Show simple item record

dc.contributor.authorDa Silva Pereira, Everton Henrique
dc.contributor.authorAttallah, Olivia A.
dc.contributor.authorTas, Cuneyt Erdinc
dc.contributor.authorChee, Bor Shin
dc.contributor.authorFreitas, Filomena
dc.contributor.authorLanzagorta Garcia, Eduardo
dc.contributor.authorMcAuliffe, Michael A.P.
dc.contributor.authorMojicevic, Marija
dc.contributor.authorBatista, Maria N.
dc.contributor.authorReis, Maria A.M.
dc.contributor.authorBrennan Fournet, Margaret
dc.date.accessioned2024-01-08T11:02:13Z
dc.date.available2024-01-08T11:02:13Z
dc.date.copyright2023-11-23
dc.date.issued2024-04
dc.identifier.citationDa Silva Pereira, E.H., Attallah, O.A., Tas, C.E.,Chee, B.S., Freitas, F., Lanzagorta Garcia, E., Mc Auliffe, M.A.P., Mojicevic,M., Batista,M.N, Reis, M.A.M., Brennan Fournet, M. (2023) Boosting bacterial nanocellulose production from chemically recycled post-consumer polyethylene terephthalate. Sustainable Materials and Technologies, 39, 2024, e00784, , https://doi.org/2214-9937en_US
dc.identifier.issn2214-9937
dc.identifier.urihttps://research.thea.ie/handle/20.500.12065/4707
dc.description.abstractThe circular economy is emerging with new sustainable solutions to the ever-growing plastic waste challenge, garnering increasing attention. In this study, the possibility to modify expensive Hestrin–Schramm medium (HS) for bacterial nanocellulose (BNC) production and replace significant amounts of glucose with terephthalic acid (TPA) derived after reactive extrusion processing of mixed plastic waste yielding post consumer TPA (pcTPA), was evaluated from laboratory scale to fermentation at pilot scale. Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Thermogravimetric Analysis (TGA) were used to assess the structural, thermal, and morphological properties of BNC and its generated derivatives. The study’s findings highlight the positive impact of pcTPA on BNC yield, surpassing the performance of conventional TPA. The presence of pcTPA in the medium resulted in a BNC yield of 4.01 g/L in a scale-up step of 100 mL cultivation, while the positive control using glucose resulted in a yield of 3.57 g/L. The efficiency of glucose substitution with pcTPA increased with each scale-up step, ultimately reaching a 320% yield increase in comparison to the positive control. Additionaly, the procedure that enhanced the materials’ thermoplasticity in the form of derivatives has been established resulting in the production of BNC laurate and BNC octanoate derivatives with melting temperatures of 270 ◦C and 280 ◦C, respectively. Overall, this study investigates the potential of this approach as an important circular economic solution, enabling an increased sustainable perspective for polyethylene terephthalate (PET) circularity and significantly a much needed cost reduction for BNC production with enhanced thermoplasticity.en_US
dc.formatPDFen_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofSustainable Materials and Technologyen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectBacterial celluloseen_US
dc.subjectBiomaterialen_US
dc.subjectDepolymerisationen_US
dc.subjectCircular economyen_US
dc.subjectTerephthalic aciden_US
dc.titleBoosting bacterial nanocellullose production from chemically recycled post-consumer polyethylene terephthalateen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.contributor.affiliationTechnological University of the Shannon: Midlands Midwesten_US
dc.contributor.sponsorTechnological University of The Shannon through the President Seed Fund, the Government of Ireland International Education Scholarship 2020/2021, the European Union’s Horizon 2020 Research and Innovation program [grant number: 870292 (BioICEP)]; European Union’s Horizon Europe EIC Pathfinder program [grant number: 101046758 (EcoPlastiC)]. This work was financed by national funds from FCT/MCTES - Fundaç˜ao para a Ciˆencia e a Tecnologia, I.P., Minist´erio da Ciˆencia, Tecnologia e Ensino Superior, in the scope of the projects UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences – UCIBIO, project LA/ P/0140/202019 of the Associate Laboratory Institute for Health and Bioeconomy - i4HBen_US
dc.description.peerreviewyesen_US
dc.identifier.doi2214-9937en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7480-9564en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6449-5108en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8390-1434en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1606-1759en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9426-9315en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6094-8480en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9811-1715en_US
dc.identifier.volume39en_US
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessen_US
dc.subject.departmentPRISM: Polymer, Recycling, Industrial, Sustainability and Manufacturing Institute: TUS Midlandsen_US
dc.type.versioninfo:eu-repo/semantics/publishedVersionen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 3.0 United States
Except where otherwise noted, this item's license is described as Attribution 3.0 United States