Show simple item record

dc.contributor.authorAnsari, Mohammad Samar
dc.contributor.authorBartoš, Václav
dc.contributor.authorLee, Brian
dc.date.accessioned2021-11-18T13:04:11Z
dc.date.available2021-11-18T13:04:11Z
dc.date.copyright2021-11-17
dc.date.issued2021-11
dc.identifier.citationAnsari, M.S., Bartos, V., Lee, B. (2022). GRU-based deep learning approach for network intrusion alert prediction. Future Generation Computer Systems.128 (March 2022), 235-247. https://doi.org/10.1016/j.future.2021.09.040en_US
dc.identifier.issn0167-739X
dc.identifier.urihttp://research.thea.ie/handle/20.500.12065/3844
dc.description.abstractThe exponential growth in the number of cyber attacks in the recent past has necessitated active research on network intrusion detection, prediction and mitigation systems. While there are numerous solutions available for intrusion detection, the prediction of future network intrusions still remains an open research problem. Existing approaches employ statistical and/or shallow machine learning methods for the task, and therefore suffer from the need for feature selection and engineering. This paper presents a deep learning based approach for prediction of network intrusion alerts. A Gated Recurrent Unit (GRU) based deep learning model is proposed which is shown to be capable of learning dependencies in security alert sequences, and to output likely future alerts given a past history of alerts from an attacking source. The performance of the model is evaluated on intrusion alert sequences obtained from the Warden alert sharing platform.en_US
dc.formatPDFen_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofFuture Generation Computer Systemsen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAlert predictionen_US
dc.subjectCybersecurityen_US
dc.subjectDeep learningen_US
dc.subjectNetwork intrusion predictioinen_US
dc.titleGRU-based deep learning approach for network intrusion alert predictionen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.contributor.affiliationAthlone Institute of Technologyen_US
dc.contributor.sponsorEuropean Union’s Horizon 2020 Research and Innovation Program, PROTECTIVE, under Grant Agreement No. 700071, and (ii) European Union’s Horizon 2020 research and innovation program under grant agreement No. 833418.en_US
dc.description.peerreviewyesen_US
dc.identifier.doi10.1016/j.future.2021.09.040en_US
dc.identifier.endpage247en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-4368-0478en_US
dc.identifier.orcidhttps://orcid.org/ 0000-0002-8475-4074en_US
dc.identifier.startpage235en_US
dc.identifier.volume128en_US
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessen_US
dc.subject.departmentSoftware Research Institute AITen_US
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International