Show simple item record

dc.contributor.authorDa Silva Pereira, Everton Henrique
dc.contributor.authorMojicevic, Marija
dc.contributor.authorTas, Cunety Erdinc
dc.contributor.authorLanzagorta Garcia, Eduardo
dc.contributor.authorFournet, Margaret Brennan
dc.date.accessioned2024-03-28T14:37:59Z
dc.date.available2024-03-28T14:37:59Z
dc.date.copyright2024
dc.date.issued2024-03-02
dc.identifier.citationDa Silva Pereira, E.H., Mojicevic, M., Tas, C.E., Lanzagorta Garcia, E., Brennan Fournet, M. (2024). Targeting bacterial nanocellullose properties through tailored downstream techniques. Polymers. 16, 678. https://doi.org/10.3390/polym16050678en_US
dc.identifier.issn2073-4360
dc.identifier.urihttps://research.thea.ie/handle/20.500.12065/4771
dc.description.abstractBacterial nanocellulose (BNC) is a biodegradable polysaccharide with unique properties that make it an attractive material for various industrial applications. This study focuses on the strain Komagataeibacter medellinensis ID13488, a strain with the ability to produce high yields of BNC under acidic growth conditions and a promising candidate to use for industrial production of BNC. We conducted a comprehensive investigation into the effects of downstream treatments on the structural and mechanical characteristics of BNC. When compared to alkaline-treated BNC, autoclave-treated BNC exhibited around 78% superior flexibility in average, while it displayed nearly 40% lower stiffness on average. An SEM analysis revealed distinct surface characteristics, indicating differences in cellulose chain compaction. FTIR spectra demonstrated increased hydrogen bonding with prolonged interaction time with alkaline solutions. A thermal analysis showed enhanced thermal stability in alkaline-treated BNC, withstanding temperatures of nearly 300 °C before commencing degradation, compared to autoclaved BNC which starts degradation around 200 °C. These findings provide valuable insights for tailoring BNC properties for specific applications, particularly in industries requiring high purity and specific mechanical characteristics.en_US
dc.formatPDFen_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectBacterial nanocelluloseen_US
dc.subjectBiopolymersen_US
dc.subjectDownstreamen_US
dc.subjectMaterialsen_US
dc.subjectTreatmenten_US
dc.subjectKomagateibacteren_US
dc.subjectMembranesen_US
dc.titleTargeting bacterial nanocellullose properties through tailored downstream techniquesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.contributor.affiliationTechnological University of the Shannon: Midlands Midwesten_US
dc.contributor.sponsorTechnological University of The Shannon through the President Seed Fund, the Government of Ireland International Education Scholarship 2020/2021, the European Union’s Horizon 2020 Research and Innovation program [grant number: 870292 (BioICEP)] and European Union’s Horizon Europe EIC Pathfinder program [grant number: 101046758 (EcoPlastiC)].en_US
dc.identifier.doi10.3390/polym16050678en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7480-9564en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6094-8480en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8390-1434en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9426-9315en_US
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessen_US
dc.subject.departmentPRISM: Polymer, Recycling, Industrial, Sustainability and Manufacturing Institute: TUS Midlandsen_US
dc.type.versioninfo:eu-repo/semantics/publishedVersionen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States