-899x/1024/1/012110en_US
dc.identifier.orcid0000-0002-8385-3740en_US
dc.identifier.orcid0000-0002-8435-6252en_US
dc.identifier.orcid0000-0003-4748-3292en_US
dc.identifier.startpage012110en_US
dc.identifier.urlhttps://doi.org/10.1088/1757-899x/1024/1/012110en_US
dc.identifier.volume1024en_US
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessen_US
dc.subject.departmentengCORE - IT Carlowen_US
dc.type.versioninfo:eu-repo/semantics/publishedVersionen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International