Show simple item record

dc.contributor.authorArshad, Iram
dc.contributor.authorQiao, Yuansong
dc.contributor.authorLee, Brian
dc.contributor.authorYe, Yuhang
dc.date.accessioned2023-02-27T10:29:05Z
dc.date.available2023-02-27T10:29:05Z
dc.date.copyright2023
dc.date.issued2023-02-17
dc.identifier.citationArshad, I., Qiao, Y., Lee, B., Ye, Y. (2023). Invisible encoded backdoor attack on DNNs using conditional GAN. In 2023 IEEE International Conference on Consumer Electronics (ICCE). 06-08 January Las Vegas, NV. DOI: 10.1109/ICCE56470.2023.10043484en_US
dc.identifier.urihttps://research.thea.ie/handle/20.500.12065/4393
dc.description.abstractDeep Learning (DL) models deliver superior performance and have achieved remarkable results for classification and vision tasks. However, recent research focuses on exploring these Deep Neural Networks (DNNs) weaknesses as these can be vulnerable due to transfer learning and outsourced training data. This paper investigates the feasibility of generating a stealthy invisible backdoor attack during the training phase of deep learning models. For developing the poison dataset, an interpolation technique is used to corrupt the sub-feature space of the conditional generative adversarial network. Then, the generated poison dataset is mixed with the clean dataset to corrupt the training images dataset. The experiment results show that by injecting a 3% poison dataset combined with the clean dataset, the DL models can effectively fool with a high degree of model accuracy.en_US
dc.formatPDFen_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.ispartof2023 IEEE International Conference on Consumer Electronics (ICCE)en_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectBackdoor attacken_US
dc.subjectConditional generative adversarial networken_US
dc.subjectImage synthesisen_US
dc.titleInvisible encoded backdoor attack on DNNs using conditional GANen_US
dc.conference.date2023-01-06
dc.conference.hostIEEEen_US
dc.conference.locationLas Vegas, NV, USAen_US
dc.contributor.affiliationTechnological University of the Shannon: Midlands Midwesten_US
dc.contributor.sponsorPresident Seed Fund, Technological University of the Shannon: Midlands Midwesten_US
dc.description.peerreviewyesen_US
dc.identifier.doi10.1109/ICCE56470.2023.10043484en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0755-5896en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1543-1589en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8475-4074en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4608-1451en_US
dc.subject.departmentSoftware Research Institute: TUS MIdlandsen_US
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States